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Abstract

In online learning, a decision maker repeatedly selects one of a set of actions,
with the goal of minimizing the overall loss incurred. Following the recent line
of research on algorithms endowed with additional predictive features, we revisit
this problem by allowing the decision maker to acquire additional information on
the actions to be selected. In particular, we study the power of best-action queries,
which reveal beforehand the identity of the best action at a given time step. In
practice, predictive features may be expensive, so we allow the decision maker
to issue at most k such queries. We establish tight bounds on the performance
any algorithm can achieve when given access to k best-action queries for different
types of feedback models. In particular, we prove that in the full feedback model, k
queries are enough to achieve an optimal regret of Θ(min{

√
T , T/k}). This finding

highlights the significant multiplicative advantage in the regret rate achievable with
even a modest (sublinear) number k ∈ Ω(

√
T ) of queries. Additionally, we study

the challenging setting in which the only available feedback is obtained during the
time steps corresponding to the k best-action queries. There, we provide a tight
regret rate of Θ(min{T/√k, T

2
/k2}), which improves over the standard Θ(T/

√
k)

regret rate for label efficient prediction for k ∈ Ω(T 2/3).

1 Introduction

Online learning is a foundational problem in machine learning. In its simplest version, a decision
maker repeatedly interacts with a fixed set of n actions over a time horizon T . At each time, the
decision maker needs to choose one of a set of actions; subsequently, it receives an action-dependent
loss and observes some feedback. These loss functions are generated by an omniscient (but oblivious)
adversary and are only revealed on-the-go. The goal of the decision maker is to design a learning
algorithm that achieves small regret with respect to the best fixed action in hindsight, i.e., the difference
between the decision maker’s loss and that of the fixed action. Several online learning algorithms
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have been developed, characterized by optimal instance-independent regret bound, depending on the
feedback model [Cesa-Bianchi and Lugosi, 2006, Slivkins, 2019].

Following the recent literature on algorithms with machine learning-based predictions (see, e.g., the
survey by Mitzenmacher and Vassilvitskii [2020]), we study the case where the learner is allowed
to issue a limited number of best-action queries to an oracle that reveals the identity of the best
action for that step, so that the learner can choose it. This setting is motivated by scenarios in
which obtaining accurate predictions on the optimal choice among numerous actions is possible but
comes with significant costs and time constraints. For instance, consider an online platform that
continuously moderates posted content (e.g., Meta [Meta, a,b] or Google [Google]), and the online
learning problem it faces: posts are generated one after the other, and the platform’s task consists
in deciding whether or not to flag the content as harmful. In this application, the platform may
do so via (i) content moderation actions that are based on (expert) human reviews (that plays the
role of best-action queries), and (ii) automated content moderation decisions, i.e., decisions arising
by employing an online learning algorithm. Due to budget or time constraints, access to human
reviewing is a scarce resource, and the platform can only employ external reviewers at most k times.

While the idea of incorporating hints or queries into online learning models has already been studied
[e.g., Bhaskara et al., 2021b, 2023b], we are the first to study best-action queries. Bhaskara et al.
[2021b] focus on online linear optimization with full feedback, with a query model which outputs
vectors that are correlated with the actual losses. In the case of optimization over strongly convex
domains, the regret bound improves from

√
T to log T , even for learners that receive hints for O(

√
T )

times. In an alternative model, Bhaskara et al. [2023b] studies comparison queries that allow the
decision maker to know in advance, at each time, which among a small number of actions has the best
loss. In this model, probing 2 arms is sufficient to achieve time-independent regret bounds for online
linear and convex optimization with full feedback, an in the stochastich multi-armed bandit problem.
Our model differs from previous ones in two directions: (i) the online learner issues at most k queries
(differently from Bhaskara et al. [2023b]), and (ii) these queries are purely ordinal and the domain is
not strongly convex* (so that the logarithmic bound in Bhaskara et al. [2021b] does not apply).

Another potential way of addressing how to efficiently using limited moderation is through the
abstention learning model, where the learner can "abstain" from making a decision and instead
use additional resources to receive the optimal response. This includes models like KWIK and
full-information models [Li et al., 2011, Sayedi et al., 2010, Zhang and Chaudhuri, 2016, Cortes
et al., 2018, Neu and Zhivotovskiy, 2020, Gangrade et al., 2021].

1.1 Our Model

In our model, an online learner repeatedly interacts with n actions over a time horizon T . At the
beginning of each time t ∈ [T ]†, the learner chooses one of these actions it and suffers a loss ℓt(it)
generated by an (oblivious) adversary that may depend on both the action and the time; then, it
observes some feedback. In this paper, we allow the learning algorithm A to issue a best-action
query, for at most k out of T times. When the learner issues a query, an oracle reveals the identity of
the best action at that time, i∗t , so that the learner can select it. The quality of a learning algorithm is
measured via the regret: the difference between its performance and that of the best fixed action in
hindsight. The regret of an algorithm A against a sequence of losses ℓ ∈ [0, 1]n×T reads

RT (A, ℓ) =
∑
t∈[T ]

E [ℓt(it)]− min
i∈[n]

∑
t∈[T ]

ℓt(i),

where the expectation runs over the (possibly) randomized decisions of the algorithm. We are
interested in designing learning algorithms that perform well, i.e., suffer sublinear regret against all
possible sequences of losses. For this reason, we denote with RT (A) (without the dependence on ℓ)
the worst-case regret of A: RT (A) = supℓ RT (A, ℓ). The minimax regret of a learning problem is
then the regret achievable by the best algorithm. In our paper we pinpoint the exact minimax regret
rates for the problems studied.

*The model with k actions can be captured by a linear function where each entry corresponds to the loss of a
specific discrete action, and the continuous action space is the probability simplex over the n discrete actions
(which is not strongly convex).

†We adopt the notational convention that [x] stands for the set of the first x natural numbers.
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For the sake of simplicity, we denote with LT (i) the total loss incurred by action i over the whole
time horizon: LT (i) =

∑
t∈[T ] ℓt(i). L

min
T =

∑
t∈[T ] ℓt(i

∗
t ) denotes instead the sum of the minimum

loss actions at each time. Finally, LT (Ak) = E
[∑

t∈[T ] ℓt(it)
]

denotes the expected total loss of an
algorithm Ak issuing at most k best-action queries.

1.2 Our Results

Full feedback. We start with the full feedback (a.k.a. prediction with experts) where the learner
observes at each time the losses of all the actions after the action is chosen, i.e., all the loss vector
ℓt = (ℓt(1), ℓt(2), . . . , ℓt(n)) after action it is chosen. We obtain the following results:

• We show that by combining the Hedge algorithm with k queries issued uniformly at random
(Algorithm 1), we obtain a regret rate of O(min{

√
T , T/k}), see Theorem 2.2.

• In Theorem 3.3, we complement this positive result with a tight lower bound: we design a
family of instances that forces every algorithm with k queries to suffer the same regret.

It is surprising that issuing a sublinear number of queries, say k = Tα for α ∈ (1/2, 1), yields a
significant improvement on the regret, which becomes T 1−α. Note, the total of the losses incurred
by any algorithm in k rounds is at most k, which only affects the overall regret in an additive way;
nevertheless, we prove that issuing k queries has an impact on the regret that is multiplicative in k.
For instance, T 2/3 queries are enough to decrease the regret to T 1/3, which is well below the Θ(

√
T )

minimax regret for prediction with expert without queries [Cesa-Bianchi and Lugosi, 2006].

