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Abstract

The generation of equilibrium samples of molecular systems has been a long-1

standing problem in statistical physics. Boltzmann Generators are a generative2

machine learning method that addresses this issue by learning a transformation via3

a normalizing flow from a simple prior distribution to the target Boltzmann distri-4

bution of interest. Recently, flow matching has been employed to train Boltzmann5

Generators for small molecular systems in Cartesian coordinates. We extend this6

work and propose a first framework for Boltzmann Generators that are transferable7

across chemical space, such that they predict zero-shot Boltzmann distributions8

for test molecules without being retraining for these systems. These transferable9

Boltzmann Generators allow approximate sampling from the target distribution10

of unseen systems, as well as efficient reweighting to the target Boltzmann distri-11

bution. The transferability of the proposed framework is evaluated on dipeptides,12

where we show that it generalizes efficiently to unseen systems. Furthermore, we13

demonstrate that our proposed architecture enhances the efficiency of Boltzmann14

Generators trained on single molecular systems.15

1 Introduction16

Generative models have demonstrated remarkable success in the physical sciences, including protein17

structure prediction [1, 2, 3], generation of de novo molecules [4, 5, 6], and efficiently generating18

samples from the Boltzmann distribution [7, 8, 9]. In this work, we will focus on the latter for19

molecular systems, which represents a promising avenue for addressing the sampling problem. The20

sampling problem refers to the long-standing challenge in statistical physics to generate samples21

from equilibrium Boltzmann distributions µ(x) ∝ exp (−U(x)/kBT ), where U(x) is the potential22

energy of the system, kB the Boltzmann constant, and T the temperature. Traditionally, samples are23

generated with sequential sampling algorithms such as Markov Chain Monte Carlo and Molecular24

Dynamics (MD) simulations. However, these algorithms require a significant amount of time to25

generate uncorrelated samples from the target distribution. This is due to the necessity of performing26

small update steps, in the order of femtoseconds, for stability. This is especially challenging in27

the presence of well-separated metastable states, where transitions are unlikely due to high energy28

barriers. In recent years, numerous machine learning methods have emerged to address this challenge29

[7, 10]. One such method is the Boltzmann Generators (BG) [7]. In this work, we refer to BGs30

as a model that allows for the approximate sampling of the Boltzmann distribution of interest and31

the subsequent reweighting to the unbiased target distribution. If the model is only capable of32

generating approximate samples, which may stem from a subset of the Boltzmann distribution, we33

refer to them as Boltzmann Emulators1. Boltzmann Generators transform an often simple, prior34

distribution via a normalizing flow [11, 12, 13, 14] to an approximation of the target Boltzmann35

distribution. Subsequently, generated samples can be reweighted to the unbiased target distribution.36

The effectiveness of the reweighting depends on how close the generated distribution matches the37

1To the best of our knowledge Bowen Jing introduced the name first.
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target distribution. Hence, it is possible to generate uncorrelated and unbiased samples from the target38

Boltzmann distribution, potentially generating significant speed-up over classical MD simulations.39

There are many ways to build a BG, because of the various available realizations of normalizing flows.40

In this work, we will focus on continuous normalizing flows (CNFs) [15, 16], rather than coupling41

flows [17]. Recently, flow matching [18, 19, 20, 21] emerged as an alternative training method for42

CNFs, which is simulation free, allowing for more efficient training of CNFs.43

Thus far, Boltzmann Generators have been found to be limited by the necessity of training them on44

the system of interest. This training process, which requires a significant amount of time, makes45

it challenging to achieve any significant speed-up over classical MD simulations. Furthermore,46

the training time must be taken into account, which may even necessitate the execution of MD47

simulations of the system of interest on its own. It is therefore desirable to have a transferable48

Boltzmann Generator that can be trained on one set of molecules and generalize to another set, where49

Boltzmann samples can be efficiently generated at inference time without retraining. Only recently,50

reliable Boltzmann Generators in Cartesian coordinates for molecules were introduced [22, 23],51

which paved the way for transferable Boltzmann Generators, as they do not depend on the molecule52

specific internal coordinate representation, which make it difficult to construct transferable models.53

In this work, we introduce a framework for transferable Boltzmann Generators based on CNFs,54

allowing effective sample generation from unseen Boltzmann distributions. Transferable Boltzmann55

Generators are desirable, as they do not require retraining for similar systems and can be trained on56

short training trajectories that miss metastable states. The Boltzmann Generator can still learn these57

from other similar trajectories of other systems.58

We make the following main contributions:59

1. We introduce, to the best of our knowledge, the first transferable Boltzmann Generator.60

We demonstrate the transferability on dipeptides, where we are able to generate unbiased61

samples from Boltzmann distributions of unseen dipeptides.62

2. We describe a general framework for training and sampling with transferable Boltzmann63

Generators based on continuous normalizing flows. This includes also the post-processing64

of generated samples.65

3. We perform several ablation studies to investigate the effect of different architectures,66

training set sizes, as well as biasing the training data. The results demonstrate that small67

training sets can be sufficient to train transferable Boltzmann Generators.68

2 Related work69

The initial work on Boltzmann Generators [7] has led to a great deal of subsequent research. The70

most common application of BGs is to generate samples from Boltzmann distributions of molecules71

[24, 25, 26, 27, 28, 29], as well as lattice systems [25, 30, 31]. Most BGs for molecular systems72

require system-specific featurizations such as internal coordinates [7, 32, 25, 26, 33, 34, 29]. Only73

recently, BGs for small molecular systems in Cartesian coordinates were introduced [22, 23], using74

CNFs and coupling flows, respectively. Equivariant normalizing flows [35, 36, 37, 27, 22, 38] played75

a pivotal role in the success of Boltzmann Generators in Cartesian coordinates, not only for molecular76

systems. The majority of BGs employ a Gaussian prior distribution, but it is also possible to start77

from prior distributions close to the target distribution [39, 34, 40], which makes the learning task78

simpler. However, all previous Boltzmann Generators are not transferable. Arguably, the work of [6]79

represents an exception, as they are able to generate samples from unseen conditional (Boltzmann)80

distributions in torsion space. However, the distribution is conditioned on a single local structure81

for each molecule, namely fixed bonds and angles. Consequently, in contrast to our work, they82

are unable to generate samples from the full Boltzmann distribution in Euclidean space. The first83

transferable deep generative model that was able to generate asymptotically unbiased samples from84

the Boltzmann distribution is [10]. Instead of generating independent samples, they learn large85

time steps and combine these with Metropolis-Hastings acceptance steps, to ensure asymptotically86

unbiased samples. However, in contrast to our work, they do not generate uncorrelated samples.87

Boltzmann Emulators are analogous to Boltzmann Generators, yet they are not designed to generate88

unbiased equilibrium samples from the target Boltzmann distribution. Instead, they are intended89

to generate approximate samples that do not undergo reweighting. Furthermore, the generation of90

all metastable states may not be a necessary requirement, depending on the system. Boltzmann91
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Emulators do not need to be based on flow models, as they do not aim to do reweighing to the92

target distribution. They are often similar to Boltzmann Generators and use normalizing flows or93

diffusion models for the architecture, but due to removing the constraint of sampling the unbiased94

Boltzmann distribution, they can target significantly larger systems or are transferable. One example95

is [41], who propose a three stage transferable CNF model to learn peptide ensembles. [42] use96

flow matching to learn distributions of proteins, while [43] utilize diffusion models. [44] build97

a transferable Boltzmann Emulator for small molecules. Others aim to additionally also capture98

the correct dynamics of the molecular systems, such as [45], who use a diffusion model to predict99

transition probabilities. Scaling to larger systems often requires coarse graining [46, 47, 42], e.g.100

describing amino acids by a single bead rather than the individual atoms. However, this approach101

precludes the possibility of reweighting to the Boltzmann distribution.102

A distinct, though related, learning objective is to generate novel molecular conformations. However,103

approximations from the Boltzmann distribution are not necessary; it is sufficient to generate a few104

