
A Supplemental Material for “In-N-Out: Lifting 2D Diffusion Prior for 3D
Object Removal via Tuning-Free Latents Alignment”

A.1 Implementation Detail

For the inpainting network, we employ the stable-diffusion-2-inpainting model [3], which encodes a
masked image into the same dimensional latent space and integrates conditions via concatenation.
We set the denoising steps for inpainting at 20. To achieve better generalization, we propose sampling
the base frame according to the geometrical centroid of the training camera poses, meaning the
camera that sits most centrally among the training views. However, we found that Stable Diffusion
occasionally inpaints strange artifacts in the masked region. To mitigate this, we propose sampling n
candidate views around the geometrical centroid and selecting the one with the highest similarity
votes. This approach automatically avoids such occasion artifacts without human intervention. In our
implementation, we used five candidate views, and the similarity was calculated using perceptual
hashing. In the reprojection procedure of ELA, we adjust the camera intrinsics to match the latent
dimensionality. Furthermore, to refine the ILA mechanism, we incorporate Cross-View Attention
(CVA) into every self-attention layer of the inpainting model. Each step in this modified approach is
controlled with λa set at 0.2.

For our 3D representation (NeRF) implementation, we utilize the "nerfacto" framework proposed by
NerfStudio [4]. To ensure stable training, we deactivated the view-dependent effect. We pre-train the
NeRF using 10000 iterations in stage 1 and jointly optimize it using 5000 iterations in stage 3. Our
monocular depth estimation adopts DepthAnything [5], complemented by the depth loss outlined in
DS-NeRF [1]. Moreover, we employ StyleGAN2 discriminator [2] to implement adversarial loss.

A.2 Sensitivity Analysis

We conducted several sensitivity analyses regarding the base view selection, λa in ILA, and the
subset selection. Due to the computational burden, we conduct the sensitivity analysis on six out of
ten scenes with higher inpainting variability from the SPIn-NeRF dataset.

(a) Base View Selection:

To achieve better generalization, we propose sampling the base frame according to the geometrical
centroid of the training camera poses, meaning the camera that sits most centrally among the training
views. However, we found that Stable Diffusion occasionally inpaints strange artifacts in the masked
region. To mitigate this, we propose sampling n candidate views around the geometrical centroid and
selecting the one with the highest similarity votes. This approach automatically avoids such occasion
artifacts without human intervention. In our implementation, we used five candidate views, and the
similarity was calculated using perceptual hashing.

We tested our results under different settings (candidate numbers): 3, 5, 7, and 9. The base frame
selection algorithm proved to be robust, with our algorithm typically yielding the same base frame.
However, another factor influencing this step is the random seed. Setting different seeds causes the
2D inpainting model to produce different results, leading to different base frames being selected. We
tested our methods under five different seeds, and the final scores are reported in Table 1. While
different seeds cause the final NeRF to differ in the appearance of the masked region, the consistency
of the multi-view inpainting results remains robust, resulting in minimal variance in the evaluation
scores.

(b) λa in ILA:

To effectively examine the effect of the hyper-parameter λa in ILA, we evaluated our method’s
rendering quality with different λa values of 0.2, 0.4, 0.6, and 0.8. The metrics are reported in
Table 2. Quantitatively, the results are consistent across different λa values, indicating that the effect
of this hyper-parameter is relatively small. This conclusion is also supported by qualitative results.
Larger λa values tend to produce slight variations in some small regions, but the global structure
and semantics are preserved. This stability is attributed to the significant role of the initial latent
alignment in ELA, which effectively aligns the underlying inpainting structure, thereby maintaining
low variability in appearance. Additionally, the self-attention layer, where cross-view attention is
introduced, does not dominate the entire Stable Diffusion Unet. It is balanced by the presence of
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Table 1: Sensitivity analysis on the prior inpainting results and prior view selection. Results are
evaluated on the SPIn-NeRF dataset with different random seeds.

Seed LPIPS ↓ MUSIQ ↑ FID ↓
1 0.46 46.61 264.91
2 0.44 48.04 255.29
3 0.44 46.47 262.09
4 0.44 45.72 261.04
5 0.46 48.65 258.50

Avg 0.45 47.10 260.37
Std 0.01 1.21 3.657

other (residual and linear) layers, ensuring cross-view attention does not override the signal during
the denoising process. Hence we simply set λa as 0.2 in our implementation.

Table 2: Sensitivity analysis on λa used in ILA.

