
HGDL: Heterogeneous Graph Label Distribution
Learning

Yufei Jin†, Heng Lian⋄, Yi He⋄, Xingquan Zhu†∗
†Dept. of Elec. Eng. & Computer Sci., Florida Atlantic University, Boca Raton, FL 33431, USA

⋄Dept. of Data Science, William & Mary, Williamsburg, VA 23185, USA
yjin2021@fau.edu; hlian01@wm.edu; yihe@wm.edu; xzhu3@fau.edu

Abstract

Label Distribution Learning (LDL) has been extensively studied in IID data appli-
cations such as computer vision, thanks to its more generic setting over single-label
and multi-label classification. This paper advances LDL into graph domains and
aims to tackle a novel and fundamental heterogeneous graph label distribution
learning (HGDL) problem. We argue that the graph heterogeneity reflected on node
types, node attributes, and neighborhood structures can impose significant chal-
lenges for generalizing LDL onto graphs. To address the challenges, we propose a
new learning framework with two key components: 1) proactive graph topology
homogenization, and 2) topology and content consistency-aware graph transformer.
Specifically, the former learns optimal information aggregation between meta-paths,
so that the node heterogeneity can be proactively addressed prior to the succeeding
embedding learning; the latter leverages an attention mechanism to learn consis-
tency between meta-path and node attributes, allowing network topology and nodal
attributes to be equally emphasized during the label distribution learning. By using
KL-divergence and additional constraints, HGDL delivers an end-to-end solution for
learning and predicting label distribution for nodes. Both theoretical and empirical
studies substantiate the effectiveness of our HGDL approach. Our code and datasets
are available at https://github.com/Listener-Watcher/HGDL.

1 Introduction

Definite supervision signals are often postulated in learning settings [3, 4]; yet, data generated from
the real world tend to present inherent ambiguity, imposing challenges on assertive classifiers that
predict instances into single or multiple classes. Label Distribution Learning (LDL) [5, 6, 7, 8, 9] has
emerged to navigate label ambiguity by pursuing a mapping from instances to their class distributions.
Each distribution quantifies the descriptive degrees of various classes given a specific instance.

However, the existing LDL studies mainly [10, 6, 7, 11] focus on independent and identically
distributed (IID) data, such as images or texts, which do not generalize well on graphs. In fact, the
topological structure underlying instances may provide invaluable information for label distribution
learning. For example, in the task of urban planning, recent learning models have been employed to
predict the point of interests (POIs) of local regions [12, 13, 14, 15]. LDL can further extend this task
by providing the regional distributions over all POIs, which lends a finer-granular delineation of urban
regional functionality instead of single- or multi-class classification. To wit, for a region that mixes
four POIs (classes): housing, healthcare, education and worship, unlike other models assertively
classify it into one or multiple POI(s), LDL model can provide insights of the functional degrees of
all four POIs in this region, as shown in Figure 1. Nevertheless, existing LDL studies overlook the

∗Corresponding author

38th Conference on Neural Information Processing Systems (NeurIPS 2024).

https://github.com/Listener-Watcher/HGDL

urban topology, which can be rendered from, e.g., the taxi services across regions [2], missing out
critical city traffic patterns that are highly correlated with regional functionalities. For instance, the
regions with balanced POI distributions (e.g., R2 and R3) are less likely to form connections with
other nodes compared to regions heavily skewed towards a single class (e.g., R4), as their residents
enjoy fewer needs to travel to other regions for services such as education and healthcare.

s1

R3

R1

R4
c1 c2 c3 c4

s2

c1 c2 c3 c4

c1 c2 c3 c4

c1 c2 c3 c4

s3

L2

T1

L1

service

service

Leisure

Transit

Leisure

R2

service

c1 Housing

c2 Healthcare

c3 Education

c4 Worship

Classes (POIs)

residence

residence

residence

residence

? ? ? ?

Figure 1: Motivating example of HGDL
study, where each node is a local urban re-
gion [1] and edges represent taxi services [2]
commuting between regions. Heterogeneous
node types indicate disparate land use, includ-
ing residence (R), service (S), leisure (L), and
transit (T), among which R nodes are of our
interest. Colored R nodes are with ground
truth, which delineate their distributions over
multiple point-of-interests (POIs), and each
POI is deemed as a class/label. Our HGDL
problem is to predict the label distribution of
uncolored R nodes, enabling a precise delin-
eation of regional urban functionality.

In this paper, we aim to enable and generalize the label
distribution learning paradigm in networked data. Two
technical challenges confront our study. First, real-world
graphs are mostly heterogeneous, comprising diverse types
of nodes for better expressiveness. Graph heterogeneity
complicates the message-passing between nodes of a spe-
cific type (e.g., residence), as the label distributions of
those nodes are influenced by their neighboring nodes that
may vary in terms of types, content, and topological fea-
tures. Simply leveraging node embeddings generated from
message-passing for LDL will thus not work well [16, 17].
To aid, although meta-path aggregation [18] is seemingly
viable, it necessitates extensive domain knowledge and ex-
pertise to craft meta-paths for each node type with respect
to their label distributions; given the combinatorial num-
ber of possible meta-paths in large heterogeneous graphs,
searching for the optimal meta-path for LDL is costly,
laborious, and time-demanding.

Second, graph topology and nodal features may suggest
inconsistent label distributions, where nodes sharing simi-
lar contents are positioned far apart on the graph topology.
The inconsistency is furthered in heterogeneous graphs,
where nodes of the same type often connect through other
intermediary types, resulting in substantial topological
distances between them. Unlike traditional LDL that fo-
cuses on instance vectors only, an effective LDL model on
graphs require harmonizing nodal contents with topolog-
ical structures for a unified representation. The impact of
distantly positioned nodes within a graph is substantially
diminished, consequently steering the LDL model to pri-
oritize individual nodal vectors, leading to compromised
node representations in which the informative patterns embedded in their neighborhood structures
are overlooked. Such patterns, which may significantly enhance label distribution predictions as
illustrated in Figure 1, are neglected, undermining the LDL model effectiveness.

To overcome the challenges, we propose a new learning framework, coined Heterogeneous Graph
label Distribution Learning (HGDL). Specifically, to tame the graph heterogeneity, HGDL learns the
optimal graph topology of the target nodes from multiple homogeneous structures searched with
various meta-path schemes through a tailored attention mechanism. The node embeddings are then
generated by harmonizing the nodal features and the learned meta-path graph using a transformer
architecture. A joint optimization objective is crafted based on the distance between true and predicted
label distributions of the target nodes from their resultant embeddings, which unifies the learning of
meta-path graph topology and the feature-topology harmonization function in an end-to-end fashion.

A key innovation of HGDL is that it changes existing heterogeneous graph learning paradigm from
reactive (meaning that aggregation of different meta-paths are done after embedding learning from
individual meta-path), to be proactive (meaning that aggregation are done before embedding learning).
Combined with attention and transformer mechanisms to adjust individual meta-paths’ interplay,
and align with nodal features, HGDL deliver significantly better performance over alternatives. Our
theoretical analysis assures that HGDL outperforms that of using an arbitrary meta-path graph, and
HGDL’s topology and feature consistency learning sparsifies network connectivity, intermediately
encouraging tightens the error-bound, resulting in better model generalization.

Specific contributions of this paper are as follows:

2

1. This study pioneers the exploration of LDL problem in heterogeneous graphs. The learning
problem enjoys practical implications such as for urban functionality delineation (presented
in Sec 6.1) and, to our knowledge, has not yet been explored by any contemporary research.

2. We propose an end-to-end HGDL learning approach to jointly learn an optimal meta-path
graph topology and align it with nodal features for consistent message-passing. Our ap-
proach is surprisingly simple yet effective, with its performance evidenced by theoretical
underpinnings. Our approach and its analysis are presented in Sections 4 and 5, respectively.

3. Empirical study has been carried out over five graph datasets that span domains of bio-
medicine, scholarly network, business network, and urban planning. Experimental results
substantiate the effectiveness of our approach over rival models, documented in Section 6.

2 Related Work
Label Distribution Learning (LDL) strives to learn a mapping from input to a distribution that
profiles the descriptive degrees of classes associated with it [5, 10, 6, 7, 11]. Existing LDL methods
fall into three categories, namely, problem transformation (PT), algorithm adaption (AA), and
specialized algorithm (SA). PT methods transform LDL as multiple single-label learning tasks, using
with label probabilities [19], and AA approaches revise mainstream learning algorithm to fit the LDL
loss. SA algorithms are most commonly used because LDL learning is driven by new algorithm
designs. Label correlation has been found to benefit the label distribution learning, where approaches
were proposed to encode label correlation to a distance to measure the similarity of any two labels [6].
Later, low-rank approximation is used to construct label correlation matrix to capture the global label
correlations [7] Instead of exploring common features for all labels, label-specific features [10] for
each label are used to enhance the LDL model. Exploring feature-label and label-label correlation [9]
has recently been studied in generalizable label distribution learning for cross domain learning. A
Gaussian label distribution learning method [11] employs a parametric model underpinned by an
optimization strategy assessing KL-divergence distance between Gaussian distributions, followed by a
regression loss to normalize the KL-divergence distance. Noticing the difficulty to obtain ground-truth
label distributions, Label Enhancement [20] is commonly used to recover label distributions from
logical labels. Our research further push LDL to be generalized onto heterogeneous graphs, which
have been overlooked by existing research. Although a recent study [21] explored using LDL in
topological spaces, it focused on homogeneous graphs only and cannot work in the setting of more
than one node type. Thus, the studied problem in [21] and its challenges differ from ours.

Heterogeneous Graph Neural Networks have drawn extensive attention in graph learning [16,
17, 22, 18, 23, 24], because the graph heterogeneity imposes considerable challenge to model the
interplay among various node types, features, labels, and network topology. Using meta-path to
aggregate information from different types of nodes/edges is a common approach for heterogeneous
graph learning. HetGNN [17, 18] designs graph neural networks to encode features for each type
of neighbors and then aggregates neighbors’ representation with respect to different types. This
provides a way for GNN to deal with heterogeneous graph structures and node attributes. HAN [25]
introduces attention mechanisms to heterogeneous graph learning, where attentions are applied to
embedding features learned from homogeneous networks, each created from a meta-path. By doing
so, attentions serve as a weighting mechanism automatically determining the importance of each
meta-path for learning. Using transformers for heterogeneous networks has also been investigated
recently. For example. HGT [26] designs node- and edge-type dependent parameters to characterize
the heterogeneous attention over each edge, allowing this method to learn representations for different
types of nodes and edges. SeHGNN [27] proposes a transformer based semantic fusion module,
allowing feature fusion from different meta-paths. Our research is fundamentally different from
existing work in two aspects: 1) we study LDL learning for heterogeneous networks, and 2) we
propose a new way to aggregate and align information for heterogeneous network.

3 Preliminaries
Notations. A heterogeneous graph is denoted by G = {V,E,X, Y } associated with a node type
mapping ϕ : V 7→ T v and an edge type mapping φ : E 7→ T e, with T v and T e the predefined
and finite sets of nodes and edges, respectively, and |T v| ≥ 2. Denote tι ∈ T v as the node type
of our interest, and suppose in total n nodes are of this type. Without loss of generality, we have
ϕ(v1) = . . . = ϕ(vn) = tι, and Vtι = {v1, . . . , vn} ⊂ V . We deem these n nodes as our target
nodes, using a feature matrix X ∈ Rn×m to describe their nodal contents, where each node contains

3

. . .

P1: R-S-R

Pk: R-L-T-L-R

meta-path

meta-path

~

. . .

lreg=DKL([:, i] || U[1, k])

ϴ[:,1] · LapNorm(A1)

ϴ[:,k] · LapNorm(Ak)

1

2

3
Sec 4.1

Sec 4.2
Sec 4.3

ZQ(ZK)T

R3

R2

R1

R4

R3

R2

R1

R4

Meta-Path
Attention

Scores

||

R1

R1

R3

R3

R2

R2

R4

R4

R1

R1

R3

R3

R2

R2

R4

R4

4 5

Target Node Vectors

Predicted Distributions Y

Feature Attention Adjacency

KL-divergence

Attention Regularizer

R1

R1

R3

R3

R2

R2

R4

R4

R1

R1

R3

R3

R2

R2

R4

R4

Ground Truth Y

̂

. . .

. . .

.
.
.

.
.
.

. . .

.
.
.

.
.
.

Figure 2: The proposed HGDL framework. Using k meta-paths, the heterogeneous network in 1⃝ is
converted to k homogeneous meta-path graphs in 2⃝. Topology homogenization in 3⃝ proactively
aggregates all k meta-path graphs, through learnable weight matrix W i

0 ∈ Rn×f for each graph, and
finally obtain attention Θ ∈ Rn×k across all graphs. Topology and feature consistency-aware graph
transformer in 4⃝ harmonizes the local and global consistencies. The objective function in 5⃝ unifies
loss and regularization terms to guide nodal label distribution learning.

an m-dimensional feature vector. A meta-path P is defined as a relational sequence in form of
t1

r1→ t2 . . .
ri→ ti

ri+1→ ti+1 . . .→tl (abbreviated as P = (t1t2 . . . titi+1 . . . tl), where (titi+1) ∈ T e

describes the composite relation between a pair of node types. By defining a meta-path P with
same first and last node type as the target node type, i.e. t1 = tl = tι, we can use P to convert a
heterogeneous network as a meta-path graph concerning only the target node type, which shall be
discussed later in Section 4.1.

Problem Statement. In our HGDL problem, the goal is to learn a predictive mapping ℏ : (G,X) 7→
Y , where Y ∈ [0, 1]q is a distribution of descriptive labels over q classes. Let yi,j ∈ [0, 1] be the
probability that the node vi belongs to the j-th class, we have

∑q
j=1 yi,j = 1. In this work, we follow

a transductive learning regime [28] to allow the ground-truth label distributions known for a subset of
target nodes Vtr ⊂ Vtι during training. Our learned mapping ℏ is expected to generalize well so can
make accurate prediction on the remaining target nodes Vtι \ Vtr.

4 HGDL: The Proposed Approach

Overview. The proposed HGDL approach comprises three key components, as illustrated in Fig-
ure 2. First, for the target nodes belonging to the node type tι of interest, HGDL generates multiple
homogeneous meta-path graphs based on their original locations on the heterogeneous graph through
meta-paths; the optimal graph topology of this node type is then learned from the homogeneous
graphs via attention mechanism (Sec 4.1). Second, HGDL learns the embeddings of the target nodes by
harmonizing the information sourced from their feature space and the learned optimal topology using
a transformer-like neural architecture (Sec 4.2). Third, HGDL minimizes the distance between the
predicted and ground-truth label distributions based on the learned node embeddings. We tailor an
objective function to unify the three components into one end-to-end optimization problem, in which
the optimal graph topology, the harmonization function of the feature and topological information,
and the target node label distribution are jointly learned (Sec 4.3).

4.1 Optimal Graph Topology Homogenization

For a heterogenous graph, by leveraging meta-path idea, multiple different meta-path homogeneous
adjacency matrix can be obtained and they can be treated as multiple sources. Graph learning is
about exchanging and updating information from neighbor nodes. A proper neighbor set is therefore
important for a target node to learn correct distribution. Given multiple sources, each node will have

4

multiple neighbor sets to choose from for updating. Traditionally, embeddings are learned for all the
neighbor sets, and then aggregation over embeddings is learned. Semantics over embeddings are hard
to interpret and learn compared with directly learned from different neighbor sets.

To generate a meta-path graph from the original heterogeneous graph, interactions between the meta-
path and the heterogeneous graph path are used. Two nodes vi and vj are connected in the meta-path
graph, if there exists a path connecting them in the heterogeneous graph, and the path follows the meta-
path. Given a meta path P = (t1 . . . titi+1 . . . tl), we say that a path p = (v1, . . . , vi, vi+1, . . . , vl)
in graph G follows the meta-path P , if ∀i, ϕ(vi) = ti. Take graph in Fig. 1 as an example. Given
meta-path P = (r s r), which defines node type t1 = r, t2 = s, t3 = r. Path p = (r2, s1, r3) in the
heterogeneous graph follows P because all nodes in the path p satisfy ϕ(r2) = t1 = r, ϕ(s1) = t2 =
s, ϕ(r3) = t3 = r. Because path p = (r2, s1, r3) follows the meta-path P , an edge is used to connect
r2 and r3 in the homogeneous meta-path graph constructed from P . Indeed, each meta-path defines a
specific way of information propagation in a heterogeneous network, with resulted meta-path graph
capturing unique relationships between target nodes. While defining a single meta-path is relatively
easy, there often exists many meta-paths; aggregating a variety of meta-path graphs to support the
downstream learning task is non-trivial.

