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Abstract

There is a widely-spread claim that GANs are difficult to train, and GAN archi-
tectures in the literature are littered with empirical tricks. We provide evidence
against this claim and build a modern GAN baseline in a more principled manner.
First, we derive a well-behaved regularized relativistic GAN loss that addresses
issues of mode dropping and non-convergence that were previously tackled via a
bag of ad-hoc tricks. We analyze our loss mathematically and prove that it admits
local convergence guarantees, unlike most existing relativistic losses. Second, this
loss allows us to discard all ad-hoc tricks and replace outdated backbones used
in common GANs with modern architectures. Using StyleGAN2 as an example,
we present a roadmap of simplification and modernization that results in a new
minimalist baseline—R3GAN (“Re-GAN”). Despite being simple, our approach
surpasses StyleGAN2 on FFHQ, ImageNet, CIFAR, and Stacked MNIST datasets,
and compares favorably against state-of-the-art GANs and diffusion models.
Code: https://www.github.com/brownvc/R3GAN

1 Introduction

Generative adversarial networks (GANs) let us generate high-quality images in a single forward pass.
However, the original objective in Goodfellow et al. [13], is notoriously difficult to optimize due to its
minimax nature. This leads to a fear that training might diverge at any point due to instability, and a
fear that generated images might lose diversity through mode collapse. While there has been progress
in GAN objectives [14, 22, 81, 52, 64], practically, the effects of brittle losses are still regularly felt.
This notoriety has had a lasting negative impact on GAN research.

A complementary issue—partly motivated by this instability—is that existing popular GAN backbones
like StyleGAN [29, 31, 30, 32] use many poorly-understood empirical tricks with little theory. For
instance, StyleGAN uses a gradient penalized non-saturating loss [52] to increase stability (affecting
sample diversity), but then employs a minibatch standard deviation trick [28] to increase sample
diversity. Without tricks, the StyleGAN backbone still resembles DCGAN [60] from 2015, yet
it is still the common backbone of SOTA GANs such as GigaGAN [26] and StyleGAN-T [70].
Advances in GANs have been conservative compared to other generative models such as diffusion
models [20, 78, 33, 34], where modern computer vision techniques such as multi-headed self
attention [87] and backbones such as preactivated ResNet [17], U-Net [63] and vision transformers
(ViTs) [9] are the norm. Given outdated backbones, it is not surprising that there is a widely-spread
belief that GANs do not scale in terms of quantitative metrics like Frechet Inception Distance [19].

We reconsider this situation: we show that by combining progress in objectives into a regularized
training loss, GANs gain improved training stability, which allows us to upgrade GANs with modern
backbones. First, we propose a novel objective that augments the relativistic pairing GAN loss
(RpGAN; [22]) with zero-centered gradient penalties [52, 64], improving stability [14, 64, 52]. We
show mathematically that gradient-penalized RpGAN enjoys the same guarantee of local convergence
as regularized classic GANs, and that removing our regularization scheme induces non-convergence.

38th Conference on Neural Information Processing Systems (NeurIPS 2024).

https://www.github.com/brownvc/R3GAN


Once we have a well-behaved loss, none of the GAN tricks are necessary [28, 31], and we are
free to engineer a modern SOTA backbone architecture. We strip StyleGAN of all its features,
identify those that are essential, then borrow new architecture designs from modern ConvNets
and transformers [48, 97]. Briefly, we find that proper ResNet design [17, 67], initialization [99],
and resampling [29, 31, 32, 100] are important, along with grouped convolution [95, 5] and no
normalization [31, 34, 14, 88, 4]. This leads to a design that is simpler than StyleGAN and improves
FID performance for the same network capacity (2.75 vs. 3.78 on FFHQ-256).

In summary, our work first argues mathematically that GANs need not be tricky to train via an
improved regularized loss. Then, it empirically develops a simple GAN baseline that, without any
tricks, compares favorably by FID to StyleGAN [29, 31, 32], other SOTA GANs [3, 42, 94], and
diffusion models [20, 78, 86] across FFHQ, ImageNet, CIFAR, and Stacked MNIST datasets.

2 Serving Two Masters: Stability and Diversity with RpGAN +R1 +R2

In defining a GAN objective, we tackle two challenges: stability and diversity. Some previous work
deals with stability [29, 31, 32] and other previous work deals with mode collapse [22]. To make
progress in both, we combine a stable method with a simple regularizer that is grounded by theory.

2.1 Traditional GAN

A traditional GAN [13, 57] is formulated as a minimax game between a discriminator (or critic) Dψ

and a generator Gθ. Given real data x ∼ pD and fake data x ∼ pθ produced by Gθ, the most general
form of a GAN is given by:

L(θ, ψ) = Ez∼pz [f (Dψ(Gθ(z)))] + Ex∼pD [f (−Dψ(x))] (1)

where G tries to minimize L while D tries to maximize it. The choice of f is flexible [50, 44]. In
particular, f(t) = − log(1 + e−t) recovers the classic GAN by Goodfellow et al. [13]. For the rest
of this work, this will be our choice of f [57].

It has been shown that Equation 1 has convex properties when pθ can be optimized directly [13, 81].
However, in practical implementations, the empirical GAN loss typically shifts fake samples beyond
the decision boundary set by D, as opposed to directly updating the density function pθ. This
deviation leads to a significantly more challenging problem, characterized by susceptibility to two
prevalent failure scenarios: mode collapse/dropping1 and non-convergence.

2.2 Relativistic f -GAN

We employ a slightly different minimax game named relativistic pairing GAN (RpGAN) by Jolicoeur-
Martineau et al. [22] to address mode dropping. The general RpGAN is defined as:

L(θ, ψ) = E z∼pz
x∼pD

[f (Dψ(Gθ(z))−Dψ(x))] (2)

Although Eq. 2 differs only slightly from Eq. 1, evaluating this critic difference has a fundamental
impact on the landscape of L. Since Eq. 1 merely requires D to separate real and fake data, in the
scenario where all real and fake data can be separated by a single decision boundary, the empirical
GAN loss encourages G to simply move all fake samples barely past this single boundary—this
degenerate solution is what we observe as mode collapse/dropping. Sun et al. [81] characterize such
degenerate solutions as bad local minima in the landscape of L, and show that Eq. 1 has exponentially
many bad local minima. The culprit is the existence of a single decision boundary that naturally
arises when real and fake data are considered in isolation. RpGAN introduces a simple solution by
coupling real and fake data, i.e. a fake sample is critiqued by its realness relative to a real sample,
which effectively maintains a decision boundary in the neighborhood of each real sample and hence
forbids mode dropping. Sun et al. [81] show that the landscape of Eq. 2 contains no local minima
that correspond to mode dropping solutions, and that every basin is a global minimum.
1While mode collapse and mode dropping are technically distinct issues, they are used interchangeably in
this context to describe the common problem where supp(pθ) does not comprehensively cover supp(pD).
Mode collapse refers to the generator producing a limited diversity of samples (i.e., one image for the entire
distribution), whereas mode dropping involves the generator failing to represent certain modes of the data
distribution (ignoring entire subsets of the training distribution).
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2.3 Training Dynamics of RpGAN

Although the RpGAN landscape result [81] allows us to address mode dropping, the training dynamics
of RpGAN have yet to be studied. The ultimate goal of Eq. 2 is to find the equilibrium (θ∗, ψ∗)
such that pθ∗ = pD and Dψ∗ is constant everywhere on pD. Sun et al. [81] show that θ∗ is globally
reachable along a non-increasing trajectory in the landscape of Eq. 2 under reasonable assumptions.
However, the existence of such a trajectory does not necessarily mean that gradient descent will find it.
Jolicoeur-Martineau et al. show empirically that unregularized RpGAN does not perform well [22].

Proposition I. (Informal) Unregularized RpGAN does not always converge using gradient descent.

We confirm this proposition with a proof in Appendix B. We show analytically that RpGAN does
not converge for certain types of pD, such as ones that approach a delta distribution. Thus, further
regularization is necessary to fill in the missing piece of a well-behaved loss.

