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Abstract

Federated Learning (FL) is an evolving paradigm that enables multiple parties
to collaboratively train models without sharing raw data. Among its variants,
Vertical Federated Learning (VFL) is particularly relevant in real-world, cross-
organizational collaborations, where distinct features of a shared instance group are
contributed by different parties. In these scenarios, parties are often linked using
fuzzy identifiers, leading to a common practice termed as multi-party fuzzy VFL.
Existing models generally address either multi-party VFL or fuzzy VFL between
two parties. Extending these models to practical multi-party fuzzy VFL typically
results in significant performance degradation and increased costs for maintaining
privacy. To overcome these limitations, we introduce the Federated Transformer
(FeT), a novel framework that supports multi-party VFL with fuzzy identifiers.
FeT innovatively encodes these identifiers into data representations and employs
a transformer architecture distributed across different parties, incorporating three
new techniques to enhance performance. Furthermore, we have developed a
multi-party privacy framework for VFL that integrates differential privacy with
secure multi-party computation, effectively protecting local representations while
minimizing associated utility costs. Our experiments demonstrate that the FeT
surpasses the baseline models by up to 46% in terms of accuracy when scaled to 50
parties. Additionally, in two-party fuzzy VFL settings, FeT also shows improved
performance and privacy over cutting-edge VFL models.

1 Introduction

Federated Learning (FL) is a learning paradigm that enables multiple parties to collaboratively train
a model while preserving the privacy of their local data [27]. Among its various forms, Vertical
Federated Learning (VFL) [53] is particularly prevalent form in real-world applications as highlighted
in a recent technical report [48]. In VFL, participants possess different features of the same set of
instances, where common features, such as names or addresses, serve as identifiers (a.k.a. keys) to
link datasets across these parties.

Real-world applications often necessitate multi-party fuzzy VFL, characterized by two key attributes.
First, it supports collaboration among multiple parties, commonly observed in collaborations across
hospitals [33], sensors [52], and financial institutions [38]. Second, it accommodates scenarios where
these parties are linked using fuzzy identifiers, such as addresses. Such scenarios are prevalent
in applications, as illustrated in an analysis [50] of the German Record Linkage Center [11]. For
instance, multiple vehicle rental companies that are fuzzily linked by source and destination addresses
in the same city can collaborate to predict travel times.

To illustrate the significance of multi-party fuzzy VFL, consider the application of travel cost
prediction in a city through collaboration among taxi, car, bike, and bus companies, as shown
in Figure 1. Since personal travel information is private and cannot be shared, VFL is essential.
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Figure 1: Real application of multi-party fuzzy VFL: travel cost prediction in a city

Additionally, route identifiers - starting and ending GPS locations - can only be linked using fuzzy
methods. However, linking closely related source and destination points with multi-party fuzzy VFL
can significantly enhance prediction accuracy.

Existing VFL approaches generally address either the multi-party aspect or the fuzzy identifier
issue. Several methods [33, 52, 38, 21, 26] facilitate multi-party VFL using Private Set Intersection
(PSI) [10] to link datasets. These methods often presume the existence of precise, universal keys,
which are not feasible in common VFL scenarios involving fuzzy identifiers. Conversely, other
studies [17, 34, 50] propose two-party fuzzy VFL models that utilize cross-party key similarities
for training. However, when extended to multi-party fuzzy VFL, these similarity-based approaches
encounter significant challenges in performance and privacy. While some methods achieve reasonable
performance, they often compromise privacy or incur prohibitive costs.

Despite the potential of multi-party fuzzy VFL, several significant challenges must be addressed for
effective implementation. First, as the number of parties with fuzzy identifiers increases, maintaining
performance becomes increasingly challenging. The addition of parties leads to a quadratic growth
in the number of key pairs, an increase in incorrect linkages between fuzzy identifiers, and larger
model sizes. These factors collectively heighten the risk of overfitting and adversely impact model
performance. Second, the rising costs of preserving privacy intensify as more parties with correlated
data participate, leading to either significant computational costs [33, 52, 38] or accuracy loss [47].
Third, in a collaboration of multiple parties, a communication bottleneck arises for the party with
labels, termed the primary party. This party must communicate with all other parties without labels,
termed secondary parties, in each training round, placing substantial demands on the primary party’s
bandwidth. These challenges significantly hinder the practical deployment of VFL.

To address these issues, we introduce the Federated Transformer (FeT) to enhance performance and
reduce privacy costs in multi-party fuzzy VFL. First, to tackle performance issues, we encode key
similarities into data representations aligned by positional encoding averaging, which eliminates
the need for quadratic calculations of key pairs. Additionally, we have designed a trainable dynamic
masking module that automatically filters out incorrectly linked pairs, enhancing model accuracy
by up to 13% in 50-party fuzzy VFL on the MNIST dataset. Second, to mitigate the escalating costs
of privacy protection, we introduce SplitAvg, a hybrid approach that merges encryption-based and
noise-based methods, maintaining a consistent noise level regardless of the number of participating
parties. Third, to alleviate communication overhead on the primary party, we implement a party
dropout strategy, which randomly excludes certain secondary parties during each training round. This
effectively reduces communication costs by approximately 80% and improves model generalization.
Our codes are available on GitHub1. In summary, our contributions are as follows:

• We design Federated Transformer (FeT), a novel model achieving promising performance
under multi-party fuzzy VFL.

• We introduce SplitAvg to enhance the privacy of FeT by protecting local representations in
multi-party fuzzy VFL, with a theoretical proof of its differential privacy.

• Experimental results demonstrate that FeT significantly outperforms baseline models by up
to 46% in terms of accuracy in 50-parties VFL. Moreover, while providing enhanced privacy,
FeT consistently surpasses state-of-the-art models even in traditional two-party fuzzy VFL
scenarios.

1https://github.com/Xtra-Computing/FeT
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2 Preliminaries

In this section, we provide the foundational concepts necessary for understanding our approach
to differential privacy. Differential Privacy (DP) offers a rigorous mathematical framework for
preserving individual privacy. It quantifies privacy in terms of the probability of producing the same
output from two similar datasets that differ by exactly one record.
Definition 1. Consider a randomized function M : Rd → O and two neighboring databases
D0, D1 ∼ Rd that differ by exactly one record. For every possible output set O ⊆ O,M satisfies
(ε, δ)-differential privacy if

Pr[M(D0) ∈ O] ≤ eε Pr[M(D1) ∈ O] + δ,

where ε ≥ 0 and δ ≥ 0.

A single query that adheres to differential privacy is termed a mechanism. For example, the Gaussian
mechanism [4] is commonly used to achieve DP by adding Gaussian noise to the output of the
function.
Theorem 1 (Gaussian Mechanism [4]). For a function f : X → Rd characterized by a global L2

sensitivity ∆2, which signifies that the maximum difference in the L2-norm of the outputs of f on
any two neighboring databases is ∆2, and for any ε ≥ 0 and δ ∈ [0, 1], the Analytic Gaussian
Mechanism is defined asM(x) = f(x) + Z, where Z ∼ N (0, σ2I). This mechanism satisfies (ε, δ)-

differential privacy if Φ
(

∆2

2σ −
εσ
∆2

)
− eεΦ

(
−∆2

2σ −
εσ
∆2

)
≤ δ, where Φ(t) = 1√

2π

∫ t

−∞ e−x2/2dx

is the cumulative distribution function (CDF) of the standard univariate Gaussian distribution.