Label efficient feedback. We then proceed to study a partial feedback model inspired by the label
efficient paradigm [Cesa-Bianchi and Lugosi, 2006]. In the label-efficient prediction problem, the
learner only observes the losses in a few selected times. With label efficient feedback, the learner
only observes feedback during the k times where the best-action queries are issued (but only after
choosing the action). We obtain the following results:

• We modify the (label-efficient) Hedge algorithm [Cesa-Bianchi and Lugosi, 2006] to achieve
a regret rate of O(min{T/√k, T

2
/k2}), see Theorem 2.4,

• In Theorem 3.4, we show that it is not possible to improve on these rates: there exists
instances where all algorithms suffer Ω(T/√k) regret if k ∈ O(T 2/3) or Ω(T 2

/k2) if k ∈
Ω(T 2/3).

We observe that our algorithms improve (for k ∈ Ω(T 2/3)) on the regret rate of label efficient
prediction with k steps of feedback, which is of order Θ(T/

√
k) [Chapter 6.2 in Cesa-Bianchi and

Lugosi, 2006]. Also in this case, we observe the surprising multiplicative impact on the regret of the
k queries. For instance, k = T 3/4 queries (which impact on a total loss of the same order but leave
unaffected Θ(T ) rounds) are enough to achieve O(

√
T ) regret.

Stochastic i.i.d. setting. In Section B, we derive (up to polylogarithmic factors) the above results in
the stochastic setting, but with different algorithms. Namely, in full feedback, we show how Follow-
The-Leader [Auer et al., 2003] achieves regret Θ(T/k) when k ≥ Ω(

√
T ), and Θ̃(

√
T ) otherwise.

With label efficient feedback, Explore-Then-Commit [Perchet et al., 2015] achieves Θ̃(T
2
/k2) when

k ≥ Ω(T 2/3), and Θ̃(T/
√
k) otherwise.‡

1.3 Technical Challenges

Issuing a best-action query has the effect of inducing a possibly negative instantaneous regret. In fact,
the benchmark that the algorithm is comparing against at time t is the loss of the best fixed action
over the whole time horizon, which may naturally be larger, at time t, than the best action i∗t in that
specific time. Overall, the magnitude of the total “negative” regret that is generated by k queries is at
most O(k), which is typically sublinear in T , and affects linearly on the overall regret. We prove that
this sublinear number of queries has a (surprising) multiplicative effect on the overall regret bound.

‡We use Θ̃(x) to hide polylogarithmic terms in x.
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Our analysis reveals that any algorithm employing a uniform querying strategy can be characterized
by a total loss decomposed into two terms: a k/T fraction of the best dynamic loss, representing the
sum of the smallest losses at each time, and the total loss of the same algorithm operating without
queries, scaled by a factor of 1 − k/T . Additionally, within our proof, we conduct a more refined
analysis of the Hedge algorithm in the no-querying setting. Specifically, we can express the regret
as a function of the difference between the best dynamic loss and the best-fixed cumulative loss in
hindsight. This formulation demonstrates a noteworthy enhancement in regret rates compared to
the conventional bound of O(

√
T ) when the discrepancy between the best dynamic loss and the

best-fixed cumulative loss in hindsight is relatively small.

Concerning lower bounds, their construction is more challenging than their “no queries” counterpart.
In fact, we need to design hard instances against any query-augmented learning algorithm, and provide
tight bounds in both k and T. The lower bounds we construct are stochastic, this implies that the
minimax regret we find are tight, even in the stochastic model, where the losses are drawn i.i.d. from
a fixed but unknown distribution. To exemplify this, let us consider the following natural instance,
which provides a simple proof of the Ω(

√
T ) regret lower bound in the adversarial setting (without

queries). The instance is composed of two arms, whose rewards are i.i.d. Bernoulli distribution with
probability 1/2. Any learning algorithm achieves T/2 regret, while the best-fixed arm in hindsight is
expected to achieve an extra Θ(

√
T ) term.§ Now, if the learner is given the power to issue (order of)√

T queries, then its regret naturally drops from (order of)
√
T to constant.

2 Hedge with k Best-Action Queries

In this section, we propose two algorithms that address online learning with full and label efficient
feedback. They are built by combining the Hedge algorithm [Chapter 2 in Cesa-Bianchi and Lugosi,
2006] to uniform queries. We start by presenting some known properties of Hedge (in full feedback)
that are crucial key for the main results of this section.

Lemma 2.1. Consider the Hedge algorithm Hedgeη(ℓ̃) run on loss sequence ℓ̃ ∈ [0, U ]n×T with
learning rate η < 1/U . Then, for all action i ∈ [n], it holds that,

L̃T (Hedgeη(ℓ̃)) ≤
1

1− Uη
·
(
L̃T (i) +

log n

η

)
,

where L̃T (Hedgeη(ℓ̃)) =
∑

t∈[T ],i∈[n] pt(i) · ℓ̃t(i) is the expected cumulative loss of Hedgeη(ℓ̃) and

L̃T (i) is the cumulative loss of action i.

Proof. We have that, by definition,

WT+1 ≥ wT+1(i)wt(i) · exp
(
−ηℓ̃t(i)

)
=
∏
t∈[T ]

exp
(
−ηℓ̃t(i)

)
= exp

(
−ηL̃T (i)

)
.

We also know that

Wt+1 ≤ Wt ·

1− η
∑
i∈[n]

pt(i) · ℓ̃t(i) + η2
∑
i∈[n]

pt(i) · ℓ̃2t (i)

 .

Thus,

WT+1 ≤ n ·
∏
t∈[T ]

1− η
∑
i∈[n]

pt(i) · ℓ̃t(i) + η2
∑
i∈[n]

pt(i) · ℓ̃2t (i)

 ,

which combined with the earlier bound and taking logarithms of both sides (since they are both
positive), gives

−ηL̃T (i) ≤ log n+
∑
t∈[T ]

log

1− η
∑
i∈[n]

pt(i) · ℓ̃t(i) + η2
∑
i∈[n]

pt(i) · ℓ̃2t (i)


§This is a simple corollary of the expected distance of a random walk.

4



≤ log n− η
∑

t∈[T ],i∈[n]

pt(i) · ℓ̃t(i) + η2
∑

t∈[T ],i∈[n]

pt(i) · ℓ̃2t (i)

≤ log n− (η − Uη2)
∑

t∈[T ],i∈[n]

pt(i) · ℓ̃t(i).

The second inequality above follows from log(1 + z) ≤ z for z ∈ R, and the third by observing that
ℓ̃2t (i) ≤ Uℓ̃t(i), since ℓ̃t(i) ∈ [0, U ]. The lemma follows by rearranging the terms above.

2.1 Full Feedback: An O(T logn
k ) Regret Bound

Theorem 2.2. Consider the problem of online learning with full feedback and k best-action queries,
then there exists an algorithm Ak that guarantees

RT (Ak) ≤ min

{√
T log n,

T log n

k

}
.