λa LPIPS ↓ MUSIQ ↑ FID ↓
0.2 0.44 47.11 261.62
0.4 0.44 46.76 264.91
0.6 0.44 46.47 264.37
0.8 0.45 46.33 265.10

Avg 0.44 46.67 264.00
Std 0.01 0.35 1.62

(c) Subset Selection:

We found that for reconstruction tasks, more views can enhance quality; however, for generation tasks,
using the entire set of images can introduce unnecessary inconsistencies. Therefore, we propose
selecting the subset according to the distribution of camera viewpoints.

We evenly split the viewpoints into 12 groups based on the base view’s camera space (evenly 2 on the
x and y axes and 3 on the z-axis) and select 50 percent within each group according to perceptual
hashing similarity to the base view. This approach avoids redundant views introducing supervision
conflicts while covering different viewpoints for effective supervision.

We also evaluated our method based on different percentages, as reported in Table 3. The quantitative
scores are quite close, indicating that for most scenes, the difference isn’t significant. For one complex
scene with extremely high frequencies, setting the percentage too low (0.2) yields artifacts in the
test view due to insufficient viewpoint coverage. Conversely, setting the percentage too high (0.8)
introduces appearance conflicts due to the high variability of the inpainted results.

Overall, for most scenes, the subset selection algorithm is robust due to the consideration of viewpoints
distribution. For extreme cases, careful selection of the percentage might be necessary. However,
values between 0.5 and 0.7 remain a reliable choice.

Table 3: Sensitivity analysis on proportion of images selected for the subset.

Percentage LPIPS ↓ MUSIQ ↑ FID ↓
0.2 0.46 45.98 265.48
0.4 0.44 46.32 264.91
0.6 0.44 47.11 261.62
0.8 0.45 46.47 263.20

(d) λpatch in patch loss:

To assess the sensitivity of the patch loss multiplier λpatch, we evaluated the method’s performance
using various values of λpatch: 0.001, 0.005, 0.01, 0.05, and 0.1. The results are reported in Table 4.
Analysis of the table indicates that varying λpatch leads to similar performance across different
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settings, with a low standard deviation of the metrics. However, there is an observable trend where
setting λpatch too low or too high adversely affects performance. The multiplier λpatch is critical as
it determines the extent of influence multi-view images have on the NeRF. Insufficient multi-view
supervision can lead to inadequate training, whereas excessive supervision may result in conflicting
inputs. Consequently, we have set λpatch at 0.01 in our implementation for optimal balance.

Table 4: Sensitivity analysis on λpatch used for patch loss.

λpatch LPIPS ↓ MUSIQ ↑ FID ↓
0.001 0.46 46.078 263.32
0.005 0.45 47.08 262.43
0.010 0.44 47.11 261.62
0.050 0.47 44.93 265.31
0.100 0.49 44.05 277.36

Avg 0.46 45.85 266.01
Std 0.02 1.35 6.49

A.3 More Qualitative Results

This section presents extended qualitative results from our experiments on the SPIn-NeRF Dataset.
Fig. 1 and Fig. 2 showcase a series of multi-view comparative inpaintings.

A.4 Details on User Study and Impact

To comprehensively evaluate our method using human subjects, we conducted a user study focusing on
three aspects: (1) Background Coherence — assessing whether the inpainted area blends seamlessly
with the remaining background, (2) Detail Preservation — determining if the inpainted area retains
high-fidelity details, and (3) Overall Quality — gauging participants’ preference rates for the inpainted
results. For each method, we presented users with two multi-view test images from each scene and
instructed them to choose the method that best met the criteria for each aspect. Clear instructions
were provided to ensure participants understood the rating process. An example screenshot of the
study interface is shown in Fig. 3.

The user study we conducted focused solely on collecting participants’ preferences regarding different
inpainting results, involving no sensitive or personal data collection beyond their aesthetic judgments.
The study’s design was inherently low-risk as it required participants to simply view and evaluate
digital images based on their visual appeal and perceived quality. Furthermore, the participation was
entirely voluntary, with clear instructions provided, allowing participants to withdraw at any time
without any consequence. Given these factors, the potential for harm or discomfort to participants
was negligible, ensuring the study maintained a minimal risk profile.

3



InFusionNeRFiller OursSPIn-NeRFTraning Input

Figure 1: Additional Qualitative Results on the SPIn-NeRF Dataset.
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InFusionNeRFiller OursSPIn-NeRFTraning Input

Figure 2: Multi-view Qualitative Results on the SPIn-NeRF Dataset.
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Figure 3: Example of User Study.
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