Zero-centered gradient penalties. To tackle RpGAN non-convergence, we explore gradient
penalties as the solution since it is proven that zero-centered gradient penalties (0-GP) facilitate
convergent training for classic GANs [52]. The two most commonly-used 0-GPs are R1 and R2:

R1(ψ) =
γ

2
Ex∼pD

[
∥∇xDψ∥2

]
R2(θ, ψ) =

γ

2
Ex∼pθ

[
∥∇xDψ∥2

] (3)

R1 penalizes the gradient norm of D on real data, and R2 penalizes the gradient norm of D on fake
data. Analysis on the training dynamics of GANs has thus far focused on local convergence [55, 51,
52], i.e., whether the training at least converges when (θ, ψ) are in a neighborhood of (θ∗, ψ∗). In
such a scenario, the convergence behavior can be analyzed [55, 51, 52] by examining the spectrum
of the Jacobian of the gradient vector field (−∇θL,∇ψL) at (θ∗, ψ∗). The key insight here is that
when G already produces the true distribution, we want ∇xD = 0, so that G is not pushed away
from its optimal state, and thus the training does not oscillate. R1 and R2 impose such a constraint
when pθ = pD. This also explains why earlier attempts at gradient penalties, such as the one-centered
gradient penalty (1-GP) in WGAN-GP [14], fail to achieve convergent training [52] as they still
encourage D to have a non-zero slope when G has reached optimality.

Since the same insight also applies to RpGAN, we extend our previous analysis and show that:

Proposition II. (Informal) RpGAN with R1 or R2 regularization is locally convergent subject to
similar assumptions as in Mescheder et al. [52].

In Appendix C, our proof similarly analyzes the eigenvalues of the Jacobian of the regularized
RpGAN gradient vector field at (θ∗, ψ∗). We show that all eigenvalues have a negative real part; thus,
regularized RpGAN is convergent in a neighborhood of (θ∗, ψ∗) for small enough learning rates [52].

Discussion. Another line of work [64] links R1 and R2 to instance noise [75] as its analytical
approximation. Roth et al. [64] showed that for the classic GAN [13] by Goodfellow et al., R1

approximates convolving pD with the density function of N (0, γI), up to additional weighting and
a Laplacian error term. R2 likewise approximates convolving pθ with N (0, γI) up to similar error
terms. The Laplacian error terms from R1, R2 cancel when Dψ approaches Dψ∗ . We do not extend
Roth et al.’s proof [64] to RpGAN; however, this approach might provide complimentary insights to
our work, which follows the strategy of Mescheder et al. [52].

2.4 A Practical Demonstration

We experiment with how well-behaved our loss is on StackedMNIST [46] which consists of 1000
uniformly-distributed modes. The network is a small ResNet [17] for G and D without any normal-
ization layers [21, 91, 1, 85]. Through the use of a pretrained MNIST classifier, we can explicitly
measure how many modes of pD are recovered by pθ. Furthermore, we can estimate the reverse KL
divergence between the fake and real samples DKL (pθ ∥ pD) via the KL divergence between the
categorical distribution of pθ and the true uniform distribution.
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Figure 1: Generator G loss for different objec-
tives over training. Regardless of which objective
is used, training diverges with only R1 and suc-
ceeded with bothR1 andR2. Convergence failure
with only R1 was noted by Lee et al. [42].

Loss # modes↑ DKL↓
RpGAN +R1 +R2 1000 0.0781
GAN +R1 +R2 693 0.9270
RpGAN +R1 Fail Fail
GAN +R1 Fail Fail

Table 1: StackedMNIST [46] result for each loss
function. The maximum possible mode coverage
is 1000. “Fail” indicates that training diverged
early on.

A conventional GAN loss with R1, as used by Mescheder et al. [52] and the StyleGAN series [29, 31,
32], diverges quickly (Fig. 1). Next, while theoretically sufficient for local convergence, RpGAN
with only R1 regularization is also unstable and diverges quickly2. In each case, the gradient of D on
fake samples explodes when training diverges. With both R1 and R2, training becomes stable for
both the classic GAN and RpGAN. Now stable, we can see that the classic GAN suffers from mode
dropping, whereas RpGAN achieves full mode coverage (Tab. 1) and reduces DKL from 0.9270 to
0.0781. As a point of contrast, StyleGAN [29, 31, 30, 32] uses the minibatch standard deviation trick
to reduce mode dropping, improving mode coverage from 857 to 881 on StackedMNIST3 and with
barely any improvement on DKL [28].

R1 alone is not sufficient for globally-convergent training. While a theoretical analysis of this is
difficult, our small demonstration still provides insights into the assumptions of our convergence proof.
In particular, the assumption that (θ, ψ) are sufficiently close to (θ∗, ψ∗) is highly unlikely early in
training. In this scenario, if D is sufficiently powerful, regularizing D solely on real data is not likely
to have much effect on D’s behavior on fake data and so training can fail due to an ill-behaved D
on fake data. This observation has been made by previous studies [84, 83] specifically for empirical
GAN training, that regularizing an empirical discriminator with only R1 leads to gradient explosion
on fake data due to the memorization of real samples.

Thus, the practical solution is to regularize D on both real and fake data. The benefit of doing so can
be viewed from the insight of Roth et al. [64]: that applying R1 and R2 in conjunction smooths both
pD and pθ which makes learning easier than only smoothing pD. We also find empirically that with
both R1 and R2 in place, D tends to satisfy Ex∼pD

[
∥∇xD∥2

]
≈ Ex∼pθ

[
∥∇xD∥2

]
even early in

the training. Jolicoeur-Martineau et al. [23] show that in this case D becomes a maximum margin
classifier—but if only one regularization term is applied, this does not hold. Additionally, having
roughly the same gradient norm on real and fake data potentially reduces discriminator overfitting, as
Fang et al. [10] observe that the gradient norm on real and fake data diverges when D starts to overfit.

3 A Roadmap to a New Baseline — R3GAN

The well-behaved RpGAN +R1 +R2 loss alleviates GAN optimization problems, and lets us proceed
to build a minimalist baseline—R3GAN—with recent network backbone advances in mind [48, 97].
Rather than simply state the new approach, we will draw out a roadmap from the StyleGAN2
baseline [30]. This model (Config A; identical to [30]) consists of a VGG-like [73] backbone for G,
a ResNet D, a few techniques that facilitate style-based generation, and many tricks that serve as
patches to the weak backbone. Then, we remove all non-essential features of StyleGAN2 (Config B),
apply our loss function (Config C), and gradually modernize the network backbone (Config D-E).

2Varying γ from 0.1 to 100 does not stabilize training.
3These numbers are from Karras et al. [28], Table 4. "857" corresponds to a low-capacity version of a progressive
GAN and "881" adds the minibatch standard deviation trick. Further comparisons via loss curves are difficult
since progressive GAN is a substantially different model than the small ResNet we use for this experiment.
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We evaluate each configuration on FFHQ 256× 256 [29]. Network capacity is kept roughly the same
for all configurations—both G and D have about 25 M trainable parameters. Each configuration is
trained until D sees 5 M real images. We inherit training hyperparameters (e.g., optimizer settings,
batch size, EMA decay length) from Config A unless otherwise specified. We tune the training
hyperparameters for our final model and show the converged result in Sec. 4.

Configuration FID↓ G #params D #params

A StyleGAN2 7.516 24.767M 24.001M

B Stripped StyleGAN2
- z normalization

- Minibatch stddev
- Equalized learning rate

- Mapping network
- Style injection

- Weight mod / demod
- Noise injection

- Mixing regularization
- Path length regularization

- Lazy regularization

12.46 18.890M 23.996M

C Well-behaved Loss
+ RpGAN loss 11.77 18.890M 23.996M+ R2 gradient penalty 11.65

D ConvNeXt-ify pt. 1
+ ResNet-ify G & D 10.17 23.400M 23.282M- Output skips 9.950 23.378M

E ConvNeXt-ify pt. 2
+ ResNeXt-ify G & D 7.507 23.188M 23.091M
+ Inverted bottleneck 7.045 23.058M 23.010M

Table 2: Effect of our simplification and modernization
efforts evaluted on FFHQ-256.