(or even a single) conformation per molecule. The utilized architectures are once again analogous, as105

flow and diffusion models are employed [4, 5, 48, 49, 50, 6].106

3 Boltzmann Generators and Normalizing Flows107

Here, we describe Boltzmann Generators and normalizing flows, which are a central part of our108

proposed transferable Boltzmann Generator framework. We follow the notation of [22].109

3.1 Boltzmann Generators110

Boltzmann Generators (BGs) [7] combine an exact likelihood deep generative model and a reweight-111

ing algorithm to reweight the generated distribution to the target Boltzmann distribution. The exact112

likelihood deep generative model is trained to generate samples from a distribution p̃(x) that is close113

to the target Boltzmann distribution µ(x). A common choice for the exact likelihood model are114

normalizing flows.115

The Boltzmann Generator can be used to generate unbiased samples by first sampling x ∼ p̃(x) with116

the exact likelihood model and then computing corresponding importance weights w(x) = µ(x)/p̃(x)117

for each sample. These allow to reweight generated samples to the target Boltzmann distribution118

µ(x). It is possible to estimate observables of interest (asymptotically unbiased) using the weights119

w(x) with importance sampling via120

⟨O⟩µ =
Ex∼p̃(x)[w(x)O(x)]

Ex∼p̃(x)[w(x)]
. (1)

Furthermore, these reweighting weights can be employed to assess the efficiency of trained BGs by121

computing the effective sample size (ESS) with Kish’s equation [51]. In this work, we will compute122

the relative ESS, rather than the absolute one, and refer to it as ESS.123

3.2 Continuous Normalizing Flows (CNFs)124

Normalizing flows [14, 52] are a type of deep generative model used to learn complex probability125

densities µ(x) by transforming a prior distribution q(x) through an invertible transformation fθ :126

Rn → Rn, resulting in the push-forward distribution p̃(x).127

Continuous Normalizing Flows (CNFs) [15, 16] are a specific kind of normalizing flow. In CNFs, the128

invertible transformation f t
θ(x) is defined by the ordinary differential equation129

df t
θ(x)

dt
= vθ

(
t, f t

θ(x)
)
, f0

θ (x) = x0, (2)

where vθ(t, x) : Rn × [0, 1] → Rn is a time-dependent vector field. The solution to this initial value130

problem provides the transformation equation131

f t
θ(x) = x0 +

∫ t

0

dt′vθ

(
t′, f t′θ(x)

)
, (3)
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with f1
θ (x) = p̃t(x). The corresponding change in log density from the prior to the push-forward132

distribution is described by the continuous change of variable equation133

log p̃(x) = log q(x)−
∫ 1

0

dt∇ · vθ
(
t, f t

θ(x)
)
. (4)

Equivariant flows The energy of molecular systems is typically invariant under permutations of134

interchangeable particles and global rotations and translations. Consequently, it is advantageous for135

the push-forward distribution of a Boltzmann generator to possess the same symmetries as the target136

system. In [35, 36] the authors demonstrate that the push-forward distribution p̃(x) of a permutation137

and rotation equivariant normalizing flow with a permutation and rotation invariant prior distribution,138

is again rotation and permutation invariant. Furthermore, [35] present a method to construct such139

equivariant CNFs by using an equivariant vector field vθ.140

3.3 Flow matching141

Flow matching [18, 19, 20, 21] enables efficient, simulation-free training of CNFs. The conditional142

flow matching training objective allows for the direct training of the vector field vθ(t, x) through143

LCFM(θ) = Et∼[0,1],x∼pt(x|z) ||vθ(t, x)− ut(x|z)||22 . (5)

There are many possible parametrizations for the conditional vector field ut(x|z) and the conditional144

probability path pt(x|z). One of the most simple, but powerful possible parametrization is145

z = (x0, x1) and p(z) = q(x0)µ(x1) (6)

ut(x|z) = x1 − x0 and pt(x|z) = N (x|t · x1 + (1− t) · x0, σ
2), (7)

which we use in this work to train our models. For a more detailed description refer to [18, 21, 22, 48].146

4 Transferable Boltzmann Generators147

This section presents our proposed framework for transferable Boltzmann Generators (TBGs).148

4.1 Architecture149

Our proposed transferable Boltzmann Generator is based on a CNF. The corresponding vector150

field vθ(t, x) is parametrized by an O(D)- and S(N)-equivariant graph neural network (EGNN)151

[37, 53, 41], as commonly used in prior work, e.g. [22, 37]. Although, less expressive than other152

equivariant networks such as [54, 55, 56, 57], it is faster to evaluate, which is important for CNFs as153

there can be hundreds of vector field calls during inference.154

The vector field vθ(t, x) consists of L consecutive layers. The position of the i-th particle xi is155

updated according to the following equations:156

h0
i = (t, ai, bi, ci), ml

ij = ϕe

(
hl
i, h

l
j , d

2
ij

)
, (8)

xl+1
i = xl

i +
∑
j ̸=i

(
xl
i − xl

j

)
dij + 1

ϕd(m
l
ij), (9)

hl+1
i = ϕh

(
hl
i,m

l
i

)
, ml

i =
∑
j ̸=i

ϕm(ml
ij)m

l
ij , (10)

vθ(t, x
0)i = xL

i − x0
i −

1

N

N∑
j

(xL
i − x0

i ), (11)

where ϕα represents different neural networks, dij is the Euclidean distance between particle i and157

j, t is the time, ai is an embedding for the particle type, bi for the amino acid, and ci or the amino158

acid position in the peptide. In the final step, the geometric center is subtracted to ensure that the159

center of positions is conserved. When combined with a symmetric mean-free prior distribution, the160

push-forward distribution of the CNF will be O(D)- and S(N)-invariant, as demonstrated in [58].161
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The embedding of each atom is constructed from three parts. The first part is the atom type ai, which162

is a one-hot vector of 54 classes. The classes are defined by the atom type in the topology for a163

classical force field. Therefore, only a few atoms are indistinguishable, such as hydrogen atoms that164

are bound to the same carbon or nitrogen atom. The second part is the amino acid to which the atom165

belongs, which is divided into 20 classes. The third part is the position of the amino acid in the peptide166

sequence. This embedding is similar to the embedding used in [41] for the rotamer embeddings.167

The amino acid and positional embeddings are only used for the transferable experiments. For more168

details see Appendix B.5. In this study, we refer to this transferable Boltzmann Generator architecture169

as TBG + full, and we use this name even when we apply it to a non-transferable setting.170

The proposed architecture in [22] employs distinct encodings for all backbone atoms and the atom171

types for the remainder. This represents a special case of our architecture, wherein bi and ci are172

omitted and ai is simply the atom types or the backbone encoding. We refer to this architecture173

as TBG + backbone. Furthermore, we refer to the specific architecture employed in [22] as BG +174

backbone for the alanine dipeptide experiments.175

Moreover, we employ a model that utilizes the atom type as the sole encoding (there are only five176

distinct atom types). This model is referred to as simply TBG.177

4.2 Training transferable Boltzmann Generators178

All transferable Boltzmann Generators are trained with flow matching. As there are different peptides179

in each batch, the individual flow matching loss is divided by the number of atoms in each peptide.180