After searching the meta-paths connecting the nodes of target type tι, we generate a set of graphs
A = {A1, . . . Ak}, in which each adjacency Ai ∈ {0, 1}n×n captures the topological structure of
the i-th meta-path-based homogeneous graph. Denoted by Ai[p, q] = 1 means that two target nodes
vp and vq, with ϕ(vp) = ϕ(vq) = tι, are connected by a meta-path; otherwise, Ai[p, q] = 0. Unlike
existing studies [25] that yield target node embeddings through reactive meta-path aggregation, where
they aggregate local neighborhood information for each Ai ∈ A to capture k separate meta-path
topologies, our HGDL learns the optimal graph topology from A in a proactive fashion. Intuitively,
HGDL learns node-level attention scores for various homogeneous graphs Ai, to respect the fact that
the neighboring nodes may pass messages with varying importance levels in local neighborhoods,
while the meta-paths walking across nodes of types other than the target tι. Revisit the motivating
example demonstrated in Fig 1 where the residence nodes are deemed as the target, the meta-path
linking through the service nodes dominates, as the residence nodes are more likely to be linked
through service nodes instead of Transit and Leisure nodes. Specifically, the attention scores for the
nodes in every Ai ∈ A are learned in a GAT regime [29], defined as:

Θ = softmax
(∥∥

Ai∈A

{
LapNorm(Ai)W

i
0

}
W

′

0

)
, Ã =

k∑
i=1

Θ[:, i] · LapNorm(Ai), (1)

where LapNorm(Ai)= D
− 1

2
i (Ai + I)D

− 1
2

i ∈ Rn×n denotes Laplacian normalization of Ai, with
Di being Ai’s degree matrix and I is an identity matrix. This term mitigates the imbalanced degree
distribution of the meta-path graphs. Denoted by W i

0 and W
′

0 are the learnable GAT parameters,
where W i

0 ∈ Rn×f maps the meta-path topology of Ai onto an f -dimensional semantic space. The
operator ∥Ai∈A{·} concatenates all k resultant node embedding matrices from meta-path graphs A,
thereby producing an Rn×k·f lookup matrix, where each node is associated with a k·f -dimensional
embedding representation, and each latent f -dimension captures the local neighborhood structure of
this node. Then, W

′

0 ∈ Rk·f×k summarize the f -dimensional latent space into one coefficient through
convex combination, resulting in attention logits, which are fed into softmax(·) = exp(·)/

∑
i exp(·)

to yield the attention matrix Θ = [0, 1]n×k. Take the i-th column vector of Θ, denoted by Θ[:, i] ∈
[0, 1]n, we have the attention scores of n target nodes for message-passing in the i-th meta-path graph
Ai. We thus can deem Ã in Eq. (1) as the learned optimal graph topology, which is an element-wise
linear combination of k meta-path topologies with the attention scores broadcast onto all n nodes.
Note, Ã is asymmetric, namely Ã[p, q] ̸= Ã[q, p], ∀p ̸= q. This is because that the attention score
of information aggregation from node vp to vq may be different from that from vq to vp, as their
respective local neighborhood topologies naturally differ.

4.2 Local Topology and Global Feature Consistency-Aware Graph Transformer

After obtaining the optimal topology Ã from all meta-path graphs Ai, the next question is how to
harmonize it with the feature information to better the target node embeddings. The benefit of such
harmonization is evident. Revisiting the urban network in Fig 1, we can envision that a pair of
residence nodes tend to be associated with similar embedding vectors because they enjoy two types

5

of consistencies: i) local neighborhood topology: their residents tend to travel to similar functional
regions for leisure or service purposes, and ii) global feature space: they share similar contents such
as house types and number of residing families. These local and global consistencies complement
with each other, as the residence nodes having similar contents can be topologically faraway from
each other on the urban network, and vice versa.

To harmonize the local and global consistencies, we are inspired by the recent graph transformers [30]
and observe that the feature attention suggests a global adjacency matrix, which can be incorporated
into the message-passing process. We define the graph transformer block as follows.

Z = ReLU(ÃXW1), Ã2 = LapNorm
(

softmax
(
(ZQ)(ZK)⊤ ⊙ Ã

))
, (2)

where Z ∈ Rn×h is the node embeddings learned from the optimal graph topology Ã through
local information aggregation, parameterized by W1 ∈ Rm×h. Denoted by Ã2 ∈ [0, 1]n×n is the
normalized feature attention adjacency, where Q and K ∈ Rh×h map the embedding matrix Z onto
the latent query and key spaces, respectively, such that (ZQ)(ZK)⊤ calculates an n× n node-level
attention matrix with respect to the feature space information. Instead of normalizing the attention
score by the hidden dimension h, we penalize the feature attention adjacency through an element-wise
production ⊙ with the optimal meta-path topology Ã. The intuition behind Eq. (2) is that, for each
target node, it aggregates information from those neighboring nodes only if their meta-path topology
and feature space are both with high attention scores. In addition, Eq. (2) functions similarly to the
edge dropout [31]; in lieu of randomly removing edges, we enforce a neighbor-set intersection, where
the information is only propagated from the neighbors on which the feature space and meta-path
topology both agree. Such an intersection sparsity thus lowers the degree of the resultant attention
adjacency, thereby uplifting the learning efficacy, which will be substantiated later in Sec 5. Finally,
denoted by H = LeakyReLU(Ã2ZW2) ∈ Rn×h are the resultant node embeddings, capturing both
local topology and global feature consistencies, which is parameterized by weight W2 ∈ Rh×h.

4.3 An End-to-End HGDL Objective Function

Based on the resultant target node embeddings H , we can predict their label distributions as Ŷ =

softmax(Ã2HW3) ∈ [0, 1]n×q, where Ŷi = {ŷi,j}qj=1 is the predicted label distribution of node vi,
among which ŷi,j denotes its predicted probability of belonging to the class j. The unified objective
of our HGDL framework is defined as follows.

min
{W i

0}k
i=1,W

′
0 ,W1,W2,W3,K,Q

ℓHGDL = DKL(Y ∥Ŷ)− γ · Ω,

DKL(Y ∥Ŷ) =

n∑
i=1

q∑
j=1

yi,j · log
yi,j
ŷi,j

, Ω =

n∑
i=1

DKL(Θ[i, :] ∥ U [1, k]), (3)

where the KL-divergence DKL(Y ∥Ŷ) gauges the discrepancy between the predicted and groundtruth
label distributions of the target nodes [32]. The regularization term Ω gauges the distance between
the attention scores of the i-th node across k meta-path typologies (denoted by Θ[i, :]) and a uniform
distribution U [1, k]. We note the minus sign before Ω, thus minimizing this term encourages a larger
KL-distance, thereby avoiding the trivial uniform attention distribution (meaning that for each node,
the learned attention weights from different meta-paths are encouraged to be as different as possible).
γ is a tuned parameter to balance the two terms.

5 Analysis

We follow the PAC-Bayes regime to analyze the theoretical performance of our HGDL algorithm by
deriving its generalization error bound. We proceed analysis based on the meta-path graph adjacency
matrices A = {A1, . . . Ak}, which are searched from the heterogeneous graph G. Throughout the
analysis, we assume the nodal feature representations to be residing in an ℓ2-ball of radius B. We
argue this a mild assumption, because in implementation we can leverage the batch-norm layers to
normalize the resultant node embeddings, such that ∥hj

i∥2 ≤ B, where hj
i denotes the i-th node’s

embedding resulted from the j-th hidden layer.

6

Let LG(ℏ) and L(X,Ã)(ℏ) denote the generalization risk over a graph distribution G and the empirical

risk on the target node samples and the learned meta-path topology (X, Ã), respectively, where
(X, Ã) ∈ G

iid∼ G. We can define:

LG(ℏ) = E(X,Ã)∼GEyi∼Y

[
ℓ
(
ℏ(X, Ã)[i], yi

)]
,

L(X,Ã)(ℏ) =
1

n

n∑
i=1

[
ℓ
(
ℏ(X, Ã)[i], yi

)]
,

where ℓ(·, ·) is a convex distance metric between two distributions that follows |ℓ(u, p)− ℓ(u, q)| ≤
(
√
p+ 1)∥p− q∥2, ∀u, p, q ∈ Rm. Denoted by ℏ(X, Ã)[i] ∈ Rq and yi ∈ [0, 1]q the predicted and

ground-truth label distribution of the i-th target node, respectively. Implementing KL-divergence, we
have ℓ

(
ℏ(X, Ã)[i], yi

)
=
∑q

j=1 ℏ(X, Ã)[i, j] ln(ℏ(X, Ã)[i, j]/yi,j), where the predicted probability
that node i belongs to the j-th class is denoted by ℏ(X, Ã)[i, j]. By analyzing the performance of the
learned meta-path graph topology Ã, we find that:

Theorem 1. Let E[L(X,Ai)(ℏ)] be the empirical risk of using the i-th meta-path graph Ai ∈ A for
label distribution prediction. With the SGD step-size η, we have

L(X,Ã)(ℏ) ≤ min
Ai∈A

E[L(X,Ai)(ℏ)] +
ln k

ηn
+

η

8
.

Remark 1. Theorem 1 indicates that the empirical risk of HGDL is no larger than the minimum
empirical risk incurred by training label distribution learner on the optimal meta-path graph, as
the error bound on the RHS reduces to O(1/n) with constant k and η. With Stochastic Gradient
Descent (SGD) optimizer, larger number of target nodes n will lead to more training updates over
them, diminishing the O(1/n) bound faster. This finding substantiates the tightness of our meta-path
learning strategy for the optimal graph topology Ã.

Due to page limits, we defer the proof of Theorem 1 and the rest analysis to the Supplement. We then
analyze the generalization error bound of HGDL and find that:

Theorem 2. Let ℏ ∈ H : X ×G → Rq be an l-layer message-passing neural network with maximum
hidden dimension k, of which the i-th layer is parameterized by Wi. Then for any δ, γ,B > 0 and
l > 1, with probability at least 1− δ we have

LG (ℏ)− L(X,Ã) (ℏ) ≤
2(
√
2q +

√
2)q√

n
max

i∈[n],j∈[l]

∥∥∥hj
i

∥∥∥
2

+ 3b

√
log 2/δ

2n
+O

(√
B2dl−1l2k log(lk)D(Wi)+log nl

δ

γ2n

)
,

where D(Wi) =
∏l

i=1 ∥Wi∥22 ·
∑l

i=1

(
∥Wi∥2F / ∥Wi∥22

)
bounds the hypothesis space and b is a

constant.

Remark 2. We remark several key observations from Theorems 1 and 2. First, the generalization
capability of the algorithm is negatively impacted by a higher dimensional label space q. Second,
the robustness of HGDL decreases with larger B values, which gauges the magnitude of perturbations
thus the inherent high data variance. Third, as the graph neural network architecture becomes deeper
(larger l) or wider (larger k), the generalization risk increases, suggesting the potential risk of model
overfitting. Forth, with larger n, the generalization error bound diminishes, which indicates that the
meta-path topology can be better delineated with an increased number of target nodes on the graph.

Remark 3. By combining Theorems 1 and 2, we observe that the generalization error bound of
HGDL using Ã outperforms that of using an arbitrary meta-path graph Ai. Further, it is easy to
verify that the maximum degree of Ã, denoted by d, is smaller than that of Ai, denoted by di, i.e.,
d ≤ di. ∀i ∈ [k]. This rationalizes our graph transformer design in Sec 4.2, where the enforced
topology and feature consistency in Eq. (2) sparsifies network connectivity, thereby intermediately
encourages better model generalization.

7

6 Experiments

6.1 Experiment Setup

Dataset # node type # nodes # edges # features # labels

DRUG 4 40,786 1,737,890 191 28
ACM 5 20,200 104,976 1,903 14
DBLP 4 27,325 148,246 8,920 4
YELP 4 8,052,542 7,905,197 19 9

URBAN 4 1,434 42,857 155 10

Table 1: Summary of dataset statistics.Benchmark Datasets To our best
knowledge, no heterogeneous graph dataset with ground-true label distributions currently exists.
To level the comparison study, we prepare five datasets with ground-truth node label distributions
using existing heterogeneous graphs, including DBLP [33], ACM [33], YELP, DRUG [34], and
URBAN [1]. Table 1 summarizes the data statistics. A detailed description on the dataset creation
and preprocessing, as well as their domain and label semantic meanings, has been deferred to the
Supplement B due to space limitation.

Compared Models In total six competitors are identified for comparative study. As no model
directly resolving the HGDL problem exists, we employ the state-of-the-art heterogeneous graph neural
networks and integrate them KL-divergence loss to learn label distributions of nodes. They include:
1) GCNKL: A baseline that uses graph constructed from each meta-path to train a vanilla GCN [35],
using KL-divergence as loss function, and reports the best meta-path result; 2) HANKL: This baseline
uses HAN [25] to integrate embedding from different meta-paths; and 3) SeHGNNKL: This baseline
uses SeHGNN [27], a transformer based approach, to aggregate meta-paths embedding with KL-
divergence loss function. For ablation study, we further include three variants reduced from our
proposed HGDL method, which include: 4) HGDL¬TH: it removes HGDL’s topology homogenization
(Sec 4.1), which learns embedding from each meta-path graph and reports the best meta-path result;
5) HGDL¬transformer: it uses GCN instead of the transformer (Sec 4.2) to learn embedding to validate
HGDL’s transformer for embedding learning; and 6) HGDLED: it replaces HGDL’s topology and feature
consistence-aware graph transformer (Sec. 4.2) by using a random edge dropout method [31].

Evaluation Metrics To measure the discrepancy between two distributions, i.e., the predicted and
true label distributions of target nodes, we identify six metrics: Cosine Distance (COD), Canberra
Distance (CAD), Chebyshev Distance (CHD), Clark Distance (CLD); Intersection Score (IND), and
Kullback-Leibler Divergence (KL). Their definitions and calculations are deferred to Supplement B.

Dataset Model COD↓ CAD↓ CHD↓ CLD↓ IND↑ KL↓ Win/Tie/Lose

DRUG

GCNKL 0.220±.025 9.209±.740 0.245±.031 1.963±.134 0.676±.029 0.484±.075 4/2/0
HANKL 0.279±.023 10.084±.823 0.268±.027 2.155±.148 0.632±.025 0.579±.055 6/0/0
SeHGNNKL 0.286±.018 10.178±.781 0.267±.020 2.166±.143 0.640±.016 0.600±.059 6/0/0
HGDL 0.168±.019 9.179±.574 0.217±.017 1.957±.114 0.710±.020 0.392±.044 –
HGDL¬transformer 0.199±.014 9.371±.679 0.235±.017 2.004±.137 0.687±.021 0.492±.059 4/2/0
HGDL¬TH 0.212±.023 9.510±.602 0.240±.018 2.029±.110 0.671±.020 0.462±.050 4/2/0
HGDLED 0.204±.026 9.602±.882 0.239±.028 2.040±.162 0.681±.030 0.574±.085 4/2/0

ACM

GCNKL 0.217±.007 13.101±.014 0.337±.012 3.527±.057 0.652±.013 0.842±.072 5/1/0
HANKL 0.212±.005 13.114±.009 0.371±.008 3.485±.023 0.618±.008 0.765±.015 5/1/0
SeHGNNKL 0.247±.061 13.141±.052 0.371±.082 3.492±.061 0.617±.090 0.924±.166 4/2/0
HGDL 0.203±.004 13.098±.006 0.351±.004 3.408±.035 0.637±.004 0.753±.025 –
HGDL¬transformer 0.211±.008 13.099±.010 0.358±.011 3.403±.027 0.630±.012 0.777±.031 1/5/0
HGDL¬TH 0.223±.006 13.130±.015 0.361±.019 3.423±.022 0.631±.020 0.879±.034 3/3/0
HGDLED 0.216±.007 13.106±.005 0.364±.006 3.375±.041 0.624±.007 0.801±.020 5/1/0

DBLP

GCNKL 0.031±.004 2.852±.009 0.091±.006 1.647±.002 0.908±.006 0.114±.011 6/0/0
HANKL 0.025±.002 2.819±.012 0.071±.004 1.633±.007 0.929±.004 0.082±.008 5/1/0
SeHGNNKL 0.086±.140 2.887±.170 0.155±.208 1.624±.049 0.842±.214 0.252±.397 0/6/0
HGDL 0.019±.002 2.796±.014 0.057±.005 1.633±.005 0.943±.005 0.057±.011 –
HGDL¬transformer 0.025±.002 2.828±.004 0.074±.005 1.642±.001 0.925±.005 0.090±.008 6/0/0
HGDL¬TH 0.020±.002 2.808±.013 0.062±.005 1.637±.005 0.937±.005 0.070±.011 3/3/0
HGDLED 0.023±.001 2.819±.005 0.070±.003 1.639±.003 0.929±.003 0.082±.006 6/0/0

YELP

GCNKL 0.342±.014 7.180±.125 0.458±.015 2.558±.031 0.456±.016 1.037±.044 0/6/0
HANKL 0.453±.163 5.894±1.808 0.569±.158 2.226±.461 0.379±.118 5.832±6.577 3/2/1
SeHGNNKL 0.404±.106 6.298±1.757 0.522±.111 2.343±.438 0.413±.078 3.993±5.426 0/6/0
HGDL 0.342±.015 7.177±.128 0.457±.016 2.558±.031 0.459±.015 1.034±.041 –
HGDL¬transformer 0.342±.014 7.175±.128 0.458±.016 2.557±.031 0.458±.015 1.035±.039 0/6/0
HGDL¬TH 0.342±.015 7.173±.126 0.458±.017 2.556±.031 0.458±.016 1.046±.051 0/6/0
HGDLED 0.348±.021 7.221±.174 0.463±.020 2.565±.038 0.453±.019 1.070±.078 0/6/0

URBAN

GCNKL 0.485±.025 8.318±.037 0.536±.014 2.773±.009 0.331±.011 1.386±.069 2/4/0
HANKL 0.497±.017 8.337±.029 0.538±.010 2.777±.008 0.326±.005 1.407±.054 4/2/0
SeHGNNKL 0.497±.019 8.336±.029 0.537±.011 2.776±.008 0.327±.006 1.409±.061 4/2/0
HGDL 0.467±.023 8.315±.041 0.517±.012 2.775±.009 0.356±.010 1.340±.065 –
HGDL¬transformer 0.497±.013 8.340±.032 0.537±.006 2.777±.008 0.325±.006 1.409±.041 4/2/0
HGDL¬TH 0.500±.016 8.338±.028 0.540±.010 2.776±.008 0.321±.004 1.414±.046 4/2/0
HGDLED 0.481±.028 8.325±.031 0.527±.012 2.775±.007 0.340±.017 1.375±.067 1/5/0

Table 2: Mean ± standard deviation results of seven models on five datasets. Best results are bold, and
↑ (or ↓) indicates the higher (or lower) the better. Results are taken from 5 repeats. The win/tie/loss
counts are suggested by the paired t-test at 90% confidence level.

