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Abstract

This paper investigates the impact of alignment between the target function of
interest and the kernel matrix on a variety of kernel-based methods based on a
general loss belonging to a rich loss function family, which covers many commonly
used methods in regression and classification problems. We consider the truncated
kernel-based method (TKM) which is estimated within a reduced function space
constructed by using the spectral truncation of the kernel matrix and compare
its theoretical behavior to that of the standard kernel-based method (KM) under
various settings. By using the kernel complexity function that quantifies the
complexity of the induced function space, we derive the upper bounds for both
TKM and KM, and further reveal their dependencies on the degree of target-kernel
alignment. Specifically, for the alignment with polynomial decay, the established
results indicate that under the just-aligned and weakly-aligned regimes, TKM and
KM share the same learning rate. Yet, under the strongly-aligned regime, KM
suffers the saturation effect, while TKM can be continuously improved as the
alignment becomes stronger. This further implies that TKM has a strong ability
to capture the strong alignment and provide a theoretically guaranteed solution
to eliminate the phenomena of saturation effect. The minimax lower bound is
also established for the squared loss to confirm the optimality of TKM. Extensive
numerical experiments further support our theoretical findings. The Python code
for reproducing the numerical experiments is available on Github.

1 Introduction

Kernel-based methods have attracted increasing attention in recent years (Belkin et al., 2018; Liang
& Rakhlin, 2020; Ghorbani et al., 2020; Li et al., 2023), due to its close connection with some
cutting-edge research topics, including the understanding of over-parameterized neural network
through the neural tangent kernel (Jacot et al., 2018; Chizat et al., 2019) and large-scale kernel
learning with gradient descent (Lin & Zhou, 2018; Xu et al., 2021). It is of fundamental importance
to provide theoretical explanations of their behaviors under these research topics.

In literature, some recent works show that the learning rate of kernel-based methods is actually
affected by both the model complexity of the considered reproducing kernel Hilbert space (RKHS)
and the target-kernel alignment, a measure to quantify the similarity between the considered RKHS
(or kernel matrix from the empirical point of view) and the target function, which is also known
as the smoothness of a target function in the RKHS (Caponnetto & De Vito, 2007; Smale & Zhou,
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2007). Particularly, the existing learning rate for the kernel ridge regression (KRR) is proved to be
O(n−

2αγ
2αγ+1 ) for 1

2 ≤ γ ≤ 1, where γ is known as the source condition parameter (Cui et al., 2021)
and can be treated as a measure of target-kernel alignment at the population level, and α controls
the model complexity of the RKHS. This rate aligns with the intuitive sense that strong alignment
and small model complexity contribute to a faster learning rate. Yet, with the increasing in γ such
that γ > 1 which corresponds to a smoother target function, the best learning rate of KRR plateaus
at O(n−

2α
2α+1 ) (Caponnetto & De Vito, 2007). This phenomenon is known as the saturation effect

(Bauer et al., 2007; Li et al., 2022) and is widely observed in many applications (Bauer et al., 2007;
Gerfo et al., 2008). It has been conjectured for decades that no matter what carefully chosen tuning
parameter, the learning rate of KRR plateaus when the smoothness of the target function exceeds
certain levels. Most recently, Li et al. (2022) establishes the rigorous saturation lower bound of KRR
that confirms practical conjecture. Amini (2021); Amini et al. (2022) propose a truncated KRR based
on the spectral-truncated kernel matrix, and further prove that as the alignment becomes stronger,
the truncated KRR can be consistently improved in terms of the expected mean squared error and
eventually tends to the parametric rate. Clearly, this improvement effectively tackles the saturation
effect for the KRR where the squared loss is specified. Yet, it is still unclear whether the saturation
effect can be solved for the general kernel-based methods where the specified loss function belongs
to a rich loss function family.

In this paper, motivated by this theoretical gap, we investigate the impact of target-kernel alignment
from the kernel complexity perspective for various kernel-based methods by considering a general
loss function which belongs to a rich loss function family. Our established results shed light on the
statistical benefits of the truncated estimator and are also verified by extensive numerical experiments.
We want to emphasize that in contrast to the existing works that focus on the KRR benefit from
the analytical solution and thus their theoretical analysis heavily relies on the closed form of the
solution to establish some critical results (Cui et al., 2021; Amini et al., 2022), the explicit solution
does not exist anymore in this paper, which requires different technical treatments to conduct the
theoretical analysis. Specifically, our theoretical analysis crucially relies on the kernel complexity
which quantifies the complexity of the RKHS (Bousquet & Herrmann, 2002) and some empirical
process techniques. The established results successfully capture the trade-off between the complexity
of the truncated RKHS and approximation bias as presented in Theorem 4.2. A simpler bound
when considering the polynomial case in Corollary 4.3 further indicates that with a carefully chosen
truncated space, the truncated method can efficiently eliminate the saturation effect. More importantly,
we establish the minimax lower bound when the squared loss is specified, and thus rigorously confirm
the conjecture in Amini et al. (2022), stating that the truncated KRR attains minimax optimality.

1.1 Contributions

The main contribution of this paper is to offer a unified analysis and a comprehensive understanding
of the impact of target-kernel alignment, and provide a theoretically guaranteed solution to eliminate
the phenomena of saturation effect. Some of its contributions are listed as follows.

(i) By leveraging the kernel complexity function, we establish the upper bounds for both the standard
kernel-based estimator and the truncated estimator for a general loss function belonging to a family
of Lipschitz loss functions. The established bounds indicate that with the variation of the alignment
level, the learning rates for these two estimators exhibit distinct trajectories. Specifically, under the
polynomial decay assumption, when alignment is at a lower level, the standard kernel-based estimator
and the truncated estimator share the same learning efficiency and improve with the rise in alignment
level. Yet, when the alignment level surpasses a threshold (γ = 1 in Assumption 3.2), the learning rate
of the kernel-based estimator plateaus with no improvement as γ increases — a phenomenon known
as the saturation effect in literature. As opposed, the learning rate of the truncated estimator exhibits
continuous improvement with the increasing alignment level, thus eliminating the saturation effect.
This indicates a significant improvement in the truncated estimator over the standard kernel-based
estimator.

(ii) By employing the standard Fano method, we establish minimax lower bound when the squared loss
is specified, indicating that for both the just-aligned and weakly-aligned regimes, both the standard
kernel-based estimator and the truncated estimator achieve minimax optimality. Furthermore, for the
strong-aligned regime, we demonstrate that the standard kernel-based estimator can only attain sub-
optimality, while the truncated estimator is also minimax-optimal. Our minimax analysis significantly
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extends the existing results presented in Yang et al. (2017), offering a unified perspective for realistic
scenarios where the true target is assumed to reside in the RKHS.

(iii) Various numerical experiments are conducted in the context of various regression and classifica-
tion problems to demonstrate the advantages of the truncated estimator, to support the established
theory substantially. More interestingly, we also empirically verify the existence of a trade-off arising
from the model complexity of the RKHS and target-kernel alignment.

1.2 Related Work

Kernel-based methods have been widely studied for the past few decades, and are known as the
time-proven efficient tools for statistical analysis. The theoretical behaviors of the kernel-based
estimator have been established in Caponnetto & De Vito (2007); Li et al. (2007); Smale & Zhou
(2007); Patle & Chouhan (2013). The concept of target-kernel alignment has been introduced in
Cristianini et al. (2001), where a classification algorithm is developed adapting to the target-kernel
alignment with a significant improvement in classification accuracy. Follow-up works have expanded
the concept of target-kernel alignment to some other learning tasks, including regression (Kandola
et al., 2002) and multi-class classification (Guermeur et al., 2004). The implications of target-kernel
alignment have also inspired some applications to spectral kernel learning (Hoi et al., 2006), and
feature selection (Wong & Burkowski, 2011).

Most recently, many works have attempted to provide a theoretical understanding of the kernel-based
method by considering the target-kernel alignment. Specifically, Canatar et al. (2021) investigates
the generalization error of KRR and derives an analytical framework for the generalization error
that captures the effect of the target-kernel alignment. Amini (2021) considers a spectrally truncated
KRR and demonstrates that with a carefully chosen truncation, the truncated KRR outperforms the
standard KRR. Li et al. (2022) verifies the saturation effect observed behind the KRR estimator by
establishing a lower bound that O(n−

2α
2+α ) whatever the smoothness degree of the target function

is. Motivated by these works, Amini et al. (2022) further demonstrates the non-monotonicity of the
regularization curve for the bandlimited alignment setting and further reveals that the learning rate of
the truncated KRR can be consistently enhanced as the degree of target-kernel alignment increases.

2 Preliminaries

Background on RKHS. Let HK denote the reproducing kernel Hilbert space (RKHS) induced by a
positive semi-definite kernel function K(·, ·) : X × X → R+, where X ⊂ Rp. The inner product
equipped with HK is denoted as ⟨·, ·⟩K with the endowed norm ∥ · ∥2K = ⟨·, ·⟩K . For each x ∈ X , it
is well-known that Kx := K(x, ·) ∈ HK and the reproducing property holds that ⟨f,Kx⟩K = f(x)
for all f ∈ HK . We assume that supx,x′∈X K(x,x′) ≤ κ2 for some positive constant κ. This
condition is commonly assumed in literature and various popularly used kernel functions satisfy this
condition, including the Gaussian kernel and Laplacian kernel.

Problem setup. We consider a collection of pairs {(xi, Yi)}ni=1 where {xi}ni=1 is a collection of
covariates and the response Yi is independently drawn from a conditional distribution PY |xi

on
Y ⊂ R. Throughout this paper, we focus on the fixed design setting, where {xi}ni=1 are fixed,
otherwise we treat all the random quantities as conditioning on {xi}ni=1. A similar treatment also
appears in Yang et al. (2017); Wei et al. (2017); Amini et al. (2022).

In the literature of machine learning, the learning task is often defined with some pre-specified
loss function. Specifically, we consider a loss function L(·, ·) : R×R → R+, where L(y, f(x))
quantifies the inaccuracy for predictor f(x) when y is the true response. Then, the population risk
function can be defined as

E(f) := EY n

[ 1
n

n∑
i=1

L
(
Yi, f(xi))

]
,

where EY n denotes the expectation taken over Y1, ..., Yn. In literature, the target function of interest
in the learning task is typically defined as the minimizer of the population risk f∗ = argminf E(f).
In this paper, we assume f∗ ∈ HK and consider a family of loss functions that L is assumed to
be convex and locally Lipschitz continuous in the second argument (Wainwright, 2019; Dasgupta
et al., 2019). Here, locally Lipschitz continuity is specified as that for any b > 0, there exists some
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positive constant ML,b
2 such that for any y ∈ Y and x ∈ X , and for any f, f ′ ∈ HK satisfying

max{∥f∥K , ∥f ′∥K} ≤ b, the following inequality holds:

|L(y, f(x))− L(y, f ′(x))| ≤ML,b|f(x)− f ′(x)|.

It is worth pointing out that the local Lipschitz continuity is satisfied for a variety of commonly used
loss functions, and some of them are listed in Table 1.

Table 1: Different losses with corresponding Lipschitz constant ML,b

Loss Squared Exponential Check Hinge Huber Logistic

ML,b 2U + 2bκ3 1 1 1 τ 4 1

Note that the choice of the loss function is task-specific based on the problem of interest and prior
knowledge on the data. For instance, under the regression setting, the squared loss can be specified for
mean regression and the check loss can be specified for quantile regression. Under the classification
setting, the hinge loss can be specified for margin-based classification and the logistic loss can be
specified for estimating the conditional probability.

3 Standard Kernel-based Method

In the rest of this paper, we use lowercase letters {yi}ni=1 to denote the observations of {Yi}ni=1,
and denote the empirical measure of {x1, ...,xn} by Pn. Given an estimator f̂ , its accuracy can be
evaluated by the L(Pn)-error which is defined as ∥f̂ − f∗∥2n = 1

n

∑n
i=1(f̂(xi)− f∗(xi))

2. We also
use the excess risk that E(f̂)− E(f∗) as an evaluation measure. To estimate the underlying target
function f∗, we consider the following penalized empirical risk minimization problem that

f̂λ = argmin
f∈HK

{
Ê(f) + λ∥f∥2K

}
, (1)

where Ê(f) = 1
n

∑n
i=1 L(yi, f(xi)) and λ is regularization parameter. We define a sample operator

Sx : HK → Rn as Sx(f) :=
1√
n
(f(x1), ..., f(xn))

⊤, and its adjoint operator S⊤
x : Rn → HK is

defined as

S⊤
x (α) :=

1√
n

n∑
j=1

αjK(·,xj), α = (α1, ..., αn)
⊤ ∈ Rn.

Then, by the representer theorem (Kimeldorf & Wahba, 1971), the minimizer of the learning task (1)
must have a finite form that f̂λ = S⊤

x (α̂) where α̂ ∈ Rn is the solution to the following optimization
task

α̂ = argmin
α∈Rn

{
Ê(S⊤

x (α)) + λα⊤
Kα

}
.

Let K =
{

1
nK(xi,xj)

}n
i,j=1

be the empirical kernel matrix where the scaling is for analytical
simplicity. In the subsequent analysis, we further assume that K is positive which is also required
in literature (Liang & Rakhlin, 2020; Amini et al., 2022). Then, the kernel matrix K admits an
eigen-decomposition that K = UDU⊤, where U = (u1, ...,un) ∈ Rn×n is an orthonormal matrix
and D ∈ Rn×n is a diagonal matrix with positive elements µ1, ..., µn arranging in a descending
ordering. Without of loss generality, we further require that µj → 0 as j → ∞.

Let ξ∗ = U⊤ Sx(f∗). The elements of the vector ξ∗ are referred to as target alignment (TA) scores
(Amini et al., 2022), which quantify the agreement level between f∗ and K. Intuitively, a more

2ML,b is a constant with possible dependence on b.
3For squared loss, we assume that Y ⊂ [−U,U ], which is commonly adopted in literature of learning theory

(Bartlett et al., 2005; Smale & Zhou, 2005, 2007; Wei et al., 2017).
4τ is the threshold parameter for Huber loss.
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favorable learning rate can be achieved if the target and kernel are strongly aligned corresponding
to fast decay TA scores. For example, the scenario that Sx(f∗) is predominantly situated in the
space generated by the eigenvectors corresponding to the first several eigenvalues of K indicates a
strong alignment. In other words, ξ∗j is expected to be as large as possible for small j and as small as
possible for large j. An ideal scenario is that Sx(f∗) exactly matches the eigenvector u1, leading
to ξ∗ = (1, 0, ..., 0)⊤ with proper scaling such that ∥f∗∥2n = 1. In this paper, we are devoted to
providing an analytic framework for the impact of alignment on the performance of the kernel-based
methods based on the kernel complexity of K.

3.1 Technical Assumptions

The following necessary assumption is needed in our theoretical analysis.
Assumption 3.1. There exist two constants 0 < c0 ≤ c′0 such that

c0∥f − f∗∥2n ≤ E(f)− E(f∗) ≤ c′0∥f − f∗∥2n,

for any f ∈ HK satisfying ∥f − f∗∥2n ≤ b with some sufficiently small constant b > 0.

The first inequality in Assumption 3.1 is a c0-locally strong convexity condition, and the second
inequality is a c′0-local smooth condition of the loss function with respect to ∥ · ∥n. Assumption
3.1 is commonly assumed in literature (Steinwart & Christmann, 2008; Wei et al., 2017; Li et al.,
2019; Farrell et al., 2021). Due to space limit, some brief discussions are provided below. For the
squared loss, Assumption 3.1 is satisfied with c0 = c′0 = 1. For the check loss, the c0-locally strong
convexity condition is slightly more relaxing than the similar assumption in the literature (Lian, 2022)
that requires the conditional density function of the noise term to be uniformly bounded away from
zero. And, the c′0-local smoothness condition holds if the conditional density function is uniformly
bounded. Other widely used loss functions including Huber loss, Logistic loss, Hinge loss, and
exponential loss also satisfy Assumption 3.1 under some mild conditions as discussed in Appendix F.

Assumption 3.2. There exist some constants γ ≥ 1
2 and u ≥ 2 such that

∑n
j=1 ξ

∗
j
2µj

−2γ ≤ u2 for
any n.

Assumption 3.2 imposes the regularization on the TA scores ξ∗ concerning K. Note that the parameter
γ reflects the degree of target-kernel alignment, where a larger γ indicates stronger alignment between
K and f∗. Moreover, the parameter γ in Assumption 3.2 can be considered analogous to the source
condition parameter under the random design setting (Caponnetto & De Vito, 2007; Cui et al., 2021;
Li et al., 2023). Further discussions on the extension to the random setting are deferred to Appendix
B. In our subsequent analysis, we consider the following three cases that

• Just-aligned regime: γ = 1
2 where we only assume f∗ ∈ HK .

• Weakly-aligned regime: 1
2 < γ ≤ 1 where f∗ ∈ HK and is more aligned with K.

• Over-aligned regime: γ > 1 where f∗ ∈ HK and has a strong alignment with K.

