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Abstract

Recent progress in self-supervised (SSL) visual representation learning has led to
the development of several different proposed frameworks that rely on augmenta-
tions of images but use different loss functions. However, there are few theoretically
grounded principles to guide practice, so practical implementation of each SSL
framework requires several heuristics to achieve competitive performance. In this
work, we build on recent analytical results to design practical recommendations
for competitive and efficient SSL that are grounded in theory. Specifically, recent
theory tells us that existing SSL frameworks are actually minimizing the same
idealized loss, which is to learn features that best match the data similarity ker-
nel defined by the augmentations used. We show how this idealized loss can be
reformulated to a functionally equivalent loss that is more efficient to compute.
We study the implicit bias of using gradient descent to minimize our reformulated
loss function, and find that using a stronger orthogonalization constraint with a
reduced projector dimensionality should yield good representations. Furthermore,
the theory tells us that approximating the reformulated loss should be improved
by increasing the number of augmentations, and as such using multiple augmenta-
tions should lead to improved convergence. We empirically verify our findings on
CIFAR, STL and Imagenet datasets, wherein we demonstrate an improved linear
readout performance when training a ResNet-backbone using our theoretically
grounded recommendations. Remarkably, we also demonstrate that by leveraging
these insights, we can reduce the pretraining dataset size by up to 2× while main-
taining downstream accuracy simply by using more data augmentations. Taken
together, our work provides theoretically grounded recommendations that can be
used to improve SSL convergence and efficiency.

1 Introduction

Unsupervised representation learning, i.e., learning features without human-annotated labels, is
critical for progress in computer vision. Modern approaches, grouped under the self-supervised
learning (SSL) umbrella, build on the core insight that similar images should map to nearby points in
the learned feature space – often termed as the invariance criterion. Current SSL methods can be
broadly categorized into contrastive and non-contrastive algorithms, based on whether they formulate
their loss functions using negative samples or not, respectively.
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Figure 1: Design of existing SSL algorithms relies on heuristics. (A) Augmentation graphs are
common in vision pretraining, providing generalizable features for downstream tasks. (B) We
propose an equivalent loss function for SSL pretraining that recovers the same eigenfunctions more
efficiently than existing approaches.

Despite this difference in their loss formulations, recent theoretical work has established an equiva-
lence between the contrastive and non-contrastive SSL frameworks [19]. This work shows that these
different SSL formulations are ultimately minimizing a loss that encourages the learning of features
that best match the data similarity kernel defined by the augmentations used. However, this notion of
theoretical equivalence holds only in the limit of ideal pretraining settings, i.e. with access to infinite
data and compute budget, and the feature learning behavior of different SSL algorithms in practical
scenarios is still not well understood. Therefore, researchers often use empirically driven heuristics
that are theoretically ungrounded to design successful applications, such as (i) a high-dimensional
projector head for non-contrastive SSL or (ii) the use of two augmentations per image [3]. Moreover,
existing SSL algorithms are extremely data-hungry, relying on large-scale datasets [33] or data en-
gines [30] to achieve good representations. While this strategy works exceptionally well in data-rich
settings (like training on natural-images), it is not viable in data-constrained settings (like medical
imaging), where samples are relatively scarce.

With these challenges in mind, the primary focus of this work is to develop theoretically grounded
recommendations for improving the effectiveness and efficiency of feature learning, both with respect
to the required compute budget as well as data points. Like any unsupervised representation learning
algorithm, features learned through SSL depend on three factors: (i) implicit bias of the architecture,
(ii) explicit invariance imposed by data augmentations, (iii) implicit bias of the learning rule. While
previous works predominantly studied the role of the model architecture capacity and loss function,
and their interplay with data augmentations [9, 44], our approach broadens this perspective by
also considering the role of the learning rule (gradient descent) in optimizing these loss functions.
Specifically, we extend the previous theoretical findings [44] that unified the desiderata of different
SSL algorithms. We reformulate the idealized unifying loss to propose a functionally equivalent
loss that is more compute-efficient (see Figure 1). Based on our loss formulation, we provide two
practical recommendations that can help improve the efficiency of SSL pipelines while maintaining
good performance. First, we show that optimizing the reformulated loss using gradient descent can
often reduce the orthogonality among the learned embeddings, thereby leading to an inefficient use
of the projector network’s capacity. Consequently, we recommend using a stronger orthogonalization
constraint to eliminate the requirement of high-dimensional projector heads, thereby significantly
reducing the parameter overhead of good feature learning. Second, we show that increasing the
number of augmentations leads to a better estimate of the data similarity kernel. Consequently, we
recommend using more augmentations to improve optimization convergence and learn better features
earlier in training.

We empirically verify our theoretically grounded recommendations using the popular ResNet back-
bone on benchmark datasets: CIFAR, STL and Imagenet. Strikingly, we show that our multi-
augmentation approach can learn good features even with half of the samples in the pretraining
dataset. Our recommendations provide a path towards making SSL pretraining more data and
compute-efficient without harming performance and could unlock massive performance gains in
data-constrained setups. In summary, our core contributions are as follows:
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• Efficient SSL loss formulation: We propose an functionally equivalent and compute-
efficient formulation of the SSL desiderata that yields the eigenfunctions of the augmentation-
defined data similarity kernel.

• Role of heuristics: Based on our loss formulation and the implicit bias of gradient descent
in optimizing this loss, we provide a mechanistic explanation for the role of projector dimen-
sionality and the number of data augmentations. Consequently, we empirically demonstrate
that low-dimensional projector heads are sufficient and that using more augmentations leads
to learning better representations.

• Data efficient SSL: Leveraging the convergence benefits of the multi-augmentation SSL
framework, we empirically demonstrate that we can learn good features with significantly
smaller datasets (up to 2×) without harming downstream linear probe performance.

2 Preliminaries

Existing SSL approaches in computer vision In recent years machine learning researchers have
developed a number of effective approaches for learning from data without labels. The most popular
approaches use augmentations of data points as targets for themselves. One of the first was a Simple
framework for Contrastive Learning (SimCLR), which relied on an infoNCE loss with augmentations
of an image as positive targets and augmentations of other images as negative samples (to construct the
contrastive loss) [12]. Other works have relied on non-contrastive approaches, notably BarlowTwins
[43] and VICReg [5]. BarlowTwins, which was inspired by the ideas of the neuroscientist Horace
Barlow (cite), also uses augmentations of images, but it instead aims to optimize the covariance
structure of the representations in order to reduce redundancies in the feature space [43]. Variance
Invariance Covariance Regularization (VICReg) was a modification of BarlowTwins that added a
variance term in the loss in order to ensure that every feature dimension has a finite variance [5].
In this paper we will focus on non-contrastive methods like BarlowTwins and VICReg, but in line
with previous work [44], we also consider how these approaches relate to contrastive methods like
SimCLR.

Formalizing the self-supervised learning problem Now, we will formalize the unsupervised
representation learning problem for computer vision. In particular, we assume access to a dataset
D = {x1, x2, ..., xn} with xi ∈ Rp consisting of unlabeled images. The objective is to learn a
d-dimensional representation (d < p) that is useful across multiple downstream applications. We
focus on learning the parameters of a deep neural network fθ ∈ FΘ, using the multi-augmentation
SSL framework, wherein multiple views of an image are used to optimize the pretraining loss function,
Lpretrain(fθ,D)

Non-Contrastive Self-Supervised Learning (NC-SSL) algorithms impose invariance to data aug-
mentations, while imposing regularization on the geometry of the learned feature space. More
generally, Lpretrain can be formulated with two terms (i) Linvariance: to learn invariance to data
augmentations and (ii) Lcollapse: regularization to prevent collapsing the feature space to a trivial
solution.

Lpretrain := Linvariance + βLcollapse (1)
where β denotes a hyperparameter that controls the importance of the collapse-preventing term relative
to the invariance term. This formulation separates features that are invariant to the augmentations
from those that are sensitive to them. Intuitively, the ideal feature space is more sensitive to semantic
attributes (e.g. “that’s a dog”) and less sensitive to irrelevant attributes (e.g. “direction the dog is
facing”), facilitating generalization to new examples.