We prove that Algorithm 1 exhibits the desired regret guarantees. In particular, as we illustrate next,
this algorithm performs uniform querying, i.e., they choose a uniformly random subset Q ⊆ [T ] of
size k where to issue best-action queries. In the case of uniform queries, and when feedback and
action taken by the algorithm are not correlated, a useful simplification can be made.
Observation 2.3. Let A0 be an algorithm with no querying power, with full or label-efficient feedback.
Consider Ak, obtained from A0 by equipping it with k uniformly random queries across the time
horizon T or with an independent query on each step time step with probability k/T . Similarly,
let i0t and it be the actions selected by A0 and Ak at time t. Then, for all adversarial sequences
ℓ ∈ [0, 1]n×T of action losses,

E [ℓt(it)] =

(
1− k

T

)
· E
[
ℓt(i

0
t )
]
+

k

T
· E [ℓt(i

∗
t )] ,

for all t ∈ [T ], and thus

LT (Ak) =

(
1− k

T

)
· LT (A0) +

k

T
· Lmin

T . (1)

Algorithm 1 Hedge with Best-Action Queries
1: Input: Sequence of losses ℓt(i) and query budget k ∈ [T ]
2: Sample k out of T time steps uniformly at random and denote this random set by Q

3: Set η =
√

logn
T when k ≤

√
T , otherwise η = k

T

4: Initialize w1(i) = 1 for all i ∈ [n]
5: for t ∈ [T ] do
6: if t ∈ Q then
7: Observe i∗t = argmini∈[n] ℓt(i)
8: Select action i∗t
9: else

10: Let Wt =
∑

i∈[n] wt(i)

11: Select action i with probability pt(i) =
wt(i)
Wt

12: Observe ℓt(i) for all i ∈ [n]
13: Update wt+1(i) = wt(i) · exp (−η(ℓt(i)− ℓt(i

∗
t ))) for all i ∈ [n]

Proof of Theorem 2.2. Let us first note that Algorithm 1 without queries is an instantiation Hedgeη(ℓ̃)
applied to losses ℓ̃t(i) = ℓt(i)− ℓt(i

∗
t ) ∈ [0, 1]. Let this algorithm be denoted as A0. Then, applying

Lemma 2.1 and expanding the terms, we obtain

LT (A0) ≤
LT (i)

1− η
+

log n

η(1− η)
− ηLmin

T

1− η
.
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Let Ak be Algorithm 1 with k best-action queries. By Observation 2.3, specifically (1), it holds that

LT (Ak) ≤
(1− k/T)LT (i)

1− η
+

(1− k/T) log n

η(1− η)
− η(1− k/T)Lmin

T

1− η
+

k

T
· Lmin

T

⇐⇒ RT (Ak, i) ≤
(1− k/T) log n

η(1− η)
+

Tη − k

T (1− η)
(LT (i)− Lmin

T ) ≤ min

{√
T log n,

T log n

k

}
,

where the last inequality holds by setting η = max
{√

logn/T , k/T
}

.

Before proceeding further, let us provide some technical intuition of why Theorem 2.2 should hold.
The additive term k

T · Lmin
T (given in Equation (1)) alters the choice of the learning rate, which is

allowed to be more aggressive, thus impacting the regret in a multiplicative way. To be more specific,
in the usual Hedge performance analysis, we do not care about the negative term −ηLmin

T

1−η . This
negative term together with the additive k

T · Lmin
T term given by best-action queries allows us to set

the optimal η to be larger than the usual (order of) 1/
√
T . In other words, the additive impact of the

k
T · Lmin

T term permits a multiplicative gain in regret as the learning rate η is modified and increased.

2.2 Label Efficient Feedback: An O(T
2 logn
k2 ) Regret Bound

We extend Algorithm 1 to a setting where feedback is given only during querying time steps, with the
only difference that the update rule is performed just after the querying time steps and nowhere else
across the time horizon. We prove the following theorem:

Theorem 2.4. For all adversarial sequences ℓ ∈ [0, 1]n×T of action losses and for all k ≥√
T log T

2 − 1, in the label efficient query model, there exists an algorithm Ak that guarantees

RT (Ak) ≤ 2 ·min

{
T

√
2 log n

k
,
T 2 log n

k2

}
.

Algorithm description. We first describe the algorithm Ak we use: Let Xt ∼ Ber
(
k̂/T
)

be a
Bernoulli random variable, for some k̂ ≤ k to be specified later. Ak issues a best action query
if, at time step t, Xt = 1 and unless the query budget is exhausted. Once the query budget is
exhausted, the algorithm stops querying. Otherwise, it performs the usual update rule on losses
ℓ̂t(i) = T

k̂
· (ℓt(i) − ℓt(i

∗
t )) · I {Xt = 1}. The algorithm then simply selects action It = i∗t if

Xt = 1 and action It = i with probability pt(i) if Xt = 0. Moreover, we denote by X≤t =
(X1, . . . , Xt), I≤t = (I1, . . . , It).

For the sake of the analysis, we introduce another algorithm A′
k, which is the same as algorithm

Ak with the only (but crucial) difference that it issues a query if and only if Xt = 1, regardless of
whether or not query budget is exhausted. We thus bound the regret of Ak in terms of the regret of
A′

k.

Lemma 2.5. For all adversarial sequences ℓ ∈ [0, 1]n×T of action losses, in the label efficient query
model, algorithm A′

k guarantees

RT (A′
k) ≤ min

{
T

√
2 log n

k̂
,
T 2 log n

k̂2

}
.

Proof. For algorithm A′
k, we have that its counterpart without queries, A′

0, is an instantiation
Hedgeη(ℓ̃), with ℓ̃ = ℓ̂. Thus, by Lemma 2.1, we obtain

L̂T (A′
k) =

∑
t∈[T ],i∈[n]

pt(i) · ℓ̂t(i) ≤
1

1− T
k̂
η
·
(
L̂T (i) +

log n

η

)
, (2)
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as long as η < k̂/T . We now recognize that, since E
[
ℓ̂t(i) | X≤t−1, I≤t−1

]
= ℓt(i)− ℓt(i

∗
t ), then∑

i∈[n]

E
[
pt(i) · ℓ̂t(i)

∣∣∣∣X≤t−1, I≤t−1

]
=
∑
i∈[n]

pt(i) · (ℓt(i)− ℓt(i
∗
t )).

Therefore, by the tower property of expectation applied around (2), we have

LT (A′
0) =

∑
i∈[n]

E
[
pt(i) · ℓ̂t(i)

]
=
∑
i∈[n]

pt(i) · (ℓt(i)− ℓt(i
∗
t ))

≤ 1

1− T
k̂
η
·
(
LT (i)− Lmin

T +
log n

η

)
≤ k̂

k̂ − Tη
·
(
LT (i) +

log n

η

)
− Tη

k̂ − Tη
Lmin
T ,

where the last inequality holds since Tη ≤ k̂. By Observation 2.3, we get

LT (A′
k) ≤

(
1− k

T

)
· k̂

k̂ − Tη
·
(
LT (i) +

log n

η

)
− (T − k)η

k̂ − Tη
Lmin
T +

k

T
Lmin
T ,

which means that the regret is upper bounded by

RT (A′
k, i) ≤

k̂ log n

η(k̂ − Tη)
+

T 2η − kk̂

T (k̂ − Tη)
(LT (i)− Lmin

T ) ≤ min

{
T

√
2 log n

k̂
,
T 2 log n

k̂2

}
,

where the last inequality holds by setting η = max

{
1
T

√
k̂ logn

2 , kk̂√
2T 2

}
, and then by noticing, in

the latter case, that k̂ − kk̂√
2T

≥
√
2k.

With this lemma, we are ready to prove Theorem 2.4, where we bound the regret of algorithm Ak.

Proof of Theorem 2.4. We consider event E = {|Q| ≤ k}, so that, slightly abusing notation, we
write the regret of algorithm Ak as

RT (Ak) = E [RT (Ak) | E ] · P [E ] + E
[
RT (Ak) | Ē

]
· P
[
Ē
]
≤ E [RT (Ak) | E ] + T · P

[
Ē
]
.