Minimum baseline (Config B). We
strip away all StyleGAN2 features, re-
taining only the raw network backbone
and basic image generation capability.
The features fall into three categories:

• Style-based generation: mapping net-
work [29], style injection [29], weight
modulation/demodulation [31], noise
injection [29].

• Image manipulation enhancements:
mixing regularization [29], path
length regularization [31].

• Tricks: z normalization [28], mini-
batch stddev [28], equalized learning
rate [28], lazy regularization [31].

Following [69, 70], we reduce the dimen-
sion of z to 64. The absence of equal-
ized learning rate necessitates a lower
learning rate, reduced from 2.5×10-3 to
5×10-5. Despite a higher FID of 12.46
than Config-A, this simplified baseline
produces reasonable sample quality and stable training. We compare this with DCGAN [60], an early
attempt at image generation. Key differences include:

a) Convergent training objective with R1 regularization.
b) Smaller learning rate, avoiding momentum optimizer (Adam β1 = 0).
c) No normalization layer in G or D.
d) Proper resampling via bilinear interpolation instead of strided (transposed) convolution.
e) Leaky ReLU in both G and D, no tanh in the output layer of G.
f) 4×4 constant input for G, output skips for G, ResNet D.

Experimental findings from StyleGAN. Violating a), b), or c) often leads to training failures. Gidel et
al. [11] show that negative momentum can improve GAN training dynamics. Since optimal negative
momentum is another challenging hyperparameter, we do not use any momentum to avoid worsening
GAN training dynamics. Studies suggest normalization layers harm generative models [31, 34].
Batch normalization [21] often cripples training due to dependencies across multiple samples, and is
incompatible with R1, R2, or RpGAN that assume independent handling of each sample. Weaker
data-independent normalizations [31, 34] might help; we leave this for future work. Early GANs may
succeed despite violating a) and c), possibly constituting a full-rank solution [52] to Eq. 1.

Violations of d) or e) do not significantly impair training stability but negatively affect sample
quality. Improper transposed convolution can cause checkerboard artifacts, unresolved even with
subpixel convolution [72] or carefully tuned transposed convolution unless a low-pass filter is applied.
Interpolation methods avoid this issue, varying from nearest neighbor [28] to Kaiser filters [32]. We
use bilinear interpolation for simplicity. For activation functions, smooth approximations of (leaky)
ReLU, such as Swish [61], GELU [18], and SMU [2], worsen FID. PReLU [15] marginally improves
FID but increases VRAM usage, so we use leaky ReLU.

All subsequent configurations adhere to a) through e). Violation of f) is acceptable as it pertains to
the network backbone of StyleGAN2 [31], modernized in Config D and E.
Well-behaved loss function (Config C). We use the loss function proposed in Section 2 and this
reduces FID to 11.65. We hypothesize that the network backbone in Config B is the limiting factor.
General network modernization (Config D). First, we apply the 1-3-1 bottleneck ResNet archi-
tecture [16, 17] to both G and D. This is the direct ancestor of all modern vision backbones [48, 97].
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(a) Overall view (b) StyleGAN2 architecture blocks [31] (Config A) (c) Ours (Config E)
Figure 2: Architecture comparison. For image generation, G and D are often both deep ConvNets
with either partially or fully symmetric architectures. (a) StyleGAN2 [31] G uses a network to map
noise vector z to an intermediate style space W . We use a traditional generator as style mapping is
not necessary for a minimal working model. (b) StyleGAN2’s building blocks have intricate layers
but are themselves simple, with a ConvNet architecture from 2015 [38, 73, 16]. ResNet’s identity
mapping principle is also violated in the discriminator. (c) We remove tricks and modernize the
architecture. Our design has clean layers with a more powerful ConvNet architecture.

We also incorporate principles discovered in Config B and various modernization efforts from
ConvNeXt [48]. We categorize the roadmap of ConvNeXt as follows:

i. Consistently beneficial: i.1) increased width with depthwise convolution, i.2) inverted bottleneck,
i.3) fewer activation functions, and i.4) separate resampling layers.

ii. Negligible performance gain: ii.1) large kernel depthwise conv. with fewer channels, ii.2) swap
ReLU with GELU, ii.3) fewer normalization layers, and ii.4) swap batch norm. with layer norm.

iii. Irrelevant to our setting: iii.1) improved training recipe, iii.2) stage ratio, and iii.3) ‘patchify’ stem.

We aim to apply i) to our model, specifically i.3 and i.4 for the classic ResNet, while reserving i.1 and
i.2 for Config E. Many aspects of ii) were introduced merely to mimic vision transformers [47, 9]
without yielding significant improvements [48]. ii.3 and ii.4 are inapplicable due to our avoidance
of normalization layers following principle c). ii.2 contradicts our finding that GELU deteriorates
GAN performance, thus we use leaky ReLU per principle e). Liu et al. emphasize large conv. kernels
(ii.1) [48], but this results in slightly worse performance compared to wider 3×3 conv. layers, so we
do not adopt this ConvNeXt design choice.

Neural network architecture details. Given i.3, i.4, and principles c), d), and e), we can replace the
StyleGAN2 backbone with a modernized ResNet. We use a fully symmetric design for G and D with
25 M parameters each, comparable to Config-A. The architecture is minimalist: each resolution stage
has one transition layer and two residual blocks. The transition layer consists of bilinear resampling
and an optional 1×1 conv. for changing spatial size and feature map channels. The residual block
includes five operations: Conv1×1→ Leaky ReLU → Conv3×3→ Leaky ReLU → Conv1×1, with
the final Conv1×1 having no bias term. For the 4×4 resolution stage, the transition layer is replaced
by a basis layer for G and a classifier head for D. The basis layer, similar to StyleGAN [29, 31],
uses 4×4 learnable feature maps modulated by z via a linear layer. The classifier head uses a global
4×4 depthwise conv. to remove spatial extent, followed by a linear layer to produce D’s output. We
maintain the width ratio for each resolution stage as in Config A, making the stem width 3× as wide
due to the efficient 1×1 conv. The 3×3 conv. in the residual block has a compression ratio of 4,
following [16, 17], making the bottleneck width 0.75× as wide as Config A.

To avoid variance explosion due to the lack of normalization, we employ fix-up initialization [99]: We
zero-initialize the last convolutional layer in each residual block and scale down the initialization of
the other two convolutional layers in the block by L−0.25, where L is the number of residual blocks.
We avoid other fix-up tricks, such as excessive bias terms and a learnable multiplier.
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Bottleneck modernization (Config E). Now that we have settled on the overall architecture, we
investigate how the residual block can be modernized, specifically i.1) and i.2). First, we explore
i.1 and replace the 3×3 convolution in the residual block with a grouped convolution. We set the
group size to 16 rather than 1 (i.e. depthwise convolution as in ConvNeXt) as depthwise convolution
is highly inefficient on GPUs and is not much faster than using a larger group size. With grouped
convolution, we can reduce the bottleneck compression ratio to two given the same model size. This
increases the width of the bottleneck to 1.5× as wide as Config A. Finally, we notice that the compute
cost of grouped convolution is negligible compared to 1×1 convolution, and so we seek to enhance
the capacity of grouped convolution. We apply i.2), which inverts the bottleneck width and the stem
width, and which doubles the width of grouped convolutions without any increase in model size.
Figure 2 depicts our final design, which reflects modern CNN architectures.

4 Experiments Details
4.1 Roadmap Insights on FFHQ-256 [29]

As per Table 2, Config A (vanilla StyleGAN2) achieves an FID of 7.52 using the official implementa-
tion on FFHQ-256. Config B with all tricks removed achieves an FID of 12.46—performance drops
as expected. Config C, with a well-behaved loss, achieves an FID of 11.65. But, now training is
sufficiently stable to improve the architecture.