Data Augmentation graph was introduced by Haochen et al. [22] to analyze contrastive losses, like
SimCLR [12]. Briefly, we define a graph G(A,W) that captures the relationship between images
derived from all possible data augmentations. The vertex set (A, ρA) is each augmented sample in a
dataset, X , and the adjacency matrix, W , denotes the similarity between pairs of vertices. Let x0 be
an image in X , and let z = M(x0) ∈ A be a random data augmentation of the image, x0. We define
the probability density of reaching z from x0 via a choice of mapping M :

p(z | x0) = P(z = M(x0)), (2)

Since the mapping is not generally invertible (e.g., cropping), we observe that p(x0 | z) ̸= p(z | x0).
Using this definition, we now formally define the strength of the edge between nodes x, z ∈ A of the
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augmentation graph as the joint probability of generating augmentations x, z from the same image
x0 ∼ ρX . Notably, the edge strength of the (degree-normalized) augmentation graph is equivalent to
the data similarity kernel, defined in [44]. Formally,

kDAF (x, z) = wxz := Ex0∼ρX

[
p(x | x0)

p(x)

p(z | x0)

p(z)

]
(3)

The magnitude of wxz captures the augmentation-defined similarity between x and z. A higher value
of wxz indicates that both patches are more likely to come from the same image and, thereby, are
more similar.

The desiderata of different SSL algorithms can be understood as learning features F that best capture
kDAF (x, z), i.e. F (x)TF (z) ≈ kDAF (x, z). Recent theoretical work has shows that different
SSL losses can be formulated as special cases of the objective function that recovers the top-d
eigenfunctions of kDAF (x, z) [44].

Lssl(F ) = Ex,z∈A
[
(kDAF (x, z)− F (x)TF (z))2

]
(4)

Note that all rotations of F that don’t change its span define an equivalence class of solutions to
Equation (4) and make no difference for the downstream generalization of a linear probe. Based on
this insight, we define an equivalence among learned feature spaces:
Definition 2.1. Let F (x) = (f1(x), . . . fd(x)) be a d-dimensional feature vector (a vector of
functions). Define the subspace

V = V (F ) = {h : X → R | h(x) = w · F (x), w ∈ Rd} (5)

to be the span of the components of F . Given an n-dimensional feature vector, G(x) =
(g1(x), . . . , gn(x)) we say the features G and F are equivalent, if V (F ) = V (G).

3 Implicit bias of non-contrastive SSL loss and optimization

We extend the recent theoretical results [44] to propose a compute-efficient reformulation of the
loss function of the SSL desiderata that yields equivalent features, i.e. the functions spanning the
eigenfunctions of the augmentation-defined data similarity kernel, kDAF . Furthermore, we study the
role of gradient descent in optimizing this loss function and uncover a selection and primacy bias in
feature learning. Specifically, we find that gradient descent tends to learn the dominant eigenfunctions
(eigenfunctions corresponding to larger eigenvalues) earlier during training, and often over-represents
these eigenfunctions under weak orthogonalization constraints.

Consequently, we propose employing a stronger orthogonalization constraint during optimization
when using a low-dimensional projector to ensure that learned features are equivalent to those learned
with a high-dimensional projector. Furthermore, we argue that using more augmentations improves
our sample estimate of kDAF , thereby aiding the eigenfunction optimization problem. We dedicate
the rest of this section to highlight our key theoretical insights, and practical recommendations that
follow them.

3.1 Features in terms of data augmentation kernels

Let us define a kernel operator, Tk, for a positive semi-definite data augmentation kernel, kDAF .

Tkf(x) = Ez∼ρX
[k(z, x)f(z)] (6)

such that Equation (4) can be equivalently written as (Equation 5 of [44])

Lssl(F ) = ⟨F, (I − Tk)F ⟩ρA (7)

We can now use Mercer’s theorem to factorize kDAF into corresponding spectral features G : X → ℓ2
(where ℓ2 represents square summable sequences) [15, 16, 31]. However, note that computing kDAF

(or Tk) is expensive as it requires computing the overlap among all augmentations of every pair of
data points. Instead of computing the eigenfunctions of Tk directly, we propose using an alternative
operator TM :

TMf(x) = Ex0∼M(x) [f(x0)] =
∑
x0

[p(x0 | x)f(x0)] (8)
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which averages the values of the function, f , over the augmented images x0 = M(x) of the data, x.
We show that TT

MTM is equivalent to Tk, and therefore TM and Tk have shared eigenfunctions.
Theorem 3.1. Let G(x) be the infinite Mercer features of the backward data augmentation covariance
kernels, kDAB . Let F (x) = (f1(x), . . . , fNk

(x)) be the features given by minimizing the following
data augmentation invariance loss

L(F ) =

Nk∑
i=1

∥TMfi − fi∥2L2(ρX), subject to (fi, fj)ρX
= δij (9)

which includes the orthogonality constraint. Then, V (F ) ⊂ V (G) , limNk→∞ V (F ) = V (G).

As shown in the Appendix B, L(F ) is equivalent to a constrained optimization formulation of
the BarlowTwins loss. Furthermore, L(F ) with the additional constraint that (fi, fi) ≥ γ ∀i ∈
{1, 2 . . . Nk} is the constrained optimization formulation of the VICReg loss.

3.2 The implicit bias of gradient descent

Next, we investigate how the use of gradient descent for optimizing L(F ) influences the characteristics
of the learned feature space, V (F ). Given the similarity in its form with that of the BarlowTwins
loss, we build on recent findings that demonstrate the sequential nature of learning eigenfunctions
when optimizing the BarlowTwins loss under a strong orthogonalization regularization [36]. Since
strong orthogonalization is seldom used in practice due to instabilities in training [5, 43], we believe
studying the learning dynamics under weak orthogonalization regularization (i.e. low values of β in
Equation (1)) is more relevant to provide recommendations for practitioners.
Theorem 3.2. (Informal) Let us denote the span of the feature space at initialization as V (F0) and
after training as V (FT ). For small initialization of the network’s weights, the alignment of V (FT )
with the eigenfunctions of Tk depend on two factors: (i) alignment of V (F0) with the eigenfunctions
of Tk; (ii) singular values of Tk.

Under weak orthogonalization constraints, the network tends to learn features that are strongly
aligned with eigenfunctions corresponding to large singular values. We refer to this property as the
“selection” bias of gradient descent, wherein gradient descent selects certain eigenfunctions based on
the corresponding singular values. This selection bias leads to redundancy among the learned feature
space, thereby reducing the effective dimensionality of the network’s output space compared to its
ambient dimensionality. We will leverage this finding to improve the parameter overhead of good
feature learning using BarlowTwins and VICReg loss frameworks.

3.3 Takeaway 1: Low-dimensional projectors can yield good representations

Given the proximity of the formulation of Equation (9) to that of BarlowTwins and VICReg losses,
we will leverage existing heuristics that have been shown to work in practice. As such, BarlowTwins
and VICReg frameworks call for high-dimensional projectors while using a weak orthogonalization
regularization to facilitate good feature learning. We know, from Theorem 3.1, that the eventual
goal of these frameworks is to learn the eigenfunctions of the underlying data similarity graph.
For example, since the intrinsic dimensionality of Imagenet is estimated to be ∼ 40 [32], it is not
unreasonable to expect that the span of desired features would be of similar dimensionality. It is, thus,
intriguing that the current practice would suggest using an ∼ 8192-dim projector head to capture the
intricacies of the corresponding augmentation-defined data similarity kernel. This discrepancy can
be explained by analyzing the learning dynamics, as in Theorem 3.2. Notably, a high-dimensional
projector is likelier to have a greater initialization span than its low-dimensional counterpart, thereby
increasing the alignment between V (F0) and relevant eigenfunctions of Tk. We hypothesize that a
stronger orthogonalization constraint for low-dimensional projectors can rectify this issue, reducing
the redundancy in the network’s output space and rendering it sufficient for good feature learning.

3.4 Takeaway 2: Multiple augmentations improve kernel approximation

By comparing the invariance criterion formulation in the standard BarlowTwins and VICReg losses
to Equation (7), it can be inferred that current practices use a sample estimate of Tk. Using only
two augmentations per sample yields a noisy estimate of Tk, yielding spurious eigenpairs [41] (see
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Appendix C). These spurious eigenpairs add stochasticity in the learning dynamics, and coupled
with Theorem 3.2, increase the redundancy in the learned feature space [11]. We hypothesize that
improving this estimation error by increasing the number of augmentations could alleviate this issue
and improve the speed and quality of feature learning.