For the 2AA dataset, all training peptides in each batch are used. All different architectures are181

trained in the same way; for more details, see Appendix B.182

4.3 Inference with transferable Boltzmann Generators183

Sampling with a transferable Boltzmann Generator, especially on unseen peptides, poses multiple184

challenges: (i) Some generated samples may not correspond to the molecule of interest, but rather to185

a molecule that contains the same atom number and types but has a different bonding graph. This is186

because the model has never encountered such a configuration during training. These configurations187

might even have much lower quantum Chemical potential energies than the molecule of interest. For188

some examples see Appendix A.4. However, as we are in this work interested in sampling from189

the equilibrium Boltzmann distribution for a given molecular bonding graph, rather than sampling190

distinct molecules, we would like to avoid these cases. Nevertheless, this effect can be largely191

mitigated by our proposed TBG + full architecture. (ii) When working with classical force fields,192

the correct ordering with respect to topology is crucial for evaluating energies. This is not a concern193

for semi-empirical force fields, as they respect the permutation symmetry of particles of the same194

type. As we typically use Gaussian prior distribution, it is common that the generated samples are195

not arranged according to the topology. Consequently, in order to evaluate the energy, it is necessary196

to reorder the generated samples according to the topology. (iii) It is possible that the chirality of197

generated samples may differ from that of the peptide of interest. This can be rectified by simple198

mirroring if all chirality centers of a peptide are flipped. Otherwise, these samples are assigned high199

energies, as they are not from the target Boltzmann distribution of interest.200

We resolve (i) and (ii) by generating a bond graph for the generated samples, based on empirical201

bond distances and atom types. This graph is then compared with a reference bond graph. If the202

two graphs are isomorphic, we can conclude that the configuration is correct. For more details, see203

Appendix B.1. For (iii), we employ the code of [10] to check all chiral centers. It should be noted that204

only if the generated samples possess the correct configuration and chirality will they be considered205

valid samples from the Boltzmann distribution of interest.206

5 Experiments207

In this section, we compare our model with similar previous work [22] on equivariant Boltzmann208

Generators for alanine dipeptide. Moreover, we show the transferability of our model on dipeptides.209

More experimental details, such as dataset details, the specifics of the employed models, and the210

utilized computing infrastructure can be found in Appendix B.211
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Figure 1: Results for the alanine dipeptide system simulated with a classical force field (a) Ramachan-
dran plots for the biased MD distribution (left) and for samples generate with the TBG + full model
(right). (b) Energies of samples generated with different methods. (c) Free energy projection along
the slowest transition (φ angle), computed with different methods.

Table 1: Comparison of Boltzmann Generators with different architectures for the single molecular
system alanine dipeptide. Errors are computed over five runs. The results for Boltzmann Generator
and backbone encoding (BG + backbone) for the semi-empirical force field are taken from [22].

Model NLL (↓) ESS (↑)
Alanine dipeptide - semi-empirical force field

BG + backbone [22] −107.56± 0.09 0.50± 0.13%
TBG + full (ours) −124.71± 0.08 1.03± 0.17%

Alanine dipeptide - classical force field

BG + backbone [22] −109.02± 0.01 1.56± 0.30%
TBG + full (ours) −127.06± 0.12 6.03± 1.34%

5.1 Alanine dipeptide212

In our first experiment, we investigate the single molecule alanine dipeptide in implicit solvent,213

described in Cartesian coordinates. The dataset was introduced in [22], for more details see Ap-214

pendix B.2. The training trajectory was generated by sampling with respect to a classical force field,215

and subsequently, 105 random samples were relaxed with respect to the semi-empirical GFN2-xTB216

force-field [59] for 100fs each. The objective is to train a Boltzmann Generator capable of sampling217

from the equilibrium Boltzmann distribution defined by the semi-empirical GFN2-xTB force-field218

efficiently and to recover the free energy surface along the slowest transition, i.e. the φ angle.219

Following the methodology outlined in [22], the training data is biased towards the less probable220

(positive) φ state. It is evident that any trained model on this set will be biased in comparison to221

the true Boltzmann distribution defined by the semi-empirical energy. However, the reweighting222

technique allows for the debiasing of the samples. The model is trained in the same way as described223

in [22]. Overall, the likelihoods and ESS values observed for the TGB + full model are superior to224

those reported in [22] (Table 1). This is achieved with nearly the same amount of parameters and225

maintaining comparable training and inference times (see Appendix B.3). Furthermore, the correct226

free energy difference is recovered, as demonstrated in Appendix A.1.227

In [22] the authors used a semi-empirical potential to avoid the required ordering of the atoms to the228

topology for classical force fields. As the prior distribution of the Boltzmann Generator is usually229

a multivariate standard Gaussian distribution, generated samples will almost certainly not have the230

correct ordering. As we have introduced an efficient way to reorder samples in Section 4.3, we can231

now also evaluate alanine dipeptide for a classical force field. Therefore, we retrain the model in [22]232

on the classical MD trajectory and compare with our TBG + full architecture. We bias the training233

data as before towards the unlikely φ state. As expected, the likelihood and ESS for the classical234

force field are much better than for the semi-empirical one, as the training data stems from the target235

distribution. Our proposed architecture again performs significantly better, as shown in Section 5.1236

and Figure 1. The majority of generated samples with the TBG + full model and the BG + backbone237

sample nearly exclusively correct configurations, i.e. configurations with the correct bond graph,238

namely nearly 100% and about 98%, respectively. As presented in Figure 1, both models recover the239

free energy landscape correctly.240
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Figure 2: Results for the KS dipeptide (a) Sample generated with the TBG + full model (b) Ra-
machandran plot for the weighted MD distribution (left) and for samples generate with the TBG +
full model (right). (c) TICA plot for the weighted MD distribution (left) and for samples generate
with the TBG + full model (right). (d) Energies of samples generated with different methods and
architectures. (e) Free energy projection along the φ angle. (f) Free energy projection along the
slowest transition (TIC0).

Figure 3: Results for the GN dipeptide (a) Sample generated with the TBG + full model (b) Ra-
machandran plot for the weighted MD distribution (left) and for samples generate with the TBG +
full model (right). (c) TICA plot for the weighted MD distribution (left) and for samples generate
with the TBG + full model (right). (d) Energies of samples generated with different methods and
architectures. (e) Free energy projection along the φ angle. (f) Free energy projection along the
slowest transition (TIC0).

5.2 Dipeptides (2AA)241

In our second experiment, we evaluate our model on dipeptides and show transferability. The dataset242

was introduced in [10]. The training set consists of 200 dipeptides, which were simulated each with a243

classical force field for 50 ns and, therefore, may not have reached convergence. Nevertheless, as244

previously demonstrated, it is not necessary to train on unbiased data in order to obtain unbiased245

samples with a Boltzmann Generator.246

We compare the three different transferable architectures described in Section 4.1 and use the same247

training procedure for all of them. Similar to the alanine dipeptide experiments, we obtain significantly248

better results for the TBG + full model in terms of ESS (Table 2 and Figure 4a), energies (Figure 2d),249

the ratio of correct configurations (Table 2), and likelihoods of test set samples (Appendix A.5). In250

particular, the extremely low number of correct configurations for numerous test peptides for the251
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Figure 4: (a) Effective samples sizes (ESS) for the first 8 test peptides for different transferable
architectures and training sets. (b) Free energy projection along the φ angle for the TBG + full model
trained on the biased dataset for the KS dipeptide. The weighted free energy projection demonstrates
a superior fit compared to the TBG + full model (see Figure 2e). (c) Free energy projection along the
φ angle for the TBG + full model trained on the biased dataset for the GN dipeptide. The weighted
free energy projection demonstrates a superior fit compared to the TBG + full model (see Figure 3e).