8

(a) DRUG (b) ACM (c) DBLP

(d) YELP (e) URBAN

Figure 3: Comparisons between HGDL vs. results from a single meta-path (CAD and CLD are
calculated in natural log for better visualization) for five datasets.

Figure 4: KL and CLD tradeoff function example. The estimated probability distribution is [x1, x2,
0.9] and true probability distribution is [0.05,0.05,0.9], with x1 + x2 = 0.1. Horizontal axis is the x1

value and vertical axis is the loss for both CLD and KL divergence. Green dashed lines cover the
tradeoff region where the CLD loss monotonically increases and KL-divergence decreases.

6.2 Results

Table 2 summarizes results of all methods. Overall, our HGDL wins in 99 out of 180 settings, among
which on average 20 out of 30 settings excel in COD, CHD, IND, and KL metrics, 11 out of 30 in
CAD, and 8 out of 30 in CLD. On DURG, ACM, DBLP, and URBAN datasets, HGDL outperforms its
competitors in 83% settings in COD, CHD, IND, and KL metrics 46% in CAD, and 20% in CLD.
Beyond its overall better comparative performance, we make the following observation on HGDL.
First, HANKL and SeHGNNKL achieve better performance on YELP and DBLP dataset for CAD
and CLD metrics, but not on the other datasets and metrics. This shows that existing meta-path
based methods cannot learn distribution prediction well. In general, these models show similar
performance on YELP dataset. We hypothesize that this is due to the lack of rich feature information
on YELP, of which the dimension of nodal features is 19 which is minimum across all datasets.
Second, HGDL achieves the best results in KL-divergence by a large margin across all settings. On
average, HGDL have a 15% improvement compared with the second best result across all datasets in
KL-divergence. Given that KL-divergence is the loss objective in our framework, we extrapolate
that HGDL converges well in terms of minimizing the distribution distance. Same observation can

9

be drawn from the validation loss curve as shown in Supplement C Figures 5, 6, and 7. In addition,
on metrics being strongly related to KL divergence including COD, CHD, and IND, our HGDL also
enjoys significant performance improvement over other models. Among the metrics, CLD metrics
shows a different patterns in terms of KL divergence, we show in Figure 4 that CLD and KL has a
tradeoff region in small probability distribution and therefore caused such difference.

Third, the ablation study between HGDL and its variants, i.e., HGDL¬transformer, HGDL¬TH and
HGDLED, demonstrate clear benefits of topology homogenization and consistency-aware graph
transformer in aggregating meta-paths and nodal features for LDL learning for heterogeneous graphs
(more results are deferred to the Section E.1 in Supplement C; there, we observe that HGDLed has no
improvement in KL-divergence with different edge drop rates compared to HGDL¬transformer, which
is the model with 0 edge drop rate). We observe in Table 2 that HGDL¬transformer shows comparable
performance on ACM and YELP by tying HGDL in five and six metrics, respectively; however, HGDL
outperforms it in all settings in other three datasets. Likewise, HGDL¬TH ties HGDL across all metrics
in YELP but is inferior to HGDL in all settings in other four datasets. HGDLED ties HGDL in six and
five settings on YELP and URBAN, respectively, but is outperformed by HGDL for all other three
datasets in all settings. The robust performance of HGDL can be attributed to two aspects. On the one
hand, the improved results over those ablation variants suggest that our devised model components
for proactive meta-path learning and attention modeling are indispensable. On other other hand, it
substantiates the usefulness of our design that lets HGDL learn semantic fusion before the embedding
learning. This end-to-end learning design provides a larger search space for embedding learning
to find optimal solutions, whereas other methods that learn embedding and perform fusion in two
independent stages may result in suboptimal node embeddings thus inferior LDL performance.

Fourth, even though the optimal meta-path choice may vary across different metrics and datasets, our
HGDL that proactively learns to aggregate multiple meta-path graphs leads to the best performance in
most cases. Figure 3 illustrates the performance from single meta-path graph and we can observe that
our method outperforms the single best path results in all five datasets, with a larger improvement
when the meta-path results are close (indicating each meta-path has similar information, e.g., ACM
dataset in Figure 3 (b)) and a smaller improvement when one meta-path is significantly inferior to
others (e.g., DBLP dataset Figure 3 (c) where p1 outperforms p2 with a large margin). These results
validate the tightness of Theorem 1 by demonstrating the optimality of the learned meta-path graph
in our HGDL method.

6.3 Scalability Analysis

Denote the total number of nodes, hidden dimension size, and number of meta-path by n, f , and
k, respectively. The number of learnable parameters is O(n) for graph topology homogenization,
because HGDL requires learning an adjacency matrix from all meta-path, which involves knf + k2f
training parameters (i.e. O(n) complexity). Inducing adjacency matrix from features, i.e. the
2nd stage, only requires O(1) number of learnable parameters, same as vanilla GCN. As a result,
HGDL has O(n) complexity. The runtime performance is detailed in Appendix H.3.

7 Conclusion

This paper explored a novel graph learning setting, namely, heterogeneous graph label distribution
learning. Our goal is to predict label distributions of target nodes in a heterogeneous graph, which
enables a finer-granular delineation of node properties compared to traditional single- or multi-
class node classification. We demonstrated that the topological heterogeneity and inconsistency
impose unique challenge for generalizing LDL into networked data, and proposed HGDL to overcome
them. Specifically, HGDL proactively aggregates meta-paths to achieve optimal graph topology
homogenization through attention mechanism, followed by a transformer-based approach to ensure
topology and feature consistency for learning node label distributions. We analyzed the PAC-Bayes
error bound of HGDL, and the result suggests the superiority of our design over those models learned
from a single meta-path graph. Empirical results on five benchmark datasets validated the tightness
of our analysis and substantiate that HGDL significantly outperformed its competitors.

10

Acknowledgment

This work has been supported in part by the National Science Foundation (NSF) under Grant Nos.
IIS-2236578, IIS-2236579, IIS-2302786, IIS-2441449, IOS-2430224, and IOS-2446522.

References

[1] N. L. Houssou, J.-l. Guillaume, and A. Prigent, “A graph based approach for functional urban
areas delineation,” in Proceedings of the 34th ACM/SIGAPP Symposium on Applied Computing,
pp. 652–658, 2019.

[2] A. Rossi, G. Barlacchi, M. Bianchini, and B. Lepri, “Modelling taxi drivers’ behaviour for the
next destination prediction,” IEEE Transactions on Intelligent Transportation Systems, vol. 21,
no. 7, pp. 2980–2989, 2019.

[3] P. Kar and P. Jain, “Supervised learning with similarity functions,” NeurIPS, vol. 25, 2012.
[4] A. Hefny, C. Downey, and G. J. Gordon, “Supervised learning for dynamical system learning,”

NeurIPS, vol. 28, 2015.
[5] X. Geng, “Label distribution learning,” IEEE Trans. Knowl. Data Eng., vol. 28, no. 7, pp. 1734–

1748, 2016.
[6] X. Jia, W. Li, J. Liu, et al., “Label distribution learning by exploiting label correlations,” in

AAAI, 2018.
[7] T. Ren, X. Jia, W. Li, and S. Zhao, “Label distribution learning with label correlations via

low-rank approximation,” in IJCAI, p. 3325–3331, 2019.
[8] J. Wang and X. Geng, “Theoretical analysis of label distribution learning,” in AAAI, vol. 33,

pp. 5256–5263, 2019.
[9] X. Zhao, L. Qi, Y. An, and X. Geng, “Generalizable label distribution learning,” in Proceedings

of the 31st ACM International Conference on Multimedia (MM-23), p. 8932–8941, 2023.
[10] T. Ren, X. Jia, W. Li, L. Chen, and Z. Li, “Label distribution learning with label-specific

features,” in Proceedings of the Twenty-Eighth International Joint Conference on Artificial In-
telligence (IJCAI-19), pp. 3318–3324, International Joint Conferences on Artificial Intelligence
Organization, 2019.

[11] H. Xu, X. Liu, Q. Zhao, Y. Ma, C. Yan, and F. Dai, “Gaussian label distribution learning for
spherical image object detection,” in CVPR, 2023.

[12] Z. Yao, Y. Fu, B. Liu, W. Hu, and H. Xiong, “Representing urban functions through zone
embedding with human mobility patterns,” in IJCAI, 2018.

[13] Y. Luo, F.-l. Chung, and K. Chen, “Urban region profiling via multi-graph representation
learning,” in CIKM, pp. 4294–4298, 2022.

[14] Y. Zheng, Y. Lin, L. Zhao, T. Wu, D. Jin, and Y. Li, “Spatial planning of urban communities via
deep reinforcement learning,” Nature Computational Science, vol. 3, no. 9, pp. 748–762, 2023.

[15] Y. Liu, J. Ding, Y. Fu, and Y. Li, “Urbankg: An urban knowledge graph system,” ACM
Transactions on Intelligent Systems and Technology, vol. 14, no. 4, pp. 1–25, 2023.

[16] Q. Lv, M. Ding, Q. Liu, Y. Chen, W. Feng, S. He, C. Zhou, J. Jiang, Y. Dong, and J. Tang, “Are
we really making much progress? revisiting, benchmarking and refining heterogeneous graph
neural networks,” in SIGKDD, pp. 1150–1160, 2021.

[17] C. Zhang, D. Song, C. Huang, A. Swami, and N. Chawla, “Heterogeneous graph neural network,”
in Proc. of KDD, pp. 793–803, 2019.

[18] X. Fu, J. Zhang, Z. Meng, and I. King, “Magnn: Metapath aggregated graph neural network for
heterogeneous graph embedding,” in WWW, pp. 2331–2341, 2020.

[19] H. Borchani, G. Varando, C. Bielza, and P. Larranaga, “A survey on multi-output regression,”
Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery, vol. 5, 07 2015.

[20] Y. Wang, Y. Zhou, J. Zhu, X. Liu, W. Yan, and Z. Tian, “Contrastive label enhancement,”
in Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence
(IJCAI-23), pp. 4353–4361, 2023.

11

[21] Y. Jin, R. Gao, Y. He, and X. Zhu, “Gldl: Graph label distribution learning,” in Proceedings of
the 38th Annual AAAI Conference on Artificial Intelligence, 2024.

[22] Y. Dong, Z. Hu, K. Wang, Y. Sun, and J. Tang, “Heterogeneous network representation learning,”
in Proc. of the 29th International Joint Conf. on Artificial Intelligence (IJCAI-20), pp. 4861–
4867, 7 2020.

[23] Y. Jing, Y. Yang, X. Wang, M. Song, and D. Tao, “Amalgamating knowledge from heterogeneous
graph neural networks,” in CVPR, pp. 15709–15718, 2021.

[24] X. Wang, N. Liu, H. Han, and C. Shi, “Self-supervised heterogeneous graph neural network
with co-contrastive learning,” in SIGKDD, pp. 1726–1736, 2021.

[25] W. Xiao, J. Houye, S. Chuan, W. Bai, C. Peng, Y. P., and Y. Yanfang, “Heterogeneous graph
attention network,” WWW, 2019.

[26] Z. Hu, Y. Dong, K. Wang, and Y. Sun, “Heterogeneous graph transformer,” in Proceedings of
The Web Conference, p. 2704–2710, 2020.

[27] X. Yang, M. Yan, S. Pan, X. Ye, and D. Fan, “Simple and efficient heterogeneous graph neural
network,” Proceedings of the AAAI Conference on Artificial Intelligence, pp. 10816–10824,
2023.

[28] M. Wan, Y. Ouyang, L. Kaplan, and J. Han, “Graph regularized meta-path based transductive
regression in heterogeneous information network,” in SDM, pp. 918–926, 2015.

[29] P. Veličković, G. Cucurull, A. Casanova, A. Romero, P. Liò, and Y. Bengio, “Graph attention
networks,” in ICLR, 2018.

[30] V. P. Dwivedi and X. Bresson, “A generalization of transformer networks to graphs,” 2021.
[31] Y. Rong, W. Huang, T. Xu, and J. Huang, “Dropedge: Towards deep graph convolutional

networks on node classification,” in International Conference on Learning Representations
(ICLR), 2020.

[32] S. Kullback and R. A. Leibler, “On information and sufficiency,” The annals of mathematical
statistics, vol. 22, no. 1, pp. 79–86, 1951.

[33] J. Tang, J. Zhang, L. Yao, J. Li, L. Zhang, and Z. Su, “Arnetminer: Extraction and mining of
academic social networks,” in KDD, pp. 990–998, 2008.

[34] Y. Gu, S. Zheng, Q. Yin, R. Jiang, and J. Li, “REDDA: Integrating multiple biological relations
to heterogeneous graph neural network for drug-disease association prediction,” Computers in
Biology and Medicine, 11 2022.

[35] T. N. Kipf and M. Welling, “Semi-supervised classification with graph convolutional networks,”
in ICLR, 2017.

[36] G. Landrum, P. Tosco, B. Kelley, Ric, D. Cosgrove, sriniker, gedeck, R. Vianello, NadineSchnei-
der, E. Kawashima, G. Jones, D. N, A. Dalke, B. Cole, M. Swain, S. Turk, AlexanderSave-
lyev, A. Vaucher, M. Wójcikowski, I. Take, V. F. Scalfani, D. Probst, K. Ujihara, guillaume
godin, A. Pahl, R. Walker, J. Lehtivarjo, F. Berenger, jasondbiggs, and strets123, “rdkit/rdkit:
2023_09_4 (q3 2023) release,” Jan. 2024.

[37] D. S. Himmelstein, “User-friendly extensions to mesh v1.0,” Feb. 2016.
[38] V. D. Blondel, J.-L. Guillaume, R. Lambiotte, and E. Lefebvre, “Fast unfolding of communities

in large networks,” Journal of statistical mechanics: theory and experiment, vol. 2008, no. 10,
p. P10008, 2008.

[39] Q. Mao, Z. Liu, C. Liu, and J. Sun, “Hinormer: Representation learning on heterogeneous
information networks with graph transformer,” 2023.

[40] N. Cesa-Bianchi and G. Lugosi, Prediction, learning, and games. Cambridge university press,
2006.

[41] P. L. Bartlett, D. J. Foster, and M. J. Telgarsky, “Spectrally-normalized margin bounds for neural
networks,” NeurIPS, vol. 30, 2017.

[42] B. Neyshabur, S. Bhojanapalli, and N. Srebro, “A pac-bayesian approach to spectrally-
normalized margin bounds for neural networks,” in ICLR, 2018.

[43] R. Liao, R. Urtasun, and R. Zemel, “A pac-bayesian approach to generalization bounds for
graph neural networks,” in ICLR, 2020.

12

[44] J. A. Tropp, “User-friendly tail bounds for sums of random matrices,” Foundations of computa-
tional mathematics, vol. 12, pp. 389–434, 2012.

[45] P. L. Bartlett and S. Mendelson, “Rademacher and gaussian complexities: Risk bounds and
structural results,” Journal of Machine Learning Research, vol. 3, no. Nov, pp. 463–482, 2002.

[46] R. E. Schapire and Y. Freund, Foundations of machine learning, pp. 23–52. Mit Press, 2012.
[47] A. Maurer, “A vector-contraction inequality for rademacher complexities,” in ALT, pp. 3–17,

Springer, 2016.
[48] S. M. Kakade, K. Sridharan, and A. Tewari, “On the complexity of linear prediction: Risk

bounds, margin bounds, and regularization,” NeurIPS, vol. 21, 2008.
[49] S.-H. Cha, “Comprehensive survey on distance/similarity measures between probability density

functions,” City, vol. 1, no. 2, p. 1, 2007.

13

Algorithm 1 HGDL Algorithm
Input: G = {V,E,X, Y }; Meta-paths: P = {P1, . . . ,Pk}
Parameter: epochs, U [1, k] is the uniform distribution, γ is a constant
Output: Ŷ
1: A ← ∅
2: For <each meta-path Pi ∈ P>
3: Meta-path Graph Gi ←Generate Meta-path graph (G, Pi)
4: Ai ← Adjacency Matrix (Gi)
5: A ← A∪Ai

6: EndFor
7: t← 0.
8: while t ≤ epochs do
9: Θ← AttentionW i

0
(Ai) {Attention() follows Eq. (1)}

10: Ã← Aggregate
W

′
0
(Θ, Ai) {Aggregate follows Eq. (2)}

11: Z ← ReLU(ÃXW1)
12: Zq ← ZQ
13: Zk ← (ZK)⊤

14: Ã2 ← LapNorm
(

softmax((ZqZk)⊙ Ã)
)

15: H ← LeakyReLU(Ã2ZW2)

16: Ŷ ← softmax(ÃHW3)

17: ℓKL ← DKL(Y ||Ŷ)
18: ℓreg ← DKL(Θ||U [1, k])
19: Gradient← argmin(ℓKL − γ · ℓreg)
20: Update W1,W2,W3, Q,K,W i

0 ,W
′
i with Gradient.

21: t← t+ 1
22: end while
23: return Ŷ

A Appendix / supplemental material

B Roadmap

A structured guide to navigate the supplement content is organized as follows.

• Supplement A: Supplement A presents the pseudo-code of our proposed HGDL algorithm.

• Supplement B: Supplement B reports datasets and baseline methods used for the experi-
mental study.

• Supplement C: Supplement C reports experimental settings and additional results.

• Supplement D: Supplement D elaborates the proof of Theorem 1 as introduced in Section 5
of the main manuscript.

• Supplement E: Supplement E elaborates the proof of Theorem 2 as introduced in Section 5
of the main manuscript.

• Supplement F: Supplement F carries out additional theoretical analysis explaining the
rationality of HGDL for label distribution learning.