Of course, increasing the number of augmentations (m) in the standard BarlowTwins and VICReg
loss improves the estimate of Tk but comes with added compute costs – a straightforward approach
would involve calculating the invariance loss for every pair of augmentations, resulting in O(m2)
operations. However, Theorem 3.1 proposes an alternative method that uses the sample estimate
of TM , thereby requiring only O(m) operations, and hence is computationally more efficient while
yielding functionally equivalent features (see Appendix B). In summary, Theorem 3.1 establishes a
mechanistic role for the number of data augmentations, paving the way for a computationally efficient
multi-augmentation framework:

L̂(F ) = Ex∼ρX

Nk∑
i=1

m∑
j=1

∥fi(x)− fi(xj)∥2L2(ρX)

 , subject to (fi, fj)ρX
= δij (10)

where fi(x) =
1
m

∑m
j=1 fi(xj) is the sample estimate of TMfi(x).

4 Experiments

In our experiments, we seek to (i) provide empirical support for our theoretical insights and (ii)
present practical primitives for designing efficient SSL routines. Since our proposed loss function
is closest to the formulation of BarlowTwins/VICReg, we present empirical evidence comparing
our proposal to these baselines. In summary, with extensive experiments across learning algorithms
(BarlowTwins & VICReg) and training datasets (CIFAR-10, STL-10 & Imagenet-100), we establish
the following:

• low-dimensional projectors can yield good representations.

• multi-augmentation improves downstream accuracy, as well as convergence rate.

• multi-augmentation improves sample efficiency in SSL pretraining, i.e., recovering similar
performance with significantly fewer unique unlabelled samples.

Experiment Setup: We evaluate the effectiveness of different pretraining approaches using image
classification as the downstream task. Across all experiments, we pretrain a Resnet feature encoder
backbone for 100 epochs (see Appendix E.1 for longer pretraining results) and use linear probing
on the learned representations1. All runs are averaged over 3 seeds; error bars indicate standard
deviation. Other details related to optimizers, learning rate, etc., are presented in the Appendix D.

4.1 Low-dimensional projectors can yield good representations

pdim Barlow Twins VICReg
fixed β optimal β∗ fixed β optimal β∗

64 73.6± 0.9 82.1± 0.2 68.9± 0.2 81.9± 0.1
256 75.9± 0.7 83.4 ± 0.4 75.3± 0.2 81.9± 0.3

1024 81.3± 1.0 82.9± 0.3 79.2± 0.9 82.5 ± 0.9
8192 82.2± 0.4 82.2± 0.4 80.4± 1.5 80.4± 1.5

Table 1: Optimizing for orthogonality appropriately allows low-dimensional projectors to match the
performance (on CIFAR-10) of much higher-dimensional projectors.

Existing works recommend using high-dimensional MLPs as projectors (e.g., d=8192 for Imagenet in
[5, 43]), and show significant degradation in performance when using lower-dimensional projectors
for a fixed redundancy coefficient (β). To reproduce this result, we run a grid search to find the
optimal coefficient (β∗

8192) for d = 8192 and show that performance progressively degrades for lower
d if the same coefficient β∗

8192 is reused for d ∈ {64, 128, 256, 512, 1024, 2048, 4096, 8192}.

1Code: https://github.com/kumarkrishna/fastssl
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Figure 2: Low-dimensional projectors can yield good representations. We demonstrate that using a
higher orthogonality constraint, β, for lower projector dimensionality can achieve similar performance
over a wide range of projector dimensions (d).

Our insights in Section 3.3 suggest low-dimensional projectors should recover similar performance
with appropriate orthogonalization. To test this, we find the best β by performing a grid search
independently for each d ∈ {64, 128, 256, 512, 1024, 2048, 4096, 8192}. As illustrated in Figure 2,
using low-dimensional projectors yield features with similar downstream task performance, compared
to the features obtained using high-dimensional projectors. Strikingly, we also observe that the
optimal βd ∝ 1/d, which aligns with our theoretical insights.

Recommendation: Start with low-dimensional projector, using β = O( 1d ), and sweep over
(pdim = d, β = O

(
1
d

)
) if needed.

4.2 Multiple Augmentations Improve Performance and Convergence

Although some SSL pretraining approaches, like SWaV [10], incorporate more than two views,
the most widely used heuristic in non-contrastive SSL algorithms involves using two views jointly
encoded by a shared backbone. In line with this observation, our baselines for examining the role of
multiple augmentations use two views for computing the cross-correlation matrix.

Figure 3: Using multiple augmentations improves representation learning performance and conver-
gence. (A-C) Across BarlowTwins for CIFAR-10, STL-10 and Imagenet-100 pretraining, using 4
augmentations instead of 2 helps improve performance. Please see Appendix E.3 for more results.

To demonstrate the role of multiple augmentations in pretraining, we adapt the invariance criterion
of BarlowTwins/VICReg to be in line with Equation (10). In particular, for #augs ∈ {2, 4, 8}, we
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augs pdim BarlowTwins VICReg
Time (min) Time (min)

2 8192 99.36± 0.01 94.36± 0.01
2 256 62.34± 0.06 51.73± 0.04
4 256 43.09 ± 0.20 39.02 ± 0.05

Table 2: Using multiple augmentations yields faster convergence, with reduced time to reach baseline
performance on CIFAR-10, i.e. performance of feature encoder pretrained with an 8192-dim projector
and 2 augmentations.

pretrain a Resnet-50 encoder with our proposed loss. Building on the insight from the previous
section, we use a 256-dimensional projector head for all multi-augmentation experiments.

In Figure 3, we track the downstream performance of the pretrained models across training epochs.
For performance evaluation, we use the linear evaluation protocol as outlined by [13]. Figure 3(A-
C) shows that pretraining with multiple augmentations outperforms the 2-augmentation baseline.
Furthermore, we observe that the four-augmentation pretrained models converge faster (both in
terms of the number of epochs and wall-clock time) than their two-augmentation counterparts (see
Figure 3(D-F)). Additionally, we show in Appendix E.2 that our framework can also be applied to
multi-augmentation settings like SWaV, where not all augmentations are of the same resolution.

Recommendatation: Using multiple augmentations ( > 2) is likely to improve convergence as
well as downstream accuracy.

4.3 Sample Efficient Multi-augmentation Learning

Data Augmentation can be viewed as a form of data inflation, where the number of training samples
is increased by k (for k augmentations). In this section, we examine the role of multi-augmentation in
improving sample efficiency. In particular, we are interested in understanding if the same performance
can be achieved with a fraction of the pretraining dataset, simply by using more augmentations.

Figure 4: Multi-augmentation improves sample efficiency, recovering similar performance with signif-
icantly fewer unique samples in the pretraining dataset. Across BarlowTwins pretraining on CIFAR-
10, STL-10 and Imagenet-100 for the same effective dataset size (#augs ×#unique_samples),
using more patches improves performance at the same epoch (A-C). However, a tradeoff exists
wherein more data augmentations fail to improve performance in the scarce data regime.

augs pdim Percentage BarlowTwins VICReg
of Dataset Time (min) Time (min)

2 8192 100 % 63.43 ± 0.02 66.05 ± 0.01
2 256 100 % 39.52 ± 0.04 40.64 ± 0.04
4 256 50 % 28.25 ± 0.01 32.39 ± 0.01
8 256 25 % 27.74 ± 0.01 34.76 ± 0.01

Table 3: Time required to pass 80% accuracy on CIFAR-10 when pretraining on fraction of the
dataset, while using multiple augmentations. See Figure 5 for further discussion.
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To examine the relation between the number of augmentations and sample efficiency, we fixed the
effective size of the inflated dataset. This is achieved by varying the fraction of the unique samples in
the pretraining dataset depending on the number of augmentations k ∈ {2, 4, 8}, e.g., we use 50% of
the dataset for 4 views. We then evaluate the performance of the pretrained models on the downstream
task, where the linear classifier is trained on the same set of labeled samples. Strikingly, Figure 4
shows that using multiple augmentations can achieve similar (sometimes even better) performance
with lesser pretraining samples, thereby indicating that more data augmentations can be used for
feature learning to compensate for smaller pretraining datasets.

Recommendation: In a low-data regime, using diverse & multiple augmentations can be as
effective as acquiring more unique samples.