3.2 The Upper Bound for Standard Kernel-based Method

In the rest of this paper, we use c, C to denote some constants independent of n, γ, α, which may
hide the constants such as u, c0, c′0 and whose values may vary from line to line. In literature, the

empirical kernel complexity function is defined as R(δ) :=
√

1
n

∑n
j=1 min{δ2, µj} (Bartlett et al.,

2005). R(δ) serves as a measure of complexity of HK and is closely connected to local Rademacher
complexity (Bartlett et al., 2005; Steinwart et al., 2009). It plays a crucial role in establishing our
theoretical results via the critical radius δn, defined as the smallest positive value δ such that

Clog ι−1R(δ) ≤ c0
2
δ2η+1, (2)

where η = min{γ, 1} and ι is specified in the subsequent theorems and corollaries. The learning
rate of the kernel-based estimator defined in (1) highly depends on δn, and the existence and
uniqueness of δn are verified in Appendix B.1. As pointed out in Yang et al. (2017), the statistical
dimension is defined as the first index for which the associated eigenvalue µj drops below δ2 that
d(δ) := min{j ∈ [n] : µj ≤ δ2}, where [n] = {1, 2, .., n} and d(δ) := n if {j ∈ [n] : µj ≤ δ2} = ∅.
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Note that the statistical dimension serves as a measure of the intrinsic dimension of the kernel matrix
K. Moreover, a kernel is regular if the tail sum of its eigenvalue sequence can be well bounded as
the form

∑n
d(δ)+1 µj ≲ d(δ)δ2 (Yang et al., 2017). Note that kernels in the kernel class with the

polynomial or exponential decay in their eigenvalues are regular. Then, the kernel complexity can be
well approximated by

√
d(δ)δ2/n. The close connection between d(δ) and R(δ) enables us to find

the explicit formulation of δn in our theoretical analysis.

The following theorem provides theoretical guarantees of f̂λ defined in (1) in terms of L(Pn)-error
and the excess risk which hold with high probability.
Theorem 3.3. Suppose that Assumptions 3.1 and 3.2 are satisfied and δ2n ≤ λ ≤ 15. Let η =
min{γ, 1}. Then, for any ι ∈ (0, 1), with probability at least 1− ι, there holds

max
{
∥f̂λ − f∗∥2n, E(f̂λ)− E(f∗)

}
≤ C(δ4ηn + λ2η).

The proof of Theorem 3.3 is provided in Appendix C. To complete the proof of Theorem 3.3, we
only need to require the first inequality in Assumption 3.1. Note that the established bound for f̂λ
consists of two terms that are related to the critical radius δn and the parameter λ. Compared to
the existing works (Yang et al., 2017; Amini et al., 2022) under the fixed setting where only the
squared loss is considered, Theorem 3.3 provides a comprehensive theoretical analysis on various
kernel-based estimators by considering a general loss function with the help of kernel complexity and
also considers the effect of the target-kernel alignment on the estimation performance under different
aligned regimes. Moreover, we notice that with the choice of λ satisfying λ ≍ δ2n, an optimal rate
can be achieved that

E(f̂λ)− E(f∗) ≍ ∥f̂λ − f∗∥2n ≍ δ4ηn .

Note that Amini et al. (2022) provides some valuable insights into the learning rate of the kernel-based
estimator under the squared loss in terms of the expected L(Pn)-error where the following polynomial
decay condition is required.
Assumption 3.4. There exist some constants α > 1 and γ ≥ 1

2 such that the eigenvalues of K and
the TA scores exhibit polynomial decay rate that

µj ≍ j−α and ξ∗j
2 ≍ j−2γα−1.

In Assumption 3.4, the parameter α controls the complexity of HK in the sense that a decreasing α
results in the increasing compacity of the RKHS HK (Cui et al., 2021; Amini et al., 2022). Various
widely used kernels, including the Sobolev kernel and the Laplacian kernel, belong to this class. Note
that with slight modification by setting ξ∗j

2 ≍ j−2γα−1(log j)−2, it can be verified that Assumption
3.4 directly leads to Assumption 3.2 if we ignore the logarithmic term.

By Assumption 3.4, it is clear that d(δ) ≍ δ−2/α, and consequently δ2n ≍
( (log ι−1)2

n

) α
2ηα+1 . To

better understand the established results in Theorem 3.3, the following corollary is also provided.
Corollary 3.5. Suppose that Assumptions 3.1, 3.2 and 3.4 are satisfied. Let η = min{γ, 1}. For any
ι ∈ (0, 1), if we choose λ ≍

( (log ι−1)2

n

) α
2ηα+1 , then with probability at least 1− ι, there holds

E(f̂λ)− E(f∗) ≍ ∥f̂λ − f∗∥2n ≤ C
( (log ι−1)2

n

) 2ηα
2ηα+1

.

Under the just-aligned regime that γ = 1
2 , the learning rate turns to be

(
(log ι−1)2/n

) α
α+1 , which

is consistent with that in literature (Wei et al., 2017) where merely assumes f∗ ∈ HK . Yet, under
the weakly-aligned regime that 1

2 < γ ≤ 1, the learning rate exceeds
(
(log ι−1)2/n

) α
α+1 due to the

stronger target-kernel alignment. More interestingly, under the over-aligned regime that γ > 1, the
learning rate plateaus with no improvement as γ increases, which indicates a saturation effect for
the standard kernel-based method. It is also interesting to notice that no matter how the choice of
λ, the learning rate is always lower bounded by O(n−

2α
2α+1 ) for γ ≥ 1 (Li et al., 2022). In the next

section, we will show that a careful choice of truncation allows us to construct an estimator based on
a reduced RKHS that achieves the best rate and mitigates the saturation effect for γ > 1.

5Note that we assume λ ≤ 1 as the theoretical choice of λ typically depends on n and is close to zero for
sufficiently large n.
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4 Truncated Kernel-based Method

To construct the reduced RKHS, we introduce a collection of functions {ψk}k∈[n] ⊂ HK , defined as
ψk := argmin

{
∥ψ∥K : ψ ∈ HK , Sx(ψ) = uk

}
. It can be verified that {ψk}k∈[n] is unique and by

the orthogonality of u1, ...,un, we also have ⟨ψi, ψj⟩n = 1 for i = j and 0 otherwise (Amini et al.,
2022). Then, for a given r, we define a function space as

HKr :=
{ r∑

k=1

αkψk : α = (α1, ..., αr)
⊤ ∈ Rr

}
.

Let HKr be equipped with the norm ∥f∥2Kr
= ⟨f, f⟩Kr , where the inner product is defined as

⟨f, g⟩Kr
:=
∑r

k=1 αkβk/µk for f =
∑r

i=1 αkψk and g =
∑r

i=1 βkψk. The following lemma from
Amini et al. (2022) indicates that HKr

is also an RKHS associated with a different kernel function.
Lemma 4.1. HKr

⊂ HK is an r-dimensional RKHS with reproducing kernel Kr(x,x
′) =∑r

k=1 µkψk(x)ψk(x
′).

Clearly, HKr
can be treated as a relatively smaller function space compared to the full RKHS HK .

Based on HKr
, we can find a truncated kernel-based estimator by solving

f̂λ,r = argmin
f∈HKr

{
Ê(f) + λ∥f∥2Kr

}
.

For the truncated RKHS HKr , we also define the operator S⊤
x,r : Rn → HKr as

S⊤
x,r(α) :=

1√
n

n∑
j=1

αjKr(·,xj), α = (α1, ..., αn)
⊤ ∈ Rn.

Then, by the representer theorem (Kimeldorf & Wahba, 1971) again, f̂λ,r also has a finite solution
that f̂λ,r = S⊤

x,r(α̂r) and α̂r can be obtained by solving the following optimization task

α̂r = argmin
α∈Rn

{
Ê(S⊤

x,r(α)) + λα⊤
Krα

}
.

where Kr =
{

1
nKr(xi,xj)

}n
i,j=1

is the empirical kernel matrix w.r.t. Kr. Note that the truncated
method does not impose an additional computational cost compared to the standard kernel method,
and its detailed discussion will be provided in Appendix B.5. By the construction of {ψi}i∈[n], it is
easy to verify that Kr = UDrU

⊤, where Dr is diagonal matrix with elements µ1, ..., µr, 0, ..., 0,
detailed proof can be seen in Appendix B.2. This further implies that Kr = K when r = n, and thus
leads to f̂λ(xi) = f̂λ,n(xi) for each i ∈ [n].

4.1 The Upper Bound for Truncated Kernel-based Method

Given the truncated RKHS HKr
, our theoretical results below rely on the truncated kernel complexity

function, defined as Rr(δ) :=
√

1
n

∑r
j=1 min{δ2, µj}. Moreover, the critical radius δn,r can be

defined as the smallest positive value δ such that

Clog ι−1Rr(δ) ≤
c0
2
δ2η+1. (3)

The existence and uniqueness of δn,r are verified in Appendix B.1. It can be verified that Rr(δ) ≤
R(δ) and thus leads to δn,r ≤ δn. This observation indicates a potential improvement of the
truncated estimator f̂λ,r and is the core of our theoretical analysis. The following theorem shows
that f̂λ,r converges to the underlying target in terms of the L(Pn)-error and the excess risk with high
probability.

Theorem 4.2. Suppose that Assumptions 3.1 and 3.2 are satisfied and max{δ2n,r,
∑n

j=r+1 ξ
∗
j
2} ≤

λ ≤ 1. Let η = min{γ, 1}. Then, for any ι ∈ (0, 1), with probability at least 1− ι, there holds

max
{
∥f̂λ,r − f∗∥2n, E(f̂λ,r)− E(f∗)

}
≤ C

(
δ4ηn,r + λ2η +

n∑
j=r+1

ξ∗j
2).
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The proof of Theorem 4.2 is provided in Appendix D. The established upper bound of f̂λ,r first
decomposes the total error into two components: estimation error (the first two terms), which is
controlled by complexity of the reduced RKHS HKr , and approximation bias (the last term), which
results from the dissimilarity between the truncated RKHS HKr

and the full RKHS HK where f∗
belongs to. Specifically, a smaller value of r reduces the complexity of HKr

, possibly leading to a
more favorable estimation error. Yet, it amplifies the gap between HKr

and HK and may lead to an
extra approximation bias which may be significantly large. Clearly, r can be regarded as a trade-off
parameter that balances the approximation bias

∑n
j=r+1 ξ

∗
j
2 and the estimation error δ4ηn,r + λ2η. It

is clear that if r = n, the approximation bias is zero and the upper bound of f̂λ,n recovers that of
f̂λ. This implies that with careful choice of r, the truncated method at least performs as well as the
standard estimator. If Assumption 3.4 also holds, we can conclude that

∑n
j=r+1 ξ

∗
j
2 ≲ r−2γαI{r<n}.

Then, the best choice of r and λ to achieve an optimal rate is given by r ≍ δ
−2/(γα)
n,r if γ > 1; r = n

if 1
2 ≤ γ ≤ 1, and λ ≍ δ2n,r. Accordingly, there holds

E(f̂λ,r)− E(f∗) ≍ ∥f̂λ,r − f∗∥2n ≍ δ4ηn,r.

For the comparison of Corollary 3.5, we also establish the following corollary for f̂λ,r.

Corollary 4.3. Suppose that Assumptions 3.1, 3.2 and 3.4 are satisfied. For any ι ∈ (0, 1), if

we choose λ ≍
( (log ι−1)2

n

)max{γ,1}α
2γα+1 and r ≍ ( n

(log ι−1)2 )
1

2γα+1 I{γ>1} + nI{ 1
2≤γ≤1}, then with

probability at least 1− ι, there holds

E(f̂λ,r)− E(f∗) ≍ ∥f̂λ,r − f∗∥2n ≤ C
( (log ι−1)2

n

) 2γα
2γα+1

.

Clearly, under the over-aligned regime that γ > 1, the truncated estimator f̂λ,r can achieve a faster
learning rate compared to f̂λ; for 1

2 ≤ γ ≤ 1, the trivial choice of r = n is optimal and f̂λ,r shares the
same learning rate as f̂λ. More impressively, the learning rate of f̂λ,r can be continuously increased
with the enhancement of the target-kernel alignment, thus eliminating the saturation effect. Note
that as γ → ∞, the learning rate of f̂λ,r approaches 1

n , meaning that the truncated estimator can
successfully capture the strong alignment to attain a comparable rate to the parametric rate.

The connection between r and d(δ). Recall that for the regular kernel class, we have R(δ) ≍√
n−1d(δ)δ2. It can also be shown by simple algebra that Rr(δ) ≍

√
n−1 min{r, d(δ)}δ2 (See

Appendix D.3 for details). Particularly, for the kernel class with polynomial decay, we have d(δ) ≍
δ−2/α. Once the critical radius δn,r is determined for specified kernel matrix, we denote dn =

d(δn,r) ≍ δ
−2/α
n,r and take r ≍ δ

−2η/(γα)
n,r to balance δ4ηn,r and r−2γα. Consequently, we obtain

r ≍ d
η/γ
n . Such a relation between r and dn is very reflective and provides theoretical insight into

why the truncated estimator is more efficient under a more aligned situation. Specifically, for the case
γ > 1, it is clear that r ≍ d

1/γ
n < dn, and we have

Rr(δn,r) ≍
√
n−1rδ2n,r <

√
n−1dnδ2n,r ≍ R(δn,r).

As a result, the truncated kernel complexity is substantially reduced compared to R(δn,r), leading
to an improved learning rate. On the contrary, for the case that 1

2 ≤ γ ≤ 1, we have r ≍ dn

and Rr(δn,r) ≍
√
n−1dnδ2n,r ≍ R(δn,r), which indicates the truncated kernel complexity remains

invariant as r decreases. To avoid introducing additional approximation bias, the best choice of
truncation level turns out to be r = n.

4.2 Minimax Lower Bound

In this section, we establish the minimax lower bound under squared loss based on the Fano method
(see Chapter 15 in Wainwright (2019) for more details). For γ ≥ 1

2 , we consider the space within a
ball as Hb

K =
{
f ∈ HK :

∑n
j=1 ξj

2µj
−2γ ≤ u2

}
, where ξj’s are the TA scores associated with f .
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Theorem 4.4. Suppose that the RKHS is induced by the regular kernel, and f̃ is any estimator based
on the data {(xi, yi)}ni=1. If 1

2 ≤ γ ≤ 1, we have

inf
f̃

sup
f∗∈Hb

K

P
(
∥f̃ − f∗∥2n ≥ cδ4γn

)
≥ 1

2
.

If γ > 1, with the choice of r satisfying r ≍ d(δ
1/γ
n,r ) ≤ d(δn,r), we have

inf
f̃

sup
f∗∈Hb

K

P
(
∥f̃ − f∗∥2n ≥ cδ4n,r

)
≥ 1

2
.

The proof of Theorem 4.4 is provided in Appendix E. For γ > 1, the condition d(δ1/γn,r ) ≤ d(δn,r)
can be easily verified for the most popular polynomial decay case that µj ≍ j−α. Specifically, for
the kernel class with polynomial decay, we have d(δ) ≍ δ−2/α, which leads to

d(δ1/γn,r ) ≍ δ−2/α
n,r ≤ δ−2/γα

n,r ≍ d(δn,r).

Moreover, it can be seen that r ≍ δ
−2/γα
n,r is the optimal choice, aligning with the optimal choice

in the upper bound. Note that it is common to establish the upper bound for the other loss function
and compare it to the lower bound established under the squared loss to check the optimality (Wei
et al., 2017; Lv et al., 2018; Li et al., 2019). By comparing the lower bounds in Theorem 4.4 with the
achievable rates from Theorems 3.3 and 4.2, we can conclude that under the case that 1

2 ≤ γ ≤ 1,
both the standard kernel-based estimator f̂λ and the truncated estimator f̂λ,r is minimax-optimal.
More importantly, under the more challenging case that γ > 1, f̂λ can only achieve a sub-optimal
rate, whereas f̂λ,r can attain the minimax rate as long as r ≍ d(δ

1/γ
n,r ) ≤ d(δn,r), suggesting that

the truncated kernel-based method can be treated as optimal tackling. It is also worthy pointing out
that under the just-aligned regime that γ = 1

2 , Yang et al. (2017) derives the minimax lower bound
by considering the regular kernel class, and Theorem 4.4 extends it to the more general setting by
allowing γ ≥ 1

2 .

5 Numerical Verification

Our established results indicate that a larger α corresponding to a lower model complexity of the
RKHS leads to a better rate. As opposed, a smaller model with lower complexity simultaneously
may result in a potential mismatch between the model space and the target. This may weaken the
target-kernel alignment which undermines the learning efficiency. Consequently, a trade-off exists
between model capacity α and target-kernel alignment γ, with a preference for relatively lower model
complexity and stronger target-kernel alignment.

To illustrate this, we conduct some numerical experiments to study how the RKHS with varying
model complexities affect the numerical performance of KM and TKM. Specifically, we use the
spline kernel with order α that Kα(x,x

′) =
∑∞

k=−∞ e2πikxe−2πikx′ |k|−α (Wahba, 1990), where α
controls the model complexity of the induced RKHS at the population level. Moreover, we consider
the nonparametric quantile regression that

Yi = f∗(xi) + σ(ϵi − Φ−1(τ)), i = 1, ..., n,

where f∗(x) = K3.5(x, 0) sin(x), σ = 2, ϵi ∼ N(0, 1), {xi}ni=1 are independently sampled from
the uniform distribution on (0, 1) and Φ denotes CDF function of standard normal distribution. We
conduct the numerical experiments by varying τ ∈ {0.3, 0.5, 0.7} and α ∈ {2, 4, 6, 8, 10} with fixed
n = 300. The data generating scheme is repeated for 50 times and all the tuning parameters are tuned
to the best for both methods. The obtained results are presented in Figure 1.