TBG and TBG + backbone models renders them unsuitable as Boltzmann Generators for this setting252

(Table 2 and Appendix A.5). Furthermore, the TBG + full model always find all metastable states for253

unseen test peptides (see also Appendix A.5).254

The results for the well-performing TBG + full model are presented for two exemplary peptides from255

the test set in Figure 2 and Figure 3. They were chosen as all architectures sample relevant amounts of256

correct configurations. Detailed results for other evaluated test peptides are shown in Appendix A.5.257

The TBG + full model is an exemplary Boltzmann Emulator, as it is capable of capturing all258

metastable states of the target Boltzmann distribution (Figure 2b,c and Figure 3b,c). However, it is259

furthermore also a capable Boltzmann Generator, as it allows for efficient reweighting (Figure 2d,e,f260

and Figure 3d,e,f). To identify different metastable states, we employ time-lagged independent261

component analysis (TICA) [60], a dimensionality reduction technique that separates metastable262

states. We show this analysis in addition to the Ramachandran plots for the dihedral angles.263

Moreover, we investigate the influence of the training set in two ablation studies.264

Training on a biased training set Our alanine dipeptide results as well as [22] indicate that it can265

be advantageous to bias the training data towards states that are less probable, such as positive φ266

states, to recover free energy landscapes. Therefore, we bias the training data by weighting positive267

φ states for each training peptide, such that they have nearly equal weight to the negative states (see268

also Appendix B.4). We show that a TBG + full model trained on this dataset (TBG + full (biased))269

produces even more accurate free energy landscapes for both the Ramachandran and TICA projections270

(Figure 4bc). Notably, the unweighted projection shows a clear bias, as expected. However, as the271

training data is now biased, the effective sample size (ESS) is generally lower (Table 2 and Figure 4a).272

Training on a smaller training set Additionally, we examine the impact of smaller training sets273

on the generalization results. To this end, we train the TBG + full model on two smaller datasets with274

shorter simulation times: (i) 5ns for each training simulation and (ii) only 500ps of each training275

simulation. Consequently, the training trajectories are 10 times and 100 times smaller than before.276

As we utilize only the initial portion of each trajectory, a greater number of metastable states are277

missed during the brief simulations, as illustrated in Appendix A.2. While the training on the tenfold278

smaller trainings set, we refer to the model as TBG + full (smaller), shows similar results to training279

on the whole trainings set (Table 2 and Appendix A.5), the even smaller trainings set leads to inferior280

results, with several metastable states being missed as presented inAppendix A.3. Nevertheless, we281

demonstrated that TBGs can be trained with very small datasets, with trajectories that individually282

miss many metastable states.283

6 Discussion284

For the first time, we demonstrated the feasibility of training transferable Boltzmann Generators.285

We introduced a general framework for training and evaluating transferable Boltzmann Generators286

based on continuous normalizing flows. Furthermore, we developed a transferable architecture287

based on equivariant graph neural networks and demonstrated the importance of including topology288

8



Table 2: Effective samples size and correct configuration rate for unseen dipeptides across different
transferable Boltzmann Generator (TBG) architectures.

Model ESS (↑) Correct configurations (↑)
Mean Range Mean Range

TBG 0.48± 0.59% (0.0%, 1.47%) 13± 18% (1%,48%)
TBG + backbone 0.58± 1.04% (0.0%, 3.24%) 17± 21% (1%, 52%)
TBG + full 8.53± 6.99% (1.31%,20.79%) 95± 4% (86%,100%)
TBG + full (smaller) 6.13± 3.13% (1.93%,11.16%) 96± 3% (88%,100%)
TBG + full (biased) 3.86± 2.67% (0.24%, 7.84%) 96± 4% (87%,100%)

information in the architecture to enable efficient generalization to unseen, but similar systems. The289

transferable Boltzmann Generator was evaluated on dipeptides, where significant effective sample290

sizes were demonstrated on unseen test peptides and accurate sampling of physical properties, such291

as the free energy difference between metastable states, was achieved. Moreover, we have shown292

in ablation studies that transferable Boltzmann Generators can be extremely data efficient, with293

even small training trajectories being sufficient. Future research will determine whether and how294

transferable Boltzmann Generators can be scaled to larger systems.295

7 Limitations / Future work296

We leave the scaling to larger system for future work. Notably, this usually requires large amounts of297

computational resources, as e.g. shown in [10], where they are able to train their transferable model298

on tetrapeptides, but use more than 100 times more parameters than us.299

Instead of flow matching, one could use optimal transport flow matching [21] or equivariant optimal300

transport flow matching [22] for training, but as indicated in [22] the effect for molecular systems,301

especially in the presence of many distinguishable particles, are small.302

Throughout our work, we utilize a standard Gaussian prior distribution. However, as recently303

introduced, an alternative is to use a Harmonic prior distribution [61, 62], where atoms that are304

close in the bond graph are sampled in the vicinity of each other. Notably, we experimented with305

this different prior distribution, but did not find relevant improvements for our transferable model.306

This finding is in alignment with the results of [63] that chemical informed prior distributions do307

not enhance performance significantly compared to simpler uninformed prior distributions for flow308

matching for molecules. Instead, the network architecture and inductive bias are more important.309

Despite conducting a series of ablation studies, we did not pursue the impact of a training set310

comprising a smaller number of peptides. Instead, we opted for a shorter trajectory approach.311

Furthermore, we could consider relaxing the 2AA dataset with the semi-empirical force field and312

training on this modified version, analogous to the alanine dipeptide experiment.313

The EGNN architecture was employed for the vector field, as it permits fast evaluation. However, a314

promising avenue for future research is to explore alternative architectures for the vector field, such as315

[54, 55, 56, 57, 64, 65, 62], to ascertain whether this enhances performance, which may be necessary316

to enable scaling to larger systems than those considered. We hope that our provided framework will317

enable the scaling of transferable Boltzmann Generators to larger systems in future research.318

8 Broader Impact319

This work represents foundational research with no immediate societal impact. However, if our320

method is scalable to larger, more relevant systems, it could facilitate the acceleration of drug and321

material discovery by replacing or enhancing MD simulations, which often play a crucial part in the322

process. A potential risk is that it could then be used to identify new diseases or biological weapons.323

Another potential risk associated with this method is that, at present, no convergence criterion is324

known. This implies that it is not possible to be certain that all potential configurations have been325

identified, even if an infinite number of samples are taken. This could result in false claims regarding326

the results, which could have an impact on subsequent applications.327
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Table 3: Dimensionless free energy differences for the slowest transition of alanine dipeptide estimated
with various methods. Umbrella sampling yields a converged reference solution. Errors are calculated
over five runs. Values for BG + backbone and Umbrella sampling are taken from [22].

Umbrella sampling BG + backbone [22] TBG + full (ours)
Free energy difference / kBT 4.10± 0.26 4.10± 0.08 4.09± 0.05

Figure 5: Example Ramachandran plots for different trajectory lengths for the training data. It can
be observed that as the trajectory length decreases, the number of metastable states that are missed
increases, thereby making the learning task more challenging. (a) AY dipeptide (b) IH dipeptide.

Appendix533

A Additional results and experiments534

A.1 Semi-empirical force field for alanine dipeptide535

We report the free energy differences for the slowest transitions of alanine dipeptide for a semi-536

empirical force field in Table 3. See Section 5 for more details.537

A.2 Dipeptide training data538

When training on smaller training sets, i.e. with shorter trajectories, additional metastable states will539

not be visited during the short simulation times. We show this for two example training peptides in540

Figure 5. Nevertheless, the TBG + full (smaller) model trained on 10 times shorter trajectories, is541

nearly as good as the model trained on the full trajectories, see Section 5. However, for the 100 times542

smaller trajectories, the TBG + full model perform significantly worse, see Appendix A.3.543

A.3 Smaller dataset544

We investigate the effect of 100 times smaller trainings trajectories, i.e. simulation time of only545

500ps. As shown in Appendix A.2, these trajectories miss many metastable states. This can be also546

observed for the so trained models, which we refer as TBG + full (smaller500), as they do not capture547

especially unlikely metastable states well as presented in Figure 6 and Figure 7. In contrast, models548

trained on larger trajectories find all metastable states and allow for efficient reweighting, as discussed549

in Section 5 and Appendix A.5.550

A.4 Sampled dipeptide configurations551

For some amino acid combinations, both the TBG and TBG + backbone models sample only a552

small number of correct configurations. Although the generated configurations are potentially valid553

molecular configurations, they are not the one of the target dipeptide as shown in Figure 8. Only the554

various TBG + full architectures samples nearly exclusively correct configurations.555

A.5 Additional results for dipeptides556

Inference is a costly process, and extensive sampling is necessary to obtain reliable estimates for the557

expected sample size (ESS). Therefore, we only evaluate the transferable models on a subset of the558

test set. The dipeptides are randomly selected, but it is ensured that all amino acids are represented at559

least once. However, we evaluate the best-performing model, namely TBG + full, for twice as many560
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Figure 6: Results for the KS dipeptide for TBG + full model trained on 100 times smaller training
trajectories. As can be seen in Figure 2, the results for the TBG + full model trained on the whole
trajectories are much better. (a) KS dipeptide (b) Ramachandran plot for the weighted MD distribution
(left) and for samples generate with the model (right). (c) TICA plot for the weighted MD distribution
(left) and for samples generate with the model (right). (d) Energies of samples generated with the
model. (e) Free energy projection along the φ angle. (f) Free energy projection along the slowest
transition (TIC0).