5 Related Work

Self-Supervised Pretraining requires significant compute resources and most practitioners rely on
empirical heuristics (see SSL cookbook [3] for a summary). While recent advances in SSL theory
explore learning dynamics in linear (or shallow) models [39, 40], with a focus on understanding
dimensionality collapse [20, 24], the theoretical underpinnings of most of the heuristics considered
essential for good feature learning, are missing.

Contrastive SSL has received more theoretical attention, owing to its connection with metric learning
and noise contrastive estimation [4, 25, 29]. In particular, HaoChen et al. [22] provide a theoretical
framework for the SimCLR loss from an augmentation graph perspective, which leads to practical
recommendations. Subsequently, Garrido et al. [19] establish a duality between contrastive and
non-contrastive learning objectives, further bridging the gap between theory and practice.

Non-contrastive SSL algorithms’ theoretical foundations have received more attention recently
[9, 44]. Prior works [2, 18, 19] have demonstrated that with modified learning objectives, low-
dimensional projectors yield representations with good downstream performance. Similarly, previous
works have demonstrated notable performance boosts when using a multi-patch framework in
contrastive [17] and non-contrastive SSL [10, 42]. However, the theoretical basis for the benefits and
trade-offs of either low-dimensional projectors or multiple augmentations is largely unclear. It is
worth noting that Schaeffer et al. [34] present an information-theoretic perspective of the recently
proposed non-contrastive SSL loss that leverages multiple augmentations, namely MMCR [42], but
the computational advantages of using multiple augmentations on the learning dynamics is an active
area of research.

Deep Learning theory has made significant strides in understanding the optimization landscape
and dynamics of supervised learning [1]. In concurrent works [9, 44], the interplay between the
inductive bias of data augmentations, architectures, and generalization has been explored from a purely
theoretical perspective, establishing an equivalence among different SSL losses [44]. Furthermore,
Simon et al. [36] used a more straightforward formulation of the BarlowTwins loss and investigated
the learning dynamics in linearized models for the case when the invariance and orthogonalization
losses have equal penalties. Although such a setting rarely used in practice, their approach serves as
an inspiration for our work in studying the learning dynamics of non-contrastive SSL losses.

6 Discussion

Summary: Our work builds on existing theoretical results that establish an equivalence among
different SSL frameworks, and proposes a compute-efficient reformulation of the common SSL
loss. Using this loss reformulation and a study of the optimization dynamics, we proposed practical
recommendations to improve the sample and compute efficiency of SSL algorithms. Specifically,
we recommended low-dimensional projectors with increased orthogonality constraints and multi-
augmentation frameworks, and we verified the effectiveness of these recommendations empirically. It
is worth noting that our multi-augmentation formulation improves the efficiency of learning without
altering the desiderata of SSL, i.e. the network learns the same feature space using our proposed
multi-augmentation framework as with the original SSL formulation in the limit of infinite pretraining
budget. To demonstrate this equivalence between the original SSL loss and our proposed version, we
show in Appendix E.1 that longer pretraining on the 2-augmentation loss leads to similar downstream
performance as the multi-augmentation versions (4 and 8 augmentations).
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We also showed that the multi-augmentation framework can be used to learn good features from fewer
unique samples in the pretraining dataset simply by improving the estimation of the data augmentation
kernel. This result has direct implications on improving the Pareto frontier of samples-vs-performance
for SSL pretraining, wherein we can achieve better downstream performance when limited number
of samples are available in the pretraining dataset.

Pareto Optimal SSL In the context of sample
efficiency, training a model using two augmenta-
tions with different fractions of the dataset leads
to a natural Pareto frontier, i.e., training on the
full dataset achieves the best error but takes the
most time (Baseline (2-Aug)). Our extensive
experiments demonstrate that using more than
two augmentations improves the overall Pareto
frontier, i.e., achieves better convergence while
maintaining accuracy (Multi-Aug). Strikingly,
as shown in Figure 5, we observe that we can
either use a larger pretraining dataset or more
augmentations for a target error level. Therefore,
the number of augmentations can be used as a
knob to control the sample efficiency of the pre-
training routine.

Figure 5: Using > 2 augmentations with a frac-
tion of the dataset improves overall Pareto fron-
tier, speeding runtime up to ∼ 2×.

Connections to Downstream performance: While our core theoretical results are aimed at acceler-
ating convergence of the SSL loss itself, our empirical results highlight an improved downstream task
performance earlier during pretraining. While this discrepancy might seem counter-intuitive at first,
it is worth noting that the SSL loss inherent influences downstream performance as it encourages
clustering of semantically similar images in the representation space. Such clustering properties in
the representation space facilitates easier classification through methods k-nearest neighbors or linear
decoding for a large number of tasks that rely on the semantic content of images. Previous works
[2, 18, 20, 37] have discussed in detail how certain geometric properties of the learned representation
space are connected to the linear classification performance for arbitrary decision boundaries, in
expectation. However, an in-depth analysis of downstream tasks that are more amenable to linear
decoding from the learned SSL representation space requires framing metrics of alignment between
the pretraining objective (SSL desiderate) and the downstream task labels, and is an active area of
research.

Open Questions: Looking ahead, it would be exciting to extend this analysis to other categories of
SSL algorithms, such as Masked AutoEncoders (MAE). Furthermore, our insights provide opportu-
nities to explore sample-efficient methods that rely on less data, which is particularly important in
critical domains such as medical imaging, where data is often relatively scarce and expensive. On
a different note, it is intriguing that animals often spend extended periods of time exploring novel
objects, likely to gain multiple views of the object [6, 28]. Given the theoretical underpinnings of
the computational benefits of multi-augmentation SSL outlined in our work, it would be exciting
to develop models of biological learning that leverage these insights and enable sample-efficient
continual learning in similar environments.

Limitations: Our algorithm relies on multiple augmentations of the same image to improve the
estimation of the data-augmentation kernel. Though this approach speeds up the learning process,
it also adds some extra computational overhead, which means that the impact of faster learning on
wall-clock time is less than might be hoped for. One way to mitigate the effects of this limitation
would be to scale up to a multi-GPU setting, since the computations for each augmentation can be
run on a separate GPU in parallel. This could help ensure that the improved speed of learning directly
translates to a significantly reduced wall-clock time for training.

Impact Statement: The goal of our work is to advance the general field of visual representation
learning. Although there are potential downstream societal consequences of our work, we feel there
are no direct consequences that must be specifically highlighted here.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: Our main claims are backed by theoretical and empirical results. Theorem 3.1
presents our functionally-equivalent compute-efficient formulation of the SSL objective, and
Theorem 3.2 demonstrates the implicit bias of gradient descent during optimizing the SSL
loss. Our empirical results demonstrate the utility of our theoretical insights in improving
the parameter overhead of good feature learning, optimization convergence and the sample
efficiency.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: We have a section on limitations in the discussion.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]

Justification: The formal statements alongside proofs are presented in the supplementary
material (Appendices A to C).

4. Experimental Result Reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We provide implementation details in the supplementary material (Ap-
pendix D). We have also released our code base in the public github repo, FastSSL, to
facilitate the implementation of our proposed framework.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes] .

Justification: We use open-access datasets, like CIFAR, STL and Imagenet. Our code base
can be found in the public github repo, FastSSL

Guidelines:

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: We present details of the experiment setup and results in Section 4 of the main
paper, and additional implementation details in Appendix D.

7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]
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Justification: We report standard error bars, computed over 3 seeds, for all result plots and
tables.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: All our CIFAR and STL experiments were done on a single 48-GB RTX8000
GPU and all Imagenet experiments were performed on 2 40-GB A100 GPUs. All exper-
iments were performed on the Mila cluster, aided by compute resources, software and
technical help provided by Mila (mila.quebec).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: We adhere to the NeurIPS Code of Ethics in our work, and research in general.

10. Broader Impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [Yes]
Justification: We add a statement on societal impact in the Discussion section. Since the
goal of our work is to advance the general field of visual representation learning, we feel
there are no direct consequences that must be specifically highlighted here. Although we
recognize that there might be potential downstream consequences that warrant attention
while building intelligent systems that leverage this work.