When multiple queries are made on the same database, independent Gaussian noise is added to each
query to maintain differential privacy. The privacy loss of the composition of Gaussian mechanisms
is formulated in Theorem 2.
Theorem 2 (Moments Accountant [1]). There exist constants c1 and c2 so that given the sampling
probability q = L

N and the number of steps T , for any ε < c1q
2T , DPSGD [1] is (ε, δ)-differentially

private for any δ > 0 if we choose σ > c2
q
√

T log(1/δ)

ε .

3 Related Work

Performance. Traditional VFL approaches [29, 7] are typically limited to two-party scenarios. In
contrast, existing multi-party VFL methods [12, 51, 33, 52, 38, 21, 26] often rely on the assumption
of precise identifiers that ensure perfect alignment across all parties. These methods generally employ
the SplitNN framework [45], where each party maintains a portion of the model, and the models
are collaboratively trained on well-aligned data samples through the transfer of representations and
gradients, commonly known as split learning. However, the requirement for perfect data alignment is
impractical in many real-world scenarios [50, 3], where identifiers are often imprecise.

To address this limitation, semi-supervised VFL [22, 30, 19, 20] has emerged, attempting to improve
model performance by leveraging unlinked records through semi-supervised or self-supervised
learning. However, these methods still assume that datasets from each party can be precisely linked
using exact identifiers, a premise that is often untenable in real-world settings [50, 3]. Given that
the quality of linkage significantly impacts VFL accuracy [34], exploring effective linkage methods
remains a pivotal issue in VFL.

On the other hand, FedSim [50], based on real linkage projects at the German Record Linkage Center
(GRLC) [3], acknowledges that the keys of each party are usually not precisely linkable and that
records may have one-to-many relationships, leading to fuzzy linkage scenarios, as seen with keys like
GPS addresses. FedSim enhances training performance by performing soft linkage and conducting
training based on transmitted key similarities. Nonetheless, it faces limitations in scalability beyond
two parties and introduces new privacy concerns by directly transferring similarities.

In summary, while existing studies face significant performance challenges when handling fuzzy
keys in multi-party settings, our proposed FeT demonstrates a scalable design that addresses these
challenges and shows promising performance improvements in both multi-party fuzzy VFL and
two-party settings compared to FedSim.
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Privacy. The privacy concerns associated with VFL are multifaceted. First, the primary party
may infer data representations from secondary parties [31]. Second, the secondary party may derive
gradients from the primary party [41, 54]. Third, external attackers could conduct membership
inference attacks [39] on the deployed model [51]. This paper primarily addresses the second
concern: safeguarding representations, while acknowledging other concerns as open challenges.

To address the privacy of representations in VFL, various methods have been proposed, falling into
two primary categories: encryption-based methods and noise-based methods. Encryption-based
methods [26, 14, 33, 52, 38, 21, 36] utilize computationally intensive cryptographic techniques to
encrypt intermediate results. However, these methods often incur significant communication overhead
when scaled to multiple parties. Conversely, noise-based methods [47, 46] protect data by perturbing
[47] or manipulating [46] local representations. These methods typically do not provide theoretical
privacy guarantees or require substantial amounts of noise when scaling to multiple parties in VFL,
which can degrade performance. Unlike existing studies that rely solely on either approach, this
paper explores a combined strategy incorporating both encryption-based and noise-based methods,
ensuring the model scales effectively to multiple parties without the need for excessive noise.

4 Problem Statement

In this section, we formalize the concept of multi-party fuzzy VFL. We consider a supervised learning
task where one party holding labels, termed the primary party P , collaborates with k parties that do
not hold labels, referred to as the secondary parties. The primary party P possesses n data records
denoted as xP := {xi}ni=1 along with corresponding labels y := {yi}ni=1. Each secondary party Sk

maintains its own dataset xSk . All parties share common features, referred to as identifiers, expressed
as xi = [ki,di], where [·] signifies concatenation. These identifiers ki may exhibit inaccuracies and
fuzziness, despite residing within the same range.

min
θ

1

n

n∑
i=1

L(f(θ;xP
i ,x

S1 , . . . ,xSk); yi) + Ω(θ)

In this formulation, L(·) denotes the loss function, θ represents the model parameters, and Ω(θ) refers
to the regularization term. The symbol n indicates the number of samples in the primary party P .

Threat Model. This study focuses on defending feature reconstruction attacks [25, 31], which target
local representations shared with the primary party. FeT operates under the assumption that all
participating parties are honest-but-curious, meaning they adhere to the protocol but may attempt
to infer additional information about other parties. Furthermore, we assume that the parties do not
collude with one another. While other forms of attacks, such as label inference attacks [13] and
backdoor attacks aimed at compromising labels and gradients, exist, they are considered orthogonal
to the objectives of this study. These additional threats will be explored in our future research.

5 Approach

In this section, we address the performance and communication challenges inherent in multi-party
fuzzy VFL. To tackle these issues, we introduce a transformer-based architecture named the Federated
Transformer (FeT). This model encodes keys into data representations, thereby reducing reliance on
key similarities. To accurately exclude incorrectly linked data records, we propose a trainable dynamic
masking module that generates masks based on keys. Furthermore, to combat overfitting caused by
the large model and to alleviate communication bottlenecks faced by the primary party, we introduce
a party dropout strategy that randomly invalidates some parties during training. Additionally, we
identify a positional encoding misalignment issue across parties in the FeT and propose positional
encoding averaging to ensure consistent alignment, thereby enhancing model performance.

5.1 Model Structure

The architecture of the FeT is illustrated in Figure 2. In FeT, each secondary party has an encoder,
while the primary party has both an encoder and a subsequent decoder. The internal structure of
both the encoder and decoder closely adheres to the conventional transformer model [43]. We utilize
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Figure 2: Structure of federated transformer (PE: multi-dimensional positional encoding)

multi-dimensional positional encoding [28] to integrate key information into feature vectors. Outputs
from the encoders at the secondary parties are aggregated and then fed into the decoder. Details
regarding the privacy mechanisms employed during this aggregation phase are discussed in Section 6,
while the details of the training process are elaborated in Section 5.2. We then elaborate on three
techniques designed to improve performance and reduce communication costs.

Dynamic Masking. The size of the neighborhood varies significantly depending on the party
and key values. Consequently, including a large number of neighbors K for all parties can hinder
the model’s ability to extract meaningful information and result in overfitting. To address this, we
introduce a dynamic “key padding mask” in the transformer, generated from the identifier values
using a trainable MLP. This approach allows the model to effectively disregard distant data records,
thereby eliminating the influence of irrelevant data when K is large. This concept resembles the
weight gate in FedSim, but it diverges by using identifiers as inputs instead of similarities, enhancing
privacy by preventing the transmission of similarity data across parties.

The learned dynamic masking is visualized in Figure 3. We derive two key insights from the
visualization: (1) Dynamic masking effectively focuses on a localized area around the primary party’s
identifiers. Data records with distant identifiers on secondary parties (in cooler colors) receive small
negative mask values, reducing their significance in the attention layers - without accessing the
primary party’s original identifiers. (2) The focus area varies in scale and direction across samples:
for example, the left figure concentrates on a small bottom area, the middle figure on a small top area,
and the right figure on a broad area in all directions.