From Figure 1, we can conclude that the smaller α, corresponding to richer RKHS and potentially
stronger alignment, results in significant improvement in TKM over KM. Conversely, the larger
α, corresponding to a smaller RKHS and potentially weaker alignment, results in a comparable
performance for these two methods. This observation precisely aligns with our theoretical results.
Clearly, based on our theoretical findings, the experiment results verify the existence of a trade-off
between the model complexity and target-kernel alignment, indicating that a carefully data-driven
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Figure 1: Averaged log MSE and log empirical excess risk for KM and TKM versus α for different τ .

choice of the kernel may be necessary to achieve better learning efficiency. We defer the deeper
exploration of data-driven selection of an appropriate kernel to future research endeavors.

The real data analysis is deferred to Appendix A. Furthermore, a variety of additional experiments
are presented in Appendix H. The obtained results are discussed in detail, which further supports our
theoretical findings.

6 Discussions and Conclusion

6.1 Comparison and Discussions

Amini et al. (2022) studied how the target-kernel alignment affects both the standard KRR and
the truncated KRR. Although our work is motivated by Amini et al. (2022), especially for the
methodological aspect, there exist significant differences between our established results and those in
Amini et al. (2022), and some are summarized as follows: (a) Amini et al. (2022) only focused on
the upper bounds in terms of expected mean squared error, while our results provide more precise
high-probability upper bounds. (b) Beyond the polynomial decay condition considered in Amini et al.
(2022), we introduce a more general condition as stated in Assumption 3.2. This condition involves
γ, reflecting the degree of target-kernel alignment. (c) In Amini et al. (2022), both the standard KRR
and the truncated KRR have explicit solutions. This allows leveraging analytic solutions to establish
critical results, without requiring more advanced techniques. In contrast, no explicit solutions exist
in our case and our theoretical analysis adopts an alternative analytic treatment by utilizing kernel
complexity and empirical process techniques. (d) Last but not least, we rigorously confirm the
conjecture in Amini et al. (2022) asserting that the truncated KRR can achieve the minimax optimality
for all γ ≥ 1

2 .

6.2 Conclusion and Future Work

This paper provides a comprehensive theoretical understanding of the properties of the truncated
kernel-based method for a broad family of loss functions. By using kernel complexity and empirical
process techniques, the established results reveal some significant benefits from the truncated RKHS
and indicate that a carefully chosen truncation allows for an optimal trade-off between the model
complexity and approximation bias. Extensive numerical studies further justify our theoretical
findings, demonstrating a consistent improvement of the truncated estimator over the standard kernel-
based estimator. We also derived an algorithm-free minimax lower bound that matches the upper
bound on the truncated estimator and therefore confirmed its optimality. To some extent, our results
shed light on future research in statistical learning theory and real-world applications. This paper
also leaves several interesting open questions for future investigation, including the theoretical
explorations under the misspecified setting that 0 < γ < 1

2 and how to develop a data-driven
algorithm for selecting a strongly-aligned kernel with lower model complexity.
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Appendix

This appendix is organized as follows. In Section A, we conduct a real data analysis. Section B is
devoted to providing more discussions and future directions. In Section C, we provide the proof
for results in Section 3, including Theorem 3.3 and Corollary 3.5. In Section D, we provide the
proof for results in Section 4 in part, including Theorem 4.2 and Corollary 4.3. In Section E, we
complement the upper bounds by deriving the minimax lower bound. In Section G, we discuss the
locally strong convexity condition and local smoothness condition presented in Assumption 3.2 for
various loss functions in detail. In Section G, we list some useful lemmas utilized in our proofs,
including concentration inequality, symmetrization inequality, and Gaussian contraction inequality.
Section H provides additional experiments under various settings.

Notation. Denote the vector inner product ⟨α,β⟩2 =
∑n

i=1 αiβi and the norm ∥α∥2 =
√

⟨α,α⟩2
for α,β ∈ Rn. For any integer m, we use [m] to represent the set {1, 2, ...,m} for short.

A Real Data Analysis

We apply both TKM and KM with check loss to the wine quality dataset, which is available in
the UCI Machine Learning Repository. Specifically, we first adopt the random forest method
(Breiman, 2001) to rank the feature importance and select the first three influential features: ‘Alcohol’,
‘Sulfates’, and ‘Volatile Acidity’ for analysis. Then, we randomly select 500 samples for training
and another 500 samples for testing. The above procedure is repeated 10 times, where the Laplacian
kernel K(x,x′) = exp(−∥x−x′∥1) is adopted and the parameters γ and r are tuned by 5-fold
cross-validation. The averaged MSE with different τ ∈ (0.3, 0.5, 0.7) is reported in Table 2.

Table 2: Averaged MSE for different methods

τ 0.3 0.5 0.7
KM 0.590± 0.027 0.483± 0.035 0.638± 0.073

TKM 0.548± 0.026 0.454± 0.045 0.530± 0.046

It is thus clear that the obtained results in the real application align with the results for synthetic data
and our theoretical findings in the main text, which further demonstrates the benefits of TKM.

B More Discussions and Future Directions

B.1 Verification of the Existence and Uniqueness of δn and δn,r

In this section, we provide a detailed verification of the existence and uniqueness of δn and δn,r,
where δn and δn,r are defined as the smallest solutions to (2) and (3), respectively.

For any ι ∈ (0, 1) and γ ≥ 1
2 , define

g(δ) :=
2C log ι−1R(δ)

c0δ2η+1
on δ ∈ (0,∞),

where η = max{γ, 1}. Here, we ignore the dependence of g on ι and γ for ease of presentation.

The verifying argument is based on Lemma 3.2 in Bartlett et al. (2005), which states that if ψ :
[0,∞) → [0,∞) is a nontrivial sub-root function6, then it is continuous on [0,∞), and the equation
ψ(r) = r has a unique positive solution.

Recall that we assume µ1, ..., µn > 0. From the definition of R(δ), it can be easily seen that R(
√
δ)

is a nontrivial sub-root function. Then from Lemma 3.2 in Bartlett et al. (2005), R(
√
δ) is continuous

on [0,∞), and thus g(δ) is also continuous on (0,∞). Note that g(δ)δ2η is nonincreaing on (0,∞),
then g(δ) must be strictly decreasing (0,∞).

6A function ψ is called nontrivial sub-root if ψ ̸≡ 0, and it is nonnegative, nondecreasing and if ψ(r)/
√
r is

nonincreasing for r > 0.
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If g(δ) is always larger than 1 on (0,∞), we have

lim
δ→∞

g(δ)δ2η = ∞,

which is impossible since g(δ)δ2η is nonincreasing on (0,∞). On the other hand, if g(δ) is always
smaller than 1 on (0,∞), then

lim
δ→0

g(δ)δ2η = 0,

implying g(δ)δ2η ≡ 0 since g(δ)δ2η is nonincreasing. SinceR(δ) is not trivial, this is also impossible.

Therefore, by the continuity of g on (0, 1), the equation g(δ) = 1 has a positive solution δn that
is unique by the strict monotonicity of g. Note that by the strict monotonicity of g, δn can be
equivalently defined as the smallest solution to g(δ) ≤ 1. According to the definition of g, we
conclude the existence and uniqueness of δn. For δn,r, repeat a similar argument, we can also verify
its existence and uniqueness.

B.2 Decomposition of the Reduced Kernel Matrix

Recall that Kr =
{

1
nKr(xi,xj)

}n
i,j=1

is the empirical kernel matrix w.r.t. Kr, and K = UDU⊤,
where U = (u1, ...,un) ∈ Rn×n is an orthonormal matrix and D ∈ Rn×n is a diagonal matrix with
positive elements µ1, ..., µn arranging in a descending ordering. Denote uk = (uk1, ..., ukn)

⊤. By
the definitions of Kr and {ψk}i∈[n], we have

(Kr)ij =
1

n

r∑
k=1

µkψk(xi)ψk(xj) =

r∑
k=1

µkukiukj .

On the other hand, recall that Dr is diagonal matrix with elements µ1, ..., µr, 0, ..., 0, we have

(UDrU
⊤)ij =

n∑
k=1

Dkkukiukj =

r∑
k=1

µkukiukj = (Kr)ij .

Therefore, we conclude that Kr = UDrU
⊤.

B.3 Extension to Random Design Setting

In this work, we investigate the effect of target-kernel alignment and provide the best solution to
overcome the well-known saturation effect. It is also worthy pointing out that although the obtained
results are derived under the fixed design setting, it may be possible to extend them to the random
design setting and we leave it to future exploration. Some key steps of the possible extensions are
discussed below.

Under the random design setting, we consider a random variable X ∼ ρ, where ρ is a probability
measure supported on X ⊂ Rp. Let the covariates {xi}ni=1 be independently sampled from ρ. Denote
the space of square-integrable functions f : X → R with respect to ρ as L(X , ρ), where X ⊂ Rp.

Recall that HK is an RKHS induced by a positive semi-definite kernel function K. By Mercer’s
theorem (see, for instance, Theorem 12.20 in Wainwright (2019)), if X is compact and K is a
continuous, combined with our bounded assumption that supx,x′∈X K(x,x′) ≤ κ2, the kernel
function admits an expansion of form

K(x,x′) =

∞∑
j=1

µ̃jϕj(x)ϕj(x
′),

where µ̃j’s are the non-negative eigenvalues in descending ordering and ϕj’s are the corresponding
eigenfunctions in L(X , ρ). Given this expansion of K, the RKHS HK can be written as

HK =
{
f =

∞∑
j=1

αjϕj :

∞∑
j=1

α2
j

µ̃j
<∞

}
,

equipped with inner product ⟨f, g⟩K =
∑∞

j=1
αjβj

µ̃j
for f =

∑∞
j=1 αjϕj and g =

∑∞
j=1 βjϕj .
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Under the random design setting, the population risk function is defined as

E(f) := E
[
L
(
Y, f(X))

]
,

where Y |X = x ∼ PY |x. Then, the target function f∗ is defined as

f∗ := argminf E(f).

If we assume f∗ ∈ HK , then f∗ can be expanded as f∗ =
∑∞

j=1 α
∗
jϕj with α∗ = (α∗

1, α
∗
2, ...)

⊤

satisfying
∑n

j=1

α∗
j
2

µ̃j
<∞.

An assumption analogous to Assumption 3.2 under the random design setting is required that∑∞
j=1 α

∗
j
2µ̃−2γ

j ≤ u2 for some constants γ ≥ 1
2 and u. Here, γ measures the target-kernel alignment

at the population level, and it is equivalent to smooth (or source) parameter in literature (Caponnetto
& De Vito, 2007; Cui et al., 2021; Li et al., 2023). Note that if γ = 1

2 , we merely assume that
the target function f∗ belongs to the RKHS HK , and as γ increases, the target function becomes
smoother w.r.t. the RKHS HK .

Furthermore, the polynomial decay assumption analogous to Assumption 3.4 under the random
design setting can be made as

µ̃j ≍ j−α and α∗
j
2 ≍ j−2γα−1 (4)

with constants α > 1 and γ ≥ 1
2 . Note that the assumption (4) is equivalent to condition (8) in Cui

et al. (2021).

Grant these assumptions, the impact of the target-kernel alignment on both standard and truncated
kernel-based methods under the random design setting can be analyzed by using the population kernel
complexity, defined as

R̃(δ) :=

√√√√ 1

n

∞∑
j=1

min{δ2, µ̃j}.

Since the theoretical derivation should be more deeply involved, we leave this promising topic to
future investigation.

B.4 Connection with Spectrally Transform Kernel Regression

The spectrally transformed kernel regression (SKRR, Zhai et al. (2024)) aims to use spectrally
transformation for constructing a new kernel that can leverage the information contained in unlabeled
data in an explicit way. Note that we have shown that the truncated kernel method can overcome the
saturation effect thanks to the reduced kernel complexity. We also believe that SKRR may be able to
overcome the saturation effect if the transformation function can be properly chosen. The possible
routine for establishing the theoretical results is briefly discussed below.

Recall that by Mercer’s theorem, we have

K(x,x′) =

∞∑
j=1

µ̃jϕj(x)ϕj(x
′).

For SKRR, K(x,x′) is replaced with a new kernel that

K ′(x,x′) :=

∞∑
j=1

s(µ̃j)ϕj(x)ϕj(x
′),

where s(·) : R+ → R+ is the general transformation function. Let f̂λ,s be the kernel-based estimator
via the RKHS HK′ induced byK ′. The primary goal is to study how the prediction error ∥f̂λ,s−f∗∥2ρ
depends on the choice of s.

The idea of deriving an upper bound on the prediction error is to separately bound the estimation
error ∥f̂λ,s − f ♯s∥2ρ and approximation bias ∥f ♯s − f∗∥2ρ, where ∥ · ∥ρ denotes the norm equipped
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with L(X , ρ), and f ♯s :=
∑∞

j=1 s(α
∗
j )ϕj is introduced as an immediate function belonging to HK′ .

Following a similar technical treatment in Section D, the upper bound on estimation error can be
established. For the approximation bias, by writing f∗ =

∑∞
j=1 α

∗
jϕj , we find that

∥∥f ♯s − f∗
∥∥2
ρ
=

∞∑
j=1

(
s(α∗

j )− α∗
j

)2
.

Clearly, the selection of s(·) is crucial and it is favorable if s(·) is close to the identity function for
small j and decays extremely rapidly as j tends to infinity, such as s(µ̃j) = µ̃jI{j≤r} corresponding to
the truncated method. Then, SKRR with some proper choices of s(·) may achieve similar conclusions
about the upper bound as we provided in the main text. We leave such a promising topic as potential
future work.

B.5 Computational Complexity of Truncated Kernel Method

For simplicity, we focus only on the mean regression task where the squared loss is specified. Note
that the total computational complexity of the truncated KRR is composed of three parts. Specifically,
in the first part, spectrally decomposing the kernel matrix K has the computational complexity of
O(n3). In the second part, the basis {ψk}1≤k≤r can be simply calculated by ψk(x) = u⊤

k K
−1Kx

with

Kx =
1√
n

(
K(x,x1), ...,K(x,xn)

)⊤
for each k ∈ [n], which also has O(n3) computational complexity. In the last part, computing
the KRR via the r-dimensional RKHS HKr

has computational complexity of O(nr2). To sum
up, the overall computational complexity of TKM is O(n3). Solving the standard KRR also has
computational complexity of O(n3), and thus the truncated KRR does not impose an additional
computational cost.

C Proof of Results for Kernel-based Method

C.1 Error Analysis

For ease of presentation, without loss of generality, we assume µj ≤ 1 for all j ∈ [n] in the rest of
this paper7. We start the error analysis by noting that for any f = S⊤

x (α) ∈ HK with α ∈ Rn, we
have

∥f∥n = ∥Kα∥2 and ∥f∥K =
∥∥K1/2α

∥∥
2
. (5)

This transform from the L(Pn)-norm and the norm in RKHS to vector norm will be frequently
applied in our proof.

Denote
q∗ :=

√
nSx(f

∗) = (f∗(x1), ..., f
∗(xn))

⊤.

Recall that the TA scores are the elements of the vector

ξ∗ = U
⊤Sx(f

∗) =
1√
n
U

⊤q∗.

Define an immediate function

f ♯ := S⊤
x (α♯) ∈ HK with α♯ = UD

−1ξ∗ ∈ Rn.

f ♯ can be viewed as the best approximation of f∗ onto the n-dimensional function space Hn, defined
as

Hn :=
{
f = S⊤

x (α) : α ∈ Rn
}
.

7Otherwise, by the assumption µj → 0, we always have µj ≤ 1 for j exceeding some constant j∗.
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To be more clear, by the orthogonality of U, we have∥∥f∗ − f ♯
∥∥2
n
=
1

n

∥∥q∗ −
√
nKα♯

∥∥2
2

=
∥∥∥n−1/2

U
⊤q∗ −U

⊤
UDU

⊤α♯
∥∥∥2
2

=
∥∥U⊤Sx(f

∗)−U
⊤
UDU

⊤α♯
∥∥2
2

=
∥∥ξ∗ −DU

⊤α♯
∥∥2
2
=
∥∥ξ∗ −DU

⊤
UD

−1ξ∗
∥∥2
2
= 0, (6)

implying
f∗(xi) = f ♯(xi) for each i ∈ [n].

Therefore, we obtain ∥∥f − f∗
∥∥
n
=
∥∥f − f ♯

∥∥
n

for all f ∈ HK (7)

and

E(f)− E(f∗) = E(f)− E(f ♯) for all f ∈ HK . (8)

Furthermore, by applying (5), we have∥∥f ♯∥∥
K

=
∥∥K1/2

UD
−1ξ∗

∥∥
K

=
∥∥UD

1/2
U

⊤
UD

−1ξ∗
∥∥
K

=
∥∥D−1/2ξ∗

∥∥
K
.