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: We do not release any new data or state-of-the-art models.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: We acknowledge and cite the datasets and model architectures used in this
work. Our codebase is publicly available on our github repo, FastSSL. Moreover, our
codebase relies on the Python packages of PyTorch, FFCV [27] and FFCV-SSL [7], which
are referred to in the github repo README.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: No new assets are released.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
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Justification: Our work does not involve crowdsourcing nor research with human subjects.
15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human

Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: Our work does not involve research with human subjects.
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A Hilbert Space of functions

A.1 Functions and inner product space

Definition A.1. Given X, ρX , and f, g : X → R, define the L2(ρX) inner product and norm,
respectively,

(f, g)ρX
=

∫
f(x)g(x)dρX(x), ∥f∥2ρX

= (f, f)ρX
(11)

Define
L2(ρ,X) =

{
f : X → R | ∥f∥2ρX

< ∞
}

to be the (equivalence class) of functions with finite ρX norm.

A.2 Spectral theory

In this section we quote the relevant (abstract) Hilbert Space theory.
Definition A.2 (Spectral Operator). Given orthogonal functions, Φ = (ϕi)i∈I in L2(ρX), and
non-negative Λ = (λi)i∈I , with ∥Λ||22 =

∑
i∈I λ

2
i < ∞. Call (Φ,Λ) a spectral pair and define the

corresponding spectral operator by

TΦ,Λ(h) =

∞∑
j=1

λj (h, ϕj)ϕj , (12)

Theorem A.3 (Spectral Decomposition). Suppose H is a Hilbert space. A symmetric positive-
definite Hilbert-Schmidt operator T : H → H admits the spectral decomposition equation 12 with
orthonormal ϕj which are the eigenfunctions of T , i.e. T (ϕj) = λjϕj . The ϕj can be extended to
a basis by adding a complete orthonormal system in the orthogonal complement of the subspace
spanned by the original ϕj .
Remark A.4. The ϕj in equation 12 can thus be assumed to form a basis, but some λj may be zero.

We defer the reader to [21, 23] for an in-depth discussion and proof of Theorem A.3.

Denote by L the space of bounded (continuous) linear operators on H with the norm

∥T∥L = sup{∥T (x)∥ | ∥x∥ ≤ 1}.

Definition A.5 (Compact Operators). An operator T ∈ L is said to be compact if there exist two
orthonormal bases {gj} and {fj}, and a real sequence {λj} converging to zero, such that

T (h) =

∞∑
j=1

λj(h, gj)fj , h ∈ H, (Compact)

The λj may be assumed positive. The existence of representation equation Compact is equivalent
to the condition: T maps every bounded set into a compact set. Compact operators are also called
completely continuous operators. Representation equation Compact is called the singular value
decomposition.
Definition A.6 (Hilbert-Schmidt Operators). A compact operator admitting representation equa-
tion Compact is said to be a Hilbert-Schmidt operator if

∑∞
j=1 λ

2
j < ∞. The space S of Hilbert-

Schmidt operators is a separable Hilbert space with the scalar product

⟨T1, T2⟩S =

∞∑
i=1

(T1 (fi) , T2 (fi)) , (13)

where {fi} is an arbitrary orthonormal basis. Note the value of equation 13 is independent of the
basis. The corresponding norm is

∥T∥2S =
∑
j≥1

λ2
j (HS)

One can show that
∥T∥L ≤ ∥T∥S
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Definition A.7. An operator T ∈ L is said to be symmetric if
⟨T (f), g⟩ = ⟨f, T (g)⟩, f, g ∈ H,

and positive-definite if
⟨T (f), f⟩ ≥ 0, f ∈ H.

(An operator with the last property is sometimes called positive semidefinite, and the term positive-
definite is used when the inequality is strict.)

B Data augmentation kernel perspective of non-contrastive SSL

Theorem B.1. Let G(x) be the infinite Mercer features of the backward data augmentation covariance
kernels, kDAB . Let F (x) = (f1(x), f2(x), . . . , fk(x)) be the features given by minimizing the
following data augmentation invariance loss

L(F ) =

Nk∑
i=1

∥TMfi − fi∥2L2(ρX), subject to (fi, fj)ρX
= δij (14)

which includes the orthogonality constraint. Then, V (F ) ⊂ V (G) , V (F ) → V (G) as Nk → ∞.

The idea of the proof uses the fact that, as linear operators, TkDAB = T⊤
MTM and that TkDAF =

TMT⊤
M . Then we use spectral theory of compact operators, which is analogue of the Singular Value

Decomposition in Hilbert Space, to show that eigenfunctions of T⊤
MTM operator are the same as

those obtained from optimizing L(F ). A similar result can be obtained using kDAF and T⊤
M .

Note that L(F ) is the constrained optimization formulation of the BarlowTwins loss. Furthermore,
L(F ) with the additional constraint that (fi, fi) ≥ γ ∀i ∈ {1, 2 . . . Nk} is the constrained optimiza-
tion formulation of the VICReg loss.

B.1 Proof of theorem 3.1

We show we can factor the linear operator, leading to a practical algorithm. Here, we show that we
can capture the backward data augmentation kernel with the forward data augmentation averaging
operator
Lemma B.2. Using the definitions above, and with k in equation 6 given by kDAB ,

Tk = T⊤
MTM

Proof. First, define the non-negative definite bilinear form

BV AR(f, g) = (TMf, TMg)ρX
(15)

Given the backwards data augmentation covariance kernel, kDAB , define

BDAB(f, g) = (Tkf, g)ρX

We claim, that
BV AR = BDA,B (16)

This follows from the following calculation,

BDA,B(f, g) = (Tkf, g)ρX
(17)

= Ex[Tkf(x), g(x)] = ExEz[kDA,B(z, x)f(z)g(x)] (18)

= ExEzEx0

[
p(x0 | x)
ρ(x0)

p(x0 | z)
ρ(x0)

f(z)g(x)

]
(19)

= Ex0

[∑
x

(
ρ(x)p(x0 | x)

ρ(x0)
g(x)

)∑
z

(
ρ(z)p(x0 | z)

ρ(x0)
f(z)

)]
(20)

= Ex0

[∑
x

(p(x | x0)g(x))
∑
z

(p(z | x0)f(z))

]
[Using Bayes’ rule] (21)

= Ex0 [TMf(x0)TMg(x0)] = (TMf, TMg)ρX
= BV AR(f, g) (22)
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For implementations, it is more natural to consider invariance to data augmentations.
Theorem B.3 (equivalent eigenfunctions). Assume that TM is a compact operator. Define the
invariance bilinear form

BINV (f, g) = (TMf − f, TMg − g) (23)
Then BINV , BV AR share the same set of eigenfunctions. Moreover, these are the same as the
eigenfunctions of BDA,B . In particular, for any eigenfunction fj of BV AR, with eigenvalue λj , then
fj is also and eigenfunction of BINV , with the corresponding eigenvalue given by (

√
λj − 1)2.

Proof. Define TMM by,
TMMf = T⊤

MTMf (24)
Define

TMS = (TM − I)⊤(TM − I) (25)
Note, by the assumption of compactness, TM has the Singular Value Decomposition, (see the Hilbert
Space section for equation SVD),

TM (h) =

∞∑
j=1

λj(h, gj)fj (SVD)

Let fj be any right eigenvector of TM , with eigenvalue µj . Then fj is also a right eigenvector TM −I ,
with eigenvalue µj − 1. So we see that TMM has fj as an eigenvector, with eigenvalue λj = µ2

j and
TMS has fj as an eigenvector, with eigenvalue (

√
λj − 1)2. Finally, the fact that there are no other

eigenfunctions also follows from equation SVD.

The final part follows from the previous lemma.