Config D, which improves G and D based on the classic ResNet and ConvNeXt findings, achieves
an FID of 9.95. The output skips of the StyleGAN2 generator are no longer useful given our new
architecture; including them produces a worse FID of 10.17. Karras et al. find that the benefit of
output skips is mostly related to gradient magnitude dynamics [32], and this has been addressed by
our ResNet architecture. For StyleGAN2, Karras et al. conclude that a ResNet architecture is harmful
to G [31], but this is not true in our case as their ResNet implementation is considerably different
from ours: 1) Karras et al. use one 3-3 residual block for each resolution stage, while we have a
separate transition layer and two 1-3-1 residual blocks; 2) i.3) and i.4) are violated as they do not have
a linear residual block [67] and the transition layer is placed on the skip branch of the residual block
rather than the stem; 3) the essential principle of ResNet [16]—identity mapping [17]—is violated
as Karras et al. divide the output of the residual block by

√
2 to avoid variance explosion due to the

absence of a proper initialization scheme.

For Config E, we conduct two experiments that ablate i.1 (increased width with depthwise conv.)
and i.2 (an inverted bottleneck). We add GroupedConv and reduce the bottleneck compression
ratio to two given the same model size. Each bottleneck is now 1.5× the width of Config A, and
the FID drops to 7.51, surpassing the performance of StyleGAN2. By inverting the stem and the
bottleneck dimensions to enhance the capacity of GroupedConv, our final model achieves an FID of
7.05, exceeding StyleGAN2.

4.2 Mode Recovery — StackedMNIST [53]
Model # modes↑ DKL↓
DCGAN [60] 99 3.40
VEEGAN [80] 150 2.95
WGAN-GP [14] 959 0.73
PacGAN [46] 992 0.28
StyleGAN2 [31] 940 0.42
PresGAN [8] 1000 0.12
Adv. DSM [24] 1000 1.49
VAEBM [93] 1000 0.087
DDGAN [94] 1000 0.071
MEG [39] 1000 0.031

Ours—Config E 1000 0.029

Table 3: StackedMNIST 1000-mode coverage.

We repeat the earlier experiment in 1000-mode con-
vergence on StackedMNIST (unconditional genera-
tion), but this time with our updated architecture and
with comparisons to SOTA GANs and likelihood-
based methods (Tab. 3, Fig. 5). One advantage
brought up of likelihood-based models such as dif-
fusion over GANs is that they achieve mode cover-
age [7]. We find that most GANs struggle to find
all modes. But, PresGAN [8], DDGAN [94], and
our approach are successful. Further, our method
outperforms all other tested GAN models in term
of KL divergence.

4.3 FID — FFHQ-256 [29] (Optimized)

We train Config E model until convergence and with optimized hyperparameters and training schedule
on FFHQ at 256×256 (unconditional generation) (Tab. 4, Figs. 4 and 6). Please see our supplemental
material for training details. Our model outperforms existing StyleGAN methods, plus four more
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Model NFE↓ FID↓
StyleGAN2 [31] 1 3.78
StyleGAN3-T [32] 1 4.81
StyleGAN3-R [32] 1 3.92

LDM [62] 200 4.98
ADM (DDIM) [7, 49] 500 8.41
ADM (DPM-Solver) [7, 49] 500 8.40
Diffusion Autoencoder [59, 49] 500 5.81

Ours—Config E 1 2.75

With ImageNet feature leakage [41]:

PolyINR* [74] 1 2.72
StyleGAN-XL* [69] 1 2.19
StyleSAN-XL* [82] 1 1.68

Table 4: FFHQ-256. * denotes models that leak
ImageNet features.

Model NFE↓ FID↓
StyleGAN2 [31, 45] 1 3.32
MSG-GAN [27, 45] 1 2.7
Anycost GAN [45] 1 2.52

VE [78, 33] 79 25.95
VP [78, 33] 79 3.39
EDM [33] 79 2.39

Ours—Config E 1 1.95

Table 5: FFHQ-64.

recent diffusion-based methods. On this common dataset experimental setting, many methods (not
listed here) use the bCR [101] trick—this has only been shown to improve performance on FFHQ-256
(not even at different resolutions of FFHQ) [101, 98]. We do not use this trick.

4.4 FID — FFHQ-64 [33]

To compare with EDM [33] directly, we evaluate our model on FFHQ at 64×64 resolution. For this,
we remove the two highest resolution stages of our 256×256 model, resulting in a generator that is
less than half the number of parameters as EDM. Despite this, our model outperforms EDM on this
dataset and needs one function evaluation only (Tab. 5).

4.5 FID — CIFAR-10 [37] Model NFE↓ FID↓
BigGAN [3] 1 14.73
TransGAN [87] 1 9.26
ViTGAN [42] 1 6.66
DDGAN [94] 4 3.75
Diffusion StyleGAN2 [90] 1 3.19
StyleGAN2 + ADA [30] 1 2.42
StyleGAN3-R + ADA [32, 25] 1 10.83

DDPM [20] 1000 3.21
DDIM [76] 50 4.67
VE [78, 33] 35 3.11
VP [78, 33] 35 2.48

Ours—Config E 1 1.96

With ImageNet feature leakage [41]:

StyleGAN-XL* [69] 1 1.85

Table 6: CIFAR-10 performance.

We train Config E model until convergence and
with optimized hyperparameters and training sched-
ule on CIFAR-10 (conditional generation) (Tab. 6,
Fig. 8). Our method outperforms many other GANs
by FID even though the model has relatively small
capacity. For instance, StyleGAN-XL [69] has 18
M parameters in the generator and 125 M parame-
ters in the discriminator, while our model has a 40
M parameters between the generator and discrim-
inator combined (Fig. 3). Compared to diffusion
models like LDM or ADM, GAN inference is sig-
nificantly cheaper as it requires only one network
function evaluation compared to the tens or hun-
dreds of network function evaluations for diffusion
models without distillation.

Figure 3: Millions of parameters vs. FID-50K
(log scale) on CIFAR-10. Lower is better.

Many state-of-the-art GANs are derived from Pro-
jected GAN [68], including StyleGAN-XL [69] and
the concurrent work of StyleSAN-XL [82]. These
methods use a pre-trained ImageNet classifier in
the discriminator. Prior work has shown that a pre-
trained ImageNet discriminator can leak ImageNet
features into the model [41], causing the model to
perform better when evaluating on FID since it re-
lies on a pre-trained ImageNet classifier for the loss.
But, this does not improve results in perceptual stud-
ies [41]. Our model produces its low FID without
any ImageNet pre-training.
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Model NFE↓ FID↓
DDPM++ [35] 1000 8.42
VDM [36] 1000 7.41
MSGAN [27, 56] 1 12.3
ADM [7] 1000 3.60
DDPM-IP [56] 1000 2.87

Ours—Config E 1 1.27

With ImageNet feature leakage [41]:

StyleGAN-XL* [69] 1 1.10

Table 7: ImageNet-32.

Model NFE↓ FID↓
BigGAN-deep [3] 1 4.06

DDPM [20] 250 11.0
DDIM [76] 50 13.7

ADM [7] §250 2.91
EDM [33] 79 2.23
CT [79] 2 11.1
CD [79] 3 4.32
iCT-deep [77] 2 2.77
DMD [96] 1 2.62

Ours—Config E 1 2.09

With ImageNet feature leakage [41]:

StyleGAN-XL* [69] 1 1.52

Table 8: ImageNet-64.§:deterministic sampling.

4.6 FID — ImageNet-32 [6]

We train Config E model until convergence and with optimized hyperparameters and training schedule
on ImageNet-32 (conditional generation). We compare against recent GAN models and recent
diffusion models in Table 7. We adjust the number of parameters in the generator of our model
to match StyleGAN-XL [69]’s generator (84M parameters). Specifically, we make the model
significantly wider to match. Our method achieves comparable FID despite using a 60% smaller
discriminator (Tab. 7) and despite not using a pre-trained ImageNet classifier.