C Supplement A: Pseudo-code and Implementation Details

Algorithm 1 lists the main steps of the HGDL framework where Lines 1 to 6 generate meta-path graphs
and their adjacency matrices. Lines 7 to 10 denote the optimal graph topology homogenization (Sec
4.1 of the main manuscript), and Lines 11 to 15 are local topology and global feature consistency-
aware graph transformer (Sec 4.2 of the main manuscript). Lines 16 to 20 denote the loss terms and
the model training process.

14

Dataset Node Types # features Edge Types # Labels

DRUG D:Drug(894)/S:Disease(454)
P:Protein(18877)/G:gene(20561)

191 DP(4397)/DS(2704)
PG(18545)/PP(201382)
GG(712546)/DD(798316)

28

ACM A:Author(5810)/P:Paper(12499)
S:Subject(73)/C:conference(14)
F:Affiliation(1804)

1903 AP(37055)/PC(12499)
PS(12499)/PF(12499)
AF(30424)

14

DBLP A:Author(4057)/P:Paper(14328)
T:Term(8920)/C:conference(20)

8920 AP(19645)/PT(114273)
PC(14328)

4

YELP U:User(3001)/B:Business(150346)
R:Review(6990280)/T:Tip(908915)

19 UR(3001)/RB(6990280)
UT(3001)/BT(908915)

9

URBAN NR:Nature Residence(622)
CS:Comprehensive Service(449)
GL:Green Leisure(202)
TJ:Transit Junction(161)

155 NR-CS (14818)
NR-GL (8328)
NR-TJ (11736)

10

Table 3: Benchmark dataset data statistics

Datasets Meta-Paths Label semantics

DRUG dpd, dsd, dpgpd See Table 6
ACM apa, afa, apspa {KDD, SIGMOD, WWW, SIGIR, CIKM, SODA, STOC,

SOSP, SPAA, SIGCOMM, MobiCOMM, ICML, COLT,
VLDB}

DBLP apcpa, aptpa {Database, Data Mining, AI, Information Retrieval}
YELP urbru, utbtu {1, 1.5, 2, 2.5, 3, 3.5, 4, 4.5, 5}
URBAN rsr, rlr, rtr {Accommodation and Residence, Workplace and Public

Service, Sustenance and Leisure Places, Farmland, Trans-
portation, Business and Industry, Education, Healthcare,
Greenfield, Worship}

Table 4: Meta-paths and label semantics of the benchmark datasets

D Supplement B: Experiments and Datasets

D.1 Dataset Description

Because no benchmark heterogeneous graph datasets with label distributions currently exist, we
create four datasets using existing heterogeneous graphs including DBLP [33], ACM [33], YELP,
and DRUG dataset [34]. Table 3 reports number of nodes/edges, number of each node/edge types,
and number of labels for each dataset. Table 4 reports meta-paths and label semantic for each
datasets. Number of features are refer to the content attribute/features of the target node types. In our
experiments, we did not use any content information of non-target nodes (so only target nodes have
features).

• DBLP is a citation network [33] with four types of nodes (author, paper, conference, and
term nodes). Author nodes are our target nodes. To construct a label distribution, we
labeled each author with a distribution of conference areas, using the history of each author’s
published papers at different conference areas. The author’s node features are a bag of words
of all papers published by the author.

• ACM is a citation network from [33] with five types of nodes (author, paper, conference,
affiliation, and subject nodes). Author nodes are our target nodes. We first extract one third
of the authors and then labeled them based on the subjects of their published papers. Similar
to the DBLP dataset, each author’s features are also a bag-of-word representation of the
author’s papers.

• YELP is an open-access review network with four types of nodes (business, user, tip, and
review nodes). User nodes are our target nodes. We label each user by counting the ratings
of the business each user made reviews on and normalize the countings of each rate to a
distribution. User’s features are the bag of words of their reviews.

15

Drug name Drug ID Drug SMILES

Clobazam DB00734 Cc1nc2n(c(=O)c1CCN1CCC(c3noc4cc(F)ccc34)CC1)CCCC2
Vinorelbine DB00987 Nc1ccn([CH]2O[CH](CO)[CH](O)[CH]2O)c(=O)n1
Carvedilol DB00812 CCCCC1C(=O)N(c2ccccc2)N(c2ccccc2)C1=O

Table 5: Examples of drug name, ID, and drug in SMILES notation (SMILES: Simplified Molecular
Input Line Entry System)

DRUG prefix MeSH code Name

C01 bacterial infections and mycoses
C02 virus diseases
C03 parasitic diseases
C04 neoplasms
C05 musculoskeletal diseases
C06 digestive system diseases
C07 stomatognathic diseases
C08 respiratory tract diseases
C09 otorhinolaryngologic diseases
C10 nervous system diseases
C11 eye diseases
C12 urologic and male genital diseases
C13 female genital diseases and pregnancy complications
C14 cardiovascular diseases
C15 hemic and lymphatic diseases
C16 congenital, hereditary, and neonatal diseases and abnormalities
C17 skin and connective tissue diseases
C18 nutritional and metabolic diseases
C19 endocrine system diseases
C20 immune system diseases
C22 animal diseases
C23 pathological conditions, signs and symptoms
C25 Chemically-Induced Disorders
C26 Wounds and Injuries
E01 Diagnosis
F01 Behavior and Behavior Mechanisms
F03 Mental Disorders
G07 Physiological Phenomena

Table 6: DRUG label semantics

Class 1 Class 2 Class 3 Class 4
0.8774 ± 0.1755 0.0415 ± 0.1086 0.0131 ± 0.0619 0.0680 ± 0.1226
0.0628 ± 0.1188 0.7733 ± 0.2157 0.0767 ± 0.1463 0.0873 ± 0.1536
0.0161 ± 0.0576 0.0438 ± 0.1023 0.8667 ± 0.1881 0.0734 ± 0.1472
0.0309 ± 0.0879 0.0364 ± 0.0907 0.0266 ± 0.0757 0.9061 ± 0.1652

Table 7: DBLP dataset average label distributions (mean±Std) for all nodes w.r.t. different classes.
To generate this average, label distributions are grouped by their dominant class. Average label
distributions are then calculated within their respective groups. Standard deviations are calculated
between each class within each individual group. The table is q × q, where q denotes the number of
classes. The diagonal values denote the dominant class’s probability value. The lower the diagonal
values, the more spread out the class probability is.

• DRUG is a drug-disease-protein-gene network from [34], with four types of nodes (drug,
disease, protein, and gene nodes). Drug nodes are our target nodes. The label distribution
of each drug node is obtained by using associated disease etiology (using top-level cate-
gories from Medical Subject Headings, MeSH, disease database). The node features is

16

Class 1 Class 2 Class 3 Class 4 Class 5 Class 6 Class 7 Class 8 Class 9 Class 10 Class 11 Class 12 Class 13 Class 14

0.8363 ± 0.2439 0.0049 ± 0.0328 0.0045 ± 0.0325 0.0067 ± 0.0389 0.0112 ± 0.0516 0.0012 ± 0.0168 0 0.0009 ± 0.0152 0.0005 ± 0.0084 0.0011 ± 0.0154 0.0024 ± 0.0255 0.0120 ± 0.0548 0.0034 ± 0.0274 0.0052 ± 0.0349
0.0204 ± 0.0838 0.8317 ± 0.2357 0.0059 ± 0.0381 0.0017 ± 0.0177 0.0124 ± 0.0570 0.0006 ± 0.0086 0 0.0096 ± 0.0496 0.0012 ± 0.0196 0.0022 ± 0.0265 0.0007 ± 0.0101 0.0032 ± 0.0306 0.0025 ± 0.0254 0.0584 ± 0.1232
0.0317 ± 0.1051 0.0234 ± 0.0844 0.8915 ± 0.2095 0.0142 ± 0.0561 0.0172 ± 0.0657 0.0047 ± 0.0301 0 0.0013 ± 0.0149 0.0000 ± 0.0000 0.0053 ± 0.0362 0.0029 ± 0.0292 0.0038 ± 0.0304 0.0021 ± 0.0192 0.0073 ± 0.0379
0.0203 ± 0.0871 0.0054 ± 0.0422 0.0270 ± 0.1023 0.8915 ± 0.1929 0.0245 ± 0.0813 0.0006 ± 0.0111 0 0.0009 ± 0.0152 0.0009 ± 0.0147 0.0002 ± 0.0045 0.0000 ± 0.0000 0.0075 ± 0.0468 0.0001 ± 0.0022 0.0015 ± 0.0194
0.0417 ± 0.1174 0.0404 ± 0.1140 0.0374 ± 0.1154 0.0707 ± 0.1430 0.8913 ± 0.1963 0.0028 ± 0.0234 0 0.0000 ± 0.0000 0.0009 ± 0.0147 0.0004 ± 0.0091 0.0000 ± 0.0000 0.0085 ± 0.0490 0.0017 ± 0.0163 0.0196 ± 0.0682
0.0029 ± 0.0318 0.0010 ± 0.0124 0.0022 ± 0.0261 0.0008 ± 0.0199 0.0014 ± 0.0240 0.8567 ± 0.2211 0 0.0000 ± 0.0000 0.0132 ± 0.0553 0.0021 ± 0.0190 0.0000 ± 0.0000 0.0036 ± 0.0347 0.0362 ± 0.0956 0.0015 ± 0.0221
0.0000 ± 0.0000 0.0000 ± 0.0000 0.0000 ± 0.0000 0.0000 ± 0.0000 0.0000 ± 0.0000 0.0000 ± 0.0000 0 0.0000 ± 0.0000 0.0000 ± 0.0000 0.0000 ± 0.0000 0.0000 ± 0.0000 0.0000 ± 0.0000 0.0000 ± 0.0000 0.0000 ± 0.0000
0.0022 ± 0.0318 0.0039 ± 0.0397 0.0039 ± 0.0384 0.0000 ± 0.0000 0.0000 ± 0.0000 0.0002 ± 0.0033 0 0.9417 ± 0.1556 0.0011 ± 0.0139 0.0080 ± 0.0449 0.0029 ± 0.0292 0.0000 ± 0.0000 0.0013 ± 0.0142 0.0000 ± 0.0000
0.0022 ± 0.0303 0.0051 ± 0.0408 0.0028 ± 0.0322 0.0021 ± 0.0241 0.0020 ± 0.0286 0.0326 ± 0.1039 0 0.0018 ± 0.0304 0.9398 ± 0.1521 0.0029 ± 0.0273 0.0012 ± 0.0176 0.0000 ± 0.0000 0.0086 ± 0.0436 0.0007 ± 0.0111
0.0023 ± 0.0257 0.0050 ± 0.0450 0.0035 ± 0.0350 0.0034 ± 0.0377 0.0028 ± 0.0364 0.0052 ± 0.0451 0 0.0288 ± 0.1063 0.0035 ± 0.0344 0.9483 ± 0.1359 0.0230 ± 0.0870 0.0000 ± 0.0000 0.0013 ± 0.0148 0.0015 ± 0.0221
0.0023 ± 0.0291 0.0011 ± 0.0168 0.0044 ± 0.0380 0.0015 ± 0.0241 0.0026 ± 0.0361 0.0016 ± 0.0176 0 0.0077 ± 0.0550 0.0034 ± 0.0343 0.0221 ± 0.0841 0.9657 ± 0.1108 0.0000 ± 0.0000 0.0011 ± 0.0151 0.0004 ± 0.0060
0.0186 ± 0.0819 0.0012 ± 0.0170 0.0028 ± 0.0324 0.0042 ± 0.0357 0.0047 ± 0.0430 0.0049 ± 0.0455 0 0.0000 ± 0.0000 0.0000 ± 0.0000 0.0000 ± 0.0000 0.0000 ± 0.0000 0.9515 ± 0.1258 0.0041 ± 0.0339 0.0000 ± 0.0000
0.0056 ± 0.0412 0.0017 ± 0.0180 0.0040 ± 0.0360 0.0013 ± 0.0193 0.0048 ± 0.0455 0.0879 ± 0.1680 0 0.0031 ± 0.0364 0.0338 ± 0.1139 0.0055 ± 0.0451 0.0000 ± 0.0000 0.0081 ± 0.0502 0.9355 ± 0.1413 0.0015 ± 0.0221
0.0135 ± 0.0673 0.0754 ± 0.1491 0.0101 ± 0.0622 0.0019 ± 0.0225 0.0249 ± 0.0998 0.0008 ± 0.0105 0 0.0043 ± 0.0354 0.0017 ± 0.0295 0.0018 ± 0.0205 0.0012 ± 0.0176 0.0018 ± 0.0246 0.0022 ± 0.0265 0.9024 ± 0.1813

Table 8: ACM dataset average label distributions (mean±Std) for all nodes w.r.t. different classes.
To generate this average, label distributions are grouped by their dominant class. Average label
distributions are then calculated within their respective groups. Standard deviations are calculated
between each class within each individual group. The table is q × q, where q denotes the number of
classes. The diagonal values denote the dominant class’s probability value. The lower the diagonal
values, the more spread out the class probability is. Class 7 has 0 label distribution because no
samples have Class 7 as the dominate class.

Class 1 Class 2 Class 3 Class 4 Class 5 Class 6 Class 7 Class 8 Class 9 Class 10 Class 11 Class 12 Class 13 Class 14