To upper bound the second summand above, we have

T · P
[
Ē
]
≤ T · exp

(
−2(k + 1− k̂)2

T

)
≤ T · 1

T
= 1, (3)

by Hoeffding’s inequality applied on the binomial random variable |Q| with expectation k̂, and as

long as k̂ ≥ k −
√

T log T
2 + 1.

For what concerns the first summand, we recognize that under event E , Ak and A′
k are exactly

the same algorithm. Thus, it holds that E [RT (Ak, i) | E ] = E [RT (A′
k, i) | E ]. Moreover, if

E
[
RT (Ak) | Ē

]
≥ 0, and since P [E ] ≥ 1− 1/T , then

E [RT (A′
k, i) | E ] ≤

T

T − 1
·RT (A′

k, i) ≤
T

T − 1
·min

{
T

√
2 log n

k̂
,
T 2 log n

k̂2

}
,

by Lemma 2.5. If, instead, E
[
RT (Ak) | Ē

]
< 0, we also know that, by an identical derivation to (3),

E
[
RT (Ak) | Ē

]
· P
[
Ē
]
≥ −1. Therefore,

E [RT (A′
k, i) | E ] ≤

T

T − 1
· (RT (A′

k, i) + 1) ≤ T

T − 1
·

(
min

{
T

√
2 log n

k̂
,
T 2 log n

k̂2

}
+ 1

)
,

again by Lemma 2.5. Overall, we obtain

RT (Ak) ≤ 2 ·min

{
T

√
2 log n

k
,
T 2 log n

k2

}
.
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3 Lower Bounds

In this section, we construct two of randomized instances of the learning problem, which induce
a tight lower bound on the minimax regret rates for both feedback models. We define the random
variables Zt as the feedback observed by the algorithm at the end of time t. In the full feedback
model, Zt = ℓt, while in the label efficient setting, Zt = ℓt only if a query is issued at time t (and Zt

is an empty n-dimensional vector otherwise). Furthermore, we denote with Z≤t the array containing
the feedback Z1, Z2, . . . , Zt until time t.

We start by describing the two stochastic instances, which are characterized by two distributions over
two losses. As a notational convention, we denote the losses with ℓt, and introduce two probability
measures P+,P− (and their corresponding expectations E+,E−). Let ε, q ∈ [0, 1] be two parameters
we set later (with ε ≤ q), we have that the losses of the n = 2 actions are distributed as follows:

(ℓt(1), ℓt(2)) =


(1, 1) w.p. 1

2 under both P+ and P−

(0, 0) w.p. 1
2 − 2q under both P+ and P−

(0, 1) w.p. q + ε under P+ and w.p. q − ε under P−

(1, 0) w.p. q − ε under P+ and w.p. q + ε under P−

.

We now introduce and prove a general Lemma on the expected regret R±
T (Ak) suffered by any

deterministic algorithm Ak which issues at most k queries, against the i.i.d. sequence of valuations
drawn according to P±. Since we want a result that holds for both feedback models, we introduce the
random set F which contains the times where Ak actually observes the losses; note, NF = |F | is
equal to T in full feedback and to the number queries issued in the partial information model.
Lemma 3.1. For any determinstic algorithm Ak which issues at most k best-action queries, we have:

R+
T (Ak) +R−

T (Ak) ≥ exp
(
−5ε2

q
E+ [NF ]

)
· (T − k)ε

2
− 2(q − ε)k.

Proof. The best action i∗ under P+, respectively P− is the first, respectively the second, one, with an
expected loss of

E± [ℓt(i
∗)] = 1

2 + q − ε. (4)

On the other hand, the best realized action i∗t yields an expected loss of

E± [ℓt(i
∗
t )] = E± [min{ℓt(1), ℓt(2)}] = −(q − ε). (5)

Moreover, if the algorithm chooses a suboptimal action it ̸= i∗, its expected instantaneous regret is:

E+ [ℓt(2)]− E+ [ℓt(i
∗)] = E− [ℓt(1)]− E− [ℓt(i

∗)] = 2ε. (6)

Let now N+, respectively N−, be the random variable that counts the number of times that Ak selects
action 1, respectively 2, in times that are not in F (i.e., where the choice of 1 is not due to a query).
Combining (4),(5), and (6), we have the following:

R±
T (Ak) ≥ E±

[∑
t/∈F

(ℓt(it)− ℓt(i
∗)) +

∑
t∈F

(ℓt(i
∗
t )− ℓt(i

∗))

]
= 2ε · E± [N∓]− (q − ε)E± [NF ] .

Since NF ≤ k, and N+ +N− ≤ T − k, we have the following bound on the regret:

R+
T (Ak) ≥ P+

[
N+ ≤ T − k

2

]
· (T − k)ε− (q − ε)k

R−
T (Ak) ≥ P−

[
N+ >

T − k

2

]
· (T − k)ε− (q − ε)k.

Summing the above two expressions, we obtain

R+
T (Ak) +R−

T (Ak) ≥
(
P+

[
N+ ≤ T − k

2

]
+ P−

[
N+ >

T − k

2

])
· (T − k)ε− 2(q − ε)k.

(7)
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At this point, we apply the Bretagnolle-Huber Inequality [Theorem 14.2 in Lattimore and Szepesvári,
2020] to bound the first term on the right-hand side of the above inequality:

P+

[
N+ ≤ T − k

2

]
+ P−

[
N+ >

T − k

2

]
≥ 1

2
· exp

(
−DKL

(
P+
Z≤T

,P−
Z≤T

))
,

where P±
Z≤T is the push-forward measure on all the possible sequences of feedback observed by Ak

under P±. The lemma is concluded by combining the above inequality with the following claim, and
plugging it into (7).

Claim 3.2. It holds that DKL

(
P+
Z≤T

,P−
Z≤T

)
≤ 5ε2

q E+ [NF ] .

Proof. Let us observe that, once we fix the feedback history until time t− 1, i.e., fix a realization of
the feedback Z≤t−1, we have that

DKL

(
P+
Zt|Z≤t−1

,P−
Zt|Z≤t−1

)
= I {t ∈ F} · DKL

(
P+
Zt|t∈F ,P

−
Zt|t∈F

)
,

where P+
Zt|Z≤t−1

(respectively P−
Zt|Z≤t−1

) is the push-forward measure over {0, 1}2 when losses are
drawn according to P+ (respectively P−), conditioning on the previous observations. The equality
above holds because (i) algorithm Ak observes feedback if and only t ∈ F (by definition), and (ii)
Ak is deterministic and whether or not t ∈ F may only depend on the past. We now upper bound the
KL-divergence term above:

DKL

(
P+
Zt|Z≤t−1

,P−
Zt|Z≤t−1

)
= (q + ε) · log

(
1 +

2ε

q − ε

)
+ (q − ε) · log

(
1− 2ε

q + ε

)
≤ (q + ε) · 2ε

q − ε
− (q − ε) · 2ε

q + ε
=

4ε2q

q2 − ε2
≤ 5ε2

q
,

where the first inequality follows from log(1 + z) ≤ z for all z ∈ R, and the last holds as long as we
choose ε < q√

5
. To complete our derivation, we express the overall KL divergence exploiting the

tower property of conditional expectation:

DKL

(
P+
Z≤T

,P−
Z≤T

)
=
∑
t∈[T ]

E+
[
DKL

(
P+
Zt|Z≤t−1

,P−
Zt|Z≤t−1

)]
≤ 5ε2

q
E+ [NF ] ,

where expectation is taken over all possible feedback realizations Z≤t−1, and the last inequality
follows by earlier derivations.

This concludes the proof of the lemma.

We now show how to use the above lemma to derive the lower bounds. We start with full feedback.