By our assumption that µj ≤ 1 for all j, one has∥∥f ♯∥∥2
K

=
∥∥D−1/2ξ∗

∥∥2
2
=

n∑
j=1

µ−1
j ξ∗j

2 ≤
n∑

j=1

µ−2γ
j ξ∗j

2 ≤ u2, (9)

where the last inequality holds by Assumption 3.2 with γ ≥ 1
2 .

The construction of f ♯ plays a crucial role in our proofs. Intuitively, the kernel complexity function
R(δ) is defined at an empirical level (depends on the fixed points x1, ...,xn) and serves as a com-
plexity measure of finite space Hn. This poses a technical challenge as the true function f∗ lies in an
infinite-dimensional function space, creating a mismatch with the empirical kernel complexity R(δ).
To solve this problem, we introduce the best approximation f ♯ of f∗ in finite-dimensional function
space Hn. Our proof will first focus on deriving the upper bound on ∥f̂λ − f ♯∥2n, and then move to
∥f̂λ − f∗∥2n by using the relation (7).

Another advantage to consider the best approximation of f∗ instead of itself is that f̂λ lies in the
same space Hn as f ♯, allowing us to express ∥f̂λ − f ♯∥22 and ∥f̂λ − f ♯∥2K in the term of the kernel
matrix K according to (5), which is useful in the technical proof. To the best of our knowledge, this
is a novel treatment to establish theoretical results for the kernel-based estimator. In the proof for
the truncated estimator in Section D, we will adopt a similar proof strategy to construct the best
approximation f ♯r of f∗ in the reduced space HKr

.

Based on the error analysis, we are ready to present the proof for Theorem 3.3.

C.2 Proof of Theorem 3.3

Define the localized function class

Hn,b :=
{
f : f ∈ Hn, ∥f − f ♯∥K ≤ b

}
.

Here, b is a constant independent of n, γ, which will be specified in the proof. Without loss of
generality, we assume b > 1.

For any ι ∈ (0, 1) and δ > 0, define the auxiliary event

V(ι, δ) :=
{∣∣Ê(f)− Ê(f ♯)− [E(f)− E(f ♯)]

∣∣ ≤ C log ι−1R(δ)W (f, δ) holds for any f ∈ Hn,b

}
,

where W (f, δ) := δ−1∥f − f ♯∥n + ∥f − f ♯∥K for δ > 0 and f ∈ Hn,b.

The following two lemmas are crucial for proving Theorem 3.3.
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Lemma C.1. Fix any ι ∈ (0, 1) and δ > 0. The event V(ι, δ) occurs with probability greater than
1− ι, i.e.

P
(
V(ι, δ)

)
≥ 1− ι.

As demonstrated in the proof of Lemma C.1, b is incorporated into the constant C of the upper bound
C log ι−1R(δ), meaning that C depends on b.

Recall that δn is the critical radius defined as the smallest solution to (2).

Lemma C.2. Let η = min{γ, 1}. On the event V(ι, δn), with the choice of λ satisfying δ2n ≤ λ ≤ 1,
we have ∥∥f̂λ − f ♯

∥∥2
n
≤ C

(
δ4ηn + λ2η

)
,

where C is a constant independent of n, γ.

Proof of Theorem 3.3. By applying Lemma C.1, we have P(V(ι, δn)) ≥ 1−ι. Together with Lemma
C.2 and the relation (6), it holds with probability at least 1− ι that∥∥f̂λ − f∗

∥∥2
n
=
∥∥f̂λ − f ♯

∥∥2
n
≤ C

(
δ4ηn + λ2η

)
,

which completes the proof for the L(Pn)-error.

For the excess risk, it immediately follows from Assumption 3.1.

Accordingly, it remains to prove Lemmas C.1 and C.2.

C.2.1 Proof of Lemma C.1

Denote
D := Ê(f)− Ê(f ♯)−

[
E(f)− E(f ♯)

]
.

Then, our goal is to prove that for all f ∈ Hn,b

|D| ≤ C log ι−1R(δ)W (f, δ).

If W (f, δ) = 0, the above inequality is naturally satisfied. Therefore, without loss of generality, we
assume W (f, δ) > 0 for all f ∈ Hn,b. It is equivalent to proving that

A := sup
f∈Hn,b

|D|
W (f, δ)

≤ C log ι−1R(δ).

By applying the triangle inequality, together with (9), we find that for any f ∈ Hn,b

∥f∥K ≤
∥∥f − f ♯

∥∥
K
+ ∥f ♯∥K ≤ u+ b.

Let b̃ := u+ b. According to our assumption for the loss function in Section 2, L(y, ·) satisfies the
Lipschitz continuity over the function class Hn,b with Lipschitz constant ML,b̃ in the sense that for
any y ∈ Y , x ∈ X , and f, f ′ ∈ Hn,b, the following inequality holds:∣∣L(y, f(x))− L(y, f ′(x))

∣∣ ≤ML,b̃

∣∣f(x)− f ′(x)
∣∣.

For simplifying notation, we hide the dependence of the Lipschitz constant on L(·, ·), b̃ by writing
M :=ML,b̃.

The remaining proof follows a standard procedure: first bound the expectation of A and then bound
the deviation of A from its expectation. Finally, we combine these two bounds to obtain the desired
result.

Bounding E[A]. Let w1, ..., wn ∼ N(0, 1) denote the standard Gaussian variables, independent of
the data. To bound E[A], we employ the symmetrization technique in Lemma G.2. Specifically, we
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have

E[A] = E
[

sup
f∈Hn,b

|D|
W (f, δ)

]
(i)

≤
√
2π

n
E
[

sup
f∈Hn,b

∣∣∑n
i=1 wi

(
L(yi, f(xi))− L(yi, f

♯(xi))
)∣∣

W (f, δ)

]
(ii)

≤ 2
√
2πM

n
E
[

sup
f∈Hn,b

∣∣∑n
i=1 wi(f(xi)− f ♯(xi))

∣∣
W (f, δ)

]
, (10)

where (i) follows from Lemma G.2, and (ii) follows from the fact that the loss function isM -Lipschitz
continuous and the Gaussian contraction inequality in Lemma G.3. To further derive the upper bound
for the RHS of (10), we consider the localized function class of form

F(δ) :=
{
f = S⊤

x (α) :
∥∥f − f ♯

∥∥
K

≤ 1,
∥∥f − f ♯

∥∥
n
≤ δ, α ∈ Rn

}
.

Recall that f ♯ = S⊤
x (α♯) and for any f ∈ Hn,b, there exists α ∈ Rn such that f = S⊤

x (α).

Define the vector β := DU⊤(α−α♯). Then, by applying (5), f ∈ F(δ) implies the constraints on
β that ∥∥D−1/2β

∥∥
2
≤ 1 and ∥β∥2 ≤ δ.

Further note that any vector satisfying these two constraints must belong to the ellipse class

E :=
{
β = (β1, β2, . . . )

⊤ ∈ Rn :

n∑
j=1

β2
j

νj
≤ 2 with νj = min{δ2, µj}

}
.

Denote w = (w1, ..., wn)
⊤, we have

E
[

sup
f∈F(δ)

∣∣∣ n∑
i=1

wi(f(xi)− f ♯(xi))
∣∣∣] ≤ E

[
sup
β∈E

√
n
∣∣⟨w,Uβ⟩

∣∣]
(i)
= E

[
sup
β∈E

√
n
∣∣⟨w,β⟩∣∣]

(ii)

≤ E
[
sup
β∈E

√
n

√√√√ n∑
j=1

β2
j

νj

√√√√ n∑
j=1

νjw2
j

]

≤
√
2nE

[√√√√ n∑
j=1

νjw2
j

] (iii)

≤
√
2n

√√√√ 1

n

n∑
j=1

νj =
√
2nR(δ),

(11)
where (i) follows ⟨w,Uβ⟩ = ⟨U⊤ w,β⟩ and U⊤ w ∼ N(0, In) since U⊤ is an orthogonal matrix,
(ii) follows from Cauchy-Schwarz inequality, and (iii) follows from Jensen’s inequality.

Note that (11) holds when considering the supremum over F(δ). For f ∈ Hn,b, by defining the
rescaled function

f̃ =
f − f ♯

W (f, δ)
+ f ♯,

we have ∥∥f̃ − f ♯
∥∥
n
=

∥f − f ♯∥n
δ−1∥f − f ♯∥n + ∥f − f ♯∥K

≤ δ

and ∥∥f̃ − f ♯
∥∥
K

=
∥f − f ♯∥K

δ−1∥f − f ♯∥n + ∥f − f ♯∥K
≤ 1.
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As a result, f̃ ∈ F(δ). On the other hand,

E
[∣∣∑n

i=1 wi(f(xi)− f ♯(xi))
∣∣

W (f, δ)

]
= E

[∣∣∣ n∑
i=1

wi(f̃(xi)− f ♯(xi))
∣∣∣],

which, combined with (10) and (11), implies

E[A] ≤2
√
2πM

n
E
[

sup
f∈Hn,b

∣∣∑n
i=1 wi(f(xi)− f ♯(xi))

∣∣
W (f, δ)

]
≤2

√
2πM

n
E
[

sup
f∈F(δ)

∣∣∣ n∑
i=1

wi(f(xi)− f ♯(xi))
∣∣∣] ≤ 4

√
πMR(δ).

(12)

Bounding A− E(A). We use the concentration inequality in Lemma G.1 to bound A− E(A). For
each i ∈ [n] and any f ∈ F(δ), define sj = sign(f(xi)− f ♯(xi)) if j = i and sj = 0 if j ̸= i and
let s = (s1, ..., sn)

⊤, then we have

|f(xi)− f ♯(xi)| =
n∑

j=1

sj(f(xi)− f ♯(xi))

=
√
n⟨s,Uβ⟩

(i)

≤
√
n

√√√√ n∑
j=1

β2
j

νj

√√√√ n∑
j=1

νjs2j ≤
√
n

√√√√ n∑
j=1

β2
j

νj

√√√√ n∑
j=1

νj =
√
2nR(δ),

where (i) follows from the fact that U is orthogonal and Cauchy-Schwarz inequality. Consequently,
for each i ∈ [n], we have∣∣L(yi, f(xi))− L(yi, f

♯(xi))
∣∣ ≤M

∣∣f(xi)− f ♯(xi)
∣∣ ≤M

√
2nR(δ),

where the second inequality follows from that L(yi, ·) is M -Lipschitz continuous. In addition, for
any f ∈ F(δ), we have

1

n

n∑
i=1

E
[(
L(yi, f(xi))− L(yi, f

♯(xi))
)2] ≤ M2

n

n∑
i=1

(f(xi)− f ♯(xi))
2

=M2∥f − f ♯∥2n
=M2⟨Uβ,Uβ⟩
=M2⟨β,β⟩

≤M2 max
i∈[n]

νj

n∑
i=1

β2
j

νj
≤ 2M2

n∑
i=1

νj = 2M2nR2(δ).

By a similar rescaled method, we have∣∣L(yi, f(xi))− L(yi, f
♯(xi))

∣∣
W (f, δ)

≤ M |f(xi)− f ♯(xi)|
W (f, δ)

=M |f̃(xi)− f ♯(xi)|
≤

√
2MnR(δ),

and

1

n

n∑
i=1

E
[(L(yi, f(xi))− L(yi, f

♯(xi))

W (f, δ)

)2]
≤ M2

n

n∑
i=1

(f(xi)− f ♯(xi)

W (f, δ)

)2
=
M2

L,b̃

n

n∑
i=1

(f̃(xi)− f ♯(xi))
2

≤ 2M2nR2(δ).
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Thus, the requirements in Lemma G.1 hold with η =
√
2MnR(δ) and ζ2 = 2M2nR2(δ). Then, by

applying Lemma G.1, for any ι ∈ (0, 1), let t =
√

log ι−1

n , it holds at with probability at least 1− ι

that

A− E(A) ≤
√

log ι−1

n

(
4M2nR2(δ) + 4

√
2MnR(δ)E(A)

)
+

2
√
2M

3
R(δ) log ι−1

(i)

≤ C̃log ι−1R(δ),

(13)

where C̃ =
√
(4M2 + 16

√
2πM2) + 2

√
2M
3 and (i) follows from (12).

Therefore, by combining (12) and (13), it holds with probability at least 1− ι that

A ≤ C log ι−1R(δ)

where C =
√
(4M2 + 8

√
2πM2) + 2

√
2M
3 + 4

√
πM . This completes the proof of Theorem 3.3. □

C.2.2 Proof of Lemma C.2

For short, we write
∆ =

c0
4
δ4ηn + 4u2λ2η.

On the event V(ι, δn), we claim that ∥∥f̂λ − f ♯
∥∥2
n
≤ C∆.

According to the optimality of f̂λ and the feasibility of f ♯, we obtain

Ê(f̂λ)− Ê(f ♯) + λ∥f̂λ∥2K − λ∥f ♯∥2K ≤ 0. (14)

Then, proving ∥f̂λ − f ♯∥2n ≤ C∆ suffices to prove that if ∥f̂λ − f ♯∥2n > C∆ or ∥f̂λ − f ♯∥K > b,
we have

Ê(f̂λ)− Ê(f ♯) + λ∥f̂λ∥2K − λ∥f ♯∥2K > 0.

Below we are devoted to verifying this fact. Define the function class

G :=
{
f ∈ Hn :

∥∥f − f ♯
∥∥2
n
≤ C∆,

∥∥f − f ♯
∥∥
K

≤ b
}
.

Suppose that f̂λ ̸∈ G. Since both G and Hn are convex class by the convexity of L(y, ·) and Jensen’s
inequality, there exists a function f̃ = αf̂λ + (1− α)f ♯ with α ∈ (0, 1] that sits on the boundary of
G (Ma et al., 2023). If we can show that

Ê(f̃)− Ê(f ♯) + λ∥f̃∥2K − λ∥f ♯∥2K > 0, (15)

by the convexity of L(y, ·) and Jensen’s inequality, we must have

Ê(f̂λ)− Ê(f ♯) + λ∥f̂λ∥2K − λ∥f ♯∥2K ≥ 1

α

(
Ê(f̃)− Ê(f ♯) + λ∥f̃∥2K − λ∥f ♯∥2K

)
> 0.

Then, let us focus on proving (15) on the event V(ι, δn).

Note that f̃ belongs to the the boundary of G, we can split the remaining proof into two cases: (i)
∥f̃ − f ♯∥2n = C∆ and ∥f̃ − f ♯∥K ≤ b; and (ii) ∥f̃ − f ♯∥2n ≤ C∆ and ∥f̃ − f ♯∥K = b.

Case (i): By applying (7) and (8), from Assumption 3.1, we have

c0
∥∥f̃ − f ♯

∥∥2
n
= c0

∥∥f̃ − f∗
∥∥2
n
≤ E(f̃)− E(f∗) = E(f̃)− E(f ♯).

so that the c0-strong convexity also holds for f ♯.
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On the event V(ι, δn), we have

Ê(f ♯)− Ê(f̃)

≤ E(f ♯)− E(f̃) + C log ι−1R(δn)W (f̃ , δn)

≤ −c0
∥∥f̃ − f ♯

∥∥2
n
+ C log ι−1R(δn)

(
δ−1
n

∥∥f̃ − f ♯
∥∥
n
+
∥∥f̃ − f ♯

∥∥
K

)
(i)
= −c0C∆+ C log ι−1R(δn)

(
δ−1
n

√
C∆+

∥∥f̃ − f ♯
∥∥
K

)
(ii)

≤ −c0C∆+ Cδ−1
n log ι−1R(δn)

√
C∆+ C(log ι−1R(δn))

2λ−1 +
λ

4

∥∥f̃ − f ♯
∥∥2
K

(iii)

≤ −c0C∆+
c0
2
δ2ηn

√
C∆+

c0
4
δ4η+2
n λ−1 +

λ

4

∥∥f̃ − f ♯
∥∥2
K
,

where (i) follows from ∥f̃ − f ♯∥2n = C∆, (ii) uses the elementary inequality that 2ab ≤ a2 + b2 and
(iii) follows from the definition of δn satisfying

C log ι−1R(δn) ≤
c0
2
δ2η+1
n .

Further with the choice of λ ≥ δ2n, we have

Ê(f ♯)− Ê(f̃) ≤ −c0C∆+
c0
2
δ2ηn

√
C∆+

c0
4
δ4ηn +

λ

4

∥∥f̃ − f ♯
∥∥2
K
.

On the other hand, we notice that

λ
∥∥f ♯∥∥2

K
− λ

∥∥f̃∥∥2
K

= −2λ⟨f ♯, f̃ − f ♯⟩K − λ
∥∥f̃ − f ♯

∥∥2
K
. (16)

Note that ⟨f, g⟩K = ⟨K1/2f,K1/2g⟩K for any f, g ∈ Hn. f̃ ∈ Hn so that it can be written as

f̃ = S⊤
x (α̃) for some α̃ ∈ Rn.

Therefore, for 1
2 ≤ γ ≤ 1, there holds∣∣∣λ⟨f ♯, f̃ − f ♯⟩K

∣∣∣ = ∣∣∣λ⟨K1/2α♯,K
1/2(α̃−α♯)⟩2

∣∣∣
=
∣∣λ⟨K1−γα♯,K

γ(α̃−α♯)⟩2
∣∣

≤ λ
∥∥K1−γα♯

∥∥
2

∥∥Kγ(α̃−α♯)
∥∥
2

= λ
∥∥D1−γ

D
−1ξ∗

∥∥
2

∥∥Kγ(α̃−α♯)
∥∥
2

= λ
∥∥D−γξ∗

∥∥
2

∥∥Kγ(α̃−α♯)
∥∥
2

(i)

≤ uλ
∥∥Kγ(α̃−α♯)

∥∥
2
,

where (i) follows from Assumption 3.2.