Party Dropout. Extending the Federated Transformer (FeT) to support multiple parties can be
challenging for several reasons. First, the communication bandwidth required by the primary party
becomes a significant bottleneck within the SplitAvg framework, increasing linearly with the number
of parties. Second, the inclusion of many parties can result in an excessive number of parameters,
which may lead to overfitting. To mitigate these issues, we introduce the concept of party dropout.
Inspired by traditional dropout [40], we randomly set a portion rd of the parties’ representations
to zero during training. This method serves as a form of regularization, thus helping to reduce
overfitting, while also significantly cutting down on communication overhead. In our experiments,
we demonstrate that increasing the party dropout rate to 0.8 leads to minimal accuracy loss and can
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Figure 3: Learned dynamic masks of different samples: Each figure displays one sample (red star)
from the primary party fuzzily linked with 4900 samples (circles) from 49 secondary parties. The
position indicates the sample’s identifier, and colors reflect learned dynamic mask values. Larger
mask values signify higher importance in attention layers.

(a) Keys: P0, encodings: P1 ∼ P3 (b) Keys: P0, encodings: P0 (c) Keys: P0, encodings: P3

Figure 4: Misalignment of positional encoding (P0: primary party; P1 ∼ P3: secondary parties)

even improve accuracy. Consequently, the communication overhead on the primary party can be
reduced by up to 80%, enhancing scalability when dealing with large numbers of parties.

Like traditional dropout, it is crucial to maintain consistent scaling of the representations during both
training and testing phases. This consistency is naturally achieved within the SplitAvg framework.
During the averaging process, if a ratio rdk of parties is set to zero, we adjust by dividing only
by the number of non-zero parties, (1 − rd)k. This method ensures that the scale of the averaged
representations remains consistent across training and testing, regardless of the value of rd.

Positional Encoding Averaging. In positional encoding (PE), it is generally expected that the
distances between encoded representations are positively correlated with the distances between
identifiers. In FeT, each party employs its own encoder and PE layer, each tasked with encoding its
local identifiers into representations. This configuration leads to significant PE misalignment issues,
as illustrated in Figure 4. Although the identifiers and their corresponding encoded representations
maintain a positive correlation within the PE layer of each party, there is almost no correlation
between the identifiers and encoded representations across different parties. This lack of correlation
causes integration issues and affects accuracy. However, directly sharing a PE layer among all parties
is not viable due to privacy concerns. To address this, we propose positional encoding averaging.

Every Tpe epoch, the positional encoding layers are averaged and broadcast to all parties under
a secure multi-party computation (MPC) scheme, akin to FedAvg [23] in horizontal federated
learning [27]. While the privacy of the transmitted model can be a concern, this issue is an orthogonal
open problem in horizontal federated learning.

5.2 Training

The FeT training process begins with employing Privacy-Preserving Record Linkage (PPRL) [44] to
evaluate identifier similarities between the primary party P and each secondary party. Secondary
parties each contribute a random subset for linkage (line 5). For each P ’s record, K nearest neighbors
within these subsets from secondary parties are determined (line 6). The training leverages data
embeddings of dimensions B × L × H , where B is batch size, L is the sequence length, and H
is the hidden layer size, following the transformer architecture. In FeT’s context, L = 1 for the
primary and L = K for secondary parties, linking each primary record with K neighboring records
from the secondaries. Identifiers are transformed into vectors using multi-dimensional positional
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encoding [28] and combined with data representations for processing via self-attention blocks (lines
7, 10). Secondary parties’ representations are averaged under the MPC protocol. The primary party
then employs attention blocks for forward propagation to compute the final prediction (line 13).
Backpropagation sends gradient updates from the primary to secondary parties to refine their local
models (lines 14-16). The privacy mechanism including norm clipping (lines 8, 11) and distributed
Gaussian noise (line 12) are further discussed in Section 6.

Algorithm 1: Training Process of Federated Transformer

Input :Primary party xP , secondary parties xS1 , . . . ,xSk , label y, noise scale σ, sampling
ratio q, clipping threshold C

Output :Local models θPl , θ
S1

l , . . . , θSk

l and aggregation model θPa

1 Initialize model parameters θPa , θ
P
l , θ

S1

l , . . . , θSk

l
2 for epoch t ∈ [T ] do
3 for instance xP

i ∈ xP on primary party do
4 for party h ∈ {S1, . . . , Sk} do
5 x̃h ← randomly choose q ratio from xh

6 x̃h
i ← link K records with xP

i from x̃h

7 R̃h
i ← f(θhl ; x̃

h
i )

8 R̂h
i ← R̃h

i /max
(
1,

∥kR̃h
i ∥2

C

)
// Norm clipping

9 end
10 RP

i ← f(θPl ;x
P
i )

11 R̂P
i ← RP

i /max
(
1,

k∥RP
i ∥2

C

)
// Norm clipping

12 Hi ← MPCAvg
(
RS1

i , . . . ,RSk
i ,N (0, C2σ2)

)
13 ŷi ← f(θPa ;Hi)

14 ∇θP
a
← ∂ℓ(yi,ŷi)

∂θP
a

, θPa ← θPa − ηt∇θP
a

15 for party h ∈ {P, S1, . . . , Sk} do
16 ∇θh

l
← ∂ℓ(yi,ŷi)

∂θh
a

, θhl ← ηt∇θh
l

17 end
18 end
19 end

6 Privacy

In this section, we address the challenges of privacy in multi-party fuzzy VFL. First, the risk of
transferring raw similarities has been mitigated by the design of the FeT itself. Second, to address
the increasing costs when more parties join, we introduce a multi-party privacy-preserving VFL
framework, SplitAvg, which is compatible with FeT. The architecture of SplitAvg is illustrated in
Figure 5. SplitAvg integrates differential privacy (DP), secure multi-party computation (MPC) [6],
and norm clipping to enhance the privacy of representations. Additionally, to further improve the
utility of FeT under DP, we employ privacy amplification techniques that reduce the noise scales by
incorporating random sampling.

6.1 Differentially Private Split Neural Network - SplitAvg

This section outlines three techniques applied to the SplitAvg to improve privacy: representation
norm clipping, privacy amplification, and MPC with distributed Gaussian noise. These strategies
collectively protect the privacy of each secondary party’s representations through differential privacy
and ensure that privacy risks do not escalate with an increase in the number of parties due to MPC.

Representation Norm Clipping. The magnitude of the ℓ2-norm is pivotal in determining the sensi-
tivity of differential privacy. To limit the maximum change of the ℓ2-norm, norm clipping is essential.
Specifically, for a representation R, we ensure that ∥R∥2 ≤ C, where C is a predefined positive
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real number. This is achieved by scaling R by a factor of C, formally, R̂ = R/max(1, ∥R∥2/C).
Through this process, any representation R with ∥R∥2 exceeding C is scaled to C, while values of
∥R∥2 below C remain unaffected.

Secure Multi-Party Computation with Distributed Gaussian Noise. To address the challenges
of applying differential privacy in multi-party VFL, we propose a method that integrates noise
addition into the process of aggregating representations, facilitated through MPC. In this setup,
each secondary party first independently conducts representation norm clipping to limit the scale
of their data. Subsequently, these clipped representations, along with Gaussian noise N (0, σ/k2)
independently generated by each of the k secondary parties, are aggregated through averaging under
MPC. For the primary party, this aggregation is equivalent to adding independent Gaussian noise
N (0, σ2) to the averaged result. The adoption of MPC in our framework ensures that the secondary
parties do not need to individually addN (0, σ2) noise to their representations. Instead, as the primary
party only has access to the averaged result under MPC, each secondary party can add a smaller
amount of noise. This method effectively improves utility with a small efficiency cost due to MPC.