Theorem 3.3. In the full feedback query model, for all k ∈ [T ], we have the following lower bounds:

• For any algorithm Ak that has access to k < c0
√
T queries, it holds that RT (Ak) ≥ c0

√
T
4 .

• For any algorithm Ak that has access to k ≥ c0
√
T queries, it holds that RT (Ak) ≥ c1

T
k .

Where c0 = 1/(e8
√
5) and c1 = 1/(320e2) are universal constants.

Proof. In full feedback, the algorithm always observes the losses, so that the feedback variable
Zt = ℓt and NF = T . We prove the Theorem via Yao’s minimax Theorem: we prove that any
deterministic algorithm Ak fails against the random instance composed as follows: with probability
1/2 the losses are drawn i.i.d. according to P+, otherwise, they are drawn i.i.d. according to P−. We
can then apply Lemma 3.1 and obtain that the expected regret of Ak against such mixture is equal to

E [RT (Ak)] =
1

2
(R+

T (Ak) +R−
T (Ak)) ≥ exp

(
−5ε2

q
T

)
· (T − k)ε

2
− 2(q − ε)k. (8)
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Now, if k < c0
√
T , we set ε = 2√

5T
and q = 1

4 in (8) to get

E [RT (Ak)] =
1

2
(R+

T (Ak) +R−
T (Ak)) ≥

√
T

2e8
√
5
−

√
T

4e8
√
5
≥

√
T

4e8
√
5
,

Otherwise, if k ≥ c0
√
T , then consider the following choice of the parameters: ε = 1

40ek + 4e−1
40eT

and q = 5ε2T = T
320e2k2 + 4e−1

160e2k + (4e−1)2

320e2T . Plugging these parameters in (8), we get:

E [RT (Ak)] =
1

2
(R+

T (Ak) +R−
T (Ak)) ≥

Tε

4e
− 5ε2kT +

(
1− 1

4e

)
· εk

=
T

320e2k
+

4e− 1

160e2
+

(4e− 2)2k

320e2T
≥ T

320e2k
.

A similar analysis can be carried over for the label efficient setting.

Theorem 3.4. In the label efficient feedback model, for all k ∈ [T ], we have the following lower
bounds:

• For any algorithm Ak that has access to k < c0
T√
k

queries, it holds that RT (Ak) ≥ c0
T

4
√
k

.

• For any algorithm Ak that has access to k ≥ c0
T√
k

queries, it holds that RT (Ak) ≥ c1
T 2

k2 .

Where c0 = 1/(e8
√
5) and c1 = 1/(320e2) are universal constants.

Proof. In the label efficient feedback model, Zt is meaningful only for times in F . We then prove
the result by Yao’s minimax principle, by showing that any determinisitic algorithm Ak which issues
at most k queries suffers the desired regret against the instance that uniformly chooses between P+

and P−. We can apply Lemma 3.1 (nothing that NF ≤ k) to get:

E [RT (Ak)] =
1

2
(R+

T (Ak) +R−
T (Ak)) ≥ exp

(
−5ε2

q
k

)
· (T − k)ε

4
− (q − ε)k.

Once again, we have two cases. If k < c0
T√
k

, we choose ε = 2√
5k

and q = 1
4 to get

E [RT (Ak)] =
1

2
(R+

T (Ak) +R−
T (Ak)) ≥

T

2e8
√
5k

− T

4e8
√
5k

≥ T

4e8
√
5k

.

Otherwise, if k ≥ c0
T√
k

, and we choose ε = T
40ek2 + 4e−1

40ek and q = 5ε2k = T 2

320e2k3 + (4e−1)T
160e2k2 +

(4e−1)2

320e2k , to obtain

E [RT (Ak)] =
1

2
(R+

T (Ak) +R−
T (Ak)) ≥

Tε

4e
− 5ε2k2 +

(
1− 1

4e

)
· εk

=
T 2

320e2k2
+

T (4e− 1)

160e2k
+

(4e− 1)2

320e2
≥ T 2

320e2k2
.

4 Conclusions

Our work introduces best-action queries in the context of online learning. We provide tight minimax
regret in both the full feedback model and in the label efficient one. We establish that leveraging a
sublinear number of best action queries is enough to improve significantly the regret rates achievable
without best-action queries. Promising avenues for future research involve integrating best-action
queries with diverse feedback forms, extending beyond full feedback, such as bandit feedback, partial
monitoring, and feedback graphs (where, in particular, Lemma 2.1 does not hold). Moreover, our
work only studies the case where queries are perfect, i.e., the queried oracle gives the correct identity
of the best action at that time step with probability 1. Imagining a noisy oracle that gives the correct
identity of the best action only with probability 1/n + δ is also an interesting future direction this
work leaves open.
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A Omitted Proofs

A.1 Proof of Lemma 2.1

Lemma 2.1. Consider the Hedge algorithm Hedgeη(ℓ̃) run on loss sequence ℓ̃ ∈ [0, U ]n×T with
learning rate η < 1/U . Then, for all action i ∈ [n], it holds that,

L̃T (Hedgeη(ℓ̃)) ≤
1

1− Uη
·
(
L̃T (i) +

log n

η

)
,

where L̃T (Hedgeη(ℓ̃)) =
∑

t∈[T ],i∈[n] pt(i) · ℓ̃t(i) is the expected cumulative loss of Hedgeη(ℓ̃) and

L̃T (i) is the cumulative loss of action i.

Proof. We have that, by definition,

WT+1 ≥ wT+1(i)wt(i) · exp
(
−ηℓ̃t(i)

)
=
∏
t∈[T ]

exp
(
−ηℓ̃t(i)

)
= exp

(
−ηL̃T (i)

)
.

We also know that

Wt+1 ≤ Wt ·

1− η
∑
i∈[n]

pt(i) · ℓ̃t(i) + η2
∑
i∈[n]

pt(i) · ℓ̃2t (i)

 .

Thus,

WT+1 ≤ n ·
∏
t∈[T ]

1− η
∑
i∈[n]

pt(i) · ℓ̃t(i) + η2
∑
i∈[n]

pt(i) · ℓ̃2t (i)

 ,

which combined with the earlier bound and taking logarithms of both sides, gives

−ηL̃T (i) ≤ log n+
∑
t∈[T ]

log

1− η
∑
i∈[n]

pt(i) · ℓ̃t(i) + η2
∑
i∈[n]

pt(i) · ℓ̃2t (i)


≤ log n− η

∑
t∈[T ],i∈[n]

pt(i) · ℓ̃t(i) + η2
∑

t∈[T ],i∈[n]

pt(i) · ℓ̃2t (i)

≤ log n− (η − Uη2)
∑

t∈[T ],i∈[n]

pt(i) · ℓ̃t(i).

The second inequality above follows from log(1 + z) ≤ z for z ∈ R, and the third by observing that
ℓ̃2t (i) ≤ Uℓ̃t(i), since ℓ̃t(i) ∈ [0, U ]. The lemma follows by rearranging the terms above.

B Best-Action Queries in the Stochastic i.i.d. Setting

In this section, we show how the results provided in Section 2 can be obtained in the stochastic i.i.d.
setting (defined next) using the Follow-The-Leader algorithm, albeit a suboptimal dependence in n.

In the stochastic i.i.d. setting, each action is associated with a fixed but unknown distribution Di

supported in [0, 1]. Action i’s loss at time step t, ℓt(i), is drawn independently from distribution Di.
We denote with µ(i) the expected loss of action i, and with i∗ = argmini∈[n] µ(i) be the action of
lowest expected loss. We measure the performance of a learning algorithm A, by considering its
regret with respect to the best action distribution:

RT (A) =
∑
t∈[T ]

E [ℓt(it)− ℓt(i
∗)] .