0.4544 ± 0.3787 0.0252 ± 0.0056 0.0262 ± 0.0106 0.0169 ± 0.0128 0.0193 ± 0.0111 0.0188 ± 0.0206 0.0253 ± 0.0062 0.0155 ± 0.0128 0.0299 ± 0.0031 0.0164 ± 0.0130 0.0483 ± 0.0373 0.0198 ± 0.0051 0.0215 ± 0.0109 0.0238 ± 0.0119
0.0191 ± 0.0140 0.2676 ± 0.1421 0.0252 ± 0.0110 0.0175 ± 0.0141 0.0193 ± 0.0111 0.0155 ± 0.0125 0.0253 ± 0.0062 0.0144 ± 0.0103 0.0299 ± 0.0031 0.0164 ± 0.0130 0.0300 ± 0.0064 0.0198 ± 0.0051 0.0215 ± 0.0109 0.0238 ± 0.0119
0.0238 ± 0.0304 0.0252 ± 0.0056 0.2823 ± 0.2983 0.0169 ± 0.0128 0.0193 ± 0.0111 0.0155 ± 0.0125 0.0253 ± 0.0062 0.0144 ± 0.0103 0.0299 ± 0.0031 0.0164 ± 0.0130 0.0300 ± 0.0064 0.0198 ± 0.0051 0.0215 ± 0.0109 0.0238 ± 0.0119
0.0191 ± 0.0140 0.0272 ± 0.0096 0.0252 ± 0.0110 0.3947 ± 0.3474 0.0242 ± 0.0219 0.0305 ± 0.0459 0.0325 ± 0.0149 0.0159 ± 0.0149 0.0299 ± 0.0031 0.0188 ± 0.0173 0.0300 ± 0.0064 0.0237 ± 0.0161 0.0888 ± 0.0771 0.0238 ± 0.0119
0.0191 ± 0.0140 0.0252 ± 0.0056 0.0252 ± 0.0110 0.0185 ± 0.0160 0.3955 ± 0.3112 0.0214 ± 0.0260 0.0253 ± 0.0062 0.0144 ± 0.0103 0.0299 ± 0.0031 0.0182 ± 0.0175 0.0300 ± 0.0064 0.0207 ± 0.0082 0.0252 ± 0.0079 0.0238 ± 0.0119
0.0255 ± 0.0244 0.0413 ± 0.0238 0.0292 ± 0.0141 0.0222 ± 0.0204 0.0194 ± 0.0109 0.5248 ± 0.3333 0.0344 ± 0.0219 0.0144 ± 0.0102 0.0299 ± 0.0031 0.0165 ± 0.0129 0.0322 ± 0.0056 0.0204 ± 0.0069 0.0275 ± 0.0201 0.0255 ± 0.0140
0.0204 ± 0.0146 0.0252 ± 0.0056 0.0252 ± 0.0110 0.0169 ± 0.0128 0.0207 ± 0.0137 0.0155 ± 0.0125 0.1999 ± 0.0965 0.0144 ± 0.0103 0.0299 ± 0.0031 0.0164 ± 0.0130 0.0300 ± 0.0064 0.0198 ± 0.0051 0.0215 ± 0.0109 0.0238 ± 0.0119
0.0199 ± 0.0146 0.0302 ± 0.0188 0.0252 ± 0.0110 0.0169 ± 0.0128 0.0209 ± 0.0148 0.0274 ± 0.0557 0.0253 ± 0.0062 0.4674 ± 0.2631 0.0429 ± 0.0199 0.0166 ± 0.0130 0.0322 ± 0.0056 0.0208 ± 0.0081 0.0215 ± 0.0109 0.0238 ± 0.0119
0.0191 ± 0.0139 0.0252 ± 0.0056 0.0252 ± 0.0110 0.0169 ± 0.0128 0.0193 ± 0.0111 0.0186 ± 0.0201 0.0253 ± 0.0062 0.0229 ± 0.0144 0.1166 ± 0.0541 0.0165 ± 0.0129 0.0300 ± 0.0064 0.0238 ± 0.0093 0.0215 ± 0.0109 0.0239 ± 0.0119
0.0191 ± 0.0140 0.0274 ± 0.0113 0.0252 ± 0.0110 0.0376 ± 0.0560 0.0319 ± 0.0258 0.0175 ± 0.0155 0.0477 ± 0.0461 0.0144 ± 0.0102 0.0369 ± 0.0183 0.4892 ± 0.3606 0.0300 ± 0.0064 0.0242 ± 0.0095 0.0215 ± 0.0109 0.0299 ± 0.0284
0.0255 ± 0.0346 0.0252 ± 0.0056 0.0252 ± 0.0110 0.0169 ± 0.0128 0.0214 ± 0.0141 0.0164 ± 0.0145 0.0253 ± 0.0062 0.0145 ± 0.0102 0.0299 ± 0.0031 0.0176 ± 0.0125 0.1314 ± 0.1014 0.0248 ± 0.0143 0.0215 ± 0.0109 0.0238 ± 0.0119
0.0200 ± 0.0140 0.0252 ± 0.0056 0.0252 ± 0.0110 0.0273 ± 0.0348 0.0231 ± 0.0297 0.0163 ± 0.0125 0.0253 ± 0.0062 0.0172 ± 0.0220 0.0299 ± 0.0031 0.0175 ± 0.0155 0.0339 ± 0.0142 0.1887 ± 0.0792 0.0391 ± 0.0179 0.0337 ± 0.0251
0.0202 ± 0.0139 0.0272 ± 0.0096 0.0262 ± 0.0106 0.0283 ± 0.0355 0.0196 ± 0.0111 0.0164 ± 0.0129 0.0325 ± 0.0149 0.0172 ± 0.0220 0.0299 ± 0.0031 0.0175 ± 0.0155 0.0339 ± 0.0142 0.1654 ± 0.0701 0.2576 ± 0.1979 0.0337 ± 0.0251
0.0219 ± 0.0217 0.0252 ± 0.0056 0.0252 ± 0.0110 0.0182 ± 0.0161 0.0204 ± 0.0119 0.0155 ± 0.0125 0.0253 ± 0.0062 0.0146 ± 0.0104 0.0440 ± 0.0234 0.0250 ± 0.0473 0.0341 ± 0.0152 0.0446 ± 0.0225 0.0282 ± 0.0229 0.2792 ± 0.2911
0.0191 ± 0.0140 0.0252 ± 0.0056 0.0252 ± 0.0110 0.0600 ± 0.0933 0.0206 ± 0.0118 0.0158 ± 0.0124 0.0253 ± 0.0062 0.0144 ± 0.0103 0.0299 ± 0.0031 0.0171 ± 0.0142 0.0300 ± 0.0064 0.0198 ± 0.0051 0.0215 ± 0.0109 0.0239 ± 0.0119
0.0191 ± 0.0140 0.0252 ± 0.0056 0.0252 ± 0.0110 0.0216 ± 0.0299 0.0405 ± 0.0417 0.0156 ± 0.0124 0.0571 ± 0.0172 0.0212 ± 0.0122 0.0299 ± 0.0031 0.0240 ± 0.0327 0.0423 ± 0.0268 0.0557 ± 0.0272 0.0378 ± 0.0235 0.0330 ± 0.0209
0.0254 ± 0.0205 0.0354 ± 0.0170 0.0501 ± 0.0335 0.0282 ± 0.0305 0.0267 ± 0.0238 0.0158 ± 0.0123 0.0253 ± 0.0062 0.0813 ± 0.0913 0.0299 ± 0.0031 0.0168 ± 0.0131 0.0300 ± 0.0064 0.0548 ± 0.0337 0.0314 ± 0.0201 0.0303 ± 0.0186
0.0191 ± 0.0140 0.0252 ± 0.0056 0.0252 ± 0.0110 0.0169 ± 0.0128 0.0292 ± 0.0259 0.0199 ± 0.0217 0.0325 ± 0.0149 0.0144 ± 0.0103 0.0369 ± 0.0183 0.0233 ± 0.0394 0.0339 ± 0.0142 0.0256 ± 0.0206 0.0275 ± 0.0201 0.0243 ± 0.0113
0.0191 ± 0.0140 0.0252 ± 0.0056 0.0305 ± 0.0215 0.0264 ± 0.0418 0.0206 ± 0.0139 0.0179 ± 0.0174 0.0521 ± 0.0579 0.0144 ± 0.0103 0.0299 ± 0.0031 0.0181 ± 0.0165 0.0341 ± 0.0152 0.0224 ± 0.0119 0.0424 ± 0.0268 0.0238 ± 0.0119
0.0191 ± 0.0140 0.0388 ± 0.0232 0.0252 ± 0.0110 0.0463 ± 0.0652 0.0241 ± 0.0156 0.0186 ± 0.0170 0.0313 ± 0.0102 0.0579 ± 0.0319 0.0299 ± 0.0031 0.0189 ± 0.0176 0.0300 ± 0.0064 0.0205 ± 0.0084 0.0282 ± 0.0229 0.0297 ± 0.0320
0.0191 ± 0.0140 0.0252 ± 0.0056 0.0254 ± 0.0106 0.0169 ± 0.0128 0.0193 ± 0.0111 0.0155 ± 0.0125 0.0253 ± 0.0062 0.0144 ± 0.0103 0.0299 ± 0.0031 0.0164 ± 0.0130 0.0300 ± 0.0064 0.0198 ± 0.0051 0.0215 ± 0.0109 0.0238 ± 0.0119
0.0191 ± 0.0140 0.0252 ± 0.0056 0.0252 ± 0.0110 0.0173 ± 0.0129 0.0294 ± 0.0225 0.0164 ± 0.0129 0.0253 ± 0.0062 0.0243 ± 0.0230 0.0499 ± 0.0226 0.0198 ± 0.0165 0.0300 ± 0.0064 0.0246 ± 0.0100 0.0215 ± 0.0109 0.0517 ± 0.0447
0.0191 ± 0.0140 0.0252 ± 0.0056 0.0252 ± 0.0110 0.0169 ± 0.0128 0.0193 ± 0.0111 0.0155 ± 0.0125 0.0253 ± 0.0062 0.0144 ± 0.0103 0.0299 ± 0.0031 0.0177 ± 0.0184 0.0300 ± 0.0064 0.0198 ± 0.0051 0.0215 ± 0.0109 0.0238 ± 0.0119
0.0191 ± 0.0140 0.0252 ± 0.0056 0.0252 ± 0.0110 0.0169 ± 0.0128 0.0193 ± 0.0111 0.0155 ± 0.0125 0.0253 ± 0.0062 0.0144 ± 0.0103 0.0369 ± 0.0183 0.0164 ± 0.0130 0.0341 ± 0.0152 0.0198 ± 0.0051 0.0215 ± 0.0109 0.0238 ± 0.0119
0.0191 ± 0.0140 0.0252 ± 0.0056 0.0252 ± 0.0110 0.0169 ± 0.0128 0.0193 ± 0.0111 0.0155 ± 0.0125 0.0253 ± 0.0062 0.0144 ± 0.0103 0.0299 ± 0.0031 0.0164 ± 0.0130 0.0300 ± 0.0064 0.0198 ± 0.0051 0.0215 ± 0.0109 0.0238 ± 0.0119
0.0191 ± 0.0140 0.0252 ± 0.0056 0.0252 ± 0.0110 0.0169 ± 0.0128 0.0193 ± 0.0111 0.0162 ± 0.0136 0.0253 ± 0.0062 0.0144 ± 0.0103 0.0299 ± 0.0031 0.0177 ± 0.0157 0.0300 ± 0.0064 0.0198 ± 0.0051 0.0215 ± 0.0109 0.0238 ± 0.0119
0.0191 ± 0.0140 0.0252 ± 0.0056 0.0252 ± 0.0110 0.0169 ± 0.0128 0.0193 ± 0.0111 0.0162 ± 0.0136 0.0253 ± 0.0062 0.0144 ± 0.0102 0.0377 ± 0.0217 0.0421 ± 0.0480 0.0300 ± 0.0064 0.0208 ± 0.0079 0.0215 ± 0.0109 0.0238 ± 0.0119
0.0191 ± 0.0140 0.0252 ± 0.0056 0.0252 ± 0.0110 0.0169 ± 0.0128 0.0193 ± 0.0111 0.0155 ± 0.0125 0.0253 ± 0.0062 0.0144 ± 0.0103 0.0299 ± 0.0031 0.0164 ± 0.0130 0.0300 ± 0.0064 0.0198 ± 0.0051 0.0215 ± 0.0109 0.0238 ± 0.0119

Table 9: DRUG dataset average label distributions(part 1) (mean±Std) for all nodes w.r.t. different
classes. To generate this average, label distributions are grouped by their dominant class. Average la-
bel distributions are then calculated within their respective groups. Standard deviations are calculated
between each class within each individual group. The table is q × q, where q denotes the number of
classes. The diagonal values denote the dominant class’s probability value. The lower the diagonal
values, the more spread out the class probability is.

Class 15 Class 16 Class 17 Class 18 Class 19 Class 20 Class 21 Class 22 Class 23 Class 24 Class 25 Class 26 Class 27 Class 28

0.0191 ± 0.0123 0.0251 ± 0.0084 0.0213 ± 0.0378 0.0231 ± 0.0121 0.0251 ± 0.0076 0.0220 ± 0.0145 0 0.0305 ± 0.0054 0.0318 ± 0.0000 0.0336 ± 0 0 0.0330 ± 0.0009 0.0287 ± 0.0067 0
0.0191 ± 0.0123 0.0251 ± 0.0084 0.0127 ± 0.0109 0.0231 ± 0.0121 0.0251 ± 0.0076 0.0202 ± 0.0153 0 0.0305 ± 0.0054 0.0318 ± 0.0000 0.0336 ± 0 0 0.0330 ± 0.0009 0.0287 ± 0.0067 0
0.0191 ± 0.0123 0.0251 ± 0.0084 0.0125 ± 0.0110 0.0231 ± 0.0121 0.0251 ± 0.0076 0.0202 ± 0.0153 0 0.0305 ± 0.0054 0.0318 ± 0.0000 0.0336 ± 0 0 0.0330 ± 0.0009 0.0287 ± 0.0067 0
0.0375 ± 0.0328 0.0276 ± 0.0102 0.0152 ± 0.0146 0.0231 ± 0.0121 0.0368 ± 0.0325 0.0353 ± 0.0384 0 0.0305 ± 0.0054 0.0318 ± 0.0000 0.0336 ± 0 0 0.0330 ± 0.0009 0.0287 ± 0.0067 0
0.0191 ± 0.0123 0.0362 ± 0.0226 0.0159 ± 0.0184 0.0270 ± 0.0197 0.0251 ± 0.0076 0.0244 ± 0.0119 0 0.0305 ± 0.0054 0.0318 ± 0.0000 0.0336 ± 0 0 0.0330 ± 0.0009 0.0318 ± 0.0107 0
0.0191 ± 0.0123 0.0327 ± 0.0201 0.0125 ± 0.0110 0.0243 ± 0.0125 0.0251 ± 0.0076 0.0298 ± 0.0238 0 0.0305 ± 0.0054 0.0318 ± 0.0000 0.0336 ± 0 0 0.0330 ± 0.0009 0.0287 ± 0.0067 0
0.0191 ± 0.0123 0.0251 ± 0.0084 0.0130 ± 0.0117 0.0231 ± 0.0121 0.0251 ± 0.0076 0.0202 ± 0.0153 0 0.0305 ± 0.0054 0.0318 ± 0.0000 0.0336 ± 0 0 0.0330 ± 0.0009 0.0287 ± 0.0067 0
0.0223 ± 0.0188 0.0327 ± 0.0201 0.0207 ± 0.0311 0.0231 ± 0.0121 0.0251 ± 0.0076 0.0237 ± 0.0132 0 0.0444 ± 0.0186 0.0318 ± 0.0000 0.0336 ± 0 0 0.0330 ± 0.0009 0.0287 ± 0.0067 0
0.0196 ± 0.0117 0.0251 ± 0.0084 0.0144 ± 0.0184 0.0233 ± 0.0118 0.0251 ± 0.0076 0.0202 ± 0.0153 0 0.0305 ± 0.0054 0.0318 ± 0.0000 0.0336 ± 0 0 0.0330 ± 0.0009 0.0287 ± 0.0067 0
0.0197 ± 0.0115 0.0486 ± 0.0413 0.0125 ± 0.0109 0.0243 ± 0.0117 0.0251 ± 0.0076 0.0257 ± 0.0113 0 0.0305 ± 0.0054 0.0318 ± 0.0000 0.0336 ± 0 0 0.0330 ± 0.0009 0.0314 ± 0.0116 0
0.0193 ± 0.0121 0.0251 ± 0.0084 0.0125 ± 0.0109 0.0231 ± 0.0121 0.0364 ± 0.0144 0.0202 ± 0.0153 0 0.0305 ± 0.0054 0.0318 ± 0.0000 0.0336 ± 0 0 0.0330 ± 0.0009 0.0287 ± 0.0067 0
0.0241 ± 0.0173 0.0284 ± 0.0133 0.0167 ± 0.0253 0.0264 ± 0.0210 0.0251 ± 0.0076 0.0205 ± 0.0149 0 0.0305 ± 0.0054 0.0318 ± 0.0000 0.0336 ± 0 0 0.0330 ± 0.0009 0.0301 ± 0.0079 0
0.0241 ± 0.0173 0.0284 ± 0.0133 0.0216 ± 0.0326 0.0264 ± 0.0210 0.0291 ± 0.0164 0.0205 ± 0.0149 0 0.0305 ± 0.0054 0.0318 ± 0.0000 0.0336 ± 0 0 0.0330 ± 0.0009 0.0301 ± 0.0079 0
0.0302 ± 0.0192 0.0251 ± 0.0084 0.0128 ± 0.0110 0.0257 ± 0.0177 0.0251 ± 0.0076 0.0220 ± 0.0145 0 0.0305 ± 0.0054 0.0318 ± 0.0000 0.0336 ± 0 0 0.0330 ± 0.0009 0.0287 ± 0.0067 0
0.3424 ± 0.3057 0.0302 ± 0.0115 0.0129 ± 0.0111 0.0231 ± 0.0121 0.0251 ± 0.0076 0.0538 ± 0.0608 0 0.0305 ± 0.0054 0.0318 ± 0.0000 0.0336 ± 0 0 0.0330 ± 0.0009 0.0287 ± 0.0067 0
0.0336 ± 0.0305 0.2156 ± 0.1776 0.0227 ± 0.0284 0.0380 ± 0.0345 0.0251 ± 0.0076 0.0226 ± 0.0135 0 0.0305 ± 0.0054 0.0318 ± 0.0000 0.0336 ± 0 0 0.0330 ± 0.0009 0.0328 ± 0.0121 0
0.0227 ± 0.0141 0.0251 ± 0.0084 0.5931 ± 0.3144 0.0237 ± 0.0124 0.0251 ± 0.0076 0.0557 ± 0.0654 0 0.0305 ± 0.0054 0.0318 ± 0.0000 0.0336 ± 0 0 0.0330 ± 0.0009 0.0287 ± 0.0067 0
0.0262 ± 0.0293 0.0579 ± 0.0455 0.0130 ± 0.0119 0.2965 ± 0.3181 0.0251 ± 0.0076 0.0202 ± 0.0153 0 0.0444 ± 0.0186 0.0318 ± 0.0000 0.0336 ± 0 0 0.0330 ± 0.0009 0.0287 ± 0.0067 0
0.0193 ± 0.0121 0.0251 ± 0.0084 0.0171 ± 0.0236 0.0510 ± 0.0434 0.2839 ± 0.1802 0.0202 ± 0.0153 0 0.0305 ± 0.0054 0.0318 ± 0.0000 0.0336 ± 0 0 0.0330 ± 0.0009 0.0287 ± 0.0067 0
0.0830 ± 0.0987 0.0251 ± 0.0084 0.0236 ± 0.0220 0.0266 ± 0.0179 0.0364 ± 0.0144 0.3397 ± 0.3202 0 0.0305 ± 0.0054 0.0318 ± 0.0000 0.0336 ± 0 0 0.0330 ± 0.0009 0.0287 ± 0.0067 0
0.0191 ± 0.0123 0.0251 ± 0.0084 0.0125 ± 0.0110 0.0231 ± 0.0121 0.0251 ± 0.0076 0.0202 ± 0.0153 0 0.0305 ± 0.0054 0.0318 ± 0.0000 0.0336 ± 0 0 0.0330 ± 0.0009 0.0287 ± 0.0067 0
0.0272 ± 0.0275 0.0294 ± 0.0185 0.0149 ± 0.0176 0.0287 ± 0.0207 0.0251 ± 0.0076 0.0202 ± 0.0153 0 0.1207 ± 0.0506 0.0318 ± 0.0000 0.0336 ± 0 0 0.0330 ± 0.0009 0.0287 ± 0.0067 0
0.0191 ± 0.0123 0.0251 ± 0.0084 0.0132 ± 0.0131 0.0231 ± 0.0121 0.0251 ± 0.0076 0.0220 ± 0.0145 0 0.0305 ± 0.0054 0.0865 ± 0.0000 0.0336 ± 0 0 0.0330 ± 0.0009 0.0313 ± 0.0115 0
0.0191 ± 0.0123 0.0251 ± 0.0084 0.0125 ± 0.0110 0.0231 ± 0.0121 0.0251 ± 0.0076 0.0202 ± 0.0153 0 0.0305 ± 0.0054 0.0318 ± 0.0000 0.0915 ± 0 0 0.0330 ± 0.0009 0.0287 ± 0.0067 0
0.0191 ± 0.0123 0.0251 ± 0.0084 0.0125 ± 0.0110 0.0284 ± 0.0209 0.0251 ± 0.0076 0.0202 ± 0.0153 0 0.0444 ± 0.0186 0.0318 ± 0.0000 0.0336 ± 0 0 0.0330 ± 0.0009 0.0287 ± 0.0067 0
0.0193 ± 0.0121 0.0251 ± 0.0084 0.0125 ± 0.0110 0.0231 ± 0.0121 0.0251 ± 0.0076 0.0202 ± 0.0153 0 0.0305 ± 0.0054 0.0318 ± 0.0000 0.0336 ± 0 0 0.0898 ± 0.0026 0.0336 ± 0.0121 0
0.0193 ± 0.0121 0.0303 ± 0.0188 0.0125 ± 0.0110 0.0239 ± 0.0137 0.0251 ± 0.0076 0.0202 ± 0.0153 0 0.0305 ± 0.0054 0.0865 ± 0.0000 0.0336 ± 0 0 0.0513 ± 0.0273 0.2045 ± 0.1652 0
0.0191 ± 0.0123 0.0251 ± 0.0084 0.0125 ± 0.0110 0.0284 ± 0.0209 0.0251 ± 0.0076 0.0202 ± 0.0153 0 0.0444 ± 0.0186 0.0318 ± 0.0000 0.0336 ± 0 0 0.0330 ± 0.0009 0.0287 ± 0.0067 0