Figure 5: Differentially private split-sum neural
network

Privacy Amplification by Secondary Subsam-
pling. This technique is specifically designed
for FeT configurations. According to the princi-
ple of privacy amplification [5], applying a func-
tion to a randomly sampled subset of data en-
hances privacy compared to applying the same
function to the entire dataset. By initiating link-
age from a randomly sampled subset rather than
the full dataset, the privacy parameters effec-
tively shift from (ε, δ) to (qε, qδ), where q < 1
represents the sampling rate. In FeT, the primary
party typically selects subsets of candidate data
records for training from each secondary party,
targeting those with neighboring identifiers. By
pre-sampling these subsets at a rate of q before
conducting a k-nearest neighbors (kNN) search,
we avoid processing the entire dataset, which in
turn reduces the noise required to maintain the
same privacy level.

6.2 Privacy Guarantee

Our analysis of differential privacy focuses on a hypothetical global dataset linked using all secondary
parties, denoted as xS1 , . . . ,xSk . Since these datasets are correlated, removing one data record from
this global dataset will result in changes to the representations in all secondary parties. Consequently,
privacy loss accumulates across secondary parties without the use of MPC. However, with MPC, a
single aggregated noise, formed by distributing smaller noise contributions among parties, can be
added, effectively reducing the overall required noise. The privacy guarantee for these representations
is formally articulated in Theorem 3, with the proof provided in Appendix A.

Theorem 3. For certain constants c1 and c2, given a sampling rate q, the total number of epochs
T , and the number of batches B in each epoch, each representation RSk achieves (ε, δ)-differential
privacy for all ε < c1q

2T , with any δ > 0, by selecting the standard deviation σ of the Gaussian
noise mechanism as follows:

σ > c2
q
√
BT log(1/δ)

ε
. (1)

7 Experiments

This section presents the experimental setup and results. We begin by outlining the experimental
settings in Section 7.1, followed by an assessment of performance across varying numbers of parties
and neighbors in Section 7.2. We then analyze the privacy of FeT in Section 7.3. Additionally,
an ablation study is conducted in Appendix C to evaluate the contribution of each component to
performance, including dynamic masking, party dropout, positional encoding, key fuzziness, and
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SplitAvg. The performance of FeT with exact key matching is assessed in Appendix D, while the
computational and memory efficiency of MPC and training is evaluated in Appendix E. Privacy
evaluation on two-party real datasets is included in Appendix F. Furthermore, FeT’s performance
under imbalanced feature splits across parties, based on VertiBench [49], is presented in Appendix G.

7.1 Experimental Settings

Datasets. Our experiments utilize five datasets, including three real-world datasets: house [35, 2],
bike [8, 42], and hdb [18, 37], along with two high-dimensional datasets: gisette [16] and
MNIST [24]. Detailed descriptions of these datasets can be found in Appendix B. To simulate multi-
party fuzzy VFL, we partition the features equally and randomly among the parties. The primary
party’s feature dimensions are reduced to 4 using principal component analysis (PCA) to serve as
universal keys. To create fuzzy linked scenarios, we add independent Gaussian noise with a scale of
0.05 to the keys of each party.

Baselines. We include three baselines in our experiments: (1) Solo: training only on the primary
party; (2) Top1Sim: linking each data record in the primary party only with its most similar neighbor
in the secondary parties; (3) FedSim [50]: training on the top K neighboring data records.

7.2 Performance

Two-party fuzzy VFL. In this experiment, we evaluate the performance of FeT in two-party
settings without privacy mechanisms. The detailed results are presented in Table 1. Our experiments
demonstrate that FeT consistently outperforms the leading two-party fuzzy VFL methods. Notably,
this performance improvement is achieved while enhancing privacy protections, as FeT does not
involve transferring similarity data.

Table 1: Root Mean Squared Error (RMSE) on real-world two-party fuzzy VFL datasets
Algorithm house bike hdb

Solo 73.27 ± 0.16 244.33 ± 0.75 33.97 ± 0.61
Top1Sim 58.54 ± 0.35 256.19 ± 1.39 31.56 ± 0.21
FedSim 42.12 ± 0.23 235.67 ± 0.27 27.13 ± 0.06

FeT 39.75 ± 0.29 232.98 ± 0.62 26.94 ± 0.15

Effect of Number of Neighbors K. In this experiment, we assess the impact of the number of
neighbors, K, on FeT’s performance by varying K from 1 to 100. The results are displayed in
Figure 6. The FedSim baseline is trained using the optimal K value (i.e., 50 for hdb and 100 for
house and bike). The figure reveals two key insights: First, FeT’s performance improves as K
increases, demonstrating its ability to filter useful information even as the number of unrelated data
records grows. Second, FeT consistently outperforms all baselines at larger values of K, highlighting
its superiority in fuzzy VFL scenarios.

Figure 6: Effect of Different Number of Neighbors K on FeT Performance

Effect of Number of Parties In this experiment, we assess FeT’s performance in fuzzy VFL with
various numbers of parties. Due to the absence of real multi-party VFL data, we employ synthetic
data for our evaluations. We partition the features equally and randomly among the parties, reducing
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the primary party’s feature dimensions to 4 using PCA as the universal keys. To simulate fuzzy linked
scenarios, we add independent Gaussian noise with a scale of 0.05 to the keys of each party.

Figure 7 shows that FeT generally outperforms the baselines, particularly with a larger number of
parties. This advantage is attributed to Solo’s lack of informative features and Top1Sim’s noise-
affected linkage. FedSim performs poorly as the top-1 linked secondary parties are unaware of the
primary parties’ keys, leading to misalignment in subsequent soft linkage and training steps. On the
gisette dataset with k = 10, FeT and other models slightly underperform compared to Solo, likely
due to overfitting given gisette’s small size.
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Figure 7: Impact of number of parties on FeT performance

7.3 Privacy

In this subsection, we analyze how the performance of FeT varies with different noise scales (σ) and
sampling rates on secondary parties, demonstrating the impact of privacy constraints on its accuracy.
The results are depicted in Figure 8. We observe three key points: First, a moderate sampling rate has
a negligible effect on model performance and may even slightly improve performance (e.g., on the
MNIST dataset) by reducing overfitting. Second, despite increasing noise levels and enhanced privacy
guarantees, FeT consistently outperforms baseline models. Third, the ε − σ privacy-noise curves
illustrate that solely adding Gaussian noise without MPC, even with advanced analysis theorems such
as Rényi Differential Privacy (RDP) [32], would require much larger noise scales compared to our
approach that integrates MPC.
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Figure 8: Impact of noise scale σ on FeT accuracy and relationship between σ and ε under 10-party
fuzzy VFL (RDP: without MPC, privacy loss calculated by Rényi differential privacy)

8 Conclusion

In this study, we introduce the Federated Transformer (FeT), specifically designed to support multi-
party VFL while effectively addressing critical challenges related to performance, privacy, and
communication. Furthermore, we provide theoretical proof of FeT’s differential privacy, ensuring that
data representations remain protected from secondary parties. Notably, our experiments demonstrate
that FeT surpasses baseline models, even under stringent privacy guarantees and within the traditional
two-party setting, establishing its efficacy and robustness in complex federated environments.