For 1
2 ≤ γ ≤ 1, using a similar treatment as that in Lian (2022), we apply Young’s inequality

AB ≤ Ap

p + Bq

q for any two positive operators A and B with 1
p + 1

q = 1 and p, q ≥ 1 to obtain

λ
∥∥Kγ(α̃−α♯)

∥∥
2

= λγ
√〈

λ2−2γK2γ−1K
(
α̃−α♯

)
, α̃−α♯

〉
2

≤ λγ
√〈(

(2− 2γ)λ+ (2γ − 1)K
)
K
(
α̃−α♯

)
, α̃−α♯

〉
2

(i)

≤ λγ max

{√〈
λK1/2

(
α̃−α♯

)
,K1/2

(
α̃−α♯

)〉
2
,
√〈

K
(
α̃−α♯

)
,K
(
α̃−α♯

)〉
2

}
(ii)

≤ λγ+
1
2

∥∥f̃ − f ♯
∥∥
K
+ λγ

∥∥f̃ − f ♯
∥∥
n
, (17)
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where (i) holds by taking γ = 1
2 and γ = 1, and (ii) follows from max{a, b} ≤ a+ b.

For γ > 1, we claim that ∥D−1ξ∗∥2 ≤ u. To see this, we find that

∥∥D−1ξ∗
∥∥2
2
=

∞∑
j=1

µ−2
j ξ∗j

2
(i)

≤
∞∑
j=1

µ−2γ
j ξ∗j

2 ≤ u2,

where (i) holds by our assumption µj ≤ 1 for all j.

Then, similar to (17) with γ = 1, we have∣∣λ⟨f ♯, f̃ − f ♯⟩K
∣∣ ≤ uλ

3
2

∥∥f̃ − f ♯
∥∥
K
+ uλ

∥∥f̃ − f ♯
∥∥
n
.

Combine these two case to obtain that for γ ≥ 1
2∣∣λ⟨f ♯, f̃ − f ♯⟩K

∣∣ ≤ uλη+
1
2

∥∥f̃ − f ♯
∥∥
K
+ uλη

∥∥f̃ − f ♯
∥∥
n

= uλη+
1
2

∥∥f̃ − f ♯
∥∥
K
+ uλη

√
C∆.

(18)

Here, we recall that η = min{γ, 1}.

Putting the pieces together, for all γ ≥ 1
2 , we have

Ê(f ♯)− Ê(f̃) + λ∥f ♯∥2K − λ∥f̃∥2K

≤ −c0C∆+
(c0
2
δ2ηn + 2uλη

)√
C∆+

c0
4
δ4ηn +

λ

4

∥∥f̃ − f ♯
∥∥2
K
+ 2uλη+

1
2

∥∥f̃ − f ♯
∥∥
K
− λ

∥∥f̃ − f ♯
∥∥2
K

(i)

≤ −c0C∆+
(c0
2
δ2ηn + 2uλη

)√
C∆+

c0
4
δ4ηn +

λ

2

∥∥f̃ − f ♯
∥∥2
K
+ 4u2λ2η − λ

∥∥f̃ − f ♯
∥∥2
K

≤ −c0C∆+
(c0
2
δ2ηn + 2uλη

)√
C∆+

c0
4
δ4ηn + 4u2λ2η, (19)

where (i) uses the elementary inequality.

Below is devoted to proving that for a sufficiently large C, the RHS of (19) is less than 0. Precisely,
let

φ(x) = c0x
2 −

(c0
2
δ2ηn + 2uλη

)
x− c0

4
δ4ηn − 4u2λ2η.

Let x =
√
C∆, note that

φ(x) =c0C∆−
(c0
2
δ2ηn + 2uλη

)√
C∆− c0

4
δ4ηn − 4u2λ2η

=(c0C − 1)∆−
(c0
2
δ2ηn + 2uλη

)√
C∆

=
√
C∆

[
c0C − 1√

C

√
∆−

(c0
2
δ2ηn + 2uλη

)]
(i)

≥
√
C∆

[
c0C − 1√

2C

(√
c0
2
δ2ηn + 2uλη

)
−
(c0
2
δ2ηn + 2uλη

)]
,

where (i) follows from the basic inequality a+b
2 ≤

√
a2+b2

2 . Since c0C−1√
2C

is increasing in C, we can

select C such that c0C−1√
2C

≥ max{√c0, 1}, which leads to φ(x) > 0.

In conclusion, for a sufficiently large C in the definition of the function class G, on the event V(ι, δn),
for case (i), we have

Ê(f ♯)− Ê(f̃) + λ∥f ♯∥2K − λ∥f̃∥2K < 0.
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Case (ii): Repeat the similar argument as that in Case (i), on the event V(ι, δn) and by Assumption
3.1, we have

Ê(f ♯)− Ê(f̃)

≤ −c0
∥∥f̃ − f ♯

∥∥2
n
+ C log ι−1R(δn)

(
δ−1
n

∥∥f̃ − f ♯
∥∥
n
+
∥∥f̃ − f ♯

∥∥
K

)
≤ C log ι−1R(δn)

(
δ−1
n

∥∥f̃ − f ♯
∥∥
n
+
∥∥f̃ − f ♯

∥∥
K

)
≤ c0

2
δ2ηn

√
C∆+

c0
4
δ4η+2
n λ−1 +

λ

4

∥∥f̃ − f ♯
∥∥2
K
.

Further with the choice of λ ≥ δ2n, we have

Ê(f ♯)− Ê(f̃) ≤ c0
2
δ2ηn

√
C∆+

c0
4
δ4ηn +

λ

4

∥∥f̃ − f ♯
∥∥2
K
.

Combine with (16) and (18) to obtain

Ê(f ♯)− Ê(f̃) + λ∥f ♯∥2K − λ∥f̃∥2K

≤
(c0
2
δ2ηn + 2uλη

)√
C∆+

c0
4
δ4ηn +

λ

4

∥∥f̃ − f ♯
∥∥2
K
+ 2uλη+

1
2

∥∥f̃ − f ♯
∥∥
K
− λ

∥∥f̃ − f ♯
∥∥2
K

≤
(c0
2
δ2ηn + 2uλη

)√
C∆+

c0
4
δ4ηn + 4u2λ2η − λ

2

∥∥f̃ − f ♯
∥∥2
K
.

Note that 0 < λ ≤ 1 and λ ≥ δ2n together implies

λ ≥ λ2η and λ ≥ δ4ηn .

Moreover, in Case (ii), ∥f̃ − f ♯∥K = b. Therefore,

Ê(f ♯)− Ê(f̃) + λ∥f ♯∥2K − λ∥f̃∥2K

≤
(c0
2
δ2ηn + 2uλη

)√
C∆+

c0
4
δ4ηn + 4u2λ2η − 1

2
b2δ4ηn − 1

2
b2λ2η

≤
√
c20
2
δ4ηn + 8u2λ2η

√
C∆+

c0
4
δ4ηn + 4u2λ2η − 1

2
b2δ4ηn − 1

2
b2λ2η

≤
√
C
(c0
4
max{2c0, 1}δ4ηn + 8u2λ2η

)
+
c0
4
δ4ηn + 4u2λ2η − 1

2
b2δ4ηn − 1

2
b2λ2η,

where the last line is less line is less than 0 for sufficiently large constant b.

At last, by combining Cases (i) and (ii), we prove (15). Therefore, on the event V(ι, δn), we have∥∥f̂λ − f ♯
∥∥2
n
≤ C∆ ≲ δ4ηn + λ2η,

which completes the proof. □

C.3 Proof of Corollary 3.5

Recall that the statistical dimension is defined as

d(δ) = min
{
j ∈ [n] : µj ≤ δ2

}
.

From the definition of d(δ), we have

R(δ) =

√√√√ 1

n
d(δ)δ2 +

1

n

n∑
d(δ)+1

µj . (20)

Recalling that
∑n

d(δ)+1 µj ≲ d(δ)δ2 for regular kernel and kernel with the polynomial in its eigen-
values is regular (Yang et al., 2017), the kernel complexity function satisfies

R(δ) ≍
√

1

n
d(δ)δ2.
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Therefore, the solution to the inequality (2) can be bounded from above by the solution to

Clog ι−1

√
1

n
d(δ)δ2 ≤ c0

2
δ2η+1. (21)

Moreover, if the eigenvalues of K exhibit α-polynomial decay that is µj ≍ j−α, then we have
d(δ) ≍ δ−2/α. Together with (21) leads to

δ2n ≤ C
( (log ι−1)2

n

) α
2ηα+1

.

Then, with the choice of λ ≍ δ2n, it holds with probability at least 1− ι that

∥f̂λ − f∗∥2n ≤ C(δ4ηn + λ2η) ≤ C
( (log ι−1)2

n

) 2ηα
2ηα+1

.

We conclude the upper bound in Corollary 3.5. □

D Proof of Results for Truncated Kernel-based Method

D.1 Error Analysis

Recall that
q∗ =

√
nSx(f

∗) = (f∗(x1), ..., f
∗(xn))

⊤

and
ξ∗ = U

⊤Sx(f
∗) =

1√
n
U

⊤q∗.

In the proof for the truncated kernel-based estimator, we partition ξ∗ into two sub-vectors as

ξ∗⊤ = (ξ∗1
⊤, ξ∗2

⊤)

with ξ∗1 ∈ Rr and ξ∗2 ∈ Rn−r.

Moreover, we partition U into two sub-matrixs

U = (U1,U2)

with U1 ∈ Rn×r and U2 ∈ Rn×(n−r), and partition D into two blocks D1 and D2, that is

D =

(
D1

D2

)
,

where D1 ∈ Rr×r and D2 ∈ R(n−r)×(n−r). Since the last n− r diagonal elements of Dr are all
zero, for any α ∈ Rn, the last n− r elements of DrU

⊤α are also all zero. Then, we have

DrU
⊤α =

(
(D1U

⊤
1 α)⊤,0⊤)⊤ for all α ∈ Rn. (22)

Define

Hn,r :=
{
f = S⊤

x,r(α) : α ∈ Rn
}
.

For any f = S⊤
x,r(α) ∈ Hn,r, we have

∥f∥n =
∥∥Krα

∥∥
2
=
∥∥DrU

⊤α
∥∥
2
=
∥∥D1U

⊤
1 α
∥∥
2
,

where the last step holds by applying (22). We also observe

∥f∥Kr
=
∥∥K1/2

r α
∥∥
2
=
∥∥D1/2

1 U
⊤
1 α
∥∥
2
. (23)

Define an immediate function

f ♯r := S⊤
x,r(α

♯
r) ∈ Hn,r with α♯

r = U1D
−1
1 ξ∗1 ∈ Rn. (24)
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From (23), we have∥∥f ♯r∥∥2Kr
=
∥∥D1/2

1 U
⊤
1 U1D

−1
1 ξ∗1

∥∥2
Kr

=
∥∥D−1/2

1 ξ∗1
∥∥2
Kr

=

r∑
j=1

µ−1
j ξ∗j

2
(i)

≤
r∑

j=1

µ−2γ
j ξ∗j

2
(ii)

≤ u2,
(25)

where (i) holds by our assumption µj ≤ 1 for all j and (ii) follows from Assumption 3.2.

The construction of f ♯r allows us to analyze the prediction error of the truncated kernel-based estimator
from two sources: the estimation error depending on the complexity of the truncated RKHS HKr

,
and the approximation error arising from the dissimilarity between the truncated RKHS HKr

and the
full RKHS HK . Specifically, we have the error decomposition as follows.

Error decomposition. By applying the elementary inequality that (a+ b)2 ≤ 2a2 + 2b2, the total
error ∥f̂λ,r − f∗∥2n can be decomposed as∥∥f̂λ,r − f∗

∥∥2
n
≤ 2

∥∥f̂λ,r − f ♯r
∥∥2
n︸ ︷︷ ︸

Estimation error

+2
∥∥f ♯r − f∗

∥∥2
n︸ ︷︷ ︸

Approximation bias

. (26)

Note that both f̂λ,r and f ♯r belong to Hn,r, allowing us to analyze the estimation error based on
the complexity of the reduced kernel matrix Kr. This decomposition successfully captures two
components of error: estimation error and approximation bias. The estimation error is controlled by
the model richness of the truncated space HKr

, while approximation bias depends on the dissimilarity
between the truncated RKHS HKr

and the full RKHS HK where the true target f∗ is sitting in. A
larger r amplifies the space HKr

, resulting in a larger estimation error. At the same time, it narrows
the gap between HKr

and HK , thereby decreasing the approximation bias. Consequently, a trade-off
emerges, and an optimal choice of truncation r aims to balance the estimation error and approximation
bias.

D.2 Proof of Theorem 4.2

We will separately bound each term from above appearing in the decomposition (26).

Bounding the approximation bias. Note that∥∥f ♯r − f∗
∥∥2
n
=

1

n

∥∥q∗ −
√
nKrα

♯
r

∥∥2
n

(i)
=
∥∥ξ∗ −DrU

⊤α♯
r

∥∥2
2

(ii)
=
∥∥ξ∗1 −D1U

⊤
1 α

♯
r

∥∥2
2
+
∥∥ξ∗2∥∥22,

where (i) follows from the eigen-expansion that Kr = UKrU
⊤ and (ii) follows from (22).

By the definition of α♯
r, we have

D1U
⊤
1 α

♯
r = D1U

⊤
1 U1D

−1
1 ξ∗1 = ξ∗1 .

Therefore, we arrive at ∥∥f ♯r − f∗
∥∥2
n
=
∥∥ξ∗2∥∥22 =

n∑
j=r+1

ξ∗j
2. (27)

Bounding the estimation error. Define the localized function class

Hn,r,b :=
{
f : f ∈ Hn,r, ∥f − f ♯∥K ≤ b

}
,

where b > 1 is a constant independent of n, γ, which will be specified in the proof.

Recall r from Section 4. For any given ι ∈ (0, 1) and δ > 0, define the auxiliary event

Vr(ι, δ) :=
{∣∣Ê(f)− Ê(f ♯r)− [E(f)− E(f ♯r)]

∣∣ ≤ C log ι−1Rr(δ)Wr(f, δ) holds for any f ∈ Hn,r,b

}
,

where Wr(f, δ) := δ−1∥f − f ♯r∥n + ∥f − f ♯r∥Kr for δ > 0 and f ∈ Hn,r,b.

To establish the bound for the estimation error, we need the following two lemmas.
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Lemma D.1. Fix any ι ∈ (0, 1) and δ > 0. The event Vr(ι, δ) occurs with probability greater than
1− ι, i.e.

P
(
Vr(ι, δ)

)
≥ 1− ι.

Recall that δn,r is the critical radius w.r.t. the truncated kernel complexity function defined as the
smallest solution to (3).
Lemma D.2. Let η = min{γ, 1}. On the event Vr(ι, δn,r), with the choice of λ satisfying
max{δ2n,r,

∑n
j=r+1 ξ

∗
j
2} ≤ λ ≤ 1, we have

∥∥f̂λ,r − f ♯r
∥∥2
n
≤ C

(
δ4ηn,r + λ2η +

n∑
j=r+1

ξ∗j
2
)
,

where C is a constant independent of n, γ.

Proof of Theorem 4.2. By applying Lemma D.1, we have

P
(
Vr(ι, δn,r)

)
≥ 1− ι,

which, together with Lemma D.2, implies∥∥f̂λ,r − f ♯r
∥∥2
n
≤ C

(
δ4ηn,r + λ2η +

n∑
j=r+1

ξ∗j
2
)
.

holds with probability at least 1− ι.

Finally, by applying the error decomposition (26) and the equality (27), one has∥∥f̂λ,r − f∗
∥∥2
n
≤ 2
∥∥f̂λ,r − f ♯r

∥∥2
n
+ 2
∥∥f ♯r − f∗

∥∥2
n

≤ C
(
δ4ηn,r + λ2η +

n∑
j=r+1

ξ∗j
2
)
,

which completes the proof for the L(Pn)-error. For the excess risk, it immediately follows from
Assumption 3.1.

D.2.1 Proof of Lemma D.1

Denote
Dr = Ê(f)− Ê(f ♯r)−

[
E(f)− E(f ♯r)

]
.

Similar to the proof of Lemma C.2, it is equivalent to proving that

Ar := sup
f∈Hn,r,b

|Dr|
Wr(f, δ)

≤ C log ι−1Rr(δ).

From (25), observe that for any f ∈ Hn,r,b

∥f∥Kr ≤
∥∥f − f ♯r

∥∥
Kr

+
∥∥f ♯r∥∥Kr

≤ u+ b.

Let b̃ := u + b, and we have that L(y, ·) satisfies the Lipschitz continuity over the function class
Hn,r,b with Lipschitz constant ML,b̃. Write M :=ML,b̃ for short.