Equivalence of Barlow Twins loss to Equation (9). The BarlowTwins loss from [43] is as follows:

LBT =
∑
i

(Cii − 1)2 + β
∑
i

∑
j ̸=i

C2
ij (26)

where C is the cross-correlation matrix computed between the outputs of the network to two different
augmentations. First, the BarlowTwins loss can be seen as the unconstrained optimization form of
the following constrained optimization objective:

LBT =
∑
i

(Cii − 1)2 , subject to Cij = 0 ∀j ̸= i (27)

where β is the Lagrangian multiplier [8]. In [43], the cross-correlation matrix C is computed by a dot
product between normalized functions fi’s such that (fi, fi)ρX

= 1 ∀i. The network output for one
augmentation of x, a, can be thought of as a Monte-Carlo estimate (with one sample) of TMfi(x),
where fi is the ith dimension of the network’s output. Therefore, the BarlowTwins loss can be written
in its following equivalent form:

L̂BT (F ) =

Nk∑
i=1

((TMfi, TMfi)ρX
− 1)

2 , subject to (fi, fj)ρX
= δij (28)

As shown by [44], the eigenvalues of TT
MTM are always less than 1. Therefore, we do not need the

square in Equation (28). Rewriting it, we get the following:

L̂BT (F ) =

Nk∑
i=1

(TMfi, TMfi)ρX
, subject to (fi, fj)ρX

= δij (29)

Using Theorem B.3, we show that the loss recovers the equivalent eigenfunctions for the following
reason. We can rewrite the loss as

L̂BT (F ) =

Nk∑
i=1

((TM − I)fi, (TM − I)fi)ρX
, subject to (fi, fj)ρX

= δij

=⇒ L̂BT (F ) =

Nk∑
i=1

∥TMfi − fi∥2L2(ρX) , subject to (fi, fj)ρX
= δij

(30)
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which recovers the loss Equation (9). Note that the VICReg loss [5], in addition to the constraints
imposed by the BarlowTwins loss, ensures that the norm of fi’s are more than some threshold. This
can be easily incorporated into the constraint with a constant along with δij . In conclusion, both
BarlowTwins and VICReg losses can be seen as equivalent forms of the loss Equation (9).

Theorem B.4. (Informal) Let us denote the span of the feature space at initialization as V (F0) and
after training as V (FT ). For small initialization of the network’s weights, the alignment of V (FT )
with the eigenfunctions of T depend on two factors: (i) alignment of V (F0) with the eigenfunctions
of T ; (ii) singular values of T .

Theorem B.4. (Formal) Let Γ = V ΛV T represent the eigendecomposition of Γ, and define z as the
projection of the weight vectors in W onto singular vectors of Γ, V. Formally, z = WV . Assuming
small initialization (as in Simon et al. (2023), i.e. |zpi(0)| << 1 for all p, i, we can derive the
following conclusions:

1. sign(
∆zpi(t)
zpi(t)

) = sign(λi)

2. For all λi, λj > 0, zpi(t)
zpi(0)

= (
zpj(t)
zpj(0)

)
λi
λj where λi denotes the ith singular value, i.e. ith

element of diagonal matrix Λ.

Proof. We will first show that the above holds for a linear network, i.e. the output of the network
with weights W ∈ Rm×n is WX for some input X ∈ Rn×b, where m is the output dimensionality,
n is the input dimensionality and b is the batch size.
Let us first analytically compute the cross-correlation matrix C following [36].

C = WXX ′TWT = WT WT

Cpq =
∑
i,j

WpiTijWqj , Cpp =
∑
i,j

WpiTijWpj

where X and X ′ are matrices ∈ Rn×b containing two augmentations of a each image in a batch of
images. Also, we have defined T = XX ′T , i.e. the augmentation-defined data correlation matrix.
Rewriting the BarlowTwins loss function from [43]:

LBT =
∑
i

(Cii − 1)2 + β
∑
i

∑
j ̸=i

C2
ij

To study the learning dynamics, we need to compute the gradient of LBT w.r.t. the parameters W .

dWpq

dt
= −η

∂LBT

∂Wpq
= −2η

∑
i

(Cii − 1)
∂Cii

∂Wpq
− 2ηβ

∑
i

∑
j ̸=i

Cij
∂Cij

∂Wpq
(31)

Let us now analytically compute the derivatives of Cii and Cij w.r.t Wpq to simplify each of the
terms in Equation (31).

∂Cii

∂Wpq
=

∂

∂Wpq

∑
j,k

WijTjkWik =
∂

∂Wpq

∑
j,k

WijTjkWikδpi

=

∑
j,k

TjkWpkδjq +
∑
j,k

WpjTjkδkq

 δpi

=

∑
k

TqkWpk +
∑
j

WpjTjq

 δpi

= 2 [WT ]pq δpi

=⇒
∑
i

(Cii − 1)
∂Cii

∂Wpq
= 2(Cpp − 1) [WT ]pq (32)
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Using similar algebra steps, we can simplify the second term:

∂Cii

∂Wpq
= [WT ]jq δpi + [WT ]iq δpj

=⇒
∑
i

∑
j ̸=i

Cij
∂Cii

∂Wpq
=

∑
i

∑
j ̸=i

Cij

(
[WT ]jq δpi + [WT ]iq δpj

)
=

∑
j ̸=q

Cpj [WT ]jq +
∑
i ̸=q

Cip [WT ]iq

= 2 [(C − I)WT ]pq − 2(Cpp − 1) [WT ]pq (33)

Substituting Equations (32) and (33) into Equation (31), we get:

dWpq

dt
= −η

∂LBT

∂Wpq
= −4η(Cpp − 1) [WT ]pq − 4ηβ [(C − I)WT ]pq + 4ηβ(Cpp − 1) [WT ]pq

= −4η(1− β)(Cpp − 1) [WT ]pq − 4ηβ [(C − I)WT ]pq (34)

Note that setting β = 1 yields the dynamics equation presented by [36]. However, in practice, β is
orders of magnitude less that 1. For sake of simplicity, we will analyze the extreme case of β = 0,
which will yield us insights into the weak-orthogonality constraint case. Therefore,

dWpq

dt
≈ −4η(Cpp − 1) [WT ]pq (35)

Let us denote the eigendecomposition of T be written as T = V ΛV T . Here, Λ is a diagonal matrix
with singular values as the diagonal elements. Let us also denote the projection of the weight vectors
onto the singular vectors of T , i.e. V as z. So, z = WV .
Therefore, using these definitions, we can write the following:

Cpp =
[
WT WT

]
pp

=
[
ZΛZT

]
pp

=
∑
i

z2piλi

WT = WV ΛV T = ZΛV T

Now, writing the update equations Equation (35) in terms of zpi:

dzpi
dt

=
∑
q

dWpq

dt
Vqi

= −4η

∑
j

z2pjλj − 1

∑
k

zpkλk(
∑
q

VqkVqi)

= −4η

∑
j

z2pjλj − 1

 zpiλi (36)

Assuming small initialization of weights W , we can assume that | zpi(0) |<< 1, i.e. magnitude zpi
at time 0 is very small.
Let us define hp(t) = 1−

∑
j zpj(t)

2λj . For small initialization, hp(t) > 0 ∀t. Therefore,

sign

(
dzpi(t)

dt

1

zpi

)
= sign(λi) (37)

It is clear from Equation (37) that if λi < 0, limt→∞ zpi(t) = 0. Similarly, if λi = 0, then
zpi(t) = zpi(0) ∀t.
Therefore, akin to the conclusions of [36], the BarlowTwins loss recovers directions corresponding to
positive singular values in the augmentation-defined covariance matrix, T and suppresses directions
corresponding to negative singular values. Thus, the network outputs span the top singular vectors of
T .
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It is worth noting from Equation (36) that the following holds:

1

λi

dlog(zpi)

dt
=

1

λj

dlog(zpj)

dt

=⇒ 1

λi
log

(
zpi(t)

zpi(0)

)
=

1

λj
log

(
zpj(t)

zpj(0)

)

=⇒ zpi(t)

zpi(0)
=

(
zpj(t)

zpj(0)

) λi
λj

(38)

Without loss of generality, if λi << λj , then zpi(t) ≈ zpi(0). Therefore, under small initialization,
i.e. zpi(0) is small ∀i, gradient descent biases the pth weight vector to be more strongly aligned to
the eigenvector corresponding to the strongest eigenvalue, for all p’s. Hence, under weak orthogo-
nalization constraints, the BarlowTwins loss will over "represent" the strong singular vectors of the
augmentation-defined cross-correlation matrix.
When using high-dimensional projectors, specifically when m >>

∑
i 1λi>0, wherein 1ζ is the indi-

cator function that is 1 when condition ζ is true and 0 otherwise, this problem might be ameliorated
because there are multiple weight vectors that might be aligned with the top singular vectors of T
at initialization. However, when using low-dimensional projectors, we do not have such a luxury
and therefore, using a weak orthogonalization constraint leads to dimensionality collapse in the
representation space.

Extending to deep non-linear networks. Similar to the analysis in [36], we can repeat the above
analysis by replace X and X ′ by the corresponding kernel versions, where the kernel corresponds to
the Neural Tangent Kernel (NTK) of the network. Therefore, the implicit bias of gradient descent
to yield dimensionality collapse in the representation space when using weak orthogonalization
constraints still remains.