We denote by ∆i = µ(i) − µ(i∗) be the gap between the expected loss of the best action and that
of action i, and by Ψi = E [|ℓ(i)− ℓ(i∗)|] the expected absolute value of such gap (note, we omit
the dependence on time as the losses are drawn i.i.d. across time). Whenever the learner issues a
query, then the identity of the action i∗t with best realized loss is revealed, so that the learner gets, in
expectation, E [ℓt(i

∗
t )] = E

[
mini∈[n] ℓt(i)

]
.
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B.1 Useful Facts and Observations

The following facts and simple results are particularly useful for analyzing algorithms in the stochastic
generation model.
Fact B.1 (Bernstein’s Inequality). Let Y1, . . . , Ym be independent random variables such that∑m

τ=1 E [Yτ ] = µ and P [|Yτ | ≤ c] = 1, for c > 0 and all τ ∈ [m]. Then, for γ > 0, we have

P

[
m∑

τ=1

Yτ − µ ≥ γ

]
≤ exp

(
− 3γ2

6σ2 + 2cγ

)
,

where σ2 =
∑m

τ=1 E
[
Y 2
τ

]
− E [Yτ ]

2. Moreover, when Yτ ’s are also identically distributed, we have
σ2 = m(E

[
Y 2
τ

]
− E [Yτ ]

2
) ≤ mE [|Yτ |] =: mΨ. Thus,

P

[
m∑

τ=1

Yτ − µ ≥ γ

]
≤ exp

(
− 3γ2

6mΨ+ 2cγ

)
.

Proposition B.2. Let T, n ∈ N be the time horizon and number of experts respectively, with T ≥ n−1.
For all distributions Di of actions losses, and any algorithm A, its regret is

RT (Ak) =

T∑
t=k+1

∆it −
k

2
· (Ψ−∆), (9)

where Ψ := E [|mini̸=i∗ ℓ(i)− ℓ(i∗)|] and ∆ := E [mini̸=i∗ ℓ(i)− ℓ(i∗)].

Proof. We first observe that, by the i.i.d. assumption, we can always make the algorithm query in the
first k time steps, without losing generality. Therefore, as Q = {t | t ≤ k}, the algorithm suffers
E
[
mini∈[n] ℓt(i)

]
in the first k time steps, which, by independence, gives∑

t≤k

E
[
min
i∈[n]

ℓt(i)

]
= kE

[
min
i∈[n]

ℓ(i)

]
.

We also have the following useful observation that allows us to rewrite the maximum in a convenient
form. Namely,

min
i∈[n]

ℓ(i) =

ℓ(i∗) + min
i̸=i∗

ℓ(i)−
∣∣∣∣min
i ̸=i∗

ℓ(i)− ℓ(i∗)

∣∣∣∣
2

. (10)

The claim follows by the definitions of Ψ and ∆.

Thus, in the stochastic case, the goal of a regret-minimizing algorithm is to minimize the first
summand above since the second is characteristic of the instance at hand.
Observation B.3. Let T, n ∈ N be the time horizon and number of experts respectively, with
T ≥ n− 1. For all distributions Di of actions losses, Ψi −∆i ≤ Ψ−∆.

Proof. Since E
[
minj∈[n] ℓ(j)

]
≤ E [min{ℓ(i∗), ℓ(i)}] for all i ∈ [n], we have

∆−Ψ = 2 · E
[
min
j∈[n]

ℓ(j)− ℓ(i∗)

]
≤ 2 · E [min{ℓ(i), ℓ(i∗)} − ℓ(i∗)] = ∆i −Ψi,

where the last equality also follows from Equation (10) applied to actions i, i∗ only.

B.2 Label Efficient Feedback:Explore-Then-Commit with Ω(T 2/3) Best-Action Queries

We consider the label efficient feedback case first, where feedback is given only during querying time
steps. The techniques used in this section are key for the full feedback case, and easier to illustrate.

We provide a simple variation of the Explore-Then-Commit (ETC) algorithm Perchet et al. [2015]
that, in the first k ≥ Ω(T 2/3) time steps, is given free access to the identity of the best action before
committing to the action to select. We have the following theorem:
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Algorithm 2 Explore-Then-Commit with Best-Action Queries
Input: Sequence of losses ℓt(i) ∼ Di and k ∈ [T ] query budget
for t ∈ [T ] do

if t ≤ k then
Observe i∗t = argmini∈[n] ℓt(i)
Select action i∗t
Observe ℓt(i) for all i ∈ [n]

else
Select action j = argmini∈[n] µ̄k(i)

Theorem B.4. Let T, n ∈ N be the time horizon and number of actions respectively, with T ≥ n− 1.
For all distributions Di of actions losses, Algorithm 2 with query access k ∈ [4T/9] guarantees

RT (Ak) ≤ min

{
3T

√
log 2nT

2k
,
2nT 2 lnT

k2

}
.

We split the proof of this theorem in two lemmas that immediately imply it, one for k < T 2/3 and one
otherwise.

Lemma B.5. If k < T 2/3, then RT (Ak) ≤ 3T
√

log 2nT
2k .

Proof. For all actions i, we define the clean event as

Ei = {|µk(i)− µ(i)| < ε},

where ε =
√

log 2nT
2k . Similarly, let E be the intersection of all the Ei’s for i ∈ [n]. By Hoeffding’s

inequality [Equation (5.8) in Chapter 5 of Lattimore and Szepesvári, 2020], we have the following:

P
[
Ē
]
= P

[
∪i∈[n]Ēi

]
≤
∑
i∈[n]

P
[
Ēi
]
≤ 2n · exp

(
−2kε2

)
≤ 1

T .

Consider now the expected instantaneous regret suffered by ETC at time t+ 1. We have two cases:
Either the clean event holds, so that the instantaneous regret is at most 2εt, or it does not, in which
case the instantaneous regret is at most 1. By the law of total probability, we have the following:

E [ℓt+1(it)− ℓt+1(i)] ≤ P
[
Ēt
]
+ E [ℓt+1(it)− ℓt+1(i)|Et] ≤ 1

T + 2εt ≤ 3εt.

Summing the expected instantaneous regrets for all t yields the desired bound of

RT (Ak) ≤ 3T

√
log 2nT

2k
,

as we use the lower bound Ψ−∆ ≥ 0 to say that in the first k times the regret the algorithm suffers
is at most 0.

Lemma B.6. If T 2/3 ≤ k ≤ 4T/9, then RT (Ak) ≤ 2nT 2 lnT
k2 .

Proof. We start by showing the statement for 2 actions, and then generalize to n.

The case of 2 actions. Let us recall that, by Proposition B.2, we have

RT (Ak) = |{t ≥ k + 1 | it = 2}| ·∆− k

2
· (Ψ−∆),

where we have assumed that µ1 ≤ µ2, without loss of generality. We suffer positive regret in the last
T −k time steps when we select action 2 over 1, which happens if and only if µ̄k(1) ≤ µ̄k(2). Hence,
the first summand of the above regret expression simply becomes ∆(T − k) · P [µ̄k(2) ≤ µ̄k(1)].

Note that

P [µ̄k(2) ≤ µ̄k(1)] = P

[
k∑

t=1

ℓt(1)− ℓt(2) ≥ 0

]
,
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so if we define gt = ℓt(1)− ℓt(2), whose expected value is E [gt] = −∆ and P [|gt| ≤ 1] = 1, then,
by Fact B.8,

P

[
k∑

t=1

gt ≥ 0

]
= P

[
k∑

t=1

gt + k∆ ≥ k∆

]

≤ exp
(
− 3k2∆2

6kΨ+ 2k∆

)
≤ exp

(
− k∆2

2Ψ +∆

)
.