Figure 7: Results for the GN dipeptide for TBG + full model trained on 100 times smaller training
trajectories. As can be seen in Figure 3, the results for the TBG + full model trained on the whole
trajectories are much better. (a) GN dipeptide (b) Ramachandran plot for the weighted MD distribution
(left) and for samples generate with the model (right). (c) TICA plot for the weighted MD distribution
(left) and for samples generate with the model (right). (d) Energies of samples generated with the
model. (e) Free energy projection along the φ angle. (f) Free energy projection along the slowest
transition (TIC0).

test peptides as the rest. The results for the additional test peptides are in good agreement with the561

first half as presented in Table 4 and Figure 9.562

We report individual results for the different architectures in Figure 9.563

To illustrate the performance of the TBG + full model, we present additional examples of dipeptides564

from the test set in Figure 10a-f and Figure 11a-f. Furthermore, we also again show results for565

training on the biased dataset in the same figures (Figure 10g,h,i and Figure 11g,h,i). As observed566

previously, the TBG + full (biased) model recovers the free energy landscape better than the TBG +567

full model, especially for the φ projections. We present additional examples of dipeptides from the568

test set for the TBG + full model in Figure 12, Figure 13, Figure 14, Figure 15, and Figure 16.569
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Figure 8: Sampled molecules with the TBG and TBG + backbone models, which do not have the
correct topology. (a) NY dipeptide reference (b) Generated molecule with NY atoms by the TBG
model. (c) IM dipeptide reference (d) Generated molecule with IM atoms by the TBG model. (e) TD
dipeptide reference (f) Generated molecule with TD atoms by the TBG + backbone model.

Figure 9: Performance comparison for different transferable architectures and training sets on the test
set (a) Effective samples sizes (ESS) (b) Correct configuration rate (c) Likelihood per particle.

Furthermore, we present results for two example peptides from the test set for the TBG + full (smaller)570

model, which is trained on trajectories that are tenfold smaller than those used for the TBG + full571

model. These results are shown in Figure 17 and Figure 18.572

A.6 Transferable Boltzmann Generators as Boltzmann Emulators573

Given the high cost of sampling with CNFs, which necessitates integrating the Jacobian trace along574

the positions, we did not evaluate all available test peptides (see Appendix B.2). However, since575

sampling without the Jacobian trace is less expensive and we do not require as many samples as for576

estimating the ESS, we also employ the TBG + full (smaller) model as a Boltzmann Emulator to577

ascertain whether we have identified all metastable states, despite the fact that it was only trained578

on the 10 times smaller training set. The Boltzmann Emulator is evaluated on a diverse set of579

test peptides, and nearly always finds all metastable states within less than one hour of wall clock580

time. This is a notable improvement over MD simulations, which often take longer to explore due581

to the iterative nature of MD. Some examples are shown in Figure 19. This experiment shares582

similarities with the exploration mode of [10], where they employ their model without the acceptance583

step and therefore also explore a potentially biased distribution rather than the unbiased Boltzmann584

distribution.585

Table 4: Effective samples size and correct configuration rate for unseen dipeptides for the TBG +
full architecture for different number of test peptides.

Model ESS (↑) Correct configurations (↑)
Mean Range Mean Range

TBG + full (8 test peptides) 8.53± 6.99% (1.31%,20.79%) 95± 4% (86%,100%)
TBG + full (16 test peptides) 8.27± 8.29% (1.26%,31.80%) 96± 4% (86%,100%)
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Figure 10: Results for the IM dipeptide (a) Sample generated with the TBG + full model (b)
Ramachandran plot for the weighted MD distribution (left) and for samples generate with the TBG +
full model (right). (c) TICA plot for the weighted MD distribution (left) and for samples generate
with the TBG + full model (right). (d) Energies of samples generated with the TBG + full model.
(e) Free energy projection along the φ angle. (f) Free energy projection along the slowest transition
(TIC0). (g) Energies of samples generated with the TBG + full (biased) model. (h) Free energy
projection along the φ angle for the TBG + full (biased) model. (i) Free energy projection along the
slowest transition (TIC0) for the TBG + full (biased) model.

B Technical details586

B.1 Code libraries587

We primarily use the following code libraries: PyTorch (BSD-3) [66], bgflow (MIT license) [7, 35],588

torchdyn (Apache License 2.0) [67], and NetworkX (BSD-3) [68] for validating graph isomorphisms.589

Additionally, we use the code from [37] (MIT license) for EGNNs, as well as the code from [10]590

(MIT license) and [22] (MIT license) for datasets and related evaluation methods.591

Our code is available here: https://osf.io/n8vz3/?view_only=592

1052300a21bd43c08f700016728aa96e. We will make our code public upon publication.593

B.2 Benchmark systems594

The investigated benchmark systems were created in prior studies [22, 10].595

Alanine dipeptide The alanine dipeptide datasets were created in [22] (CC BY 4.0), we refer596

to them for detailed simulation details. The classical trajectory was created at T = 300K with597

the classical Amber ff99SBildn force-field. The subsequent relaxation was performed with the598

semi-empirical GFN2-xTB force-field [59].599

Dipeptides (2AA dataset) The original dipeptide dataset as introduced in [10] (MIT License) is600

available here: https://huggingface.co/datasets/microsoft/timewarp. As this includes601

a lot of intermediate saved states and quantities, like energies, we create a smaller version with is602

available here: https://osf.io/n8vz3/?view_only=1052300a21bd43c08f700016728aa96e.603

For a comprehensive overview of the simulation details, refer to [10]. All dipeptides were simulated604
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Figure 11: Results for the NY dipeptide (a) Sample generated with the TBG + full model (b)
Ramachandran plot for the weighted MD distribution (left) and for samples generate with the TBG +
full model (right). (c) TICA plot for the weighted MD distribution (left) and for samples generate
with the TBG + full model (right). (d) Energies of samples generated with the TBG + full model.
(e) Free energy projection along the φ angle. (f) Free energy projection along the slowest transition
(TIC0). (g) Energies of samples generated with the TBG + full (biased) model. (h) Free energy
projection along the φ angle for the TBG + full (biased) model. (i) Free energy projection along the
slowest transition (TIC0) for the TBG + full (biased) model.

with a classical amber-14 force-field at T = 310K. The simulation of the training peptides were run605

for 50ns, while the test set peptides were run for 1µs.606

Choice of test set peptides Inference is a costly process with CNFs (see Appendix B.7), and607

extensive sampling is necessary to obtain reliable estimates for the relative effective sample size608

(ESS). Therefore, we only evaluate the transferable models on a subset of the test set. The dipeptides609

are randomly selected, but it is ensured that all amino acids are represented at least once.610

B.3 Hyperparameters611

We report the model hyperparameters for the different model architectures as describes in Section 4.1612

in Table 5. As in [22] all neural networks ϕα have one hidden layer with nhidden neurons and SiLU613

activation functions. The input size of the embedding nembedding depends on the model architecture.614

We report training hyperparameters for the different model architectures in Table 6. It should be615

noted that all TBG models are trained in an identical manner if the training set is identical. We use616

the ADAM optimizer for all experiments [69]. For the dipeptide training, each batch consists of three617

samples for each peptide.618

B.4 Biasing target samples619

As introduced in [22], it can be beneficial to bias the training data in such a way that unlikely states620

are more prominent. For alalnine dipeptide and many dipeptides, the positive φ states at φ = 1 are621

often the unlikely ones and transition between the positive and negative φ states are slow. For the622

alanine dipeptide dataset, the biasing methodology proposed in [22] is employed. Similarly, we bias623

the dipeptides based on the von Mises distribution fvM. The weights ω are computed along the φ624
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Figure 12: Results for the ET dipeptide (a) Sample generated with the TBG + full model (b)
Ramachandran plot for the weighted MD distribution (left) and for samples generate with the TBG +
full model (right). (c) TICA plot for the weighted MD distribution (left) and for samples generate
with the TBG + full model (right). (d) Energies of generated samples (e) Free energy projection along
the φ angle. (f) Free energy projection along the slowest transition (TIC0).