Bounding E[Ar]. Following a similar treatment as that in (10), by using the Lemma G.2 and Lemma
G.3, we have

E[Ar] =E
[

sup
f∈Hn,r,b

|Dr|
Wr(f, δ)

]
≤2

√
2πM

n
E
[

sup
f∈Hn,r,b

∣∣∑n
i=1 wi(f(xi)− f ♯r(xi))

∣∣
Wr(f, δ)

]
.

(28)

Let
Fr(δ) :=

{
f = S⊤

x,r(α) :
∥∥f − f ♯r

∥∥
Kr

≤ 1,
∥∥f − f ♯r

∥∥
n
≤ δ,α ∈ Rn

}
.
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For any f ∈ Hn,r,b, there exists α ∈ Rn such that f = S⊤
x,r(α). Recall that f ♯r = S⊤

x,r(α
♯
r) from

(24).

Define the vector β := DrU
⊤(α−α♯

r), then f ∈ F(δ) is equivalent to the constraints on βr that∥∥D−1/2
r β

∥∥
2
≤ 1 and ∥β∥2 ≤ δ.

From (22), the last n− r elements of β are all zero, then any vector satisfying these two constraints
must belong to the ellipse class

Er :=
{
β = (β1, β2, . . . )

⊤ ∈ Rn :

r∑
j=1

β2
j

νj
≤ 2 with νj = min{δ2, µj}

}
.

Denote w = (w1, ..., wn)
⊤, we have

E
[

sup
f∈Fr(δ)

∣∣ n∑
i=1

wi(f(xi)− f ♯r(xi))
∣∣] = E

[
sup
β∈Er

√
n
∣∣⟨w,Uβ⟩

∣∣]
= E

[
sup
β∈Er

√
n
∣∣⟨w,β⟩∣∣]

(i)

≤ E
[
sup
β∈Er

√
n

√√√√ r∑
j=1

β2
j

νj

√√√√ r∑
j=1

νjw2
j

]

≤
√
2n

√√√√ 1

n

r∑
j=1

νj =
√
2nRr(δ),

where (i) follows from Cauchy-Schwarz inequality and the fact that the last n− r elements of β are
all zero.

Similar to the argument in the proof for Lemma C.2, by appropriately scaling, we obtain

E
[
Ar

]
≤ 2

√
2πM

n
E
[

sup
f∈Fr(δ)

∣∣ n∑
i=1

wi(f(xi)− f ♯r(xi))
∣∣] ≤ 4

√
πMRr(δ). (29)

Bounding Ar − E[Ar]. For each i ∈ [n] and any f ∈ Fr(δ), define sj = sign(f(xi)− f ♯r(xi)) if
j = i and sj = 0 if j ̸= i and let s = (s1, ..., sn)

⊤, then we have

|f(xi)− f ♯r(xi)| =
n∑

i=1

si(f(xi)− f ♯r(xi))

=
√
n⟨s,Uβ⟩ ≤

√
n

√√√√ r∑
j=1

β2
j

νj

√√√√ r∑
j=1

νjs2j ≤
√
n

√√√√ r∑
j=1

β2
j

νj

√√√√ r∑
j=1

νj =
√
2nRr(δ).

Consequently, for each i ∈ [n], we have∣∣L(yi, f(xi))− L(yi, f
♯
r(xi))

∣∣ ≤M |f(xi)− f ♯r(xi)| ≤M
√
2nRr(δ).

In addition, note that

1

n

n∑
i=1

E
[(
L(yi, f(xi))− L(yi, f

♯
r(xi))

)2]
≤ M2

n

n∑
i=1

(f(xi)− f ♯r(xi))
2 =M2∥f − f ♯r∥2n

=M2⟨Uβ,Uβ⟩ =M2⟨β,β⟩ ≤M2 max
i∈[r]

νj

r∑
i=1

β2
j

νj
≤ 2M2

r∑
i=1

νj = 2M2nR2
r(δ).
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By a similar rescaled method, we have∣∣L(yi, f(xi))− L(yi, f
♯
r(xi))

∣∣
Wr(f, δ)

≤ M |f(xi)− f ♯r(xi)|
Wr(f, δ)

=M
∣∣f̃(xi)− f ♯r(xi)

∣∣ ≤M
√
2nRr(δ),

and

1

n

n∑
i=1

E
[(L(yi, f(xi))− L(yi, f

♯
r(xi))

Wr(f, δ)

)2]
≤ M2

n

n∑
i=1

(f(xi)− f ♯r(xi)

Wr(f, δ)

)2
=
M2

n

n∑
i=1

(
f̃(xi)− f ♯r(xi)

)2
= 2M2nR2

r(δ).

Thus, the requirements in Lemma G.1 hold with η = M
√
2nRr(δ) and ζ2 = 2M2nR2

r(δ). Then,

by applying Lemma G.1, for any ι ∈ (0, 1), let t =
√

1
n log ι−1, it holds at with probability at least

1− ι that

Ar − E(Ar) ≤
√

log ι−1

n

(
4M2nR2

r(δ) + 4M
√
2nRr(δ)E(Ar)

)
+

2
√
2M

3
Rr(δ)log ι

−1

(i)

≤C̃log ι−1Rr(δ),

(30)

where C̃ =
√
(4M2 + 16

√
2πM2) + 2

√
2M
3 and (i) follows from (29).

Therefore, by combining (29) and (30), it holds at with probability at least 1− ι that

Ar ≤ Clog ι−1Rr(δ), (31)

where C =
√
(4M2 + 16

√
2πM2) + 2

√
2M
3 + 4

√
πM .

This completes the proof of Theorem 4.2. □

D.2.2 Proof of Lemma D.2

Denote

∆r =
c0
4
δ4ηn,r + 4u2λ2η + (c′0 + c0)

n∑
j=r+1

ξ∗j
2.

On the event Vr(ι, δn,r), we claim that∥∥f̂λ,r − f ♯r
∥∥2
n
≤ C∆r.

By the optimality of f̂λ,r and the feasibility of f ♯r , we have

Ê(f̂λ,r)− Ê(f ♯r) + λ∥f̂λ,r∥2Kr
− λ∥f ♯r∥2Kr

≤ 0.

Define the function class

Gr :=
{
f ∈ Hn,r :

∥∥f − f ♯r
∥∥2
n
≤ C∆r,

∥∥f − f ♯r
∥∥
K

≤ b
}
.

By following a similar argument as that in the proof of Lemma C.2, it suffices to prove that

Ê(f̃r)− Ê(f ♯r) + λ∥f̃r∥2K − λ∥f ♯r∥2K > 0, (32)

where f̃r is some function belonging to the boundary of Gr.
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It follows from Assumption 3.1 that

c0
∥∥f̃r − f∗

∥∥2
n
≤ E(f̃r)− E(f∗)

and
E(f ♯r)− E(f∗) ≤ c′0

∥∥f ♯r − f∗
∥∥2
n
.

Then, we have

c0
∥∥f̃r − f ♯r

∥∥2
n
− (2c′0 + 2c0)

∥∥f ♯r − f∗
∥∥2
n

(i)

≤ 2c0
∥∥f̃r − f∗

∥∥2
n
− 2c′0

∥∥f ♯r − f∗
∥∥2
n

≤ 2E(f̃r)− E(f∗)− 2(E(f ♯r)− E(f∗))

= 2
(
E(f̃r)− E(f ♯r)

)
, (33)

where (i) uses the elementary inequality.

Note that (33) establishes a connection between the excess risk and L(Pn)-norm at f ♯r , which allows
us to prove Lemma D.2 by using a similar argument as the proof for Lemma C.2.

Below we separately consider two cases: (i) ∥f̃r − f ♯r∥2n = C∆r and ∥f̃r − f ♯r∥Kr
≤ b; and (ii)

∥f̃r − f ♯r∥2n ≤ C∆r and ∥f̃r − f ♯r∥Kr
= b.

Case (i): On the event Vr(ι, δn,r), we have

Ê(f ♯r)− Ê(f̃r)

≤ E(f ♯r)− E(f̃r) + C log ι−1Rr(δn,r)Wr(f̃r, δn,r)

(i)

≤ −c0
2

∥∥f̃r − f ♯r
∥∥2
n
+ (c′0 + c0)

∥∥f ♯r − f∗
∥∥2
n
+ C log ι−1Rr(δn,r)

(
δ−1
n,r

∥∥f̃r − f ♯r
∥∥
n
+
∥∥f̃r − f ♯r

∥∥
Kr

)
(ii)
= −c0

2
C∆r + (c′0 + c0)

n∑
j=r+1

ξ∗j
2 + C log ι−1Rr(δn,r)

(
δ−1
n,r

√
C∆r +

∥∥f̃r − f ♯r
∥∥
Kr

)
,

where (i) follows from (33), and (ii) follows from ∥f̃r − f ♯r∥2n = C∆r and (27).

Recall that δn,r satisfies

C log ι−1Rr(δn,r) ≤
c0
2
δ2η+1
n,r

and we choose λ satisfying λ ≥ δ2n,r. Following a similar argument as the proof for Lemma C.2, we
have

Ê(f ♯r)− Ê(f̃r) ≤ −c0
2
C∆r + (c′0 + c0)

n∑
j=r+1

ξ∗j
2 +

c0
2
δ2ηn,r

√
C∆r +

c0
4
δ4ηn,r +

λ

4

∥∥f̃r − f ♯r
∥∥2
Kr
.

Since f̃r ∈ Hn,r, there exists α̃r ∈ Rn such that

f̃r = S⊤
x,r(α̃r).

Note that

λ
∥∥f ♯r∥∥2Kr

− λ
∥∥f̃r∥∥2Kr

= −2λ
〈
f ♯r , f̃r − f ♯r

〉
Kr

− λ
∥∥f̃r − f ♯r

∥∥2
Kr
. (34)

Following the similar treatment as that in the proof of Lemma C.2 with K replaced by Kr and α̃
replaced by α̃r, we have∣∣λ⟨f ♯r , f̃r − f ♯r⟩Kr

∣∣ ≤ uλη+
1
2

∥∥f̃r − f ♯r
∥∥
Kr

+ uλη
∥∥f̃r − f ♯r

∥∥
n

= uλη+
1
2

∥∥f̃r − f ♯r
∥∥
Kr

+ uλη
√
C∆r. (35)
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Put the pieces together, and repeat the similar argument as that in the proof of Lemma C.2, for all
γ ≥ 1

2 , we obtain

Ê(f ♯r)− Ê(f̃r) + λ∥f ♯r∥2Kr
− λ∥f̃r∥2Kr

≤ −c0
2
C∆r + (c′0 + c0)

n∑
j=r+1

ξ∗j
2 +

(c0
2
δ2ηn,r + 2uλη

)√
C∆r +

c0
4
δ4ηn,r + 4u2λ2η

and for sufficiently large C, we have

Ê(f ♯r)− Ê(f̃r) + λ∥f ♯r∥2Kr
− λ∥f̃r∥2Kr

< 0.

Case (ii): Repeat the similar argument as that in Case (i), on the event Vr(ι, δn,r) and by Assumption
3.1, we have

Ê(f ♯r)− Ê(f̃r)

≤ −c0
2

∥∥f̃r − f ♯r
∥∥2
n
+ (c′0 + c0)

n∑
j=r+1

ξ∗j
2 + C log ι−1Rr(δn,r)

(
δ−1
n,r

∥∥f̃r − f ♯r
∥∥
n
+
∥∥f̃r − f ♯r

∥∥
Kr

)
≤ (c′0 + c0)

n∑
j=r+1

ξ∗j
2 + C log ι−1Rr(δn,r)

(
δ−1
n,r

∥∥f̃r − f ♯r
∥∥
n
+
∥∥f̃r − f ♯r

∥∥
Kr

)
≤ (c′0 + c0)

n∑
j=r+1

ξ∗j
2 +

c0
2
δ2ηn,r

√
C∆r +

c0
4
δ4η+2
n,r λ−1 +

λ

4

∥∥f̃r − f ♯r
∥∥2
Kr

≤ (c′0 + c0)

n∑
j=r+1

ξ∗j
2 +

c0
2
δ2ηn,r

√
C∆r +

c0
4
δ4ηn,r +

λ

4

∥∥f̃r − f ♯r
∥∥2
Kr
,

where the last step holds with the choice of λ satisfying λ ≥ δ2n,r.

Combine with (34) and (35) and by applying the elementary inequality to obtain

Ê(f ♯r)− Ê(f̃r) + λ∥f ♯r∥2Kr
− λ∥f̃r∥2Kr

≤ (c′0 + c0)

n∑
j=r+1

ξ∗j
2 +

(c0
2
δ2ηn,r + 2uλη

)√
C∆r +

c0
4
δ4ηn,r + 4u2λ2η − λ

2

∥∥f̃r − f ♯r
∥∥2
Kr
.

By our choice that 0 < λ ≤ 1, λ ≥ max{δ2n,r,
∑n

j=r+1 ξ
∗
j
2}, we have

λ ≥ λ2η, λ ≥ δ4ηn,r, and λ ≥
n∑

j=r+1

ξ∗j
2.

Note that in this case, ∥f̃r − f ♯r∥2Kr
= b2. Therefore, repeat the similar argument as that in the proof

of Lemma C.2, for a sufficiently large constant b, the RHS of the above inequality is less than 0.

By combining Cases (i) and (ii), on the event Vr(ι, δn,r), we have∥∥f̂λ,r − f ♯r
∥∥2
n
≤ C∆r ≲ δ4ηn,r + λ2η +

n∑
j=r+1

ξ∗j
2,

which completes the proof. □

D.3 Proof of Corollary 4.3

From (27) ∥∥f ♯r − f∗
∥∥2
n
=

n∑
j=r+1

ξ∗j
2.
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For the approximation bias, according to the polynomial assumption that ξ∗j ≍ j−2γα−1, we have

∥f ♯r − f∗∥2n =

n∑
j=r+1

ξ∗j
2 ≤ C

n∑
j=r+1

j−2γα−1 ≤ C

∫ ∞

r

t−2γα−1dt ≤ Cr−2γα.

For the estimation error, we control the truncated kernel function first. Similar to the equality (20) for
R(δ), if r > d(δ), we have

Rr(δ) =

√√√√ 1

n
d(δ)δ2 +

1

n

r∑
d(δ)+1

µj .

Moreover, for the regular kernel class, we have Rr(δ) ≍
√
d(δ)δ2/n. If r ≤ d(δ), we have

Rr(δ) ≍
√
rδ2/n. Combining these two results, we have

Rr(δ) ≍
√

1

n
min{r, d(δ)}δ2. (36)

Next, we split the remaining proof by considering two cases: (i) 1
2 ≤ γ ≤ 1; and (ii) γ > 1.

Case (i): Recall that for the eigenvalues of K that satisfy µj ≍ j−α, we have d(δ) ≍ δ−2/α.
In addition, we notice that in this case, the best truncation level r to balance δ4η and r−2γα is
r ≍ d(δ). This means that whatever r is, we always have Rr(δ) ≍

√
1
nd(δ)δ

2. Hence, the kernel
complexity remains the same, and to avoid introducing additional approximation bias, the best choice
of truncation level turns out to be r = n. Then, following a similar argument as that in Section C.3,
we have δ2n,r ≤ C

( (log ι−1)2

n

) α
2γα+1 . Choosing the optimal parameter of λ ≍ δ2n,r yields

E(f̂λ,r)− E(f∗) ≍
∥∥f̂λ,r − f∗

∥∥2
n
≤ C

( (log ι−1)2

n

) 2γα
2γα+1

.

Case (ii): In this case, the best truncation level r to balance δ4η and r−2γα is r ≍ δ−2/(γα), which
implies r ≲ d(δ) so that from (36), we have

Rr(δ) ≍
√

1

n
rδ2 ≍

√
1

n
δ

2αγ−2
αγ .

Therefore, the solution to the inequality (3) can be upper bounded by the solution to

C log ι−1

√
1

n
δ

2αγ−2
αγ ≤ c0

2
δ3.

Solving this inequality yields

δ2n,r ≤ C
( (log ι−1)2

n

) γα
2γα+1

,

and we can choose

r ≍
( n

(log ι−1)2

) 1
2γα+1

.

The desired upper bound in the case γ > 1 follows by choosing λ ≍ δ2n,r ≍ r−2γα. By combining
these two cases, we complete the proof. □

E Proof of Theorem 4.4

We consider the special case that the data is generated according to the mean regression model

Yi = f∗(xi) + εi with εi ∼ N(0, 1)

for each i ∈ [n]. For this mean regression model, f∗ is the minimizer of the population risk E(f)
with squared loss specified.
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For any δ > 0 and γ ≥ 1
2 , define the ellipse class

Eγ(δ) :=

ξ = (ξ1, ..., ξn)
⊤ ∈ Rn :

n∑
j=1

ξ2j
(min{δ2, µj})2γ

≤ u2

 .

For ξ ∈ Rn, define the rescaled norm

∥ξ∥2Eγ
:=

n∑
j=1

ξ2j
(min{δ2, µj})2γ

.

Then, it is equivalent to write

Eγ(δ) =
{
ξ = (ξ1, ..., ξn)

⊤ ∈ Rn : ∥ξ∥2Eγ
≤ u2

}
.

Recall that the statistical dimension is defined as

d(δ) = min
{
j ∈ [n] : µj ≤ δ2

}
.

Our main proof is based on the following lemma that states a result concerning metric entropy.
Lemma E.1. For any δ > 0 and γ ≥ 1

2 , there is a collection of 1
2δ

2γ-separated points {ξ1, ..., ξM}
in Eγ(δ) such that logM ≥ 1

32d(δ).