Broader Impact. The architecture of FeT, even without privacy mechanisms, has potential applica-
tions in multimodal learning. Multimodal tasks often require the alignment of data records across
different modalities, which can be quite challenging. For instance, aligning 24Hz video streams with
48kHz audio tracks is complex, as each video frame may correspond to a range of audio samples.
FeT has shown its capability to effectively learn from such fuzzily aligned data. Furthermore, the
transformer model has proven effective across various data types, including images, text, and tabular
data, highlighting FeT’s suitability for multimodal learning applications.
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[23] Jakub Konečnỳ, H Brendan McMahan, Felix X Yu, Peter Richtárik, Ananda Theertha Suresh,
and Dave Bacon. 2016. Federated learning: Strategies for improving communication efficiency.
arXiv preprint arXiv:1610.05492 (2016).

[24] Yann LeCun and Corinna Cortes. 2005. The mnist database of handwritten digits. https:
//api.semanticscholar.org/CorpusID:60282629

[25] Jingtao Li, Adnan Siraj Rakin, Xing Chen, Zhezhi He, Deliang Fan, and Chaitali Chakrabarti.
2022. Ressfl: A resistance transfer framework for defending model inversion attack in split
federated learning. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition. 10194–10202.

[26] Jialin Li, Tongjiang Yan, and Pengcheng Ren. 2023. VFL-R: a novel framework for multi-party
in vertical federated learning. Applied Intelligence 53, 10 (2023), 12399–12415.

[27] Qinbin Li, Zeyi Wen, Zhaomin Wu, Sixu Hu, Naibo Wang, Yuan Li, Xu Liu, and Bingsheng He.
2021. A survey on federated learning systems: Vision, hype and reality for data privacy and
protection. IEEE Transactions on Knowledge and Data Engineering (2021).

12

https://www.usenix.org/conference/usenixsecurity22/presentation/fu-chong
https://www.usenix.org/conference/usenixsecurity22/presentation/fu-chong
https://doi.org/10.1145/3514221.3526127
https://doi.org/10.1145/3514221.3526127
https://doi.org/10.1145/28395.28420
https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/binary/gisette_scale.bz2
https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/binary/gisette_scale.bz2
https://data.gov.sg/dataset/resale-flat-prices
https://data.gov.sg/dataset/resale-flat-prices
https://api.semanticscholar.org/CorpusID:60282629
https://api.semanticscholar.org/CorpusID:60282629


[28] Yang Li, Si Si, Gang Li, Cho-Jui Hsieh, and Samy Bengio. 2021. Learnable fourier features
for multi-dimensional spatial positional encoding. Advances in Neural Information Processing
Systems 34 (2021), 15816–15829.

[29] Yang Liu, Xinwei Zhang, Yan Kang, Liping Li, Tianjian Chen, Mingyi Hong, and Qiang Yang.
2022. FedBCD: A communication-efficient collaborative learning framework for distributed
features. IEEE Transactions on Signal Processing 70 (2022), 4277–4290.

[30] Yang Liu, Xiong Zhang, and Libin Wang. 2020. Asymmetrical vertical federated learning.
arXiv (2020).

[31] Xinjian Luo, Yuncheng Wu, Xiaokui Xiao, and Beng Chin Ooi. 2021. Feature inference attack
on model predictions in vertical federated learning. In 2021 IEEE 37th International Conference
on Data Engineering (ICDE). IEEE, 181–192.

[32] Ilya Mironov. 2017. Rényi differential privacy. In 2017 IEEE 30th computer security foundations
symposium (CSF). IEEE, 263–275.

[33] Vaikkunth Mugunthan, Pawan Goyal, and Lalana Kagal. 2021. Multi-vfl: A vertical federated
learning system for multiple data and label owners. arXiv preprint arXiv:2106.05468 (2021).

[34] Richard Nock, Stephen Hardy, Wilko Henecka, Hamish Ivey-Law, Jakub Nabaglo, Giorgio
Patrini, Guillaume Smith, and Brian Thorne. 2021. The Impact of Record Linkage on Learning
from Feature Partitioned Data. In Proceedings of the 38th International Conference on Machine
Learning (Proceedings of Machine Learning Research, Vol. 139), Marina Meila and Tong Zhang
(Eds.). PMLR, 8216–8226. https://proceedings.mlr.press/v139/nock21a.html

[35] Qichen Qiu. 2017. Kaggle dataset: housing price in Beijing. https://www.kaggle.com/
ruiqurm/lianjia.

[36] Xinchi Qiu, Heng Pan, Wanru Zhao, Chenyang Ma, Pedro PB Gusmao, and Nicholas D Lane.
2023. vFedSec: Efficient Secure Aggregation for Vertical Federated Learning via Secure Layer.
arXiv preprint arXiv:2305.16794 (2023).

[37] Salary.sg. 2020. Secondary school rankings in Singapore. https://www.salary.sg/2020/
secondary-schools-ranking-2020-psle-cut-off/.

[38] Haoran Shi, Yali Jiang, Han Yu, Yonghui Xu, and Lizhen Cui. 2022. MVFLS: multi-participant
vertical federated learning based on secret sharing. The Federate Learning (2022), 1–9.

[39] Reza Shokri, Marco Stronati, Congzheng Song, and Vitaly Shmatikov. 2017. Membership
inference attacks against machine learning models. In 2017 IEEE symposium on security and
privacy (SP). IEEE, 3–18.

[40] Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan Salakhutdinov.
2014. Dropout: a simple way to prevent neural networks from overfitting. The journal of
machine learning research 15, 1 (2014), 1929–1958.

[41] Jiankai Sun, Xin Yang, Yuanshun Yao, and Chong Wang. 2022. Label leakage and protection
from forward embedding in vertical federated learning. arXiv preprint arXiv:2203.01451
(2022).

[42] New York TLC. 2016. TLC trip record data. https://www1.nyc.gov/site/tlc/about/
tlc-trip-record-data.page.

[43] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Łukasz Kaiser, and Illia Polosukhin. 2017. Attention is all you need. Advances in neural
information processing systems 30 (2017).

[44] Dinusha Vatsalan, Ziad Sehili, Peter Christen, and Erhard Rahm. 2017. Privacy-preserving
record linkage for big data: Current approaches and research challenges. In Handbook of Big
Data Technologies. Springer.

13

https://proceedings.mlr.press/v139/nock21a.html
https://www.kaggle.com/ruiqurm/lianjia
https://www.kaggle.com/ruiqurm/lianjia
https://www.salary.sg/2020/secondary-schools-ranking-2020-psle-cut-off/
https://www.salary.sg/2020/secondary-schools-ranking-2020-psle-cut-off/
https://www1.nyc.gov/site/tlc/about/tlc-trip-record-data.page
https://www1.nyc.gov/site/tlc/about/tlc-trip-record-data.page


[45] Praneeth Vepakomma, Otkrist Gupta, Tristan Swedish, and Ramesh Raskar. 2018. Split
learning for health: Distributed deep learning without sharing raw patient data. arXiv preprint
arXiv:1812.00564 (2018).

[46] Praneeth Vepakomma, Abhishek Singh, Otkrist Gupta, and Ramesh Raskar. 2020. NoPeek:
Information leakage reduction to share activations in distributed deep learning. ICDM Workshop
(2020).