4.7 FID — ImageNet-64 [6]

We evaluate our model on ImageNet-64 to test its scalability. We stack another resolution stage on
our ImageNet-32 model, resulting in a generator of 104 M parameters. This model is nearly 3×
smaller than diffusion-like models [7, 33, 79, 77] that rely on the ADM backbone, which contains
about 300 M parameters. Despite the smaller model size and that our model generates samples in one
step, it outperforms larger diffusion models with many NFEs on FID (Tab. 8).

4.8 Recall

We evaluate the recall [40] of our model on each dataset to quantify sample diversity. In general, our
model achieves a recall that is similar to or marginally worse than the diffusion model counterpart,
yet superior to existing GAN models. For CIFAR-10, the recall of our model peaked at 0.57; as a
point of comparison, StyleGAN-XL [69] has a worse recall of 0.47 despite its lower FID. For FFHQ,
we obtain a recall of 0.53 at 64×64 and 0.49 at 256×256, whereas StyleGAN2 [31] achieved a recall
of 0.43 on FFHQ-256. Our ImageNet-32 model achieved a recall of 0.63; comparable to ADM [7].
Our ImageNet-64 model achieved recall 0.59. While this is slightly worse than ≈0.63 that many
diffusion models achieve, it is better than BigGAN-deep [3] which achieved a recall of 0.48.

5 Discussion and Limitations
We have shown that a simplification of GANs is possible for image generation tasks, built upon a more
stable RpGAN+R1 +R2 objective with mathematically-demonstrated convergence properties that
still provides diverse output. This stability is what lets us re-engineer a modern network architecture
without the tricks of previous methods, producing the R3GAN model with competitive FID on the
common datasets of Stacked-MNIST, FFHQ, CIFAR-10, and ImageNet as an empirical demonstration
of the mathematical benefits.

The focus of our work is to elucidate the essential components of a minimum GAN for image
generation. As such, we prioritize simplicity over functionality—we do not claim to beat the
performance of every existing model on every dataset or task; merely to provide a new simple
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Figure 4: Qualitative examples of sample generation from our Config E on FFHQ-256.

baseline that converges easily. While this makes our model a possible backbone for future GANs,
it also means that it is not suitable to apply our model directly to downstream applications such
as image editing or controllable generation, as our model lacks dedicated features for easy image
inversion or disentangled image synthesis. For instance, we remove style injection functionality from
StyleGAN even though this has a clear use. We also omitted common techniques that have been
shown in previous literature to improve FID considerably. Examples include some form of adaptive
normalization modulated by the latent code [7, 33, 29, 98, 58, 89, 66], and using multiheaded self
attention at lower resolution stages [7, 33, 34]. We aim to explore these techniques in a future study.

Further, our work is limited in its evaluation of the scalability of R3GAN models. While they show
promising results on 64×64 ImageNet, we are yet to verify the scalability on higher resolution
ImageNet data or large-scale text to image generation tasks [12].

Finally, as a method that can improve the quality of generative models, it would be amiss not to men-
tion that generative models—especially of people—can cause direct harm (e.g., through personalized
deep fakes) and societal harm through the spread of disinformation (e.g., fake influencers).

6 Conclusion

This work introduced R3GAN, a new baseline GAN that features increased stability, leverages modern
architectures, and does not require ad-hoc tricks that are commonplace in existing GAN models.
Central to our approach is a regularized relativistic loss that provably features local convergence
and that improves the stability of GAN training. This stable loss enables us to ablate various tricks
that were previously necessary in GANs, and incorporate in their place modern deep architectures.
The resulting streamlined baseline achieves competitive performance to SOTA models within its
parameter size class. We anticipate that our backbone will help to drive future GAN research.
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Appendices

A Local convergence

Following [52], GAN training can be formulated as a dynamical system where the update operator is
given by Fh(θ, ψ) = (θ, ψ) + hv(θ, ψ). h is the learning rate and v denotes the gradient vector field:

v(θ, ψ) =

(
−∇θL(θ, ψ)
∇ψL(θ, ψ)

)
(4)

Mescheder et al. [51] showed that local convergence near (θ∗, ψ∗) can be analyzed by examining the
spectrum of the Jacobian JFh

at the equilibrium: if the Jacobian has eigenvalues with absolute value
bigger than 1, then training does not converge. On the other hand, if all eigenvalues have absolute
value smaller than 1, then training will converge to (θ∗, ψ∗) at a linear rate. If all eigenvalues have
absolute value equal to 1, the convergence behavior is undetermined.

Given some calculations [52], we can show that the eigenvalues of the Jacobian of the update operator
λJFh

can be determined by λJv :
λJFh

= 1 + hλJv . (5)

That is, given small enough h [52], the training dynamics can instead be examined using λJv , i.e.,
the eigenvalues of the Jacobian of the gradient vector field. If all λJv have a negative real part, the
training will locally converge to (θ∗, ψ∗) at a linear rate. On the other hand, if some λJv have a
positive real part, the training is not convergent. If all λJv have a zero real part, the convergence
behavior is inconclusive.

B DiracRpGAN: A demonstration of non-convergence

Summary. To obtain DiracRpGAN, we apply Eq. 2 to the DiracGAN [52] problem setting. After
simplification, DiracRpGAN and DiracGAN are different only by a constant. They have the same
gradient vector field, therefore all proofs are identical to Mescheder et al. [52].

Definition B.1. The DiracRpGAN consists of a (univariate) generator distribution pθ = δθ and a
linear discriminator Dψ(x) = ψ · x. The true data distribution pD is given by a Dirac distribution
concentrated at 0.

In this setup, the RpGAN training objective is given by:

L(θ, ψ) = f(ψθ) . (6)

We can now show analytically that DiracRpGAN does not converge without regularzation.

Lemma B.2. The unique equilibrium point of the training objective in Eq. 6 is given by θ = ψ = 0.
Moreover, the Jacobian of the gradient vector field at the equilibrium point has the two eigenvalues
±f ′(0)i which are both on the imaginary axis.

The gradient vector field v of Eq. 6 is given by:

v(θ, ψ) =

(
−∇θL(θ, ψ)
∇ψL(θ, ψ)

)
=

(
−ψf ′(ψθ)
θf ′(ψθ)

)
(7)

and the Jacobian of v:

Jv =
(

−ψ2f ′′(ψθ) −f ′(ψθ)− ψθf ′′(ψθ)
f ′(ψθ) + ψθf ′′(ψθ) θ2f ′′(ψθ)

)
(8)

Evaluating Jv at the equilibrium point θ = ψ = 0 gives us:

Jv
∣∣∣∣
(0,0)

=

(
0 −f ′(0)

f ′(0) 0

)
(9)

Therefore, the eigenvalues of Jv are λ1/2 = ±f ′(0)i, both of which have a real part of 0. Thus, the
convergence of DiracRpGAN is inconclusive and further analysis is required.
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Lemma B.3. The integral curves of the gradient vector field v(θ, ψ) do not converge to the equilib-
rium point. More specifically, every integral curve (θ(t), ψ(t)) of the gradient vector field v(θ, ψ)
satisfies θ(t)2 + ψ(t)2 = const for all t ∈ [0,∞).

Let R(θ, ψ) = 1
2 (θ

2 + ψ2), then:

d

dt
R(θ(t), ψ(t)) = −θ(t)ψ(t)f ′(θ(t)ψ(t)) + ψ(t)θ(t)f ′(θ(t)ψ(t))

= 0 . (10)

We see that the distance between (θ, ψ) and the equilibrium point (0, 0) stays constant. Therefore,
training runs in circles and never converges.

Next, we investigate the convergence behavior of DiracRpGAN with regularization. For DiracRpGAN,
both R1 and R2 can be reduced to the following form:

R(ψ) =
γ

2
ψ2 (11)

Lemma B.4. The eigenvalues of the Jacobian of the gradient vector field for the gradient-regularized
DiracRpGAN at the equilibrium point are given by

λ1/2 = −γ
2
±

√
γ2

4
− f ′(0) (12)

In particular, for γ > 0 all eigenvalues have a negative real part. Hence, gradient descent is locally
convergent for small enough learning rates.