By using Lemma E.1, there exists a 1
2δ

2γ-separated collection of points {ξ1, ..., ξM} in Eγ(δ) such
that logM ≥ 1

32d(δ). Given {ξ1, ..., ξM}, we construct f1, ..., fM as f i = S⊤
x (UD−1ξi). Note

that the TA scores corresponding to f i are given by

U
⊤Sx(f

i) = U
⊤
KUD

−1ξi = ξi.

Hence, {ξ1, ..., ξM} ⊂ Eγ(δ) implies f i ∈ Hb
K for each i ∈ [M ]. Moreover, we have

∥f i − f j∥2n = ∥DU
⊤(UD

−1ξi −UD
−1ξj)∥22 = ∥ξi − ξj∥22 ≥ δ4γ

4
,

which implies that {f1, ..., fM} is 1
2δ

2γ-separated in Hb
K .

Since ξi ∈ Eγ(δ), we also have

∥f i∥2n = ∥ξi∥22 =

n∑
k=1

ξik
2
= δ4γ

n∑
k=1

ξik
2

δ4γ
≤ u2δ4γ .

Therefore, by using the triangle inequality, we have

∥f i − f j∥2n ≤ 2u2δ4γ for each i, j ∈ [M ].

Let ρk be the underlying distribution of the collected data {(xi, yi)}ni=1 corresponding to fk. Then,
there holds

KL(ρi∥ρj) (i)
=

n∑
i=1

KL(N(f i(xi), 1)∥N(f j(xi), 1))
(ii)
=

n

2
∥fi − fj∥2n ≤ u2nδ4γ

where KL(·∥·) denotes the KL divergence between two distributions, (i) follows from the fact that
KL(P1 ⊗P2∥Q1 ⊗Q2) = KL(P1∥Q1) + KL(P2∥Q2) and ⊗ denoting the product measure, and (ii)
follows from the fact KL(N(µ1, σ

2)∥N(µ2, σ
2)) = (µ1−µ2)

2

2σ2 .

Below is devoted to establishing the minimax lower bound by applying the standard Fano’s method
(see, for instance, Proposition 15.12 in Wainwright (2019)). To be specific, for δ > 0 and for any
estimator f̃ based on the data {(xi, yi)}ni=1, we have

inf
f̃

sup
f∗∈Hb

K

P

(
∥f̃ − f∗∥2n ≥ δ4γ

4

)
≥1− max1≤i,j≤M KL(ρi∥ρj) + log 2

logM

≥1− u2nδ4γ + log 2

d(δ)/32
. (37)

34



Below we separately consider two cases: i) 1
2 ≤ γ ≤ 1; and ii) γ > 1.

Case i: For 1
2 ≤ γ ≤ 1, we take δ = (4c)

1
4γ δn, where δn is the critical radius defined as the smallest

solution to (2) in Section 3. Plugging into (37) yields

inf
f̃

sup
f∗∈Hb

K

P
(
∥f̃ − f∗∥2n ≥ cδ4γn

)
≥1− 4cu2nδ4γn + log 2

d((4c)
1
4γ δn)/32

≥1− 4cu2nδ4γn + log 2

dn/32
, (38)

where dn = d(δn) and the last inequality holds since d(δ) is decreasing as δ grows and (4c)
1
4γ δn ≤ δn

for sufficiently small c.

Recall that for 1
2 ≤ γ ≤ 1, δn is smallest solution to

C log ι−1R(δ) ≤ c0
2
δ2γ+1.

Moreover, for the regular kernel, we have R(δ) ≍
√

1
nd(δ)δ

2, which implies

δ2γ+1
n ≲

√
1

n
d(δn)δ2n =

√
1

n
dnδ2n.

Then, dn ≥ c1nδ
4γ
n for some universal constant c1. Plugging this inequality into (38) yields

inf
f̃

sup
f∗∈Hb

K

P
(
∥f̃ − f∗∥2n ≥ cδ4γn

)
≥1− 4cu2nδ4γn + log 2

c1nδ
4γ
n

≥ 1

2
,

where the last step holds for sufficiently small c.

Case ii: For γ > 1, we take δ = (4c)
1
4γ δ

1/γ
n,r , where δn,r is the critical radius defined as the smallest

solution to (3) in Section 4. It follows from (37) that

inf
f̃

sup
f∗∈Hb

K

P
(
∥f̃ − f∗∥2n ≥ cδ4n,r

)
≥1−

4cu2nδ4n,r + log 2

d((4c)
1
4γ δ

1/γ
n,r )/32

≥ 1−
4cu2nδ4n,r + log 2

d(δ
1/γ
n,r )/32

.

Recall that for γ > 1, δn,r is smallest solution to

C log ι−1Rr(δ) ≤
c0
2
δ3.

According to (36), if r ≤ d(δ), we have

Rr(δ) =

√
1

n
rδ2.

Hence, we have

δ3n,r ≲

√
1

n
rδ2 =

√
1

n
rδ2,

which leads to r ≥ c2nδ
4
n,r for some universal constant c2. Then, if we choose r ≍ d(δ

1/γ
n,r ) satisfying

d(δ
1/γ
n,r ) ≤ d(δn,r), we have

inf
f̃

sup
f∗∈Hb

K

P
(
∥f̃ − f∗∥2n ≥ cδ4n,r

)
≥1−

4u2cnδ4n,r + log 2

Cc2nδ4n,r/32
≥ 1

2
,

where the last step holds for sufficiently small c. This completes the proof of Theorem 4.4. □
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Remark E.2. In the proof for the lower bound, we consider the Gaussian noise case. However, for
the upper bound, we require Y ⊂ [−U,U ] when the squared loss is specified. The bounded range
assumption essentially requires the random noise to be uniformly bounded. Nevertheless, the upper
bound established in this paper can be also extended to the sub-Gaussian noise case with a slight order
sacrifice of some log factors in the upper bound. Specifically, suppose that {εi}ni=1 are i.i.d. sub-
Gaussian variables: that is, there exist positive constants c, σ2 such that P

(
|εi| > t

)
≤ c exp(−σ2t2)

for all t ≥ 0. Then, by the union bound, we have

P
(

max
i=1,...,n

|εi| > t
)
≤ P

( n⋃
i=1

{
|εi| > t

})
≤

n∑
i=1

c exp(−σ2t2) = cn exp(−σ2t2).

Consequently, for any ι ∈ (0, 1), by taking t = σ−1
√
log
(
cn
ι

)
, it holds with probability at least

1− ι that

max
i=1,...,n

|εi| ≤ σ−1

√
log
(cn
ι

)
≲

√
log

1

ι
+
√
log n.

Further note that by the reproducing kernel property and our assumption that supx,x′ K(x,x′) ≤ κ2,
we have that for any x ∈ X

|f∗(x)| = |⟨f∗,K(x, ·)⟩K | ≤ ∥f∗∥K∥K(x, ·)∥K ≤ κ∥f∗∥K . (39)

Therefore, for the sub-Gaussian noise case, we can immediately complete the proof by replacing U

with Uι,n = κ∥f∗∥K + C(
√

log 1
ι +

√
log n). As a result, the upper bound for the sub-Gaussian

noise case will align with that for the uniform bounded noise case up to some log factors.

E.1 Proof of Lemma E.1

Lemma E.1 states a result concerning metric entropy, and its proof is motivated by that of Lemma 4
in Yang et al. (2017), which only focuses on the just-aligned regime γ = 1

2 .

For each j ∈ [M ], let

ξj =

(
δ2γ√
2d(δ)

wj
1,

δ2γ√
2d(δ)

wj
2, ...,

δ2γ√
2d(δ)

wj
d(δ), 0, ..., 0

)⊤

, (40)

where
w1 = (w1

1, ..., w
1
d(δ))

⊤, ...,wM = (wM
1 , ..., wM

d(δ))
⊤ ∼ N(0, Id(δ))

are a collection of independent standard Gaussian vectors. We claim that with a probability greater
0, we can find a set {ξ1, ..., ξM} generated in the above manner that are δ2γ-separated in E(δ) and
M ≥ e

1
32d(δ).

On one hand, to show that {ξ1, ..., ξM} ⊂ Eγ(δ), we need to equivalently prove ∥ξi∥2Eγ
≤ u2 for each

i ∈ [M ]. Indeed, for each index i ∈ [M ], since δ2 ≤ µj for each j ≤ d(δ), we have ∥ξi∥2Eγ
=

∥wi∥2
2

2d(δ) .
Note that ∥wi∥22 ∼ χ2

d(δ). Then, by using the tail bound for chi-square distribution (Example 2.11 in
Wainwright (2019)), we have

P
(
∥ξi∥2Eγ

≤ u2
)
=P
(

1

d(δ)
∥wi∥22 − 1 ≤ 2u2 − 1

)
≥P
(

1

d(δ)
∥wi∥22 − 1 ≤ 7

)
≥ 1− e−

49d(δ)
8 , (41)

where we use the assumption that u ≥ 2. By applying the union bound, we have

P
(
ξi∥2Eγ

≤ u2 for all i ∈ [M ]
)
≥ 1−Me−

49d(δ)
8 . (42)
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On the other hand, note that ∥ξi − ξj∥22 = δ4γ

2d(δ)∥w
i −wj∥22. Since wi and wj are independent, we

have (wi −wj)/
√
2 ∼ N(0, Id(δ)). Then, similar to the inequality (41), we also have

P
(
∥ξi − ξj∥22 ≥ δ4γ

4

)
=P
(

1

2d(δ)
∥wi −wj∥22 ≥ 1

4

)
=P
(

1

2d(δ)
∥wi −wj∥22 − 1 ≥ −3

4

)
≥ 1− e−

9d(δ)
128 ,

and by applying the union bound, we have

P
(
∥ξi − ξj∥22 ≥ δ4γ

4
for all i, j ∈ [M ]

)
≥ 1−M2e−

9d(δ)
128 . (43)

Combining (42) and (43) yields

P
(
∥ξi∥2Eγ

≤ u2 and ∥ξi − ξj∥22 ≥ δ4γ

4
for all i, j ∈ [M ]

)
≥ 1−Me−

49d(δ)
8 −M2e−

9d(δ)
128 ,

where the left side is positive by setting logM = d(δ)/32.

We thus conclude the statement in Lemma E.1. □

F More discussions on Assumption 3.1

As discussed in Section 3, Assumption 3.1 is a relatively mild condition for many widely used loss
functions. It is clear that the squared loss satisfies Assumption 3.1 with c0 = c′0 = 1. For the Huber
loss Lτ (y, f(x)) = (y − f(x))2 if |y − f(x)| ≤ τ , and τ |y − f(x)| − 1

2τ
2 otherwise, since it is

locally equivalent to the squared loss function, thus it satisfies Assumption 3.1 under some mild tail
conditions on the noise term Y − f∗(x) (Wainwright, 2019).

For the Hinge loss L(y, f(x)) = max{1 − yf(x), 0} that is designed for the margin-based classi-
fication problem, as mentioned in (Wainwright, 2019), whether Assumption 3.1 holds hinges on
the distribution of the covariates x, and the hypothesis function class F . We remark that for the
classification problem, the theoretical guarantee for 0-1 loss is also crucial. Once the 0-1 loss is
considered, one possible routine for establishing the theoretical results for 0-1 loss is to follow a
similar technical treatment as that on Page 17 of Lai et al. (2024) with some slight modifications,
where the bridge between the excess risk w.r.t 0-1 loss and mean squared error is established, and
based on the result in Lai et al. (2024), the excess risk only gets a slower rate compared to the rates
established in our paper.

For other loss functions, including the check loss, Logistic loss, and exponential loss, we provide
a more detailed discussion and deduce some sufficient conditions to ensure the satisfaction of
Assumption 3.1.

F.1 Check loss

Let ρτ (t) = t(τ − I{t≤0}) and Lτ (y, f(x)) = ρτ (y − f(x)). We next verify Assumption 3.1 if the
following assumption holds.

Assumption F.1. Denote FY |X=x be the conditional distribution on Y given X = x. We assume
that there exist two constants c0, c′0 such that

2c0|y| ≤
∣∣FY |X=xi

(f∗(xi) + y)− FY |X=xi
(f∗(xi))

∣∣ ≤ 2c′0|y|.

Proposition F.2. Under Assumption F.1, for any b > 0, both the local c0-strong convexity and the
local c′0-smooth condition are satisfied.

Proof. For each i ∈ [n], denote w = Y − f∗(xi) and v = f(xi) − f∗(xi). By using Knight’s
identity (Equation B.3 in Belloni & Chernozhukov (2011)) that ρτ (w − v) − ρτ (w) = −v(τ −
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I{w≤0}) +
∫ v

0
(I{w≤t} − I{w≤0})dt , we have

E
[
ρτ (Y − f(xi))− ρτ (Y − f∗(xi))

]
= −E[(f(xi)− f∗(xi))(τ − I{Y≤f∗(xi)})] + E

[ ∫ f(xi)−f∗(xi)

0

(I{Y≤f∗(xi)+t} − I{Y≤f∗(xi)})dt
]
.

(44)

Recall the definition of f∗, we have

E[(f(xi)− f∗(xi))(τ − I{Y≤f∗(xi)})] = (f(xi)− f∗(xi))E[(τ − I{Y≤f∗(xi)})] = 0.

Now we consider the second term in the right hand of (44). It follows from Fubini’s theorem that

E
[ ∫ f(xi)−f∗(xi)

0

(I{Y≤f∗(xi)+t} − I{Y≤f∗(xi)})dt
]

=

∫ f(xi)−f∗(xi)

0

E[I{Y≤f∗(xi)+t} − I{Y≤f∗(xi)}]dt

=

∫ f(xi)−f∗(xi)

0

(
FY |X=xi

(f∗(xi) + t)− FY |X=xi
(f∗(xi))

)
dt.

According to Assumption F.1, there holds∫ f(xi)−f∗(xi)

0

(
FY |X=xi

(f∗(xi) + t)− FY |X=xi
(f∗(xi))

)
dt

≥
∫ f(xi)−f∗(xi)

0

2c0|t|dt = c0(f(xi)− f∗(xi))
2,

and ∫ f(xi)−f∗(xi)

0

(
FY |X=xi

(f∗(xi) + t)− FY |X=xi
(f∗(xi))

)
dt

≤
∫ f(xi)−f∗(xi)

0

2c′0|t|dt = c′0(f(xi)− f∗(xi))
2.

Then, we have

c0(f(xi)− f∗(xi))
2 ≤E

[ ∫ f(xi)−f∗(xi)

0

(I{Y≤f∗(xi)+t} − I{Y≤f∗(xi)})dt
]

≤c′0(f(xi)− f∗(xi))
2.

The desired conclusion immediately follows by summing from 1 to n. This completes the proof of
Proposition F.2.

F.2 Logistic loss

The Logistic loss L(y, f(x)) = log(1 + exp(−yf(x))) is specified for the binary classification
problem, where the response y takes values in {−1, 1}. Simple algebra yields the first and second
derivatives of L(y, θ) in the second argument that

∂L

∂θ
=

−y exp(−yθ)
1 + exp(−yθ)

and

∂2L

∂θ2
=

y2

(exp(−yθ/2) + exp(yθ)/2)2
.

It is clear that for any θ ∈ R, we have∣∣∣∣∂L∂θ
∣∣∣∣ ≤ 1 and

∣∣∣∣∂2L∂θ2
∣∣∣∣ ≤ 1

4
,
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implying that L(y, ·) is 1-Lipschitz continuous and the c′0-local smoothness condition holds with
c′0 = 1

4 .

Recall from (39). For f ∈ HK and x ∈ X satisfying |f(x)−f∗(x)| ≤ D, denoteB = κ∥f∗∥K+D,
we have ∣∣∣∂2L

∂θ2

∣∣∣
θ=f(x)

∣∣∣ ≥ 1

e−B + eB + 2
,

implying the locally strong convexity condition holds with c0 = 1
e−B+eB+2

.

F.3 Exponential loss

The Exponential loss L(y, f(x)) = exp(−yf(x)) is used in the AdaBoost algorithm designed for
the classification problem, where y ∈ {−1, 1}. Note that the first and second derivatives of L(y, θ)
in the second argument is given by

∂L

∂θ
= −ye−yθ and

∂2L

∂θ2
= e−yθ.

For any θ ∈ R, we have
∣∣∂L
∂θ

∣∣ ≤ 1, which implies that L is 1-Lipschitz continuous. For the locally
strong convexity condition and local smoothness condition, with a similar argument as that for the
Logistic loss, we have that

e−B ≤
∣∣∣∣∂2L∂θ2

∣∣∣∣ ≤ eB .

This ensures that the local strong convexity condition holds with c0 = e−B and the local smoothness
condition holds with c′0 = eB .

G Supporting Lemmas.

The following lemma presents Talagrand’s concentration inequality for random elements taking
values in some space Z (Bousquet, 2002; Lv et al., 2018). Detailed proofs can be found in Bousquet
(2002).