[47] Chang Wang, Jian Liang, Mingkai Huang, Bing Bai, Kun Bai, and Hao Li. 2020. Hybrid differen-
tially private federated learning on vertically partitioned data. arXiv preprint arXiv:2009.02763
(2020).

[48] Webank. 2023. The application and development report of open-source privacy comput-
ing framework (FATE) in financial industry. https://www.163.com/dy/article/
HR7M3K7P055219FH.html

[49] Zhaomin Wu, Junyi Hou, and Bingsheng He. 2024. VertiBench: Advancing Feature Distribution
Diversity in Vertical Federated Learning Benchmarks. In The Twelfth International Conference
on Learning Representations, ICLR 2024, Vienna, Austria, May 7-11, 2024. OpenReview.net.
https://openreview.net/forum?id=glwwbaeKm2

[50] Zhaomin Wu, Qinbin Li, and Bingsheng He. 2022. A Coupled Design of Exploiting Record
Similarity for Practical Vertical Federated Learning. Advances in Neural Information Processing
Systems 35 (2022), 21087–21100.

[51] Zhaomin Wu, Qinbin Li, and Bingsheng He. 2022. Practical vertical federated learning with
unsupervised representation learning. IEEE Transactions on Big Data (2022).

[52] Yang Yan, Guozheng Yang, Yan Gao, Cheng Zang, Jiajun Chen, and Qiang Wang. 2022. Multi-
participant vertical federated learning based time series prediction. In Proceedings of the 8th
International Conference on Computing and Artificial Intelligence. 165–171.

[53] Liu Yang, Di Chai, Junxue Zhang, Yilun Jin, Leye Wang, Hao Liu, Han Tian, Qian Xu, and
Kai Chen. 2023. A Survey on Vertical Federated Learning: From a Layered Perspective. arXiv
preprint arXiv:2304.01829 (2023).

[54] Tianyuan Zou, Yang Liu, Yan Kang, Wenhan Liu, Yuanqin He, Zhihao Yi, Qiang Yang, and
Ya-Qin Zhang. 2022. Defending batch-level label inference and replacement attacks in vertical
federated learning. IEEE Transactions on Big Data (2022).

14

https://www.163.com/dy/article/HR7M3K7P055219FH.html
https://www.163.com/dy/article/HR7M3K7P055219FH.html
https://openreview.net/forum?id=glwwbaeKm2


Appendix

Table of Contents
A Proof 15

B Experimental Details 16

C Ablation Study 16
C.1 Dynamic Masking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
C.2 Party Dropout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
C.3 Positional Encoding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
C.4 Fuzziness of Keys . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
C.5 SplitAvg vs. SplitNN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

D Exact Linkage 18

E Efficiency 19

F Privacy on Two-Party Real Datasets 20

G Performance on Imbalanced Split 20

H Limitations 21

I License 21

A Proof

Theorem 3. For certain constants c1 and c2, given a sampling rate q, the total number of epochs
T , and the number of batches B in each epoch, each representation RSk achieves (ε, δ)-differential
privacy for all ε < c1q

2T , with any δ > 0, by selecting the standard deviation σ of the Gaussian
noise mechanism as follows:

σ > c2
q
√
BT log(1/δ)

ε
. (1)

Proof. The proof leverages the moments accountant bound [1], which is applicable to a sequence of
Gaussian mechanisms applied to subsampled data. We begin by establishing that the output’s ℓ2-norm
for each function is constrained by a constant C. This constraint ensures that each randomized function
adheres to differential privacy under the Gaussian mechanism. By determining the cumulative count
of Gaussian mechanisms applied, we can directly invoke Theorem 2 to reach our conclusion.

To clarify the process, we apply norm clipping to each party as specified in Section 6, scaling each
party at a rate of C/k. This scaling guarantees that, for every R̂h

i , the condition ∥R̂h
i ∥2 ≤ C/k is

satisfied. Using the triangle inequality within normed vector spaces, we derive:

∥Hi∥2 =

∥∥∥∥∥
k∑

h=1

R̂h
i

∥∥∥∥∥
2

≤
k∑

h=1

∥∥∥R̂h
i

∥∥∥
2
= k · C

k
= C. (2)

Since the ℓ2-norm of Hi is bounded by C, adding Gaussian noise to Hi satisfies the conditions for
differential privacy. Throughout the training, B · T independent noises are introduced, resulting in a
sequence of Gaussian mechanisms targeting a randomly selected subset at a ratio q. Consequently,
Equation 1 is derived by directly applying Theorem 2.
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B Experimental Details

Datasets. In this section, we include the detailed information of each dataset used in the experiment.
These real-world datasets are obtained in the same manner as those utilized in FedSim, with each
dataset comprising two parties. Details of the real datasets are presented in Table 2. The synthetic
dataset, gisette [16], consists of 6,000 instances and 5,000 features and serves as a binary classifi-
cation task with balanced labels. The MNIST dataset [24] consists of 60,000 instances and 28x28
features for a 10-class digit classification task.

Table 2: Basic information of real-world VFL datasets

Dataset Primary Party (w/ labels) Secondary Party Identifiers Task
#samples #features ref #samples #features ref #dims type

house 141,050 55 [35] 27,827 25 [2] 2 float regression
bike 100,000 6 [8] 200,000 964 [42] 4 float regression
hdb 92,095 70 [18] 165 10 [37] 2 float regression

Metrics. For regression tasks, Root Mean Square Error (RMSE) is utilized, while accuracy is
applied to classification tasks. Early stopping is performed based on the validation set, with the
corresponding test scores reported.

Hyperparameters. Each algorithm was run until convergence, with a maximum of 50 to 100
epochs. The learning rate and weight decay were consistently set at 10−3 and 10−5, respectively.
For the Solo model, a multi-layer perceptron (MLP) with two hidden layers of 400 units each was
employed. In contrast, the Top1Sim utilized a single-layer MLP with a hidden size of 200 for both
local and aggregation models. For FedSim, the number of K neighbors was selected from the set
{50, 100}. For FeT, the number of blocks is set to 6 for both local model and aggregation model.

Environments. We evaluate FeT on a server equipped with dual Intel Xeon Gold 6346 CPUs, eight
A100 GPUs with CUDA version 12.2, and 1008GB RAM, running Python 3.10.13 with PyTorch
2.1.1+cu121 on Linux kernel 6.5.0. Efficiency experiments were conducted on a machine powered
by a 64-core Intel(R) Xeon(R) Gold 6226R CPU @ 2.90GHz and 376 GB of RAM. Each experiment
was run five times, and we report the average and standard deviation.

C Ablation Study

In this section, we evaluate the performance improvement of each proposed component of the FeT.
Our findings indicate that dynamic masking is crucial for enhancing performance, while both
party dropout and positional encoding averaging contribute modestly to these improvements.
Detailed analyses are provided below.

C.1 Dynamic Masking

We evaluate the performance of FeT with and without dynamic masking, as shown in Table 3.
The evaluation includes two-party datasets (house, bike, hdb) and two 50-party synthetic datasets
(MNIST and gisette). The results indicate that dynamic masking leads to an improvement of up to
13 percentage points, particularly noticeable in datasets with a large number of parties. This suggests
that dynamic masking significantly enhances model performance, especially in multi-party settings.