Figure 13: Results for the RV dipeptide (a) Sample generated with the TBG + full model (b)
Ramachandran plot for the weighted MD distribution (left) and for samples generate with the TBG +
full model (right). (c) TICA plot for the weighted MD distribution (left) and for samples generate
with the TBG + full model (right). (d) Energies of generated samples (e) Free energy projection along
the φ angle. (f) Free energy projection along the slowest transition (TIC0).

dihedral angle as625

ω(φ) = r · fvM (φ|µ = 1, κ = 10) + 1, (12)

where r is computed based on the ratio of positive and negative φ states, such that both have nearly626

the same weight after the biasing.627

B.5 Encoding of atom types628

The atom type embedding ai is a one-hot vector of 54 classes. The classes are mostly defined by the629

atom type in the topology for a classical force field. Therefore, only a few atoms are indistinguishable,630

such as hydrogen atoms that are bound to the same carbon or nitrogen atom. Moreover, we also treat631

oxygen atoms bound to the same carbon atom as indistinguishable, unless they are in the carboxyl632

group. Notably, we never treat particle groups as indistinguishable, such as two CH3 groups bound to633

the same carbon atom.634
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Figure 14: Results for the AC dipeptide (a) Sample generated with the TBG + full model (b)
Ramachandran plot for the weighted MD distribution (left) and for samples generate with the TBG +
full model (right). (c) TICA plot for the weighted MD distribution (left) and for samples generate
with the TBG + full model (right). (d) Energies of generated samples (e) Free energy projection along
the φ angle. (f) Free energy projection along the slowest transition (TIC0).

Figure 15: Results for the NF dipeptide (a) Sample generated with the TBG + full model (b)
Ramachandran plot for the weighted MD distribution (left) and for samples generate with the TBG +
full model (right). (c) TICA plot for the weighted MD distribution (left) and for samples generate
with the TBG + full model (right). (d) Energies of generated samples (e) Free energy projection along
the φ angle. (f) Free energy projection along the slowest transition (TIC0).

B.6 Effective samples sizes635

The relative effective sample sizes (ESS) are computed with Kish’s equation [51] as in prior work.636

For the alanine dipeptide experiments we use 2×105 samples for the forward ESS and 1×104 for the637

negative log likelihood computation. A total of 3× 104 samples were used for each dipeptide in the638

forward ESS, while 4.5× 103 samples were employed for the negative log likelihood computation.639

B.7 Computing resources640

All training and inference was performed on single NVIDIA A100 GPUs with 80GB of RAM.641

The training time for the models is reported in Appendix B.3, although it should be noted that a642

significant amount of time was required for hyperparameter tuning. It is estimated that at least ten643

times the compute time reported in Appendix B.3 was necessary to identify suitable hyperparam-644

eters. Furthermore, inference with CNFs is expensive, especially if one requires the reweighting645
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Figure 16: Results for the GP dipeptide (a) Sample generated with the TBG + full model (b)
Ramachandran plot for the weighted MD distribution (left) and for samples generate with the TBG +
full model (right). (c) TICA plot for the weighted MD distribution (left) and for samples generate
with the TBG + full model (right). (d) Energies of generated samples (e) Free energy projection along
the φ angle. (f) Free energy projection along the slowest transition (TIC0).

Figure 17: Results for the LW dipeptide for the TBG + full (smaller) model, which is trained on
tenfold smaller trajectories than the TBG + full model. (a) Sample generated with the TBG + full
(smaller) model (b) Ramachandran plot for the weighted MD distribution (left) and for samples
generate with the TBG + full (smaller) model (right). (c) TICA plot for the weighted MD distribution
(left) and for samples generate with the TBG + full (smaller) model (right). (d) Energies of generated
samples. (e) Free energy projection along the φ angle. (f) Free energy projection along the slowest
transition (TIC0).

weights. Generating 3× 104 samples with the large transferable models for the dipeptides requires646

approximately four days, whereas generating 2× 105 samples for the alanine dipeptide experiments647

takes less than one day. However, generating samples without corresponding weights significantly648

accelerates the sampling process. In the case of the dipeptides, the generation of 2× 105 samples can649

be completed in less than one day. However, it should be noted that sampling can be done fully in650

parallel, as Boltzmann Generators generate independent samples.651
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Figure 18: Results for the TD dipeptide for the TBG + full (smaller) model, which is trained on
tenfold smaller trajectories than the TBG + full model. (a) Sample generated with the TBG + full
(smaller) model (b) Ramachandran plot for the weighted MD distribution (left) and for samples
generate with the TBG + full (smaller) model (right). (c) TICA plot for the weighted MD distribution
(left) and for samples generate with the TBG + full (smaller) model (right). (d) Energies of generated
samples (e) Free energy projection along the φ angle. (f) Free energy projection along the slowest
transition (TIC0).

Table 5: Model hyperparameters

Model L nhidden nembedding Num. of parameters

alanine dipeptide

BG + backbone 5 64 8 147599
TBG + full encoding 5 64 15 149147

Dipeptides (2AA)

TBG 9 128 5 1044239
TBG + backbone 9 128 13 1046295
TBG + full encoding 9 128 76 1062486

Table 6: Training hyperparameters

Mdoel Batch size Learning rate Epochs Training time
Alanine dipeptide

BG + backbone 256 5e-4/5e-5 500/500 3.5h
TBG + full 256 5e-4/5e-5 500/500 3.5h

Dipeptides (2AA)

TBG 600 5e-4/5e-5/5e-6 4/4/4 3d
TBG + backbone 600 5e-4/5e-5/5e-6 4/4/4 3d
TBG + full 600 5e-4/5e-5/5e-6 4/4/4 3d
TBG + full (smaller) 600 5e-4/5e-5/5e-6 30/30/30 2.5d
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Figure 19: Comparison of classical MD runs for 1 hour (MD - 1h) and the sampling with the TBG +
full (smaller) model without weight computation for 1 hour (TBG + full (smaller) - 1h). The TICA
plots of different peptides from the test set are shown. It is important to note that the TICA projection
is always computed with respect to the long MD trajectory (MD). All peptides stem from the test
set. (a) CS dipeptide (b) EK dipeptide (c) KI dipeptide (d) LW dipeptide (e) RL dipeptide (f) TF
dipeptide.
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NeurIPS Paper Checklist652

1. Claims653

Question: Do the main claims made in the abstract and introduction accurately reflect the654

paper’s contributions and scope?655

Answer: [Yes]656

Justification: The claims made in the abstract and introduction are all based on the results of657

our work, as shown in Section 5 and Appendix A .658

Guidelines:659

• The answer NA means that the abstract and introduction do not include the claims660

made in the paper.661

• The abstract and/or introduction should clearly state the claims made, including the662

contributions made in the paper and important assumptions and limitations. A No or663

NA answer to this question will not be perceived well by the reviewers.664

• The claims made should match theoretical and experimental results, and reflect how665

much the results can be expected to generalize to other settings.666

• It is fine to include aspirational goals as motivation as long as it is clear that these goals667

are not attained by the paper.668

2. Limitations669

Question: Does the paper discuss the limitations of the work performed by the authors?670