We distinguish two cases, namely ∆2

2Ψ+∆ ≤ lnT
k and ∆2

2Ψ+∆ > lnT
k . In the latter case, we get that

RT (Ak) = ∆(T − k) · P [µ̄k(2) ≤ µ̄k(1)]−
k

2
· (Ψ−∆)

≤ ∆T · exp
(
− k∆2

2Ψ +∆

)
− k

2
· (Ψ−∆)

≤ ∆T · exp (− lnT ) = ∆ ≤ 1.

Otherwise, we obtain that Ψ ≥ ∆
2 ·
(

k∆
lnT − 1

)
, and so

RT (Ak) = ∆(T − k) · P [µ̄k(2) ≤ µ̄k(1)]−
k

2
· (Ψ−∆)

≤ ∆T − k∆

4
·
(

k∆

lnT
− 3

)
≤
(
T 2

k2
+

3T

4k
− 27

16

)
· lnT

≤ 2T 2 lnT

k2
.

The first inequality holds since the maximizing ∆ = 4T−3k
2k2 · lnT , which is consistent with 0 ≤ ∆ ≤

Ψ ≤ 1 since T 2/3 ≤ k ≤ 4T/9.

Generalizing to n actions. We again assume that the first is the best action, and apply Proposi-
tion B.2, to obtain

RT (Ak) =

T∑
t=k+1
j ̸=1

E
[
I

{
µ̄k(j) ≥ max

i ̸=j
µ̄k(i)

}
(ℓt(j)− ℓt(1))

]
− k

2
· (Ψ−∆)

= (T − k) ·
∑
j ̸=1

∆j · P
[
µ̄k(j) ≥ max

i ̸=j
µ̄k(i)

]
− k

2
· (Ψ−∆)

≤ T ·
∑
j ̸=1

∆j · P [µ̄k(j) ≥ µ̄k(1)]−
k

2
· (Ψ−∆),

which holds by the independence of realizations across time steps. Let us define gt(j) = ℓt(1)−ℓt(j),
so that, Ψj = E [|gt(j)|], E [gt(j)] = −∆j and P [|gt(j)| ≤ 1] = 1. Then, by Fact B.8, we obtain

P [µ̄k(j) ≥ µ̄k(1)] = P

[
k∑

t=1

gt(j) ≥ 0

]
≤ exp

(
−

k∆2
j

2Ψj +∆j

)
.

Recall that, by Observation B.3, Ψ−∆ ≥ Ψj −∆j . Therefore, let us sum and subtract to the regret
upper bound the sum k

2n ·
∑

j ̸=1(Ψj −∆j), and get

RT (Ak) ≤
∑
j ̸=1

(
T∆j · exp

(
−

k∆2
j

2Ψj +∆j

)
− k

2n
· (Ψj −∆j)

)
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+
k

2
·

 1

n
·
∑
j ̸=1

(Ψj −∆j)− (Ψ−∆)


≤
∑
j ̸=1

(
T∆j · exp

(
−

k∆2
j

2Ψj +∆j

)
− k

2n
· (Ψj −∆j)

)
.

For each j ̸= 1, an identical derivation to the one in the case of two actions would yield the same
regret rate, with k/n in place of k. Thus, overall, we obtain

RT (Ak) ≤
2nT 2 lnT

k2
,

which concludes the proof.

B.3 Full Feedback: Follow-The-Leader with Ω
(√

T
)

Best-Action Queries

We provide an algorithm that, equipped with best-action queries for k time steps and with full
feedback, achieves regret O(T/k) for k ≥ Ω(

√
T ), and O(

√
T ) otherwise. This means that, with the

addition of feedback, fewer queries are needed to switch to a much smaller regret rate.

The idea is to use the Follow-The-Leader paradigm Auer et al. [2003]. That is, we select the best
action in the first k time steps since queries give us its identity for free, and successively, we select
the action maximizing the empirical average so far, µ̄t−1(i) =

1
t−1 ·

∑t−1
τ=1 ℓτ (i).

Algorithm 3 Follow-The-Leader with Best-Action Queries
Input: Sequence of losses ℓt(i) ∼ Di and k ∈ [T ] query budget
for t ∈ [T ] do

if t ≤ k then
Observe i∗t = argmini∈[n] ℓt(i)
Select action i∗t
Observe ℓt(i) for all i ∈ [n]

else
Select action j = argmini∈[n] µ̄t−1(i)

We have the following guarantee:
Theorem B.7. Let T, n ∈ N be the time horizon and number of actions respectively, with T ≥ n− 1.
For all distributions Di of actions losses, Algorithm 3 with query access k ≥ 2

√
T guarantees

RT (Ak) ≤ min

{
3
√

2T log 2nT ,
5nT

k

}
.

For our purposes, only a weaker version of Fact B.1 is needed:
Fact B.8. Let Y1, . . . , Ym be i.i.d. random variables such that E [Yτ ] = −∆Y , E [|Yτ |] = ΨY , and
P [|Yτ | ≤ 1] = 1, for all τ ∈ [m]. Then, it holds that

P

[
m∑

τ=1

Yτ ≥ 0

]
≤ exp

(
− m∆2

Y

2ΨY +∆Y

)
.

We split the proof of this theorem in two lemmas that immediately imply it, one for k < 2
√
T and

one otherwise. Next, we subsume the notation of Theorem B.7.
Lemma B.9. If k < 2

√
T , then RT (Ak) ≤ 3

√
2T log 2nT .

Proof. For all times t and actions i, we define the clean event as

Ei,t = {|µt(i)− µ(i)| < εt},
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where εt =
√

log 2nT
2t . Similarly, let Et be the intersection of all the Ei,t’s for i ∈ [n]. By Hoeffding’s

inequality [Equation (5.8) in Chapter 5 of Lattimore and Szepesvári, 2020], we have the following:

P
[
Ēt
]
= P

[
∪i∈[n]Ēi,t

]
≤
∑
i∈[n]

P
[
Ēi,t
]
≤ 2n · exp

(
−2tε2t

)
≤ 1

T .

Consider now the expected instantaneous regret suffered by FTL at time t+ 1. We have two cases:
Either the clean event holds, so that the instantaneous regret is at most 2εt, or it does not, in which
case the instantaneous regret is at most 1. By the law of total probability, we have the following:

E [ℓt+1(it)− ℓt+1(i)] ≤ P
[
Ēt
]
+ E [ℓt+1(it)− ℓt+1(i)|Et] ≤ 1

T + 2εt ≤ 3εt.

Summing the expected instantaneous regrets for all t yields the desired bound of

RT (Ak) ≤ 3
√
2T log 2nT ,

as we use the lower bound Ψ−∆ ≥ 0 to say that in the first k times the regret the algorithm suffers
is at most 0.

Lemma B.10. If k ≥ 2
√
T , then RT (Ak) ≤ 5nT

k .

Proof. We start by showing the statement for 2 actions, and then generalize to n.