C.2 Party Dropout

Next, we evaluate the effect of the dropout rate under specific hyperparameter settings: the number of
parties k = 50, the number of neighbors K = 100, and key noise set to 0.05. The impact of the party
dropout rate is demonstrated in Figure 9 and Table 4. Our observations reveal that a moderate party
dropout rate of 0.6 enhances FeT’s generalization by reducing the model size. Notably, FeT maintains
stable performance even as the dropout rate increases to 0.8. This indicates that party dropout not
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Table 3: Effects of Dynamic Masking (DM) and Positional Encoding (PE) on FeT Performance

Model Datasets (metric)
house (RMSE) bike (RMSE) hdb (RMSE) MNIST (Accuracy) gisette (Accuracy)

FeT w/o PE 43.28 ± 0.74 234.25 ± 0.93 27.31 ± 0.23 - -
FeT w/o DM 42.48 ± 0.45 236.26 ± 0.71 29.13 ± 0.18 72.89% ± 1.43% 90.32% ± 0.52%

FeT 39.75 ± 0.29 232.98 ± 0.62 26.94 ± 0.15 85.47% ± 0.13% 92.43% ± 0.24%

only improves generalization but also significantly reduces communication overhead across parties.
Based on these findings, we set the dropout rate to 0.6 by default in multi-party experiments.

Figure 9: Effect of party dropout rate on FeT

Table 4: Effect of Party Dropout Rates on FeT Performance

Dataset Party Dropout Rate
0 0.2 0.4 0.6 0.8 1.0

gisette 92.18% ± 0.47% 92.70% ± 0.30% 92.48% ± 0.18% 92.90% ± 0.41% 92.52% ± 0.40% 89.15% ± 0.64%
MNIST 83.54% ± 0.30% 84.39% ± 0.35% 85.06% ± 0.17% 85.36% ± 0.25% 83.85% ± 0.11% 61.21% ± 0.58%

C.3 Positional Encoding

We now assess the effect of the frequency of positional encoding (PE) averaging, as depicted in
Figure 10 and Table 5. We find that PE averaging yields improvements, particularly with a large
number of parties, such as 50 on MNIST, where alignment of encodings becomes crucial. Based on
our observations, we set the frequency to 1 in most experiments.

Additionally, we assess the impact of positional encoding on the performance of FeT, as detailed
in Table 3. These evaluation of MNIST and gisette are conducted with the number of neighbors
K = 100 and key noise 0.05. The results indicate that positional encoding is important for enhancing
the performance of FeT.

C.4 Fuzziness of Keys

We evaluate the impact of identifier fuzziness on FeT’s performance by introducing Gaussian noise
of varying scales to the keys. The results are presented in Figure 11. From the figure, we derive two
key observations: (1) Both FeT and baseline models show improved performance in more balanced
scenarios. (2) FeT consistently outperforms the baselines across different levels of heterogeneity,
demonstrating its robustness to varying degrees of noise. These findings highlight the resilience of
FeT in the presence of noise, which is critical for practical applications.

C.5 SplitAvg vs. SplitNN

To evaluate the comparative performance of the SplitAvg (without noise) and SplitNN, we conducted
training for both models using identical hyperparameters on the same VFL dataset, gisette. The

17



Figure 10: Effect of frequency of positional encoding averaging

Table 5: Ablation study for accuracy with different PE Average Frequency
Dataset #parties PE Average Frequency

0 1 2 3 5 10

gisette

2 96.40% ± 0.25% 96.33% ± 0.33% 96.12% ± 0.29% 96.30% ± 0.53% 96.37% ± 0.17% 96.08% ± 0.32%
5 95.92% ± 0.31% 96.02% ± 0.26% 95.87% ± 0.46% 95.73% ± 0.12% 95.60% ± 0.27% 95.75% ± 0.37%
20 93.92% ± 0.31% 93.87% ± 0.35% 93.85% ± 0.60% 94.13% ± 0.27% 93.87% ± 0.42% 94.23% ± 0.48%
50 92.05% ± 0.15% 92.50% ± 0.19% 91.53% ± 0.60% 91.72% ± 0.34% 91.92% ± 0.18% 92.07% ± 0.14%

MNIST

2 95.57% ± 0.12% 95.88% ± 0.09% 95.70% ± 0.16% 95.70% ± 0.20% 95.74% ± 0.13% 95.89% ± 0.09%
5 93.97% ± 0.22% 93.92% ± 0.11% 93.84% ± 0.18% 94.01% ± 0.20% 93.94% ± 0.24% 93.95% ± 0.09%
20 88.84% ± 0.31% 88.79% ± 0.17% 88.77% ± 0.13% 88.88% ± 0.12% 88.79% ± 0.19% 88.71% ± 0.24%
50 83.43% ± 0.16% 83.41% ± 0.44% 83.70% ± 0.09% 83.48% ± 0.06% 83.57% ± 0.22% 83.78% ± 0.33%

outcomes are illustrated in Figure 12. Analysis of the figure yields two primary observations. Firstly,
SplitNN and SplitAvg exhibit very similar loss and accuracy curves during training, indicating that
both models behave very similarly. Secondly, upon expanding the number of participating parties to
128, we observe that the performance curves of both models remain closely aligned, albeit with the
split-sum model exhibiting a marginally lower accuracy. This minor discrepancy is attributed to the
increased model parameters in SplitNN, which can typically be compensated for by increasing the
number of parameters in SplitAvg.

D Exact Linkage

While FeT primarily focuses on scenarios involving fuzzy linkage, we also evaluate its robustness in
exact linkage contexts. To achieve this, we synthesize exact linkage data by generating pure random
keys within the range of [−1, 1] without introducing any noise. Each party is randomly divided into
five or ten groups, with each group containing an equal number of features. Importantly, each party
retains the exact keys, ensuring a controlled environment for our evaluation.

The results of our experiments are summarized in Table 6. From the table, we observe that Top1Sim
achieves the highest accuracy, as it is inherently well-suited for exact linkage scenarios. In contrast,

Figure 11: Effect of Fuzziness of Identifiers. The x-axis is the scale Gaussian noise added to precisely
matched identifiers.
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Figure 12: Test loss and accuracy curve of SplitAvg and SplitNN under same hyperparameters

the accuracy of FeT shows a slight decrease, which may be attributed to overfitting; however, its
performance remains competitive and does not suffer significantly in this context.

Table 6: Performance of FeT under Exact Linkage

Dataset Algorithms
Solo Top1Sim FeT (ours)

gisette (5-party) 96.58% ± 0.25% 97.52% ± 0.26% 94.73% ± 0.60%
MNIST (5-party) 95.96% ± 0.03% 96.96% ± 0.09% 96.53% ± 0.38%
gisette (10-party) 96.30% ± 0.25% 97.57% ± 0.25% 94.58% ± 0.41%
MNIST (10-party) 92.09% ± 0.11% 96.95% ± 0.06% 96.97% ± 0.08%

E Efficiency

Parameter Efficiency. In our analysis, we assess the computational efficiency of standard addition
compared to multi-party computation (MPC) addition, as shown in Table 7. Under the arithmetic
GMW protocol [15], and given that the size of the aggregated vector varies by dataset, we use a typical
size for our experiments. Specifically, we conduct MPC addition to aggregate 10,000-dimensional
vectors from multiple parties. Each experiment is performed five times, with the average timing
reported. Although MPC generally incurs higher computational requirements, the results in Table 7
indicate that aggregating high-dimensional vectors via MPC incurs only a one-second overhead, even
as the number of parties increases to 100. This minimal time cost is relatively small, especially when
compared to other factors such as communication costs. Therefore, our findings suggest that MPC
remains a feasible and efficient approach for representation aggregation in the context of VFL.