With regularization, the gradient vector field becomes

ṽ(θ, ψ) =

(
−ψf ′(ψθ)

θf ′(ψθ)− γψ

)
(13)

the Jacobian of ṽ is then given by

Jṽ =
(

−ψ2f ′′(ψθ) −f ′(ψθ)− ψθf ′′(ψθ)
f ′(ψθ) + ψθf ′′(ψθ) θ2f ′′(ψθ)− γ

)
(14)

evaluating the Jacobian at θ = ψ = 0 yields

Jṽ
∣∣∣∣
(0,0)

=

(
0 −f ′(0)

f ′(0) −γ

)
(15)

given some calculations, we arrive at Eq.12.

C General Convergence Results

Summary. The proofs are largely the same as Mescheder et al. [52]. We use the same proving
techniques, and only slightly modify the assumptions and proof details to adapt Mescheder et
al.’s effort to RpGAN. Like in [52], our proofs do not rely on unrealistic assumptions such as
supp pD = supp pθ.

C.1 Assumptions

We closely follow [52] but modify the assumptions wherever necessary to tailor the proofs for
RpGAN. Like in [52], we also consider the realizable case where there exists θ such that Gθ produces
the true data distribution.

Assumption I. We have pθ∗ = pD, and Dψ∗ = C in some local neighborhood of supp pD, where
C is some arbitrary constant.

Since RpGAN is defined on critic difference rather than raw logits, we no longer require Dψ∗ to
produce 0 on supp pD, instead any constant C would suffice.
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Assumption II. We have f ′(0) ̸= 0 and f ′′(0) < 0.

This assumption is the same as in [52]. The choice f(t) = − log(1 + e−t) adopted in the main text
satisfies this assumption.

As discussed in [52], there generally is not a single equilibrium point (θ∗, ψ∗), but a submanifold of
equivalent equilibria corresponding to different parameterizations of the same function. It is therefore
necessary to represent the equilibrium as reparameterization manifolds MG and MD. We modify
the reparameterization h as follows:

h(ψ) = Ex∼pD
y∼pD

[
|Dψ(x)−Dψ(y)|2 + ∥∇xDψ(x)∥2

]
(16)

to account for the fact that Dψ∗ is now allowed to have any constant value on supp pD. The
reparameterization manifolds are then given by:

MG = {θ | pθ = pD} (17)
MD = {ψ |h(ψ) = 0} (18)

We assume the same regularity properties as in [52] for MG and MD near the equilibrium. To state
these assumptions, we need:

g(θ) = Ex∼pθ [∇ψDψ|ψ=ψ∗ ] (19)
which leads to:

Assumption III. There are ϵ-balls Bϵ(θ∗) and Bϵ(ψ∗) around θ∗ and ψ∗ so that MG ∩ Bϵ(θ
∗)

and MD ∩ Bϵ(ψ
∗) define C1-manifolds. Moreover, the following holds:

(i) if v ∈ Rn is not in Tψ∗MD, then ∂2vh(ψ
∗) ̸= 0.

(ii) if w ∈ Rm is not in Tθ∗MG, then ∂wg(θ∗) ̸= 0.

These two conditions have exactly the same meanings as in [52]: the first condition indicates the
geometry of MD can be locally described by the second derivative of h. The second condition
implies that D is strong enough that it can detect any deviation from the equilibrium generator
distribution. This is the only assumption we have about the expressiveness of D.

C.2 Convergence

We can now show the general convergence result for gradient penalized RpGAN, consider the gradient
vector field with either R1 or R2 regularization:

ṽi(θ, ψ) =

(
−∇θL(θ, ψ)

∇ψL(θ, ψ)−∇ψRi(θ, ψ)

)
(20)

note that the convergence result can also be trivially extended to the case where both R1 and R2

are applied. We omit the proof for this case as it is redundant once the convergence with either
regularization is proven.

Theorem. Assume Assumption I, II and III hold for (θ∗, ψ∗). For small enough learning rates,
gradient descent for ṽ1 and ṽ2 are both convergent to MG ×MD in a neighborhood of (θ∗, ψ∗).
Moreover, the rate of convergence is at least linear.

We extend the convergence proof by Mescheder et al. [52] to our setting. We first prove lemmas
necessary to our main proof.

Lemma C.2.1. Assume J ∈ R(n+m)×(n+m) is of the following form:

J =

(
0 −B⊤

B −Q

)
(21)

where Q ∈ Rm×m is a symmetric positive definite matrix and B ∈ Rm×n has full column rank.
Then all eigenvalues λ of J satisfy ℜ(λ) < 0.

Proof. See Mescheder et al. [52], Theorem A.7.
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Lemma C.2.2. The gradient of L(θ, ψ) w.r.t. θ and ψ are given by:

∇θL(θ, ψ) = E z∼pz
x∼pD

[f ′(Dψ(Gθ(z))−Dψ(x)) [∇θGθ(z)]
⊤ ∇xDψ(Gθ(z))] (22)

∇ψL(θ, ψ) = E z∼pz
x∼pD

[f ′(Dψ(Gθ(z))−Dψ(x))(∇ψDψ(Gθ(z))−∇ψDψ(x))] (23)

Proof. This is just the chain rule.

Lemma C.2.3. Assume that (θ∗, ψ∗) satisfies Assumption I. The Jacobian of the gradient vector
field v(θ, ψ) at (θ∗, ψ∗) is then

Jv
∣∣∣∣
(θ∗,ψ∗)

=

(
0 −K⊤

DG
KDG KDD

)
(24)

the terms KDD and KDG are given by

KDD = f ′′(0)Ex∼pD
y∼pD

[(∇ψDψ∗(x)−∇ψDψ∗(y))(∇ψDψ∗(x)−∇ψDψ∗(y))⊤] (25)

KDG = f ′(0)∇θEx∼pθ [∇ψDψ∗(x)] |θ=θ∗ (26)

Proof. Note that

Jv
∣∣∣∣
(θ∗,ψ∗)

=

(
−∇2

θL(θ∗, ψ∗) −∇2
θ,ψL(θ∗, ψ∗)

∇2
θ,ψL(θ∗, ψ∗) ∇2

ψL(θ∗, ψ∗)

)
(27)

By Assumption I, Dψ∗ = C in some neighborhood of supp pD. Therefore we also have ∇xDψ∗ = 0
and ∇2

xDψ∗ = 0 for x ∈ supp pD. Using these two conditions, we see that ∇2
θL(θ∗, ψ∗) = 0.

To see Eq.25 and Eq.26, simply take the derivatives of Eq.23 and evaluate at (θ∗, ψ∗).

Lemma C.2.4. The gradient ∇ψRi(θ, ψ) of the regularization terms Ri, i ∈ {1, 2}, w.r.t. ψ are

∇ψR1(θ, ψ) = γEx∼pD [∇ψ,xDψ∇xDψ] (28)
∇ψR2(θ, ψ) = γEx∼pθ [∇ψ,xDψ∇xDψ] (29)

Proof. See Mescheder et al. [52], Lemma D.3.

Lemma C.2.5. The second derivatives ∇2
ψRi(θ

∗, ψ∗) of the regularization terms Ri, i ∈
{1, 2}, w.r.t. ψ at (θ∗, ψ∗) are both given by

LDD = γEx∼pD [AA⊤] (30)

where A = ∇ψ,xDψ∗ . Moreover, both regularization terms satisfy ∇θ,ψRi(θ
∗, ψ∗) = 0.

Proof. See Mescheder et al. [52], Lemma D.4.

Given Lemma C.2.3, Lemma C.2.5 and Eq.20, we can now show that the Jacobian of the regularized
gradient field at the equilibrium point is given by

Jṽ
∣∣∣∣
(θ∗,ψ∗)

=

(
0 −K⊤

DG
KDG MDD

)
(31)

where MDD = KDD − LDD. To prove our main theorem, we need to examine Jṽ when restricting
it to the space orthogonal to T(θ∗,ψ∗)MG ×MD.