Dimensionality collapse under noisy optimization. From the rest of this section, we have seen that
the BarlowTwins loss is a Monte-Carlo estimate of the true data-augmentation defined covariance
matrix. Moreover, stochastic gradient descent adds noise due to mini-batch sampling to the optimiza-
tion process. Note that there exist symmetries in our linear network, i.e. an orthogonal rotation of
the weight matrix yields the same loss function. As explained in [11], such symmetry-invariant sets
are potential candidates for stochastic collapse when performing noisy gradient-based optimization.
Therefore, the presence of noise in the data-augmentation covariance matrix, T , as well as the batch
noise can further worsen the dimensionality collapse problem where different weight vectors become
parallel to each other due to noise in updates. One possible mitigation strategy is to obtain a better
estimate of the true augmentation-defined covariance matrix (see Figure 7), which we discuss in the
next section.

Empirical validation. We empirically validate our results on the learning dynamics on simplistic
2-dimensional settings. These results, demonstrating the difference in feature learning dynamics for
weak vs strong orthogonalization, are presented as GIFs in the supplementary material, and can also
be viewed at the project website.

C Multi-Augmentation Learning

C.1 Augmentation graph

We use the population augmentation graph formulation introduced in [22]. Briefly, we define a graph
G(X ,W), where the vertex set X comprises of all augmentations from the dataset (could be infinite
when continuous augmentation functions are used) and W denotes the adjacency matrix with edge
weights as defined below:

wxx′ := Ex̄∼PX̄
[A(x|x̄)A(x′|x̄)] (39)

, i.e. the joint probability of generating ‘patches’ x, x′ from the same image x̄. Here A defines the set
of augmentation functions used in the SSL pipeline. It is worth noting that the magnitude of wxx′

captures the relative similarity between x and x′. A higher value of wxx′ indicates that it is more
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Figure 6: Schematic of augmentation graph. (A) Augmentations from each image span a region in the
image space which could overlap with the augmentation span of other images. (B) An augmentation
graph schematic that uses probabilities to characterize the interactions among augmentation spans of
different instances.

likely that both patches came from the same image, and thereby are more similar. The marginal
likelihood of each patch x can also be derived from this formulation:

wx = Ex′∼X [wxx′ ] (40)

C.2 Contrastive and non-contrastive losses suffer from the same issues

We will now show that the proposal of using multiple patches for the Linvariance is pertinent to
both the contrastive and non-contrastive SSL. Following [22], we use the spectral contrastive loss
formulation and incorporate the augmentation graph relations:

Lc = −Ex,x+

[
f(x)T f(x+)

]
+ βEx,x′

[(
f(x)T f(x′)

)2]
Lc ∝ ∥ZZT −D− 1

2WD− 1
2 ∥2F = ∥ZZT − W̄∥2F (41)

where z :=
√
wxf(x), D is a N ×N diagonal matrix with entries {wx} and W̄ = D− 1

2WD− 1
2 .

We extend the duality results between contrastive and non-contrastive SSL loss, established by [19],
to demonstrate how Equation (41) can be decomposed into the invariance and collapse-preventing
loss terms.

∥ZZT − W̄∥2F = ∥ZTZ − Id∥2F + 2Tr
[
ZT (IN − W̄)Z

]
+ κ (42)

= ∥ZTZ − Id∥2F + 2
∑
i

∑
x

(1− w̄x)z
2
i − 2

∑
i

∑
x,x′

w̄xx′ziz
′
i + κ (43)

where κ is some constant independent of Z. The first term in Equation (42) is the covariance
regularization term in non-contrastive losses like BarlowTwins (implicit) or VIC-Reg (explicit),
and the second term in Equation (43) is the variance regularization. Simplifying the third term in
Equation (43) gives us:∑

i

∑
x,x′

w̄xx′ziz
′
i =

∑
i

∑
x,x′

wxx′f(x)if(x
′)i =

∑
i

∑
x,x′

Ex̄∼PX̄
[A(x|x̄)A(x′|x̄)f(x)if(x′)i]

=
∑
i

Ex̄∼PX̄

[∑
x

A(x|x̄)(f(x)if(x)i − f(x)2i )

]

= Ex̄∼PX̄

[∑
x

A(x|x̄)
(
f(x)T f(x)− ∥f(x)∥2

)]
(44)

This term encourages f(x) to be similar to f(x), i.e. the mean representation across all augmentations
of x̄, thereby requiring to “sufficiently” sample A(.|x̄). Given that both the contrastive and non-
contrastive losses rely on learning invariance properties from data augmentations, we believe that
our multi-patch proposal would improve the probability density estimation of A(.|x̄) and yield better
performance with few training epochs.

23



C.3 Explaining training dynamics in low patch sampling regime

We now turn to a simple form of the augmentation graph to understand how using low number of
augmentations affects the evolution of ZZT . Minimizing Equation (41) implies that the spectral
decomposition of Z would align with the top eigenvectors (and values) of W . We will demonstrate that
in the low sampling regime (using few augmentations), the eigenvectors of the sampled augmentation
graph W̃ may not align with those of W .

Augmentation graph setup. We define an augmentation graph with only two instances from
two different classes, similar to the one presented in [35]. Let us denote the four instances as x̄i

for i ∈ 1, 2, 3, 4, where x̄1, x̄2 belong to class 1 (i.e. y1, y2 = 1) and x̄3, x̄4 belong to class 2
(i.e. y3, y4 = 4). Let us further assume that x̄1, x̄3 have the highest pixel-level similarity among
(x̄1, x̄i)∀i ∈ 2, 3, 4, thereby making it more likely to have similar patches. We denote this relationship
among input examples using G to indicate (pixel-wise) global similarity groups. So, G1,G3 = 1 and
G2,G4 = 2. We can use the following probabilistic formulation to model our augmentation functions
(see Figure 6B):

A(xj |x̄i) =


ρ′ if j = i

µ′ if j ̸= i and yj = yi and Gj ̸= Gi

ν′ if j ̸= i and yj ̸= yi and Gj = Gi

δ′ if j ̸= i and yj ̸= yi and Gj ̸= Gi

(45)

In our setting, ρ′ + µ′ + ν′ + δ′ = 1. The adjacency matrix of our augmentation graph (as shown in
Figure 6C) is as follows:

W =

ρ µ ν δ
µ ρ δ ν
ν δ ρ µ
δ ν µ ρ

 (46)

We defer the relations between ρ′, µ′, ν′δ′ and ρ, µ, ν, δ to the appendix. The eigenvalues of this
matrix are: (ρ + µ + ν + δ, ρ + µ − ν − δ,ρ − µ + ν − δ, ρ − µ − ν + δ). Corresponding
eigenvectors are along [1, 1, 1, 1]

T , [1, 1,−1,−1]
T . [1,−1, 1,−1]

T , [1,−1,−1, 1]
T . Assuming that

the augmentation functions induce semantically-relevant invariance properties that are relevant for
identifying yi from f(xi), we can say that ρ′ > max{µ′, ν′} and min{ν′, µ′} > δ′. When we have
sufficiently sampled the augmentations, any SSL loss will learn Z such that its singular values are
span the top eigenvectors of the augmentation graph, and the eigenspectrum of ZZT would simply be
the above eigenvalues. In practical settings, the augmentation graph would have significantly higher
dimension that the feature/embedding dimension 2. Therefore, singular vectors of Z would span
the top eigenvectors of W and the smaller eigenmodes are not learned. When we have accurately
sampled the augmentation graph, µ > ν and therefore, the class-information preserving information
is preferred over pixel-level preserving information during learning. But what happens when we do
not sufficiently sample the augmentation space?

Ansatz. Based on our empirical experience, we define an ansatz pertaining to the eigenvalues of a
sampled augmentation graph and validate it in tractable toy settings, such as the one described above.
Specifically, we claim that when the augmentation space is not sufficiently sampled, {|µ−ν|, δ} → 0.
In other words, we claim that when only few augmentations per example are used, it is more likely to
have an equal empirical likelihood for augmentations that preserve (pixel-level) global information
and class/context information. Moreover, it is very unlikely to have augmentations that change both
the class and global information. This is demonstrated in Figure 7.

Consequences of the Ansatz. When only a few augmentations are sampled, learning can suppress the
class information at the cost of preserving the pixel-level information, thereby leading to an increased
smoothness in the learned feature space.