Lemma G.1 (Talagrand’s concentration inequality). Let Z1, . . . , Zn be independent random elements
taking values in some space Z equipped with norm ∥ · ∥. Let F be a class of real-valued measurable
functions acting on Z . If we have

max
i∈[n]

∥f(Zi)∥ ≤ η and
1

n

n∑
i=1

Var(f(Zi)) ≤ ζ2, ∀f ∈ F ,

define the empirical process Z := supf∈F | 1n
∑n

i=1(f(Zi)− Ef(Zi))|, then for any t > 0

P
(
Z ≥ E(Z) + t

√
2 (ζ2 + 2ηE(Z)) +

2ηt2

3

)
≤ exp(−nt2).

The following lemma is known as the symmetrization technique, which provides a fundamental
tool to bound from above the expectation of the empirical process (Wainwright, 2019). A typical
version of the symmetrization lemma is to consider the Rademacher variables {ε1, ..., εn}, i.e.
P(εi = 1) = P(εi = −1) = 1

2 (Proposition 4.11 in Wainwright (2019)). In our proof, we consider a
sequence of standard Gaussian variables to utilize the rotation invariance of the Gaussian vector.

Lemma G.2 (Symmetrization). Let X1, ..., Xn be a sequence of random variables and w1, ..., wn ∼
N(0, 1) denote the standard Gaussian variables independent of X1, ..., Xn. For any measurable
function class F , we have

E
[ 1
n
sup
f∈F

∣∣ n∑
i=1

(f(Xi)− E[f(Xi)])
∣∣] ≤ √

2πE
[ 1
n
sup
f∈F

∣∣ n∑
i=1

wif(Xi)
∣∣]
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Proof. By applying Proposition 4.11 in Wainwright (2019), we have

E
[ 1
n
sup
f∈F

∣∣ n∑
i=1

(f(Xi)− E[f(Xi)])
∣∣] ≤ 2E

[ 1
n
sup
f∈F

∣∣ n∑
i=1

εif(Xi)
∣∣].

Therefore, it remains to prove that

E
[ 1
n
sup
f∈F

∣∣ n∑
i=1

εif(Xi)
∣∣] ≤√π

2
E
[ 1
n
sup
f∈F

∣∣ n∑
i=1

wif(Xi)
∣∣]

Indeed, we have

Eε

[ 1
n
sup
f∈F

∣∣ n∑
i=1

εif(Xi)
∣∣] (i)

=

√
π

2
Eε

[ 1
n
sup
f∈F

∣∣Ew

( n∑
i=1

|wi|εif(Xi))
∣∣]

(ii)

≤
√
π

2
Eε

[ 1
n
Ew sup

f∈F

∣∣ n∑
i=1

|wi|εif(Xi)
∣∣]

=

√
π

2
E
[ 1
n
sup
f∈F

∣∣ n∑
i=1

|wi|εif(Xi)
∣∣]

(iii)
=

√
π

2
E
[ 1
n
sup
f∈F

∣∣ n∑
i=1

wif(Xi)
∣∣],

where we use Ew to denote taking expectation with respect to w1, ..., wn and use a similar notation

Eε for taking expectation with respect to ε1, ..., εn, (i) follows from E[|wi|] =
√

2
π , (ii) uses Jensen’s

inequality and (iii) is due to the fact that wi has the same distribution with εiwi for each i. This
completes the proof of Lemma G.2.

The following lemma can be found in Wainwright (2019), which allows us to utilize the symmetriza-
tion technique for the Lipschitz function family.
Lemma G.3 (Gaussian contraction inequality). For any set T ∈ Rd, and let {ϕj : R → R, j =
1, ..., d} be any family of M -Lipschitz functions such that ϕj(0) = 0 for j ∈ [d], we have

E

sup
θ∈T

∣∣∣ d∑
j=1

wjϕj(θj)
∣∣∣
 ≤ 2ME

sup
θ∈T

∣∣∣ d∑
j=1

wjθj

∣∣∣
 .

H Additional Simulations

H.1 Assessing the Performance of the Truncated Kernel Method

In this section, we conduct a numerical investigation to assess the performance of the truncated
kernel method (TKM) and validate our theoretical results in the main text. The experimental design
consists of four distinct examples, including kernel quantile regression, kernel ridge regression, kernel
support machine, and kernel logistic regression. In each example, we consider both the univariate and
multi-dimensional cases. In specific, we apply Sobolev kernel K(x, x′) = min{x, x′} for univariate
cases and Laplacian kernel K(x,x′) = exp(−∥x−x′∥1) for multi-dimension cases. The elements
of multi-dimensional covariates are independently sampled from the normal distribution, while in the
univariate case, the covariate is sampled from the uniform distribution on [0, 1]. Aligned with the
previous notation, TKM means truncated kernel-based method, and KM means standard kernel-based
method. All the experiments are repeated 50 times and all the tuning parameters are tuned to the best
for both methods. All experiments were conducted on the same hardware setup: Intel i9 13900K
CPU @ 2.20GHz with 128 GB memory.
Example 1 (Kernel quantile regression). In this illustrative example, we begin by conducting a
comprehensive analysis of multivariate kernel quantile regression and postpone the univariate case to
the subsequent discussion. We consider the data-generating scheme that y = f0(x)+σ(ϵ−Φ−1(τ)),
where σ = 3, ϵ ∼ N(0, 1) and Φ denotes CDF function of standard normal distribution. Here,
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Figure 2: Averaged log MSE and log empirical excess risk for KM and TKM under check loss with
varying sample size n.
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Figure 3: Averaged log MSE and log empirical excess risk for KM and TKM under check loss with
varying truncation level rl = log(r/n).

we set f0(x) = sin 2(x1 + x2 + x3) with x = (x1, x2, x3)
⊤ and vary the quantile level τ from

{0.3, 0.5, 0.7}.

We first compare the numerical performance between TKM and KM in estimating the true function
f0 under different sample sizes n. The averaged numerical results in terms of logarithmic mean
square error (MSE) and empirical excess risk are illustrated in Figure 2.

It is clear that under different quantile levels, TKM always outperforms KM. More interestingly, the
decline rate of TKM is significantly faster than that of KM, which validates our theoretical findings
that under the over-aligned regime γ > 1, TKM achieves a faster learning rate than KM as illustrated
in Corollary 4.3.

In the following study, we fix the sample size as n = 500 to investigate how the numerical perfor-
mance of estimating f0(x) is affected by the truncation level r by varying the logarithmic ratio of the
truncation level r to the sample size n, rl = log(r/n). The averaged numerical results in terms of
logarithmic MSE and empirical excess risk are illustrated in Figure 3.

From Figure 3, we can see that the curves in all the scenarios have a steep decrease at first, then
turn to a gradual increase, and finally become stabilizing with little vibration. This confirms our
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Figure 4: Averaged MSE and empirical excess risk for KQR and truncated KQR in the multivariate
case.
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Figure 5: Averaged MSE and empirical excess risk vs rl = log(r/n); the sample size is set to
n = 500.

theoretical findings on the truncation level r and illustrates that a properly chosen truncation level is
necessary to boost the estimation accuracy of the truncated kernel-based method.

Now we demonstrate univariate simulation for kernel quantile regression. We assume the true
function to be f0(x) = sin(10x) and underlying model to be y = f0(x) + σ(ϵ − Φ−1(τ)), where
σ = 3, ϵ ∼ N(0, 1) and Φ is CDF function of standard normal distribution.

As shown in Figures 4 and 5, for the univariate kernel quantile regression, we observe that, across
different quantiles and various performance measures such as MSE or empirical excess risk, TKM
consistently outperforms KM. This observation also confirms the advantages of TKM compared to
KM.

Example 2 (Kernel ridge regression). In the kernel ridge regression, we consider the model y =
f0(x) + ϵ, where f0(x) = sin(x), ϵ ∼ N(0, 1) for univariate x. While for multi-dimension scenario,
we assume dimension p = 3 and we generate data from y = sin(2(x1 + x2 + x3)) + ϵ, where
ϵ ∼ N(0, 0.5). Another setting is similar to quantile regression.

As shown in Figure 6, it can be observed that in both the univariate and multivariate scenarios, TKM
outperforms KM significantly. Furthermore, in multi-dimensional cases, the advantage of TKM is
even more pronounced. From the right panel, it can be seen that although the optimal value of r

42



200 500 1000 1500 2000
n

4.00

3.25

2.50

1.75

1.00

Lo
g 

M
SE

(a)

KM
TKM

6.0 4.5 3.0 1.5 0.0
 lr

2.5

2.0

1.5

1.0

0.5

Lo
g 

M
SE

(b)

TKM

200 500 1000 1500 2000
n

2.75

2.50

2.25

2.00

1.75

1.50

Lo
g 

M
SE

(c)

KM
TKM

4 2 0
 lr

2.00

1.75

1.50

1.25

1.00

0.75

Lo
g 

M
SE

(d)

TKM

Figure 6: Simulation for kernel ridge regression. (a) univariate covariate case: average accuracy
vs n. (b) univariate covariate case: average accuracy vs rl = log(r/n); the sample size is set to
n = 500. (c) multivariate covariate case: average accuracy vs n. (d) multivariate covariate case:
average accuracy vs rl = log(r/n); the sample size is set to n = 500.
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Figure 7: Simulation for kernel support vector machine. (a) univariate covariate case: average
accuracy vs n. (b) univariate covariate case: average accuracy vs rl = log(r/n); the sample size is
set to 200. (c) multivariate covariate case: average accuracy for vs n. (d) multivariate covariate case:
average accuracy vs rl = log(r/n); the sample size is set to 200.

differs, they all reach their minimum at a certain point within the range of [0, 1]. This verifies our
theoretical conclusion.

Example 3 (Kernel support vector machine). In the kernel support vector machine, we denote
the sign of x as sign(x) and generate data through the model y = sign(f0(x) + ϵ). In univariate
case f0(x) = sin(10x) and for the multi-dimensional counterpart f0(x) = 3 sin(x1 + x2 + x3).
ϵ ∼ N(0, 1.5) in both case.

As shown in Figure 7, a similar trend can be observed in both methods, where TKM outperforms
KM under different sample sizes. Furthermore, the advantage of TKM becomes more pronounced in
multi-dimensional cases. As for the error curves against rl, it can be seen that both univariate and
multivariate scenarios reach their minimum value within the range of [0,1].
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Figure 8: Simulation for kernel logistic regression. (a) univariate covariate case: average accuracy
vs n. (b) univariate covariate case: average accuracy vs rl = log(r/n); the sample size is set to
n = 100. (c) multivariate covariate case: average accuracy vs n. (d) multivariate covariate case:
average accuracy vs rl = log(r/n); the sample size is set to n = 100.
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Figure 9: Kernel SVM; averaged classification error rate and log excess risk for KM and TKM versus
α.

Example 4 (Kernel logistic regression). In kernel logistic regression, we generate data from y ∼
Bernoulli(p), where p = 1

1+exp(−f0(x))
, where f0(x) = sin(15x) in univariate case and f0(x) =

3 sin(x1 + x2 + x3) for the multi-dimensional case.

As shown in Figure 8, its exhibited curve trend is similar to that of kernel support machines. This
validates that under different model assumptions, if a specific r is chosen, TKM performs much better
than KM.

H.2 SVM with varying Model Complexities

In this part, we aim to investigate the problem how once the hinge loss is specified (corresponding to
SVM), how the RKHS with varying model complexities affect the numerical performance of KM and
TKM. Specifically, the experiment setup is the same as that in Section H.1, including the selection
of kernel, repeat times, and tuning method for λ and r except that the underlying true function is
set as f∗(x) = sin(11x) and (xi, yi)

300
i=1 is independently drawn from yi = sign(f∗(xi) +N(0, 4))

with xi =
i−1
300 , i = 1, . . . , 300. The obtained numerical results are reported in Figure 9. It is thus

clear from Figure 9 that the error curves for the hinge loss align with those for the check loss, which
further confirms our theoretical findings and also empirically supports that our theoretical analysis
can apply to SVM.

44



3.50 3.15 2.80 2.45 2.10 1.75 1.40 1.05 0.70 0.35 0.00
rl

2.0

1.8

1.6

1.4

1.2

1.0

0.8

0.6

Lo
g 

M
SE

=0.3

KM
TKM

3.50 3.15 2.80 2.45 2.10 1.75 1.40 1.05 0.70 0.35 0.00
rl

2.0

1.8

1.6

1.4

Lo
g 

em
pi

ri
ca

l e
xc

es
s 

ri
sk

=0.3

TKM
KM

3.50 3.15 2.80 2.45 2.10 1.75 1.40 1.05 0.70 0.35 0.00
rl

2.0

1.8

1.6

1.4

1.2

1.0

0.8

0.6

Lo
g 

M
SE

=0.5

KM
TKM

3.50 3.15 2.80 2.45 2.10 1.75 1.40 1.05 0.70 0.35 0.00
rl

1.8

1.6

1.4

1.2

Lo
g 

em
pi

ri
ca

l e
xc

es
s 

ri
sk

=0.5

TKM
KM

3.50 3.15 2.80 2.45 2.10 1.75 1.40 1.05 0.70 0.35 0.00
rl

2.0

1.8

1.6

1.4

1.2

1.0

0.8

0.6

Lo
g 

M
SE

=0.7

KM
TKM

3.50 3.15 2.80 2.45 2.10 1.75 1.40 1.05 0.70 0.35 0.00
rl

2.0

1.8

1.6

1.4

Lo
g 

em
pi

ri
ca

l e
xc

es
s 

ri
sk

=0.7

TKM
KM

Figure 10: Kernel quantile regression; averaged log MSE and log empirical excess risk for KM and
TKM versus log ratios (rl = log(r/n)) of the truncation level r to the sample size n across different
quantile levels.

H.3 Exponential Decay Case

Note that our technical analysis can also cover the exponential decay case that µj ≍ exp(−αj) and
ξ∗j

2 ≍ exp(−(2γα+ β)j) with α, β > 0. Precisely, under the exponential decay setting, the explicit
upper bound of the approximation bias term can be derived by

n∑
j=r+1

ξ∗j
2 ≤ C

∫ ∞

r

exp(−(2γα+ β)t)dt =
C

2γα+ β
exp(−(2γα+ β)r).

Note that if r ≥ logn
(2γα+β) , we always have

∑n
j=r+1 ξ

∗
j
2 ≲ 1

n . Consequently, we can also derive the
corresponding convergence rates under these scenarios, which suggests that both TKM and KM can
attain an optimal rate whatever γ is if r is greater than a certain threshold. We also conduct some
numerical experiments to verify this finding.

Specifically, the experimental setup is the same as Example 1 in Section H.1 except that we set
f∗(x) = sin(6x) and the Gaussian kernel is used. The experiment result, presented in Figure 10,
shows that TKM initially performs worse than KM for the small value of r. Whereas, as r surpasses
a threshold, TKM maintains comparable performance to KM. This observation precisely aligns with
our theory for the exponential decay scenario.

H.4 Determining r via Cross-validation

Previously, all the tuning parameters were tuned to the best for both competitors. In this part, we will
also provide the numerical experiment with the tuning parameters selected in a data-driven fashion.
Specifically, we consider the kernel quantile regression that the data is independently generated
from the model y = f∗(x) +

√
2(ε − Φ−1(τ)) with f∗(x) = sin(6x), x = 0, 1

n , . . . ,
n−1
n , and

ε ∼ N(0, 1). In this experiment, we use the Laplacian kernel K(x,x′) = exp(−||x − x′||1), and
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the parameters r and λ are tuned by 5-fold cross-validation. The obtained numerical results using the
data-driven choice of r are attached in the following tables. Clearly, it can be observed that TKM
consistently outperforms KM, which further confirms our theoretical findings that TKM can achieve
superior performance across various scenarios.

Table 3: Averaged MSE for different n (τ = 0.3).

n 100 200 300 400
KM 0.583± 0.257 0.220± 0.104 0.165± 0.071 0.121± 0.374

TKM 0.367± 0.174 0.188± 0.078 0.140± 0.004 0.099± 0.029

Table 4: Averaged Empirical excess risk for different n (τ = 0.3).

n 100 200 300 400
KM 0.323± 0.039 0.208± 0.040 0.175± 0.036 0.155± 0.059

TKM 0.289± 0.066 0.192± 0.060 0.161± 0.021 0.128± 0.018

Table 5: Averaged MSE for different n (τ = 0.5).

n 100 200 300 400
KM 0.246± 0.137 0.177± 0.129 0.096± 0.032 0.114± 0.069

TKM 0.195± 0.087 0.153± 0.133 0.075± 0.033 0.079± 0.042

Table 6: Averaged Empirical excess risk for different n (τ = 0.5).

n 100 200 300 400
KM 0.214± 0.062 0.189± 0.052 0.176± 0.047 0.140± 0.028

TKM 0.168± 0.039 0.146± 0.048 0.158± 0.055 0.123± 0.027

Table 7: Averaged MSE for different n (τ = 0.7).

n 100 200 300 400
KM 0.434± 0.272 0.273± 0.099 0.163± 0.086 0.121± 0.072

TKM 0.325± 0.195 0.200± 0.079 0.134± 0.072 0.098± 0.054

Table 8: Averaged Empirical excess risk for different n (τ = 0.7).

n 100 200 300 400
KM 0.178± 0.053 0.201± 0.050 0.145± 0.032 0.119± 0.026

TKM 0.159± 0.053 0.155± 0.053 0.122± 0.018 0.106± 0.023
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to make their results reproducible or verifiable.
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