Lemma C.2.6. Assume Assumptions II and III hold. If v ̸= 0 is not in Tψ∗MD, then v⊤MDDv < 0.

Proof. By Lemma C.2.3 and Lemma C.2.5, we have

v⊤KDDv = f ′′(0)Ex∼pD
y∼pD

[
((∇ψDψ∗(x)−∇ψDψ∗(y))⊤v)2

]
(32)

v⊤LDDv = γEx∼pD
[
∥Av∥2

]
(33)

By Assumption II, we have f ′′(0) < 0. Therefore v⊤MDDv ≤ 0. Suppose v⊤MDDv = 0, this
implies

(∇ψDψ∗(x)−∇ψDψ∗(y))⊤v = 0 and Av = 0 (34)
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for all (x, y) ∈ supp pD × supp pD. Recall the definition of h(ψ) from Eq.16. Using the fact that
Dψ∗ = C and ∇xDψ∗ = 0 for x ∈ supp pD, we see that the Hessian of h(ψ) at ψ∗ is

∇2
ψh(ψ

∗) = 2Ex∼pD
y∼pD

[(∇ψDψ∗(x)−∇ψDψ∗(y))(∇ψDψ∗(x)−∇ψDψ∗(y))⊤ +AA⊤] (35)

The second directional derivative ∂2vh(ψ) is therefore

∂2vh(ψ) = 2Ex∼pD
y∼pD

[∣∣(∇ψDψ∗(x)−∇ψDψ∗(y))⊤v
∣∣2 + ∥Av∥2

]
= 0 (36)

By Assumption III, this can only hold if v ∈ Tψ∗MD.

Lemma C.2.7. Assume Assumption III holds. If w ̸= 0 is not in Tθ∗MG, then KDGw ̸= 0.

Proof. See Mescheder et al. [52], Lemma D.6.

Proof for the main theorem. Given previous lemmas, by choosing local coordinates θ(α, γG) and
ψ(β, γD) for MG and MD such that θ∗ = 0, ψ∗ = 0 as well as

MG = Tθ∗MG = {0}k × Rn−k (37)

MD = Tψ∗MD = {0}l × Rm−l (38)

our proof is exactly the same as Mescheder et al. [52], Theorem 4.1.
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D Hyperparameters, training configurations, and compute

We implement our models on top of the official StyleGAN3 code base. While the loss function and
the models are implemented from scratch, we reuse support code from the existing implementation
whenever possible. This includes exponential moving average (EMA) of generator weights [28],
non-leaky data augmentation [30], and metric evaluation [32].

Training schedule. To speed up the convergence early in training, we specify a cosine schedule for
the following hyperparameters before they reach their target values:

• Learning rate
• γ for R1 and R2 regularization
• Adam β2
• EMA half-life
• Augmentation probability

We call this early training stage the burn-in phase. Burn-in length and schedule for each hyperpa-
rameter are listed in Table 9 for each experiment. A schedule for the EMA half-life can already be
found in Karras et al. [30], albeit they use a linear schedule. A lower initial Adam β2 is crucial to the
initial large learning rate as it allows the optimizer to adapt to the gradient magnitude change much
quicker. We use a large initial γ to account for that early in training: pθ and pD are far apart and a
large γ smooths both distributions more aggressively which makes learning easier. Augmentation is
not necessary until D starts to overfit later on; thus, we set the initial augmentation probability to 0.

Dataset augmentation. We apply horizontal flips and non-leaky augmentation [30] to all datasets
where augmentation is enabled. Following [30], we include pixel blitting, geometric transformations,
and color transforms in the augmentation pipeline. We additionally include cutout augmentation
which works particularly well with our model, although it does not seem to have much effect on
StyleGAN2. We also find it beneficial to apply color transforms less often and thus set their probability
multiplier to 0.5 while retaining the multiplier 1 for other types of augmentations. As previously
mentioned, we apply a fixed cosine schedule to the augmentation probability rather than adjusting it
adaptively as in [30]. We did not observe any performance degradation with this simplification.

Network capacity. We keep the capacity distribution for each resolution the same as in [30, 32].
We place two residual blocks per resolution which makes our model roughly 3× as deep, 1.5–3×
as wide as StyleGAN2 while maintaining the same model size on CIFAR-10 and FFHQ. For the
ImageNet model, we double the number of channels which results in roughly 4× as many parameters
as the default StyleGAN2 configuration.

Mixed precision training. We apply mixed precision training as in [30, 32] where all parameters
are stored in FP32, but cast to lower precision along with the activation maps for the 4 highest
resolutions. We notice that using FP16 as the low precision format cripples the training of our model.
However, we see no problem when using BFloat16 instead.

Class conditioning. For class conditional models, we follow the same conditioning scheme as
in [30]. For G, the conditional latent code z′ is the concatenation of z and the embedding of the
class label c, specifically z′ = concat(z, embed(c)). For D, we use a projection discriminator [54]
which evaluates the dot product of the class embedding and the feature vector D′(x) produced by the
last layer of D, concretely D(x) = embed(c) ·D′(x)⊤. We do not employ any normalization-based
conditioning such as AdaIN [29], AdaGN [7, 33], AdaBN [3] or AdaLN [58] for simplicity, even
though they improve FID considerably.

Stacked MNIST. We base this model off of the CIFAR-10 model but without class conditioning.
We disable all data augmentation and shorten the burn-in phase considerably. We use a constant
learning rate and did not observe any benefit of using a lower learning rate later in the training.

Compute resources. We train the Stacked MNIST and CIFAR-10 models on an 8× NVIDIA L40
node. Training took 7 hours for Stacked MNIST and 4 days for CIFAR-10. The FFHQ model was
trained on an 8× NVIDIA A6000 f0r roughly 3 weeks. The ImageNet model was trained on NVIDIA
A100/H100 clusters and training took one day on 32 H100s (about 5000 H100 hours).
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Hyperparameter Stacked MNIST CIFAR-10 FFHQ ImageNet

Resolution 32× 32 32× 32 256× 256 64× 64 32× 32 64× 64

Class conditional - ✓ - - ✓ ✓

Number of GPUs 8 8 8 8 32 64

Duration (Mimg) 10 250 200 100 1000 1000
Burn-in (Mimg) 2 20 20 20 200 200
Minibatch size 512 512 256 256 4096 4096

Learning rate 2× 10−4 2× 10−4 → 5× 10−5 2× 10−4 → 5× 10−5 2× 10−4 → 5× 10−5 2× 10−4 → 5× 10−5 2× 10−4 → 5× 10−5

γ for R1 and R2 1 → 0.1 0.05 → 0.005 150 → 15 2 → 0.2 0.5 → 0.05 1 → 0.1

Adam β2 0.9 → 0.99 0.9 → 0.99 0.9 → 0.99 0.9 → 0.99 0.9 → 0.99 0.9 → 0.99

EMA half-life (Mimg) 0 → 0.5 0 → 5 0 → 0.5 0 → 0.5 0 → 50 0 → 50

Channels per resolution 768-768-768-768 768-768-768-768 96-192-384-768-768-768-768 384-768-768-768-768 1536-1536-1536-1536 1536-1536-1536-1536-1536
ResBlocks per resolution 2-2-2-2 2-2-2-2 2-2-2-2-2-2-2 2-2-2-2-2 2-2-2-2 2-2-2-2-2
Groups per resolution 96-96-96-96 96-96-96-96 12-24-48-96-96-96-96 48-96-96-96-96 96-96-96-96 96-96-96-96-96
G params 20.73M 20.78M 23.06M 22.43M 82.91M 103.57M
D params 20.68M 21.28M 23.01M 22.38M 86.55M 107.21M

Dataset x-flips - ✓ ✓ ✓ ✓ ✓

Augment probability - 0 → 0.55 0 → 0.3 0 → 0.3 0 → 0.5 0 → 0.4

Table 9: Hyperparameters for each experiment. The decay factor β of EMA can be obtained using the formula β = 0.5
Minibatch size
EMA half-life , e.g. for CIFAR-10, EMA

β = 0.5
512

5×106 ≈ 0.9999.
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E Negative Results and Future Work

Following the convention of Brock et al. [3], we report alternative design choices that did not make to
our final model. Either because they failed to produce any quantitative improvement or because they
would considerably complicate our minimalist design which might be better suited for future study.