Answer: [Yes]671

Justification: We discuss the limitations in Section 7.672

Guidelines:673

• The answer NA means that the paper has no limitation while the answer No means that674

the paper has limitations, but those are not discussed in the paper.675

• The authors are encouraged to create a separate "Limitations" section in their paper.676

• The paper should point out any strong assumptions and how robust the results are to677

violations of these assumptions (e.g., independence assumptions, noiseless settings,678

model well-specification, asymptotic approximations only holding locally). The authors679

should reflect on how these assumptions might be violated in practice and what the680

implications would be.681

• The authors should reflect on the scope of the claims made, e.g., if the approach was682

only tested on a few datasets or with a few runs. In general, empirical results often683

depend on implicit assumptions, which should be articulated.684

• The authors should reflect on the factors that influence the performance of the approach.685

For example, a facial recognition algorithm may perform poorly when image resolution686

is low or images are taken in low lighting. Or a speech-to-text system might not be687

used reliably to provide closed captions for online lectures because it fails to handle688

technical jargon.689

• The authors should discuss the computational efficiency of the proposed algorithms690

and how they scale with dataset size.691

• If applicable, the authors should discuss possible limitations of their approach to692

address problems of privacy and fairness.693

• While the authors might fear that complete honesty about limitations might be used by694

reviewers as grounds for rejection, a worse outcome might be that reviewers discover695

limitations that aren’t acknowledged in the paper. The authors should use their best696

judgment and recognize that individual actions in favor of transparency play an impor-697

tant role in developing norms that preserve the integrity of the community. Reviewers698

will be specifically instructed to not penalize honesty concerning limitations.699

3. Theory Assumptions and Proofs700

Question: For each theoretical result, does the paper provide the full set of assumptions and701

a complete (and correct) proof?702

Answer: [NA]703

25



Justification: We only utilize theorems of prior work, which we reference accordingly.704

Guidelines:705

• The answer NA means that the paper does not include theoretical results.706

• All the theorems, formulas, and proofs in the paper should be numbered and cross-707

referenced.708

• All assumptions should be clearly stated or referenced in the statement of any theorems.709

• The proofs can either appear in the main paper or the supplemental material, but if710

they appear in the supplemental material, the authors are encouraged to provide a short711

proof sketch to provide intuition.712

• Inversely, any informal proof provided in the core of the paper should be complemented713

by formal proofs provided in appendix or supplemental material.714

• Theorems and Lemmas that the proof relies upon should be properly referenced.715

4. Experimental Result Reproducibility716

Question: Does the paper fully disclose all the information needed to reproduce the main ex-717

perimental results of the paper to the extent that it affects the main claims and/or conclusions718

of the paper (regardless of whether the code and data are provided or not)?719

Answer: [Yes]720

Justification: We explain how we performed our experiments in Section 5 and Appendix B.721

Guidelines:722

• The answer NA means that the paper does not include experiments.723

• If the paper includes experiments, a No answer to this question will not be perceived724

well by the reviewers: Making the paper reproducible is important, regardless of725

whether the code and data are provided or not.726

• If the contribution is a dataset and/or model, the authors should describe the steps taken727

to make their results reproducible or verifiable.728

• Depending on the contribution, reproducibility can be accomplished in various ways.729

For example, if the contribution is a novel architecture, describing the architecture fully730

might suffice, or if the contribution is a specific model and empirical evaluation, it may731

be necessary to either make it possible for others to replicate the model with the same732

dataset, or provide access to the model. In general. releasing code and data is often733

one good way to accomplish this, but reproducibility can also be provided via detailed734

instructions for how to replicate the results, access to a hosted model (e.g., in the case735

of a large language model), releasing of a model checkpoint, or other means that are736

appropriate to the research performed.737

• While NeurIPS does not require releasing code, the conference does require all submis-738

sions to provide some reasonable avenue for reproducibility, which may depend on the739

nature of the contribution. For example740

(a) If the contribution is primarily a new algorithm, the paper should make it clear how741

to reproduce that algorithm.742

(b) If the contribution is primarily a new model architecture, the paper should describe743

the architecture clearly and fully.744

(c) If the contribution is a new model (e.g., a large language model), then there should745

either be a way to access this model for reproducing the results or a way to reproduce746

the model (e.g., with an open-source dataset or instructions for how to construct747

the dataset).748

(d) We recognize that reproducibility may be tricky in some cases, in which case749

authors are welcome to describe the particular way they provide for reproducibility.750

In the case of closed-source models, it may be that access to the model is limited in751

some way (e.g., to registered users), but it should be possible for other researchers752

to have some path to reproducing or verifying the results.753

5. Open access to data and code754

Question: Does the paper provide open access to the data and code, with sufficient instruc-755

tions to faithfully reproduce the main experimental results, as described in supplemental756

material?757
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Answer: [Yes]758

Justification: Code, data, model checkpoints as well as detailed instructions are available759

here: https://osf.io/n8vz3/?view_only=1052300a21bd43c08f700016728aa96e,760

as stated in Appendix B.1. Nevertheless, high level training, evaluation and implementation761

details are described in Appendix B and Section 4.1.762

Guidelines:763

• The answer NA means that paper does not include experiments requiring code.764

• Please see the NeurIPS code and data submission guidelines (https://nips.cc/765

public/guides/CodeSubmissionPolicy) for more details.766

• While we encourage the release of code and data, we understand that this might not be767

possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not768

including code, unless this is central to the contribution (e.g., for a new open-source769

benchmark).770

• The instructions should contain the exact command and environment needed to run to771

reproduce the results. See the NeurIPS code and data submission guidelines (https:772

//nips.cc/public/guides/CodeSubmissionPolicy) for more details.773

• The authors should provide instructions on data access and preparation, including how774

to access the raw data, preprocessed data, intermediate data, and generated data, etc.775

• The authors should provide scripts to reproduce all experimental results for the new776

proposed method and baselines. If only a subset of experiments are reproducible, they777

should state which ones are omitted from the script and why.778

• At submission time, to preserve anonymity, the authors should release anonymized779

versions (if applicable).780

• Providing as much information as possible in supplemental material (appended to the781

paper) is recommended, but including URLs to data and code is permitted.782

6. Experimental Setting/Details783

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-784

parameters, how they were chosen, type of optimizer, etc.) necessary to understand the785

results?786

Answer: [Yes]787

Justification: We discuss the dataset details in Appendix B and refer to related work for788

datasets introduced in prior work.789

Guidelines:790

• The answer NA means that the paper does not include experiments.791

• The experimental setting should be presented in the core of the paper to a level of detail792

that is necessary to appreciate the results and make sense of them.793

• The full details can be provided either with the code, in appendix, or as supplemental794

material.795

7. Experiment Statistical Significance796

Question: Does the paper report error bars suitably and correctly defined or other appropriate797

information about the statistical significance of the experiments?798

Answer: [Yes]799

Justification: We provide error bars for the alanine dipeptide experiments. In contrast, for the800

much more expensive transferable experiments, we utilize our computational resources to801

sample a multitude of different peptides from the test set, rather than training and sampling802

distinct instances of the same architecture for the same peptide. Consequently, we obtain803

error bounds by averaging results over different test dipeptides rather than runs.804

Guidelines:805

• The answer NA means that the paper does not include experiments.806

• The authors should answer "Yes" if the results are accompanied by error bars, confi-807

dence intervals, or statistical significance tests, at least for the experiments that support808

the main claims of the paper.809
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• The factors of variability that the error bars are capturing should be clearly stated (for810

example, train/test split, initialization, random drawing of some parameter, or overall811

run with given experimental conditions).812

• The method for calculating the error bars should be explained (closed form formula,813

call to a library function, bootstrap, etc.)814

• The assumptions made should be given (e.g., Normally distributed errors).815

• It should be clear whether the error bar is the standard deviation or the standard error816

of the mean.817

• It is OK to report 1-sigma error bars, but one should state it. The authors should818