Table 10: DRUG dataset average label distributions(part 2) (mean±Std) for all nodes w.r.t. different
classes. To generate this average, label distributions are grouped by their dominant class. Average
label distributions are then calculated within their respective groups. Standard deviations are cal-
culated between each class within each individual group. The table is q × q, where q denotes the
number of classes. The diagonal values denote the dominant class’s probability value. The lower the
diagonal values, the more spread out the class probability is. Class 21, Class 25, and Class 28 has 0
label distribution because no samples have any one of these three three classes (21, 25, 28) as the
dominate class

created from chemical compound of each drug using their SMILES notations. SMILES
(Simplified Molecular Input Line Entry System) is a chemical notation that represents a
chemical structure as a string so it can be used by the computer. Table 5 lists examples

17

Class 1 Class 2 Class 3 Class 4 Class 5 Class 6 Class 7 Class 8 Class 9

0.6166 ± 0.2722 0.0528 ± 0.0882 0.0097 ± 0.0450 0.1056 ± 0.1204 0.0255 ± 0.0774 0.0109 ± 0.0521 0.0000 ± 0.0000 0.0324 ± 0.0685 0.0241 ± 0.0701
0.0938 ± 0.1400 0.6153 ± 0.2831 0.0196 ± 0.0634 0.1046 ± 0.1170 0.0117 ± 0.0485 0.0000 ± 0.0000 0.0000 ± 0.0000 0.0585 ± 0.0976 0.0144 ± 0.0515
0.0290 ± 0.0848 0.0409 ± 0.0934 0.7113 ± 0.2697 0.0235 ± 0.0497 0.0021 ± 0.0189 0.0109 ± 0.0521 0.0000 ± 0.0000 0.0368 ± 0.0771 0.0074 ± 0.0320
0.1675 ± 0.1790 0.1583 ± 0.1725 0.1130 ± 0.1811 0.6573 ± 0.2638 0.0212 ± 0.0616 0.0217 ± 0.0720 0.0000 ± 0.0000 0.0695 ± 0.1109 0.0144 ± 0.0515
0.0267 ± 0.0816 0.0198 ± 0.0755 0.0117 ± 0.0629 0.0196 ± 0.0633 0.8670 ± 0.2324 0.0000 ± 0.0000 0.0000 ± 0.0000 0.0034 ± 0.0205 0.0028 ± 0.0167
0.0053 ± 0.0338 0.0095 ± 0.0469 0.0172 ± 0.0755 0.0071 ± 0.0458 0.0076 ± 0.0574 0.8261 ± 0.2435 0.0000 ± 0.0000 0.0059 ± 0.0302 0.0028 ± 0.0167
0.0011 ± 0.0199 0.0017 ± 0.0208 0.0014 ± 0.0168 0.0014 ± 0.0221 0.0000 ± 0.0000 0.0217 ± 0.1043 0.8750 ± 0.2315 0.0025 ± 0.0169 0.0000 ± 0.0000
0.0481 ± 0.1050 0.0830 ± 0.1300 0.0686 ± 0.1510 0.0671 ± 0.1061 0.0446 ± 0.1255 0.0652 ± 0.1722 0.0625 ± 0.1768 0.7568 ± 0.2872 0.0069 ± 0.0417
0.0118 ± 0.0523 0.0186 ± 0.0631 0.0475 ± 0.1352 0.0139 ± 0.0475 0.0203 ± 0.0970 0.0435 ± 0.1441 0.0625 ± 0.1768 0.0343 ± 0.1022 0.9273 ± 0.1932

Table 11: YELP dataset average label distributions (mean±Std) for all nodes w.r.t. different classes.
To generate this average, label distributions are grouped by their dominant class. Average label
distributions are then calculated within their respective groups. Standard deviations are calculated
between each class within each individual group. The table is q × q, where q denotes the number of
classes. The diagonal values denote the dominant class’s probability value. The lower the diagonal
values, the more spread out the class probability is. 0 indicates no samples have specific dominate
class.

Class 1 Class 2 Class 3 Class 4 Class 5 Class 6 Class 7 Class 8 Class 9 Class 10

0.6855± 0.2143 0.0069± 0.0475 0.0273± 0.0792 0.0759± 0.1119 0.0427± 0.0949 0.0305± 0.0699 0.0323± 0.0884 0.0063± 0.0449 0.0718± 0.1116 0.0209± 0.0564
0.0064± 0.0137 0.6357± 0.2011 0.1042± 0.1345 0.0234± 0.0492 0.0522± 0.1020 0.0321± 0.1098 0.0388± 0.0742 0.0358± 0.0803 0.0471± 0.0975 0.0244± 0.0843
0.0355± 0.0686 0.0039± 0.0320 0.6177± 0.1745 0.0645± 0.1026 0.0912± 0.1208 0.0065± 0.0253 0.0355± 0.0873 0.0109± 0.0489 0.1106± 0.1440 0.0236± 0.0643
0.0715± 0.1133 0.0006± 0.0068 0.0319± 0.0893 0.6724± 0.2079 0.0339± 0.0869 0.0226± 0.0765 0.0485± 0.1025 0.0037± 0.0285 0.0968± 0.1271 0.0181± 0.0581
0.0655± 0.0964 0.0249± 0.0950 0.0470± 0.1001 0.0588± 0.1016 0.5907± 0.1826 0.0200± 0.0496 0.0581± 0.1077 0.0296± 0.0853 0.0837± 0.1143 0.0216± 0.0638
0.0807± 0.1251 0.0151± 0.0787 0.0123± 0.0571 0.0039± 0.0107 0.0805± 0.1292 0.6902± 0.2192 0.0186± 0.0581 0.0005± 0.0028 0.0981± 0.1394 0.0000± 0.0000
0.0651± 0.0921 0.0120± 0.0552 0.0448± 0.0999 0.0553± 0.1193 0.0775± 0.1190 0.0187± 0.0587 0.6171± 0.2053 0.0084± 0.0363 0.0528± 0.0863 0.0483± 0.0986
0.0198± 0.0375 0.0092± 0.0419 0.0227± 0.0631 0.0445± 0.0812 0.1065± 0.1305 0.0034± 0.0095 0.0344± 0.0755 0.6798± 0.2135 0.0597± 0.0909 0.0201± 0.0542
0.0683± 0.1106 0.0044± 0.0361 0.0119± 0.0543 0.1223± 0.1512 0.0584± 0.1106 0.0282± 0.0669 0.0183± 0.0592 0.0058± 0.0321 0.6759± 0.2015 0.0066± 0.0316
0.0478± 0.0898 0.0106± 0.0573 0.0225± 0.0564 0.1027± 0.1356 0.0618± 0.1078 0.0305± 0.0705 0.0909± 0.1285 0.0019± 0.0103 0.0571± 0.0908 0.5740± 0.1959

Table 12: URBAN dataset average label distributions (mean±Std) for all nodes w.r.t. different classes.
To generate this average, label distributions are grouped by their dominant class. Average label
distributions are then calculated within their respective groups. Standard deviations are calculated
between each class within each individual group. The table is q × q, where q denotes the number of
classes. The diagonal values denote the dominant class’s probability value. The lower the diagonal
values, the more spread out the class probability is. 0 indicates no samples have specific dominate
class.

of three drugs’ names, IDs, and their SMILES strings. Because SMILES describes drug’s
chemical compound, We use RDKit library [36] to convert the chemical compound to 191
measures(scalars) of that chemical compound and use it as drug node (target node) features.
To obtain the label, we use the MeSH-tree parsing tool [37] to convert the disease ID to
corresponding MeSH prefix code which corresponds to high level disease and obtain in total
28 high-level diseases that drugs could potentially target on. Table 6 lists the 28 labels used
in DRUG dataset (including MeSH prefix codes and names).

• URBAN is a functional urban area network constructed based on the city of Porto, Portugal,
uniformly divided into a grid of 30 by 80 blocks. A dataset comprising 22,208 points
of interest (POI) is sourced from the OpenStreetMap platform 2 to generate the label
distribution. This dataset includes a large amount of fundamental categories like hotels,
banks and churches, which have been further categorized into 10 more general groups, as
detailed in Table 4. We count the types and corresponding numbers of POIs to generate the
label for each block. After excluding blocks devoid of any POIs, the remaining blocks were
primarily divided into four different types of nodes using the Louvain algorithm [38]. These
node types are named as Nature Residence, Comprehensive Service, Green Leisure and
Transit Junction based on their main functions and nodes from Nature Residence are our
target nodes. The edges are constructed by Taxi Service Trajectory 3, which documents the
taxi routines (from origins to destinations) in Porto. In our resulting heterogeneous graph,
two target nodes are considered neighbors if they have the same recorded destination.

Tables 7, 8, 9 and 10, and 11 report average label distributions for DBLP, ACM, DRUG, YELP, and
URBAN dataset, respectively. To generate average label distributions, for each dataset, nodes are
grouped by their dominant class (where dominant class is the class with the largest distribution value
among all classes, using ground-truth distributions). Average label distributions are then calculated
within respective groups. It is worth noting that some classes may not be a domain class of any

2www.openstreetmap.org
3https://www.kaggle.com/c/pkdd-15-predict-taxi-service-trajectory-i/data

18

www.openstreetmap.org
https://www.kaggle.com/c/pkdd-15-predict-taxi-service-trajectory-i/data

node (e.g. Class 7 of the ACM dataset in Table 8, or Classes 21, 25, and 28 in the DRUG dataset in
Table 10). In this case, the average label distributions of the class are reported as 0 in the tables.

D.2 Baselines

We extend existing heterogeneous graph learning methods to integrate KL-divergence loss, and
implement three baselines for comparisons. In addition, three variants of the proposed HGDL method
are compared for ablation study purposes:

• GCNKL: A baseline uses graph constructed from each meta-path to train a vanilla GCN,
using KL-divergence as loss function, and reports the best meta-path result. This baseline is
used to demonstrate whether the proposed HGDL can outperform the best single meta-path
result.

• HANKL: This baseline is to compare HGDL’s semantic fusion component with HAN [25], a
classical heterogeneous network learning semantic fusion method. HANKL uses HAN to
integrate embedding from meta-path graphs created from different meta-paths, and uses
KL-divergence as the loss function for training.

• SeHGNNKL This baseline is to compare HGDL’s semantic fusion with SeHGNN [27], a state
of the art transformer based heterogeneous semantic fusion learning method. SeHGNNKL
uses neighbor aggregation proposed by SeHGNN to aggregate meta-paths embedding, with
KL-divergence being used as the loss function for training.

• HGDL: The proposed HGDL method.
• HGDL¬TH: This is a variant of the HGDL for ablation study. HGDL¬TH removes the graph

topology homogenization module (Sec 4.1). The embedding is trained from each meta-path
with topology and feature consistence-aware graph transformer (Sec 4.2) being applied
to each meta-path. The result of the best meta-path is reported, and the purpose is to
demonstrate HGDL’s topology homogenization effectiveness.

• HGDL¬transformer: This is a variant of the HGDL for ablation study. HGDL¬transformer uses
GCN, instead of the transformer (Sec 4.2), to learn embeddings. This serves as an ablation
study to show the advantage of HGDL’s transformer component for embedding learning.

• HGDLED This is a variant of the HGDL for ablation study. HGDLED replaces HGDL’s
topology and feature consistence-aware graph transformer (Sec. 4.2) using random edge
dropout method [31]. The purposes to demonstrate the advantage of consistent-aware graph
transfer, which resembles to learnable edge dropping, compared to random edge dropout.

D.3 Experiment Setup

All results reported in the paper are based on 5 times average for each method. Hyperparameters of
all the baselines include the hidden dimension for the embedding learning and the hidden dimension
for the semantic fusion learning (if the semantic fusion part exists), and the learning rate. In practice,
a 0.005 learning rate is fixed for all the baselines unless it is observed that specific method cannot
converge under such learning rate or can converge much faster with a large learning rate. An early
stop patience signal is set and a maximum number of epochs is fixed. In practice, we observed
convergence before reaching maximum number of epochs in general. For the methods that cannot
learn well with all the hyperparameter search, we report the best results we got. For the HDGLED
method, the originally learned feature topology for HGDL is replaced by a 0-1 matrix generated by
a Bernoulli distribution with a drop rate provided to convert to a 0-1 matrix. The drop rate for the
HDGLED baseline in Table 2 in the main manuscript is 0.1. Fig 5 provides the results of different drop
rate cases. For HGDL we have additional hyperparameters negative slope of Leaky Relu activation
and γ for regularization loss.

The train:validation:test splits for DRUG, ACM, DBLP, YELP, and URBAN dataset are 8:1:1,
7:1:2, 4:1:5, 8:1:1, 5:3:2, respectively. We used a smaller training set (40%) for DBLP because
because this dataset has comprehensive nodal features (8,920 features) which are the-bag-of-words
of papers published by authors. DBLP also has much less number of labels (4 classes), compared to
other datasets. The rich nodal features, combined with less number of classes, provide rather rich
information to derive research fields. So we reduce the training set size, compared to the test set, to
provide less label information for learning.

19

D.4 Evaluation metric

Given one predicted label distribution ŷ and its corresponding ground truth distribution y, the six
metrics used in the Table 2 can be defined as the following:

• Cosine Distance(COD):
COD(y, ŷ) = 1− y · v

∥y∥∥ŷ∥
(4)

• Canberra Distance(CAD):

CAD(y, ŷ) =
∑
i

|yi − ŷi|
|yi|+ |ŷi|

(5)

• Chebyshev Distance(CHD):

CHD(y, ŷ) = max
i

|yi − ŷi| (6)

• Clark Distance (CLD):

CLD(y, ŷ) =

√∑
i

(yi − ŷi)2

(yi + ŷi)2
(7)

• Intersection Score(IND):
IND(y, ŷ) =

∑
i

min(yi, ŷi) (8)

• Kullback-Leibler Divergence(KL):

KL(y, ŷ) =
∑
i

yi · log
yi
ŷi
, (9)

E Supplement C: Additional Results and Analysis

E.1 Edge Dropping Comparisons

HGDL treats the learnt feature attention as another adjacency matrix, and incorporates it into the graph
adjacency matrix by a ⊙ operator, which provides an intersection of neighbor sets for a node, i.e.,
the resulting convolution layer is propagated to a neighbor set that both feature and graph topology
agrees on. This operation is similar to the recently proposed drop message idea that randomly masks
edges for the nodes. Instead of random masking, HGDL selects the neighbors that both feature and
graph topology agree on. In other words, Eq. (2) in the main manuscript functions similarly to the
edge dropout [31]; in lieu of randomly removing edges, we enforce a neighbor-set intersection, where
the information is only propagated from the neighbors on which the feature space and meta-path
topology both agree.

To compare the performance between our approach vs. the edge dropout [31], the variant HGDLED
is used to replace our transformer based approach by using random edge dropout. In this case, for
HDGLED, the originally learned feature topology for HGDL is replaced by a 0-1 matrix generated
by a Bernoulli distribution with a drop rate provided to convert to a 0-1 matrix. For comparisions,
we vary the edge drop rates and report HGDLED’s performance in Figure 5. The results show that
that HGDLED with random edge dropping doesn’t necessarily help improve the distribution learning,
implying that our method works not just by relying on the decreasing of the edge number, but also
relying on choosing the proper edges to drop.

E.2 Validation Loss Comparisons

Figures 6, 7, and 8 report the training process validation loss (w.r.t. KL-divergence loss) between
HANKL, SeHGNNKL, and HGDL. Because early stop is applied to all methods, they terminate at
respective number of epochs. In our experiments, a patience score is used to determine the
minimum loss. A method will continue if a smaller validation loss is found within patience number
of epochs after the current smallest loss, and terminates otherwise.

20

DRUG

Model COD↓ CAD↓ CHD↓ CLD↓ IND↑ KL↓
GCNKL 0.220±.025 9.209±.740 0.245±.031 1.963±.134 0.676±.029 0.484±.075

HANKL 0.279±.023 10.084±.823 0.268±.027 2.155±.148 0.632±.025 0.579±.055

SeHGNNKL 0.286±.018 10.178±.781 0.267±.020 2.166±.143 0.640±.016 0.600±.059

GLDL 0.199±.064 8.887±.838 0.232±.044 1.89±.17 0.699±.049 0.409±.105

HINormer 0.365±.028 10.563±.571 0.308±.029 2.227±.099 0.575±.023 0.742±.102

HGDL 0.168±.019 9.179±.574 0.217±.017 1.957±.114 0.710±.020 0.392±.044

HGDL¬transformer 0.199±.014 9.371±.679 0.235±.017 2.004±.137 0.687±.021 0.492±.059

HGDL¬t 0.212±.023 9.510±.602 0.240±.018 2.029±.110 0.671±.020 0.462±.050

HGDLed 0.204±.026 9.602±.882 0.239±.028 2.040±.162 0.681±.030 0.574±.085

DBLP

Model COD↓ CAD↓ CHD↓ CLD↓ IND↑ KL↓
GCNKL 0.031±.004 2.852±.009 0.091±.006 1.647±.002 0.908±.006 0.114±.011

HANKL 0.025±.002 2.819±.012 0.071±.004 1.633±.007 0.929±.004 0.082±.008

SeHGNNKL 0.086±.140 2.887±.170 0.155±.208 1.624±.049 0.842±.214 0.252±.397

GLDL 0.019±.001 2.8±.009 0.056±.002 1.633±.004 0.943±.003 0.06±.003

HINormer 0.053±.008 2.936±.013 0.146±.019 1.669±.008 0.853±.019 0.22±.025

HGDL 0.019±.002 2.796±.014 0.057±.005 1.633±.005 0.943±.005 0.057±.011

HGDL¬transformer 0.025±.002 2.828±.004 0.074±.005 1.642±.001 0.925±.005 0.090±.008

HGDL¬t 0.020±.002 2.808±.013 0.062±.005 1.637±.005 0.937±.005 0.070±.011

HGDLed 0.023±.001 2.819±.005 0.070±.003 1.639±.003 0.929±.003 0.082±.006

Table 13: Experimental results of HINormer and GLDL on the Drug and DBLP datasets, where
HINormer is a recent heterogeneous graph learning baseline and GLDL is for LDL in homogeneous
graphs.