• We tried to apply GELU [18], Swish [61], and SMU [2] to G and D and found that doing
so deteriorates FID considerably. We did not try on G xor D. We posit two independent
factors:

– ConvNeXt in general does not benefit much from GELU (and possibly similar ac-
tivations). Table 10 and Table 11 in [48]: replacing ReLU with GELU gives little
performance gain to ConvNeXt-T and virtually no performance gain to ConvNeXt-B.

– In the context of GANs, GELU and Swish have the same problem as ReLU: that they
have little gradient in the negative interval. Since G is updated from the gradient of D,
having these activation functions in D could sparsify the gradient of D and as a result
G will not receive as much useful information from D compared to using leaky ReLU.

This does not explain the strange case of SMU [2]: SMU is a smooth approximation of
leaky ReLU and does not have the sparse gradient problem. It is unclear why it also
underperformed and future work awaits.

• We tried adding group normalization [92] to G and D and it did not improve FID or training
stability. We do not claim that all forms of normalizations are harmful. Our claim in principle
c) only extends to normalization layers that explicitly standardizes the mean and standard
deviation of the activation maps. This has been verified by prior studies [31, 34, 65]. The
harm of normalization layers extends to the adjacent field of image restoration [43, 88]. To
the best of our knowledge, EDM2 [34] is currently the strongest diffusion UNet and it does
not use normalization layers. However, it does apply normalization to the trainable weights
and this improves performance considerably. We expect that applying the normalization
techniques in EDM2 would improve our model’s performance.

• We tried removing the activation function after the 3×3 grouped convolution in each residual
block as modern architectures [48, 97] typically do not apply non-linearity after depthwise
convolution. This worsened FID performance.

• We tried Pixel-Shuffle/Unshuffle [71] for changing the resolution of the activation maps,
and found that without low-pass filtering, this led to high frequency artifacts similar to
checkerboard artifacts even though Pixel-Shuffle does not have the uneven overlap problem
that transposed convolution does. Note that bilinear resampling is equivalent to applying
channel duplication/averaging with Pixel-Shuffle/Unshuffle in conjunction with a [1, 2, 1]
low-pass kernel. It might be interesting in future studies to explore inplace resampling filters
that apply a low-pass filtered Pixel-Shuffle/Unshuffle operation on top of a learned function
that changes the number of channels.

• We tried scaling up our model size. We found that allocating more model capacity to
lower resolution stages generally did not improve FID, but contributed to more rapid
overfitting. Increasing model capacity at higher resolution stages always improves FID
in our experiments, however scaling up higher resolution stages is very computationally
expensive. Capacity distribution for each resolution stage of the model might be an important
topic to explore in future studies.

• For model simplicity, we did not conduct any experiment with a transformer architecture or
attention mechanism in general. We are interested to see whether adding attention blocks to
a convolutional network (similar to BigGAN [3] and diffusion UNet [20, 33, 34]) or using
a pure transformer architecture (similar to DiT [58]) will result in stronger performance.
Given the impressive results of EDM2 [34] (which uses UNet), it seems the argument has
not yet settled for generative modeling.

• We experimented with Adam β2 = 0.999 following common practice in supervised learning
and diffusion models, and found that doing so led to stability issues on our ImageNet models.
We expect that introducing proper normalization to our model will resolve this problem.

• We tried mixed precision training with IEEE FP16 as this is the low precision format used
in StyleGAN2-ADA [30], StyleGAN3 [32], and EDM2 [34]. This crippled the training of
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our model and switching to BFloat16 fixed the problem. We expect that introducing proper
normalization to our model will allow us to use IEEE FP16 which offers more precision
than BFloat16.

• We tried lazy regularization [31] in our early experiments where R1 and R2 were applied
once every 8 minibatches. This led to slightly worse FID performance on real world datasets
like FFHQ and CIFAR-10. However, it resulted in complete convergence failure on Stacked
MNIST and several two dimensional toy datasets (line, circle, 25 Gaussians, etc.), indicating
potential concerns regarding the mathematical legitimacy of this trick.
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F Qualitative Results

Figure 5: Qualitative examples of sample generation from our Config E on Stacked-MNIST.
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Figure 6: More qualitative examples of sample generation from our Config E on FFHQ-256.
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Figure 7: Qualitative examples of sample generation from our Config E on FFHQ-64.
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Figure 8: Qualitative examples of sample generation from our Config E on CIFAR-10.
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Figure 9: Qualitative examples of sample generation from our Config E on ImageNet-32.
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Figure 10: Qualitative examples of sample generation from our Config E on ImageNet-64.
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Figure 11: CIFAR-10 training curves.
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Figure 12: FFHQ-64 training curves.
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Figure 13: FFHQ-256 training curves.
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Figure 14: ImageNet-32 training curves.
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Figure 15: ImageNet-64 training curves.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: Claim of stability is justified by Figure 1 and later experimental performance.
Claim of convergence properties is justified in Appendices A,B,C. Claim of SOTA GAN is
experimentally justified in Section 4. Claims are bound to specific datasets.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: Please see Section 5.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
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Answer: [Yes]
Justification: Prior knowledge of Mescheder et al. [52] is required, but this is cited appropri-
ately to help the reader.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: Supplemental table lists all hyperparamters, and a supplemental section
describes the training configurations.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.
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5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [No]
Justification: There is no new data. There is no code at submission time. The authors
will aim to release this by publication time, with instructions to faithfully reproduce the
experiments. Code URL is included in abstract.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: Supplemental table lists all hyperparamters, and a supplemental section
describes the training configurations.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [No]
Justification: Each experiment takes many days to compute, some take weeks. We do not
have the compute time to provide variance bars on training executions.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.
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• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: Please see supplemental section on the experimental setting.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: Experimental settings are standard and within the norms of the community.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader Impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: We mention it briefly in Section 5. The paper describes a basic machine
learning methodology, and so does not address a specific application with specific societal
impacts. But, GANs do have potential social impact; it is clear that face generation has a
significant impact (e.g., deep fakes) and our paper does use a face database for evaluation
thanks to it being a community norm.
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Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [No]

Justification: There is no new data and much larger models produce higher fidelity images.
The cost of training these large GANs is not prohibitive and is often done by hobbyists.
As such, it is doubtful that these models will unlock any new capabilities for mis-use or
dual-use.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: All datasets are cited.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
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• The authors should state which version of the asset is used and, if possible, include a
URL.

• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]

Justification: No new assets are released.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: No human subjects are used and no crowdsourcing is used.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: No human subjects are used and no crowdsourcing is used.

Guidelines:
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• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

39


	Introduction
	Serving Two Masters: Stability and Diversity with RpGAN R-1R-2
	Traditional GAN
	Relativistic f-GAN
	Training Dynamics of RpGAN
	A Practical Demonstration

	A Roadmap to a New Baseline — R3GAN
	Experiments Details
	Roadmap Insights on FFHQ-256
	Mode Recovery — StackedMNIST
	FID — FFHQ-256 (Optimized)
	FID — FFHQ-64
	FID — CIFAR-10 krizhevsky2009learning
	FID — ImageNet-32 chrabaszcz2017downsampled
	FID — ImageNet-64 chrabaszcz2017downsampled
	Recall

	Discussion and Limitations
	Conclusion
	Local convergence
	DiracRpGAN: A demonstration of non-convergence
	General Convergence Results
	Assumptions
	Convergence

	Hyperparameters, training configurations, and compute
	Negative Results and Future Work
	Qualitative Results
	Training Curves