Table 7: Running time of summation with and without MPC in seconds
#parties Sum MPC Sum Overhead

2 5.29× 10−6 5.09× 10−4 5.04× 10−4

5 2.10× 10−5 2.75× 10−3 2.73× 10−3

10 4.46× 10−5 1.02× 10−2 1.01× 10−2

20 1.29× 10−4 4.36× 10−2 4.36× 10−2

50 2.64× 10−4 0.268 0.268
100 5.21× 10−4 1.06 1.06

Training Computational and Memory Efficiency. We evaluate the computational and memory
efficiency of FeT during training on an RTX3090 GPU with a batch size of 128. The results, shown
in Table 8, lead to three key observations: (1) FeT has a comparable number of parameters to FedSim;
(2) FeT demonstrates improved memory efficiency compared to FedSim, although this improvement
comes with a trade-off in training speed; and (3) the additional components, such as dynamic masking
(DM) and positional encoding (PE), introduce only a minor overhead in terms of both parameters and
computational cost.
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Table 8: Training efficiency of FeT on RTX3090. PE: positional encoding; DM: dynamic masking.

Dataset #parameters Train Seconds / epoch Peak GPU Memory (MB)
house bike hdb house bike hdb house bike hdb

FedSim 3.47M 1.85M 1.87M 9 38 6 2016 1917 1930
FeT w/o PE 0.98M 3.24M 0.63M 35 50 15 397 691 539
FeT w/o DM 0.98M 2.89M 0.51M 37 54 17 401 721 569

FeT 0.98M 3.29M 0.63M 37 55 17 401 746 571

F Privacy on Two-Party Real Datasets

In this section, we explore how the performance of FeT varies with different noise scales σ and
secondary sampling rate, illustrating the influence of privacy constraints on its accuracy. The
outcomes are depicted in Figure 13. From this figure, we observe two key points. First, for large
secondary datasets like bike, a moderate sampling rate has a negligible effect on model performance.
Conversely, for smaller secondary datasets like hdb, performance is quite sensitive to sampling rates.
Second, as the noise scale increases for secondary parties, the performance of FeT does not degrade
sharply; instead, it gradually converges to a state where only primary features are utilized due to our
dynamic masking design. In this scenario, FeT also outperforms MLP-based Solo primarily due to
the transformer’s key encoding, which has proven to be more effective than incorporating all keys
into the training process, as evidenced in spatial-temporal prediction tasks [9].
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Figure 13: Impact of noise scale σ on FeT performance

Next, we explore the relationship between σ and ε as outlined in Theorem 3, setting hyperparameters
to reflect typical training conditions. The number of epochs is chosen based on common convergence
epochs: 10 for bike, and 50 for house and hdb. We adopt a batch size of 8k and set δ to 1/N , with
N representing the size of party S1. This correlation between ϵ and σ is depicted in Figure 14. The
figure illustrates that reasonable noise levels can yield robust privacy guarantees. For instance, within
a noise scale conducive to maintaining competitive performance, FeT achieves ε = 3 for hdb and
ε = 5 for house, indicating effective privacy preservation under practical noise conditions.

G Performance on Imbalanced Split

The preceding experiments were conducted using a balanced feature split for VFL. Building on this
foundation, we extended our evaluation of FeT to include datasets with varying levels of imbalance,
motivated by the recent benchmarks presented in VertiBench [49]. The MNIST datasets are divided by
features according to the methodology described in VertiBench [49], utilizing imbalance parameters
α ∈ {0.1, 0.5, 1.0, 5.0, 10.0, 50.0}, where a higher α value denotes greater balance across parties.
The findings, illustrated in Figure 15, lead to two key observations: firstly, both FeT and the baseline
algorithms exhibit improved performance in more balanced scenarios. Secondly, despite the varying
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Figure 14: Relationship between ε and noise σ

levels of data imbalance, FeT consistently shows competitive or superior performance relative to the
baselines.

Figure 15: Performance on feature split with different level of imbalance

H Limitations

The design of FeT includes three primary limitations that warrant careful consideration. First, FeT
operates under the assumption that common features exist across all parties. While this assumption
is valid in many scenarios, it may not hold in more complex situations where the parties lack a
shared set of features. This limitation necessitates further investigation into alternative frameworks or
adaptations that can accommodate such cases, particularly in heterogeneous environments.

Second, although FeT facilitates the application of scalable differential privacy across multiple parties,
the stringent privacy safeguards can lead to significant accuracy reductions when operating with low
values of ε. This trade-off between privacy and utility is particularly concerning in performance-
sensitive applications, where quantifying the extent of accuracy loss is essential for informing users
about the potential impacts on their results. Future work should explore methods to balance privacy
and accuracy more effectively.

Third, similar to other fuzzy VFL methods [50], FeT assumes a correlation between identifiers and
data representations. This assumption may not hold in cases where identifiers are randomly generated,
which could lead to overfitting and minor performance deficits compared to Top1 approaches.
Experiments on such datasets (Appendix D) indicate that while FeT performs well in many scenarios,
its effectiveness may vary significantly depending on the nature of the data and the key generation
process. Therefore, further empirical studies are needed to assess FeT’s robustness across diverse
datasets and identifier generation strategies.

I License

The licenses of the datasets used in this work are presented in Table 9. We utilize the code from
FedSim [50] as our baseline, which is licensed under the Apache V2 license2. Our own code will
also be open-sourced under the Apache V2 license.

2https://www.apache.org/licenses/LICENSE-2.0
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Table 9: Licenses of datasets
Dataset License Adapt Share Commercial

[35, 37] CC0 1.0a ✓ ✓ ✓

[8] NYCBS Data Use Policyb ✓ ✓ ✓
[2] CC BY-NC-SA 4.0c ✓ ✓ ✗

[18] Singapore Open Data Licensed ✓ ✓ ✗
[42] All rights reserved ✗ ✗ ✗

a https://creativecommons.org/publicdomain/zero/1.0/
b https://ride.citibikenyc.com/data-sharing-policy
c https://creativecommons.org/licenses/by/4.0/
d https://beta.data.gov.sg/open-data-license

NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: We have stated in abstract and introduction that the paper proposes a novel
FeT framework to address the scalability and privacy issues in Vertical Federated Learning
(VFL).

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: See Section 8.

Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.
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• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [Yes]
Justification: See Section 6 and Appendix A.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: See Section 7.1 and Appendix B.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
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(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [Yes]
Justification: The codes are available at a GitHub repository https://github.com/
Xtra-Computing/FeT.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: See Section 7.1.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
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Answer: [Yes]

Justification: We repeat the experiments with five different random seeds.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: See the paragraph on environments in Section 7.1.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: We follow the code of ethics.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader Impacts
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Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: See Section 8.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: The paper poses no such risk.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: We have cited the used datasets in Section 7.1 and list the licenses in Ap-
pendix I.

Guidelines:
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• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [Yes]
Justification: See Appendix I.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
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Guidelines:
• The answer NA means that the paper does not involve crowdsourcing nor research with

human subjects.
• Depending on the country in which research is conducted, IRB approval (or equivalent)

may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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