Figure 5: HGDLED baseline with different edge drop rates on DRUG and ACM dataset.

21

Figure 6: Training process KL-divergence validation loss comparisons on the DRUG dataset. The
x-axis denotes epochs, and the y-axis denotes training validation loss. Early stop is applied to all
three methods, so methods terminate at different epochs. A method terminates at the minimum loss,
if no smaller loss is found after continuing a patience number of epochs.

Figure 7: Training process KL-divergence validation loss comparisons on the DBLP dataset. The
x-axis denotes epochs, and the y-axis denotes training validation loss. Early stop is applied to all
three methods, so methods terminate at different epochs. A method terminates at the minimum loss,
if no smaller loss is found after continuing a patience number of epochs.

Figure 8: Training process KL-divergence validation loss comparisons on the ACM dataset. The
x-axis denotes epochs, and the y-axis denotes training validation loss. Early stop is applied to all
three methods, so methods terminate at different epochs. A method terminates at the minimum loss,
if no smaller loss is found after continuing a patience number of epochs.

22

Figure 9: Sensitive analysis of γ, ranging from 0, 1e-5, 1e-4, 1e-3, 1e-2, and 0.1, converted to the
values of log(γ) as -6, -5, -4, -3, -2, and -1 along the X-axis.

The comparisons show that HGDL achieves the smallest KL-divergence loss across all datasets. For the
DRUG dataset (Figure 6), HGDL converges at much better optimal point than the other two baselines.
This is also evident by the results shown in the Table 2 of the main manuscript (which are validated
on the test set nodes).

E.3 Sensitive Analysis of hyperparameter

To study the effect of hyperparameter γ on the model performance, we explore the γ value ranging
from [0,1e-5,1e-4,1e-3,1e-2,0.1] and see how the KL divergence metric is affected by different γ
values for our five datasets shown in Figure 9. We can observe that optimal γ values vary for different
datasets and therefore it is important to search for a proper γ value for each datasets.

E.4 Comparison against HINormer and GLDL

HINormer [39] is a recent heterogenous graph learning baseline and GLDL method is a recent LDL
learning method in homogeneous graphs. To make a more comprehensive comparisons, Table 13
provides the results applied to DBLP and Drug dataset with these two additional baselines. We
observe that our method is still competitive in most metrics in terms of GLDL and is more superior
to HINormer method in general. This further validates the superiority of our design on heterogenous
settings.

F Supplement D: Proof of Theorem 1

Theorem 3. Let E[L(X,Ai)(ℏ)] be the empirical risk of using the i-th meta-path graph Ai ∈ A for
label distribution prediction. With the SGD step-size η, we have

L(X,Ã)(ℏ) ≤ min
Ai∈A

E[L(X,Ai)(ℏ)] +
ln k

ηn
+

η

8
.

Proof. We define the cumulative risk L(X,Ai)(ℏ) =
∑n

i=1

[
ℓ
(
ℏ(X,Ai)[i], yi

)]
over n training

iterations, and a quantitative variable Qn as follows:

Qn = exp(−ηL(X,A1)(ℏ)) + . . . exp(−ηL(X,Ak)(ℏ)), (10)

where it is trivial to derive Q1 = k, as no risk will be suffered if no target node attends training. By
performing stochastic gradient descent (SGD) over n iterations, we have

ln
Qn

Q1
= ln

∑
Ai∈A

exp(−ηL(X,Ai)(ℏ))− ln k

≥ ln max
Ai∈A

{
exp(−ηL(X,Ai)(ℏ))

}
− ln k

=− η min
Ai∈A

{
L(X,Ai)(ℏ)

}
− ln k, (11)

23

and

ln
Qn

Qn−1
= ln

∑
Ai∈A

[
exp(−η(L

(n−1)
(X,Ai)

(ℏ) + ℓi(ŷn, yn))
]

∑
Ai∈A exp(−ηL

(n−1)
(X,Ai)

(ℏ))

= ln
∑
Ai∈A

softmax(−ηL
(n−1)
(X,Ai)

((ℏ)) · exp(−ηℓi(ŷn, yn))

≤ ln
∑
Ai∈A

Θ[:, i] exp(−ηℓi(ŷn, yn)), (12)

where ℓi(ŷn, yn) = ℓ(ℏ(X,Ai)[n], yn) denotes the immediate loss evaluated at the n-th training
iteration based on the i-th meta-path graph topology. The attention matrix Θ are with all entries
non-negative by its definition. To proceed, we introduce the lemma by [40].

Lemma 4 (Hoeffding Inequality). Let X be a random variable with a ≤ X ≤ b. Then for any
s ∈ R,

lnE
(
esX

)
≤ sEX +

s2(b− a)2

8
.

With normalized immediate loss ℓi(ŷn, yn) ∈ [0, 1], ∀i, we can relax Eq. (12) based on the convexity
of ℓ and ℏ:

ln
Qn

Qn−1
≤ −η

[∑
Ai∈A

Θ[:, i]ℓi(ŷn, yn)
]
+

η2

8

≤ −η
[
ℓ(ℏ(X,

k∑
i=1

Θ[:, i]Ai)[n], yn)
]
+

η2

8

≤ −η
[
ℓ(ℏ(X, Ã)[n], yn)

]
+

η2

8
. (13)

We can observe that over n training iterations:

ln
Qn

Qn−1
+ ln

Qn−1

Qn−2
+ . . .+ ln

Q2

Q1

= ln

(
Qn

Qn−1
· Qn−1

Qn−2
. . .

Q2

Q1

)
= ln

Qn

Q1

≤− η

n∑
i=1

ℓ(ℏ(X, Ã)[i], yi) +
n · η2

8
. (14)

Chaining Eq. (11) and Eq. (14) we arrive at:
n∑

i=1

ℓ(ℏ(X, Ã)[i], yi) ≤ min
Ai∈A

{
L(X,Ai)(ℏ)

}
+

ln k

η
+

n · η
8

,

and dividing the both sides by n, we have

L(X,Ã)(ℏ) ≤ min
Ai∈A

E[L(X,Ai)(ℏ)] +
ln k

ηn
+

η

8
.

Note that E[L(X,Ai)(ℏ)] =
1
nL(X,Ai)(ℏ) concludes the proof.

G Supplement E: Proof of Theorem 2

Theorem 5. Let ℏ ∈ H : X ×G → Rq be an l-layer message-passing neural network with maximum
hidden dimension k, of which the i-th layer is parameterized by Wi. Then for any δ, γ,B > 0 and

24

l > 1, with probability at least 1− δ we have

LG (ℏ)− L(X,Ã) (ℏ) ≤
2(
√
2q +

√
2)q√

n
max

i∈[n],j∈[l]

∥∥∥hj
i

∥∥∥
2

+ 3b

√
log 2/δ

2n
+O

(√
B2dl−1l2k log(lk)D(Wi)+log nl

δ

γ2n

)
,

where D(Wi) =
∏l

i=1 ∥Wi∥22 ·
∑l

i=1

(
∥Wi∥2F / ∥Wi∥22

)
bounds the hypothesis space and b is a

constant.

Proof We first try to explore the boundary of a GCN without label distribution, and use the multi-
class γ-margin loss following [41, 42]. The generalization error and the empirical error are defined
as,

LG (fw) = P
z∼D

(
fw(X,A)[y] ≤ γ +max

j ̸=y
fw(X,A)[j]

)
,

L(X,A) (fw) =
1

n

∑
zi∈S

1

(
fw(X,A)[y] ≤ γ +max

j ̸=y
fw(X,A)[j]

)
,

(15)

where γ > 0 and fw(X,A) is the l-th layer representations, i.e., Hl = fw(X,A). 1 is a all-one
vector. Two necessary lemmas are derived from this. First, a margin-based generalization bound is
given to guarantee that, as long as the change of the output brought by the perturbations is small with
a large probability, the corresponding generalization bound [42] is defined as:

Lemma 6. Let fw(x) : X → RK be any model with parameters w, and let P be any distribution on
the parameters that is independent of the training data. For any w, we construct a posterior Q(w+u)
by adding any random perturbation u to w, s.t., P

(
maxx∈X |fw+u(x)− fw(x)|∞ < γ

4

)
> 1

2 . Then,
for any γ, δ > 0, with probability at least 1− δ we have:

LG (fw) ≤ L(X,A) (fw) +

√
2DKL(Q(w + u)∥P) + log 8n

δ

2(n− 1)
, (16)

where n is the number of instances of training set. Hence, in order to apply Lemma 6 , we must ensure
that the change of the output brought by the weight perturbations is small with a large probability.
In the following lemma, we bound this change using the product of the spectral norms of learned
weights at each layer and a term depending on some statistics of the graph [43].

Lemma 7. For any B > 0, l > 1, let fw ∈ H : X × G → RK be a l-layer GCN. Then for any w, and
x ∈ XB,h0 , and any perturbation u = vec

(
{Ui}li=1

)
such that ∀i ∈ N+

l , ∥Ui∥2 ≤
1
l
∥Wi∥2, the change in

the output of GCN is bounded as,∣∣L(X,A)

(
f(w+u)

)
− L(X,A) (fw)

∣∣
2

≤ eBd
l−1
2

(
l∏

i=1

∥Wi∥2

)
l∑

k=1

∥Uk∥2
∥Wk∥2

.
(17)

Then, we can deduce the bound for a GCN without label distribution. First, let β =(∏l
i=1 ∥Wi∥2

)1/t
. Weights are normalized as W̃i = β

∥Wi∥2
Wi. Due to the homogeneity of

ReLU, i.e., aϕ(x) = ϕ(ax),∀a ≥ 0.
∏l

i=1 ∥Wi∥2 =
∏l

i=1

∥∥∥W̃i

∥∥∥
2

and ∥Wi∥F / ∥Wi∥2 =∥∥∥W̃i

∥∥∥
F
/
∥∥∥W̃i

∥∥∥
2
, i.e., the terms present in the bound remain unchanged after normalization. There-

fore, w.l.o.g., we conduct the assumption that the norm is equal across all layers, i.e., ∀i, ∥Wi∥2 = β.
Consider the prior P = N

(
0, σ2I

)
and the random perturbation u ∼ N

(
0, σ2I

)
. Note that the σ of

the prior and the perturbation keep the same and will be set according to β. Specifically, the value
of σ is set based on some approximation β̃ of β since the prior P can not be directly deduced by
any learned weights. We select the approximation β̃ as the cover set that encompasses the possible
significant range of β. For the moment, assuming we have a constant β̃, we can examine β that

25

fulfills the condition |β − β̃| ≤ 1
l β. Note that this also implies

|β − β̃| ≤ 1

l
β, ⇒

(
1− 1

l

)
β ≤ β̃ ≤

(
1 +

1

l

)
β,

⇒
(
1− 1

l

)l−1

βl−1 ≤ β̃l−1 ≤
(
1 +

1

l

)l−1

βl−1,

⇒
(
1− 1

l

)l

βl−1 ≤ β̃l−1 ≤
(
1 +

1

l

)l

βl−1,

⇒ 1

e
βl−1 ≤ β̃l−1 ≤ eβl−1.

(18)

According to [44], for random perturbations Ui ∈ Rh×h which is object to the distribution Ui ∼
N
(
0, σ2I

)
,

P (∥Ui∥2 ≥ t) ≤ 2ke−t2/2kσ2

. (19)

We consider the perturbations of all layers, thus:

P (∥U1∥2 < t& · · ·& ∥Ul∥2 < t) = 1− P (∃i, ∥Ui∥2 ≥ t) ,

≥ 1−
l∑

i=1

P (∥Ui∥2 ≥ t) ,

≥ 1− 2lke−t2/2kσ2

.

(20)

Setting 2lke−t2/2kσ2

= 1
2 , we can have t = σ

√
2k log(4lk).

The likelihood that the spectral norm perturbation of any layer not exceeds σ
√
2h log(4lk) is at least

1
2 . Plugging this bound into Lemma 7, we have with probability at least 1

2 ,

|fw+u(X,A)− fw(X,A)|2 ≤ eBd
l−1
2

(
l∏

i=1

∥Wi∥2

)
l∑

i=1

∥Ui∥2
∥Wi∥2

,

= eBd
l−1
2 βl

l∑
i=1

∥Ui∥2
β

,

≤ eBd
l−1
2 βl−1lσ

√
2k log(4lk),

≤ e2Bd
l−1
2 β̃l−1lσ

√
2k log(4lk),

≤ γ

4
,

(21)

where we can set σ = γ

4e2Bd
L−1

2 β̃l−1l
√

k log(4lk)
to get a new inequality. Note that Lemma 7 also

requires ∀i ∈ N+
l , ∥Ui∥2 ≤ 1

l ∥Wi∥2. The requirement is satisfied if σ ≤ β

l
√

2k log(4lk)
which in turn

can be satisfied if

γ

4eBd
I−1
2 βl−1l

√
2k log(4lk)

≤ β

l
√
2k log(4lk)

, (22)

since the chosen value of σ satisfies σ ≤ γ

4eBd
l−1
2 βl−1l

√
2k log(4lk)

.

26

Note that Eq. (22) can be rewritten as γ
4eBd

1−1
2 ≤ βl. KL term in the PAC-Bayes bound in Lemma 6

is deduced as:

KL(Q∥P) =
|w|22
2σ2

=
4e2B2dl−1β2l−2l2k log(4lk)

2γ2

l∑
i=1

∥Wi∥2F ,

≤ O

(
B2dl−1β2ll2k log(lk)

γ2

l∑
i=1

∥Wi∥2F
β2

)
,

≤ O

(
B2dl−1l2k log(lk)

∏l
i=1 ∥Wi∥22

γ2

l∑
i=1

∥Wi∥2F
∥Wi∥22

)
.

(23)

From Lemma 6, fixing any β̃, with probability 1 − δ and for all w such that |β − β̃| ≤ 1
l β. Let

D(Wi) =
∏l

i=1 ∥Wi∥22 ·
∑l

i=1

(
∥Wi∥2F / ∥Wi∥22

)
we can get,

LG (fw) ≤ L(X,A) (fw)

+O

√B2dl−1l2k log(lk)D(Wi) + log n
δ

γ2n

 .
(24)

The choice of β̃ is important, such that for any β, we can bound the generalization error like Eq. (24).
First, the value range of β is decided as the following,

1√
d

(
γ
√
d

2B

)1/l

≤ β ≤ 1√
d

(
γ
√
nd

2B

)1/l

, (25)

since otherwise the bound holds trivially as L(X,A) (fw) ≤ 1 by definition. Note that the lower
bound in Eq. (25) ensures that Eq. (22) holds which in turn justifies the applicability of Lemma 7. If

β < 1√
d

(
γ
√
d

2B

)1/l
, then for any (X,A) and any j ∈ N+

K , |f(X,A)[j]| ≤ γ
2 . To prove this, we have,

|fw(X,A)[j]| ≤ |fw(X,A)|2 =

∣∣∣∣ 1n1nx
l−1Wl

∣∣∣∣
2

,

≤ 1

n

∣∣1nx
l−1
∣∣
2
∥Wl∥2 ,

≤ ∥Wl∥2 max
i

∣∣xl−1[i, i]
∣∣
2
,

≤ Bd
l−1
2

l∏
i=1

∥Wi∥2 = d
l−1
2 βlB,

= d
l−1
2 B

γ

2Bd
l−1
2

≤ γ

2
.

(26)

Therefore, we always have L(X,A) (fw) = 1 when β < 1√
d

(
γ
√
d

2B

)1/l
. Alternatively, if β >

1√
d

(
2
√
nd

2B

)1/l
, the term inside the big-O notation in Eq. (24) would be,√

B2dl−1l2k log(lk)D(Wi) + log n
δ

γ2n
≥

√√√√ l2k log(lk)

4

l∑
i=1

∥Wi∥2F
∥Wi∥22

,

≥
√

l2k log(lk)

4
≥ 1,

(27)

where we set k ≥ 2 in practice and l ≥ 2, while considering the fact ∥Wi∥F ≥ ∥Wi∥2. To account
for β within the range defined by Eq. (25), a condition ensuring that |β − β̃| ≤ 1

l β would be

27

|β − β̄| ≤ 1
l
√
d

(
γ
√
d

2B

)1/l
. So, if we can identify an overlap of the span in Eq. (25) with a radius of

1
l
√
d

(
∂
√
d

2B

)1/l
and ascertain that bounds akin to Eq. (24) are met when β̃ assumes any value within

that overlap, then a bound that is valid for every β can be established. Clearly, it is only essential
to ponder a coverage C of magnitude |C| = l

2

(
n

1
2 − 1

)
. Thus, representing the event of Eq. (24)

when β̃ adopts the i-th value from the coverage as Ei, we deduce:

P
(
E1& · · ·&E|C|

)
= 1− P

(
∃i, Ēi

)
,

≥ 1−
|C|∑
i=1

P
(
Ēi

)
≥ 1− |C|δ.