The case of 2 actions. We again assume that µ1 ≤ µ2 without loss of generality. FTL’s regret, thus,
reads

RT (Ak) = E

[
T∑

t=k+1

(ℓt(2)− ℓt(1)) · I {µ̄t−1(2) ≤ µ̄t−1(1)}

]
− k

2
· (Ψ−∆)

= ∆ ·
T∑

t=k+1

P [µ̄t−1(2) ≤ µ̄t−1(1)]−
k

2
· (Ψ−∆)

≤ ∆ ·
T∑

t=k+1

exp
(
− t∆2

2Ψ +∆

)
− k

2
· (Ψ−∆), (11)

where the second equality follows from the independence of step t from all the preceding steps, and
the inequality by Fact B.8. We distinguish three cases, namely ∆2

2Ψ+∆ ≤ 1
T , 1

T < ∆2

2Ψ+∆ ≤ lnT
k , and

∆2

2Ψ+∆ > lnT
k . In the first case, we have that Ψ ≥ ∆

2 · (T∆− 1) and so,

RT (Ak) ≤ ∆T − k∆

4
· (T∆− 3)

≤ T

k
+

3

2
+

27k

64T

≤ 2T

k
,

where the second inequality follows since the ∆ maximizing the expression is ∆ = 2
k + 3

4T . This
implies that Ψ ≥ T

2k2 − 3
32T + 1

2k , which is consistent with 0 ≤ ∆ ≤ Ψ ≤ 1 since k ≥ 2
√
T .

In the last case, ∆2

2Ψ+∆ > lnT
k , we get

RT (Ak) = ∆(T − k) · P [µ̄t−1(2) ≤ µ̄t−1(1)]−
k

2
· (Ψ−∆)

≤ ∆T · exp
(
− t∆2

2Ψ +∆

)
− k

2
· (Ψ−∆)

≤ ∆T · exp (− lnT ) = ∆

≤ 1.
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We are left to show the case where 1
T < ∆2

2Ψ+∆ ≤ lnT
k . To this end, let us observe that, for all T ≥ 2,

it holds that
T∑

t=m+1

exp
(
− t

r

)
≤ r.

for all 1 ≤ m, r ≤ T . This is the case because

T∑
t=m+1

exp
(
− t

r

)
=

e−k/r − e−T/r

e1/r − 1
≤ re−k/r ≤ r,

since 1 + z ≤ ez for all z ∈ R. Therefore,

RT (Ak) ≤ 2∆ · 2Ψ +∆

∆2
− k

2
(Ψ−∆) = Ψ ·

(
4

∆
− k

2

)
+ 2 +

k∆

2
.

We distinguish two subcases: On the one hand, assume that ∆ > 8
k , then 4

∆ − k
2 < 0. Since

Ψ ≥ k∆2

2 lnT − ∆
2 , we have

RT (Ak) ≤
(

k∆2

2 lnT
− ∆

2

)
·
(

4

∆
− k

2

)
+ 2 +

k∆

2

=
2k∆

lnT
− k∆2

4 lnT
+

3k

4

≤ 3 lnT

8
+ 4 +

1

lnT

(
8− 4

k

)
− 1

k
·
(
lnT

16
− 1

)
≤ lnT

2
,

since the expression is maximized for ∆ = 8+lnT
2k > 8

k , as long as T > e8. This implies that
Ψ ≥ 8

k lnT − lnT
8k , which is consistent with 0 ≤ ∆ ≤ Ψ ≤ 1. On the other hand, ∆ ≤ 8

k , and thus
4
∆ − k

2 ≥ 0. We use that Ψ ≤ T∆2−∆
2 , and get

RT (Ak) ≤
T∆2 −∆

2
·
(

4

∆
− k

2

)
+ 2 +

k∆

2

= 2T∆− kT∆2

4
+

3k∆

4

≤ 4T

k
+

9k

16T

≤ 5T

k
,

since the expression is maximized for ∆ = 4
k + 3

2T < 8
k . This implies that Ψ ≤ 8T

k2 + 4
k + 3

8T , which
is consistent with 0 ≤ ∆ ≤ Ψ ≤ 1 since k ≥ 2

√
T .

Generalizing to n actions. The generalization is very similar to the one in the proof of B.4. Indeed,
the regret equals

RT (Ak) =

T∑
t=k+1
j ̸=1

E
[
I

{
µ̄t−1(j) ≤ min

i ̸=j
µ̄t−1(i)

}
(ℓt(j)− ℓt(1))

]
− k

2
· (Ψ−∆)

=

T∑
t=k+1

∑
j ̸=1

∆j · P
[
µ̄t−1(j) ≤ min

i̸=j
µ̄t−1(i)

]
− k

2
· (Ψ−∆)

≤
T∑

t=k+1

∑
j ̸=1

∆j · P [µ̄t−1(j) ≤ µ̄t−1(1)]−
k

2
· (Ψ−∆)
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≤
∑
j ̸=1

∆j ·
T∑

t=k+1

exp

(
−

t∆2
j

2Ψj +∆j

)
− k

2
· (Ψ−∆),

where the last inequality follows by Fact B.8. Identically to the proof of Theorem B.4, we sum and
subtract the term k

2n ·
∑

j ̸=1(Ψj −∆j), and get

RT (Ak) ≤
∑
j ̸=1

(
∆j ·

T∑
t=k+1

exp

(
−

t∆2
j

2Ψj +∆j

)
− k

2n
· (Ψj −∆j)

)

+
k

2
·

 1

n
·
∑
j ̸=1

(Ψj −∆j)− (Ψ−∆)


≤
∑
j ̸=1

(
∆j ·

T∑
t=k+1

exp

(
−

t∆2
j

2Ψj +∆j

)
− k

2n
· (Ψj −∆j)

)
.

For each j ̸= 1, an identical derivation to the one in the case of two actions would yield the same
regret rate, with k/n in place of k. Thus, overall, we obtain

RT (Ak) ≤
5nT

k
,

which concludes the proof.

C Further Related Work

Correlated hints. A first model that is close to ours has been introduced by Dekel et al. [2017],
which studies Online Linear Optimization when the learner has access to vectors correlated with the
actual losses. Surprisingly, this type of hint guarantees an exponential improvement in the regret
bound, which is logarithmic in the time horizon when the optimization domain is strongly convex.
Subsequently, Bhaskara et al. [2020] generalize such results in the presence of imperfect hints, while
Bhaskara et al. [2023b] prove that Ω(

√
T ) hints are enough to achieve the logarithmic regret bound.

While these works share significant similarities with ours, we stress that their results are not applicable
to the standard prediction with experts model, given the non-strong convexity of the probability
simplex over the actions.

Queries/Ordinal hints. Bhaskara et al. [2023b] studies online learning algorithms augmented with
ordinal queries of the following type: a query takes in input a small subset of the actions and receives
in output the identity of the best one. With this twist, it is possible to bring the regret down to O(1) by
observing only 2 experts losses in advance at each time. Although our best-action query is stronger
(as it compares all the actions), our learner is constrained in the number of times it can issue such
queries.

Algorithms with predictions. Other works that explore the interplay between hints and feedback
are [Bhaskara et al., 2021a, Shi et al., 2022, Cheng et al., 2023, Bhaskara and Munagala, 2023,
Bhaskara et al., 2023a]. More broadly, our work follows the literature on enhancing performance
through external information (predictions). This has been extensively applied to a variety of online
problems to model partial information about the input sequence that can be fruitfully exploited if
accurate for improving the performance of the algorithms. Examples include sorting [Bai and Coester,
2023], frequency estimation [Aamand et al., 2023], various online problems [Purohit et al., 2018,
Gollapudi and Panigrahi, 2019] such as metrical task systems [Antoniadis et al., 2023b,c], graph
coloring [Antoniadis et al., 2023a], caching [Lykouris and Vassilvitskii, 2021], scheduling [Lattanzi
et al., 2020, Jiang et al., 2022], and several others.
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• Depending on the country in which research is conducted, IRB approval (or equivalent)
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