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis819

of Normality of errors is not verified.820

• For asymmetric distributions, the authors should be careful not to show in tables or821

figures symmetric error bars that would yield results that are out of range (e.g. negative822

error rates).823

• If error bars are reported in tables or plots, The authors should explain in the text how824

they were calculated and reference the corresponding figures or tables in the text.825

8. Experiments Compute Resources826

Question: For each experiment, does the paper provide sufficient information on the com-827

puter resources (type of compute workers, memory, time of execution) needed to reproduce828

the experiments?829

Answer: [Yes]830

Justification: We discuss the required computational resources for this work for the training831

and inference in Appendix B.3 and Appendix B.7.832

Guidelines:833

• The answer NA means that the paper does not include experiments.834

• The paper should indicate the type of compute workers CPU or GPU, internal cluster,835

or cloud provider, including relevant memory and storage.836

• The paper should provide the amount of compute required for each of the individual837

experimental runs as well as estimate the total compute.838

• The paper should disclose whether the full research project required more compute839

than the experiments reported in the paper (e.g., preliminary or failed experiments that840

didn’t make it into the paper).841

9. Code Of Ethics842

Question: Does the research conducted in the paper conform, in every respect, with the843

NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?844

Answer: [Yes]845

Justification: The research conducted conforms with the NeurIPS Code of Ethics. All846

authors have read the NeurIPS Code of Ethics.847

Guidelines:848

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.849

• If the authors answer No, they should explain the special circumstances that require a850

deviation from the Code of Ethics.851

• The authors should make sure to preserve anonymity (e.g., if there is a special consid-852

eration due to laws or regulations in their jurisdiction).853

10. Broader Impacts854

Question: Does the paper discuss both potential positive societal impacts and negative855

societal impacts of the work performed?856

Answer: [Yes]857

Justification: We discuss the broader impact of our work in Section 8.858

Guidelines:859

• The answer NA means that there is no societal impact of the work performed.860
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• If the authors answer NA or No, they should explain why their work has no societal861

impact or why the paper does not address societal impact.862

• Examples of negative societal impacts include potential malicious or unintended uses863

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations864

(e.g., deployment of technologies that could make decisions that unfairly impact specific865

groups), privacy considerations, and security considerations.866

• The conference expects that many papers will be foundational research and not tied867

to particular applications, let alone deployments. However, if there is a direct path to868

any negative applications, the authors should point it out. For example, it is legitimate869

to point out that an improvement in the quality of generative models could be used to870

generate deepfakes for disinformation. On the other hand, it is not needed to point out871

that a generic algorithm for optimizing neural networks could enable people to train872

models that generate Deepfakes faster.873

• The authors should consider possible harms that could arise when the technology is874

being used as intended and functioning correctly, harms that could arise when the875

technology is being used as intended but gives incorrect results, and harms following876

from (intentional or unintentional) misuse of the technology.877

• If there are negative societal impacts, the authors could also discuss possible mitigation878

strategies (e.g., gated release of models, providing defenses in addition to attacks,879

mechanisms for monitoring misuse, mechanisms to monitor how a system learns from880

feedback over time, improving the efficiency and accessibility of ML).881

11. Safeguards882

Question: Does the paper describe safeguards that have been put in place for responsible883

release of data or models that have a high risk for misuse (e.g., pretrained language models,884

image generators, or scraped datasets)?885

Answer: [NA]886

Justification: Our models do not pose such a risk, as they are for molecular data.887

Guidelines:888

• The answer NA means that the paper poses no such risks.889

• Released models that have a high risk for misuse or dual-use should be released with890

necessary safeguards to allow for controlled use of the model, for example by requiring891

that users adhere to usage guidelines or restrictions to access the model or implementing892

safety filters.893

• Datasets that have been scraped from the Internet could pose safety risks. The authors894

should describe how they avoided releasing unsafe images.895

• We recognize that providing effective safeguards is challenging, and many papers do896

not require this, but we encourage authors to take this into account and make a best897

faith effort.898

12. Licenses for existing assets899

Question: Are the creators or original owners of assets (e.g., code, data, models), used in900

the paper, properly credited and are the license and terms of use explicitly mentioned and901

properly respected?902

Answer: [Yes]903

Justification: We give credit to used assets in this work in Appendix B.1 and Appendix B.2.904

Our assets will be available under the MIT / CC BY 4.0 license.905

Guidelines:906

• The answer NA means that the paper does not use existing assets.907

• The authors should cite the original paper that produced the code package or dataset.908

• The authors should state which version of the asset is used and, if possible, include a909

URL.910

• The name of the license (e.g., CC-BY 4.0) should be included for each asset.911

• For scraped data from a particular source (e.g., website), the copyright and terms of912

service of that source should be provided.913
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• If assets are released, the license, copyright information, and terms of use in the914

package should be provided. For popular datasets, paperswithcode.com/datasets915

has curated licenses for some datasets. Their licensing guide can help determine the916

license of a dataset.917

• For existing datasets that are re-packaged, both the original license and the license of918

the derived asset (if it has changed) should be provided.919

• If this information is not available online, the authors are encouraged to reach out to920

the asset’s creators.921

13. New Assets922

Question: Are new assets introduced in the paper well documented and is the documentation923

provided alongside the assets?924

Answer: [Yes]925

Justification: We document our models in Appendix B.926

Guidelines:927

• The answer NA means that the paper does not release new assets.928

• Researchers should communicate the details of the dataset/code/model as part of their929

submissions via structured templates. This includes details about training, license,930

limitations, etc.931

• The paper should discuss whether and how consent was obtained from people whose932

asset is used.933

• At submission time, remember to anonymize your assets (if applicable). You can either934

create an anonymized URL or include an anonymized zip file.935

14. Crowdsourcing and Research with Human Subjects936

Question: For crowdsourcing experiments and research with human subjects, does the paper937

include the full text of instructions given to participants and screenshots, if applicable, as938

well as details about compensation (if any)?939

Answer: [NA]940

Justification: No crowdsourcing nor human subjects941

Guidelines:942

• The answer NA means that the paper does not involve crowdsourcing nor research with943

human subjects.944

• Including this information in the supplemental material is fine, but if the main contribu-945

tion of the paper involves human subjects, then as much detail as possible should be946

included in the main paper.947

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,948

or other labor should be paid at least the minimum wage in the country of the data949

collector.950

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human951

Subjects952

Question: Does the paper describe potential risks incurred by study participants, whether953

such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)954

approvals (or an equivalent approval/review based on the requirements of your country or955

institution) were obtained?956

Answer: [NA]957

Justification: No crowdsourcing nor human subjects958

Guidelines:959

• The answer NA means that the paper does not involve crowdsourcing nor research with960

human subjects.961

• Depending on the country in which research is conducted, IRB approval (or equivalent)962

may be required for any human subjects research. If you obtained IRB approval, you963

should clearly state this in the paper.964
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• We recognize that the procedures for this may vary significantly between institutions965

and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the966

guidelines for their institution.967

• For initial submissions, do not include any information that would break anonymity (if968

applicable), such as the institution conducting the review.969

31


	Introduction
	Related work
	Boltzmann Generators and Normalizing Flows
	Boltzmann Generators
	Continuous Normalizing Flows (CNFs)
	Flow matching

	Transferable Boltzmann Generators
	Architecture
	Training transferable Boltzmann Generators
	Inference with transferable Boltzmann Generators

	Experiments
	Alanine dipeptide
	Dipeptides (2AA)

	Discussion
	Limitations / Future work
	Broader Impact
	Additional results and experiments
	Semi-empirical force field for alanine dipeptide
	Dipeptide training data
	Smaller dataset
	Sampled dipeptide configurations
	Additional results for dipeptides
	Transferable Boltzmann Generators as Boltzmann Emulators

	Technical details
	Code libraries
	Benchmark systems
	Hyperparameters
	Biasing target samples
	Encoding of atom types
	Effective samples sizes
	Computing resources