2Contrastive algorithms use a large batch size, thereby optimizing a high-dimensional ZZT whereas non-
contrastive algorithms use a large embedding dimension, thereby optimizing a high-dimensional ZTZ.
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Figure 7: Empirical verification of the subsampling Ansatz.

D Implementation Details

Image Classification Datasets Across all experiments, our settings mainly follow [13]. In particular,
Table 4a summarizes our pretraining settings on Cifar-10 [26], STL-10 [14] and Imagenet-100 [33].
The Imagenet-100 dataset was generated by sampling 100 classes from the original Imagenet-1k
dataset, according to this list [38]. In Table 4b, we outline the corresponding linear evaluation settings
for Resnet-50 (for CIFAR-10 and STL-10) and ResNet-18 (for Imagenet). Note that we add a linear
classifier layer to the encoder’s features and discard the projection layers for evaluation. Our code
base is publicly available on github.

config value
optimizer Adam
learning rate 1e-3
batch size 128 (Imagnet), 256 (CIFAR, STL)
epochs 100
weight-decay 1e-6

(a) Pretraining

config value
optimizer Adam
learning rate 1e-3
batch size 512
epochs 200
weight-decay 1e-6
test-patches 16

(b) Linear Evaluation

Table 4: Experiment Protocol for comparing SSL algorithms

The key SSL loss functions that we use in this work are BarlowTwins [43] and VICReg [5]. Let us
suppose that the embeddings of two augmentations of a batch of images are denoted as z and z′. The
BarlowTwins loss function is as follows:

LBT =
∑
i

(Cii − 1)2 + β
∑
i

∑
j ̸=i

C2
ij (47)

where C =
1

n− 1

n∑
k=1

(zk − z̄)(z′k − z̄′)T

and z̄ =
1

n

n∑
k=1

zk , z̄′ =
1

n

n∑
k=1

z′k (48)

Cij is the element of C at row i, column j and n is the batch size. For each projector dimensionality,
d, we search for the hyperparameter, β, that yields the best downstream task performance.
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The VICReg loss function is as follows:

LV IC =
1

n
µ

n∑
k=1

∥zk − z′k∥2 +
1

2
µ [v(Z) + v(Z ′)] +

1

2
[c(Z) + c(Z ′)] (49)

where v(Z) =
1

d

d∑
i=1

max(0, 1− Stdev(z:,i))

and c(Z) =
1

d

∑
i

∑
j ̸=i

[C(Z)ij ]
2 , C(Z) =

1

n− 1

n∑
k=1

(zk − z̄)(zk − z̄)T

For each projector dimensionality, d, we search for the hyperparameter, µ, that yields the best
downstream task performance.

D.1 Empirical results for low-dimensional projectors

Figure 8: Low-dimensional projectors can yield good representations for both BarlowTwins and
VICReg. We demonstrate that using a higher orthogonality constraint, β, for lower projector
dimensionality can achieve similar performance over a wide range of projector dimensions (d). Note
that for VICReg, we plot the ratio of the coefficient of the covariance loss to the coefficient of the
invariance loss, i.e. β = 1

d∗µ , where µ is the coefficient of the invariance loss. (See Equation (49) for
details of the loss formulation.)

pdim Projector params (approx) Barlow Twins VICReg
fixed β optimal β∗ fixed β optimal β∗

64 135k 73.6 ± 0.9 82.1 ± 0.2 68.9 ± 0.2 81.9 ± 0.1
128 278k 74.7 ± 1.4 83.0 ± 1.1 70.6 ± 0.3 82.3 ± 0.4
256 589k 75.9 ± 0.7 83.4 ± 0.4 75.3 ± 0.2 81.9 ± 0.3
512 1.3M 79.2 ± 0.8 82.8 ± 0.5 79.3 ± 0.4 82.1 ± 0.6
1024 3.1M 81.3 ± 1.0 82.9 ± 0.3 79.2 ± 0.9 82.5 ± 0.9
2048 8.3M 81.0 ± 0.9 82.3 ± 0.5 80.6 ± 0.0 81.9 ± 1.2
4096 25.2M 82.3 ± 0.4 82.3 ± 0.4 80.5 ± 0.3 81.0 ± 0.4
8192 83.9M 82.2 ± 0.4 82.2 ± 0.4 80.4 ± 1.5 80.4 ± 1.5

Table 5: Extended version of Table 1. Optimizing for orthogonality appropriately allows low-
dimensional projectors to match the performance for BarlowTwins and VICReg (on CIFAR-10) of
much higher-dimensional projectors.
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D.2 Empirical results with multi-augmentations along with Time

Figure 9: Using multiple augmentations improves representation learning performance and conver-
gence. (A-C) Across BarlowTwins and VICReg for CIFAR-10 and STL-10 pretraining, using 4
augmentations instead of 2 helps improve performance. (D-F) Although the 4-augmentations take
longer for each epoch, its performance still trumps the 2-augmentation version of the algorithm at the
same wall clock time. Please see Appendix E.3 for more results.

Figure 10: Multi-augmentation improves sample efficiency, recovering similar performance with
significantly fewer unique samples in the pretraining dataset. Across BarlowTwins and VICReg pre-
training on CIFAR-10 and STL-10, for the same effective dataset size (#augs×#unique_samples),
using more patches improves performance at the same epoch (A-C) or wall clock time (D-F). How-
ever, a tradeoff exists wherein more data augmentations fail to improve performance in the scarce
data regime.
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Figure 11: BarlowTwins pretraining on full Imagenet-100 dataset with 2, 4 and 8 augmentations.

Figure 12: BarlowTwins pretraining on fraction of Imagenet-100 dataset with 2, 4 and 8 augmenta-
tions.
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D.3 Empirical results on transfer learning

In this section, we present extended version of results presented in Figure 3, Figure 4 but pretraining
on CIFAR-10 (or STL-10) and evaluating on STL-10 (or CIFAR-10). These results, coupled with
the ones in Figure 3 Figure 4, present a strong case for the advantage of using the proposed multi-
augmentation loss for better convergence as well as downstream accuracy.

Figure 13: BarlowTwins pretraining on CIFAR-10, linear evaluation on STL-10 labelled set.

Figure 14: VICReg pretraining on CIFAR-10, linear evaluation on STL-10 labelled set.

Figure 15: BarlowTwins pretraining on STL-10, linear evaluation on CIFAR-10 labelled set.
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Figure 16: BarlowTwins pretraining on fraction of CIFAR-10 trainset, linear evaluation on STL-10
labelled set.

Figure 17: VICReg loss pretraining on fraction of CIFAR-10 trainset, linear evaluation on STL-10
labelled set.

Figure 18: BarlowTwins loss pretraining on fraction of STL-10 unlabelled set, linear evaluation on
CIFAR-10 train set.
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E Additional Experiments probing multi-augmentation learning

E.1 Longer Pretraining to determine early stopping

Figure 19: BarlowTwins pretraining on full CIFAR-10 dataset for 400 epochs.

Algorithm Best accuracy Best accuracy @ epoch
Barlow-Twins (2-augs) w/ pdim=256 92.04 +/- 0.16 400
Barlow-Twins (4-augs) w/ pdim=256 92.39 +/- 0.17 340
Barlow-Twins (8-augs) w/ pdim=256 92.64 +/- 0.10 140

Table 6: BarlowTwins pretraining on full CIFAR-10 dataset at 400 epochs (with early stopping)

E.2 SwAV-like augmentations for compute efficient multi-augmentation framework

Figure 20: BarlowTwins pretraining on full STL-10 dataset for 100 epochs using SwAV-like augmen-
tations. Specifically, the 2-augmentations setting uses two views that are 64× 64, whereas the 4 (or
8) augmentation setting uses additional two (or six) augmentations that are 32× 32.
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E.3 Training with full dataset with 4/8 augmentations

Figure 21: BarlowTwins pretraining on full CIFAR-10 dataset with 2, 4 and 8 augmentations.

Algorithm #augs=2 #augs=4 #augs=8
Barlow-Twins w/ pdim=256 86.43 +/- 0.72 91.73 +/- 0.16 92.71 +/- 0.19
Barlow-Twins w/ pdim=8192 85.44 +/- 0.54 91.40 +/- 0.32 92.40 +/- 0.13

Table 7: BarlowTwins pretraining on full CIFAR-10 dataset at 100 epochs
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