(28)

Note Ēi denotes the complement of Ei. Hence, we now present the PAC-Bayes generalization
bound [43] of GCNs as Theorem 8.
Theorem 8. For any B > 0, l > 1, let fw ∈ H : X × G → RK be a l layer GCN. Then for any
δ, γ > 0, with probability at least 1− δ over the choice of an i.i.d. size-n training set S according to
D, for any w, we have,

LG (fw) ≤ L(X,A) (fw)

+O

√B2dl−1l2k log(lk)D(Wi) + log n|C|
δ

γ2n

 ,

= L(X,A) (fw)

+O

√B2dl−1l2k log(lk)D(Wi) + log nl
δ

γ2n

 ,

(29)

Then we consider a GCN with label distribution learning, and explore the bound in term of
Rademacher complexity. Specifically, let η(·) be a label distribution function, thus η (xi) ={
ηy1
xi
, . . . , η

yp
xi

}
. Given a function class H and a loss function ℓ(·), for function ℏ ∈ H, its corre-

sponding risk and empirical risk are defined as LG (fw) = Ex∼D[ℓ(ℏ(x), η(x))] and L(X,A) (fw) =
1
n

∑n
i=1 ℓ (ℏ (xi) , η (xi)), respectively. Recall the definition of rademacher complexity w.r.t. S and

ℓ,

R̂n(ℓ ◦ H ◦ S) = Eϵ1,...,ϵn

[
sup
ℏ∈H

1

n

n∑
i=1

ℓ (ℏ (xi) , η (xi)) ϵi

]
,

where ϵ1, . . . , ϵn are n independent rademacher random variables with P (ϵi = 1) = P (ϵi = −1) =
1/2.

Then we can derive the following necessary lemma [45] [46],
Lemma 9. Let H be a family of functions. For a loss function ℓ bounded by µ, then for any δ > 0,
with probability at least 1− δ, for all ℏ ∈ H such that

LD(ℏ) ≤ LS(ℏ) + 2R̂n(ℓ ◦ H ◦ S) + 3µ

√
log 2/δ

2n
. (30)

and the theorem of Rademacher complexity of the method for loss function KL-divergence [8]:
Theorem 10. Let H be a family of functions for multi-output linear regression, and Hj be a family
of functions for the j-th output. Rademacher complexity of ME(Maximum-Entropy) with KL loss
satisfies

R̂n(KL ◦ SF ◦ H ◦ S) ≤ (
√
2q +

√
2)

q∑
j=1

R̂n (Hj ◦ S) . (31)

Note that KL(u, ·) is not ρ-Lipschitz over Rm for any ρ ∈ R and u ∈ Rm. Define function ϕ(·, ·) as
KL(·,SF(·)). Next we show that ϕ(u, ·) satisfy Lipschitzness. For p,q ∈ Rm,

|ϕ(u,p)− ϕ(u,q)| = |KL(u,SF(p))−KL(u,SF(q))|,

28

which equals ∣∣∣∣∣
p∑

i=1

ui

(
ln

exp (pi)∑n
j=1 exp (pj)

− ln
exp (qi)∑n
j=1 exp (qj)

)∣∣∣∣∣ ,
≤

p∑
i=1

∣∣∣∣∣∣ln
1 +

∑
j ̸=i

epj−pi

− ln

1 +
∑
j ̸=i

eqj−qi

∣∣∣∣∣∣ui.

Observing that ln
(
1 +

∑
j exp vi

)
is 1-Lipschitz for v ∈ Rm, thus right-hand side of preceding

equation is bounded by
p∑

i=1

ui ∥p− 1 · pi − q+ 1 · qi∥2 ,

≤ ||p− q∥2 +
√
c

p∑
i=1

ui |pi − qi| ,

≤ (
√
p+ 1)∥p− q∥2,

namely, ϕ is (
√
p+ 1)-Lipschitz. According to [47], we have:

R̂n(KL ◦ SF ◦ H ◦ S) ≤
√
2(
√
q + 1)

q∑
j=1

R̂n (Hj ◦ S) ,

= (
√
2q +

√
2)

q∑
j=1

R̂n (Hj ◦ S) ,

Although only implementing KL-divergence does not satisfy Lipschitzness, the combination of
KL and Softmax(SF) is (

√
p + 1)-Lipschitz. Define class of functions of j-th output with weight

constraints as Hj =
{
x → wj · x : ∥wj∥2 ≤ 1

}
. According to [48], rademacher complexity of Hj

satisfies

R̂n (Hj ◦ S) ≤
maxi∈[n] | ∥xi∥2√

n
.

Then right-hand side of Eq. (31) is bounded as

R̂n(KL ◦ SF ◦ H ◦ S) ≤ (
√
2q +

√
2)q√

n
max
i∈[n]

∥xi∥2 . (32)

According to Lemma 9, while we have the rademacher complexity of LDL with KL-divergence loss
defined in Eq. (32), the bound can be defined as:

LG (fw)− L(X,A) (fw) ≤ 2
(
√
2q +

√
2)q√

n
max
i∈[n]

∥xi∥2

+ 3µ

√
log 2/δ

2n
.

(33)

Considering the node representations vary in different layers, Without loss of generality, we replace
maxi∈[n] ∥xi∥2 with maxi∈[n],j∈[l]

∥∥∥xj
i

∥∥∥
2

to find the maximum node representation, instead of node
feature. Then recall the PAC risk bound defined in Eq. (29),

LG (fw)− L(X,A) (fw)

≤ O

√B2dl−1l2k log(lk)D(Wi) + log nl
δ

γ2n

 ,

We use the sum of both above bounds as the final risk bound for a GCN with KL-divergence loss for
the label distribution learning problem.

29

LG (fw)− L(X,A) (fw) ≤
2(
√
2q +

√
2)q√

n
max

i∈[n],j∈[l]

∥∥∥xj
i

∥∥∥
2

+ 3b

√
log 2/δ

2n
+O

(√
B2dl−1l2k log(lk)D(Wi)+log nl

δ

γ2n

)
, (34)

As [49] suggests that 0 is replaced by a very small value, say γ > 0, for division by 0 when
implementing KL divergence, then for probability distribution p,q ∈ Rm with pi ≥ γ, qi ≥ γ

KL(p,q) =

n∑
i=1

pi ln
pi
qi

≤
n∑

i=1

pi ln
1

γ
≤ − ln γ,

thus there exists a constant b ≥ − ln γ such that KL(·, ·) ≤ b (e.g., b = 35 for γ = 1× 10−15).

Hence, all of the above concludes the proof.

H Supplement F: Additional Theoretical Analysis

H.1 Uniform Distribution Phenomenon

It is observed in the experiment that given a fixed large hidden dimension f , normalized adjacency
matrices are more easily to initialize approximate uniform attention than unnormalized adjacency
matrices. In the following, we provide a theoretical analysis of the reason behind this phenomenon.

H.1.1 Normalized adjacency matrix are more likely to initialize uniform attention

For simplicity of analysis, we use one node’s attentions from a single meta path graph in the study.
Same analysis can be applied to all nodes and all meta-path graphs, without loss of generalizability.

Denote A ∈ Rn×n the adjacency matrix of the meta-path graph from a meta-path P , and W ∈ Rn×f

the learnable weight of the meta-path graph (W is indeed W i
0 in Eq. (1) shown in the main manuscript.

We drop W i
0’s subscript 0 and superscript i here for simplicity, as our analysis is based on a single

meta-path graph). W [:, i] ∈ Rn×1 denotes the column vector of W , and A[i, :] ∈ R1×n is a row
vector recording node i’s connections (n is the number of nodes in the meta-path graph).

A uniform weight initialization is with bounds [− 1√
f
, 1√

f
] for all the learnable matrices. d denotes

the average degree of the graph adjacency matrix.

Theorem 11. Denote A and Ã the adjacency matrix and normalized adjacency matrix of a graph,
respectively. For node i in the graph, its attention is proportional to A[i, :] ·W [:, i] ∼ O(d√

f
) for the

adjacency matrix, but proportional to Ã[i, :] ·W [:, i] ∼ O(1√
f
) for normalized adjacency matrix.

Proof. Normalization of A (ignoring the self-loop for simplicity) gives:

Ã = D
−1
2 AD

−1
2 (35)

Ã[i, j] =
1√

di
√
dj

∗A[i, j] (36)

Denote ej ∈ R1×n a one-hot encoded vector with only jth position has value 1 (e.g. e2 =
(0, 1, 0, 0, 0). Because ∥ei∥ = 1, it’s easy to know that ej ,∀j can be used to construct an orthonormal
eigenbasis. Denote Ei as the index set of edges for node i. For example, if A[i, :] = (0, 1, 1, 0, 0),
then Ei = {2, 3}, because index position 2 and 3 has 1 (i.e. edge connections) to node i. Then we
can decompose A[i, :] and W [:, i] as follows,

30

A[i, :] =
∑
j∈Ei

ej (37)

Ã[i, :] =
∑
j∈Ei

1√
di
√
dj

ej (38)

W [:, i] =
∑
k

ckek (39)

where ck is a scalar for basis ek and ck is bounded by [− 1√
f
, 1√

f
]. Assume that ck ̸= 0 for k ∈ Ei

(meaning that the scalar is nonzero when nodes i and k are connected), then we have

A[i, :] ·W [:, i] =
∑
j∈Ei

ej ∗
∑
k

ckek =

di∑
l=1

cl ∼ O(d/
√
f) (40)

Ã[i, :] ·W [:, i] =
∑
j∈Ei

1√
di
√

dj
ej ∗

∑
k

ckek (41)

∼
di∑
l=1

cl√
d× d

∼ O(1/
√
f) (42)

where di denotes the degree of node i (i.e. di =
∑

A[i, :]). Compared to Eq. (42) vs. Eq. (40), it
is easy to conclude that f plays more significant role in Eq. (42). Meaning that an unnormalized
adjacency matrix affects the final attention with the average degree of the matrix while normalized
adjacency matrix is dominated by the square root of hidden dimension f . With a relatively large
hidden dimension, it is easy to see that normalized adjacency matrices are more likely to be dominated
by the hidden dimension size f and produce uniform distribution of learned attention in the beginning
stage.

H.2 Benefits of proposed attention structure in terms of label distribution learning

Similar structure of our proposed attention structure is applied when combining GNN and transformer
structure, we provide an analysis on why such proposed attention structure is beneficial to graph label
distribution learning. To show this, we first leverage the conclusion from Eq. (34) to obtain a bound
of graph label distribution learning on normal l GCN layer.

There are three parts for the bounds, the part O
(√

B2dl−1l2k log(lk)D(Wi)+log nl
δ

γ2n

)
is our focus

as it is directly related to maximum degree d of graph adjacency matrix and is related to our change
in the GNN structure. It is easy to observe that our proposed attention structure follows the same
GCN update except the adjacency matrix is now learnable from features and combined with topology
space. So we assume that our model is a dynamic graph version and we focus on how the changes
in the learnable graph could affect the bound. We show in the following that our method reduces
the maximum degree of graph adjacency matrix and therefore tightens the bound for graph label
distribution learning.

Our attention layer learns a feature space topology and intersects its feature neighbor with its topology
neighbor to get a consistent neighbor set agreed by both feature and topology.
Theorem 12 (Equal priority of feature and topology space). Denote original graph structure as
A, propagation graph for attention structure as Ã, denote δ(A[i, :]) as the ith node’s degree. ∆(A)
as maximum degree of adjacency matrix A and argmaxi δ(A[i, :]) as the node index that has the
maximum degree:

∆(Ã) ≤ ∆(A) (43)

Proof.

Ãf = ZQ(ZK)T (44)

Ã = Softmax(Ãf ⊙A) (45)

31

With ⊙ operator, for any node i, it is easy to observe that

δ(Ã[i, :]) ≤ δ(A[i, :]) (46)

Assume without loss of generality that A has ∆(A) at node j, i.e, argmaxi δ(A[i, :]) = j. and Ã has
∆(A) at node k,i.e, argmaxi δ(Ã[i, :]) = k. For arbitrary node i in Ã,

δ(Ã[i, :]) ≤ δ(A[i, :]) ≤ δ(A[j, :]) (47)

∆(Ã) = δ(Ã[k, :]) ≤ δ(A[k, :]) ≤ δ(A[j, :]) = ∆(A) (48)

We note that the equality sign only appears iff k = j and δ(Ã[k, :]) = δ(A[k, :]) which relies on Ãf

at row k to be exactly the same as A at row k. The probability is related to the consistency of feature
similarity and topology structure.

For a graph with relatively low homophily score pi for a specific node i with pi defined as

pi =

∑
i∈Neighbor(Label(Neighbor(i)) == Label(i))

|Neighbor|
(49)

where Label(i) for a node i is the dominate class of its distribution and Neighbor(i) is defined as
topology neighbor set of node i. |Neighbor(i)| indicates the size of the set.

Assume that feature similarity strongly relates to label connection among nodes,i.e, features are
similar between samples if their label distribution are close. The learnt Ãf at row k satisfies the
equality condition iff pk = 1. For practical graphs in general, such homophily score rarely exist
and therefore our methods should reduce the maximum degree of the propagation graph in most
cases.

Remark 1. With Theorem 6, we have shown that our proposed design (i.e using ⊙ between learnt
feature topology and graph topology) can reduce maximum degree of the propagation graph with
high probability. Leveraging derived bound term from Eq. (29) related to maximum degree, we can
observe that lower maximum degree allows the model to have a tighter bound for HGDL problem
in general. Therefore, our proposed design is naturally beneficial to the heterogeneous graph label
distribution learning.

100 epochs (s) DRUG (894) URBAN (604) ACM (5810) YELP (3001) DBLP (4057)

GCNKL 2.51 2.77 10.97 1.8569 23
HANKL 1.73 0.979 75 12.53 23.63

SeHGNNKL 2.0592 1.16 75.25 12.45 23.45

HGDLKL 1.19 1.05 8.81 8.75 26.57
Table 14: Runtime results for 100 training epochs. The numbers of target nodes are labeled beside
their corresponding dataset names.

H.3 Runtime Discussion

To verify the efficiency of our method, Table 14 shows the runtime for 100 training epochs for our
baseline methods, Each method has been trained with 100 epochs. We can observe that our proposed
HGDL algorithm enjoys good scalability by attaining runtime results that are comparable to the
baseline GCNs. Compared to other baseline such as SeHGNN, HGDL is in general much faster. This
indicates that our method is more efficient for learning heterogeneous networks. This can be mainly
attributed to the automated learning of weights to control individual meta-paths and then integrates
them to yield optimal graph topology homogenization for label distribution learning.

32

NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: Our study aims to generalize Label Distribution Learning from IID data to the
non-IID, networked data, and we have made this claim clear in the Abstract and Introduction.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We discussed the limited performance gain on CAD and CLD metrics in
Section 6.3 and provided Runtime analysis in Supplement F Section H.3.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

33

Answer: [Yes]
Justification: We have analyzed the generalization error bound of the proposed algorihtm in
a PAC-Bayes regime and provided the complete proof in Supplement D and E.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
[Yes]
Justification: We have provided tuned parameter settings in provided Github link and
reported their impact on empirical results in Supplement C.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

34

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: We have uploaded the code and benchmark datasets as the supplementary
submission in provided Github link.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: We have presented the creation and preprocessing steps of the benchmark
datasets and the implementation details of our algorithms in Supplementary B and C,
respectively.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: We generated experimental results from repeated experiments (including
different train/test split) and leveraged t-test to validate the statistical significance in settings
where our algorithm outperform its competitors. We reported its win/tie/loss in Section 6.2
where “win” indicates that our algorithm outperforms the compared models with confidence
level at a level of 90%.

Guidelines:

• The answer NA means that the paper does not include experiments.

35

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

• The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: We disclosed our computing node setup. Note, our algorithm is not computa-
tional demanding and could be generalized onto various single-GPU machines.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: We revised the COE and all agreed on it.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader Impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

36

https://neurips.cc/public/EthicsGuidelines

Justification: We demonstrated multiple potential application of our algorithm with the
benchmark dataset, including the use case of Urban Functionality Delineation, which has
been leveraged as the motivating example of our proposal in Introduction.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: NA

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [NA]

Justification: NA

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.

37

• The authors should state which version of the asset is used and, if possible, include a
URL.

• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [Yes]
Justification: The artifacts generated from this paper will be published under CC-BY 4.0
license for public access and non-commercial use.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: NA
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: NA
Guidelines:

38

paperswithcode.com/datasets

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

39

	Introduction
	Related Work
	Preliminaries
	HGDL: The Proposed Approach
	Optimal Graph Topology Homogenization
	Local Topology and Global Feature Consistency-Aware Graph Transformer
	An End-to-End HGDL Objective Function

	Analysis
	Experiments
	Experiment Setup
	Results
	Scalability Analysis

	Conclusion
	Appendix / supplemental material
	Roadmap
	Supplement A: Pseudo-code and Implementation Details
	Supplement B: Experiments and Datasets
	Dataset Description
	Baselines
	Experiment Setup
	Evaluation metric

	Supplement C: Additional Results and Analysis
	Edge Dropping Comparisons
	Validation Loss Comparisons
	Sensitive Analysis of hyperparameter
	Comparison against HINormer and GLDL

	Supplement D: Proof of Theorem 1
	Supplement E: Proof of Theorem 2
	Supplement F: Additional Theoretical Analysis
	Uniform Distribution Phenomenon
	Normalized adjacency matrix are more likely to initialize uniform attention

	Benefits of proposed attention structure in terms of label distribution learning
	Runtime Discussion

