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Abstract

In multi-output regression, we identify a previously neglected challenge that arises
from the inability of training distribution to cover all combinations of input features,
leading to combinatorial distribution shift (CDS). To the best of our knowledge, this
is the first work to formally define and address this problem. We tackle it through
a novel tensor decomposition perspective, proposing the Functional t-Singular
Value Decomposition (Ft-SVD) theorem which extends the classical tensor SVD to
infinite and continuous feature domains, providing a natural tool for representing
and analyzing multi-output functions. Within the Ft-SVD framework, we formulate
the multi-output regression problem under CDS as a low-rank tensor estimation
problem under the missing not at random (MNAR) setting, and introduce a series of
assumptions about the true functions, training and testing distributions, and spectral
properties of the ground-truth embeddings, making the problem more tractable.
To address the challenges posed by CDS in multi-output regression, we develop
a tailored Double-Stage Empirical Risk Minimization (ERM-DS) algorithm that
leverages the spectral properties of the embeddings and uses specific hypothesis
classes in each frequency component to better capture the varying spectral decay
patterns. We provide rigorous theoretical analyses that establish performance
guarantees for the ERM-DS algorithm. This work lays a preliminary theoretical
foundation for multi-output regression under CDS.

1 Introduction

In the realm of Multi-Output Regressions (MOR), systems are designed to predict multiple related
outputs from a set of input features, unlike single-output regressions which neglect the relationship
between targets. MOR is effective for various scientific problems [55] such as river quality prediction
[17], natural gas demand forecasting [5] and drug efficacy prediction [30]. In many MOR applications,
it is interactions among multiple features that the predictions are typically derived from. For example,
to predict multiple outcomes such as risk scores and health outcomes of patients, the input features
usually include healthcare costs and demographic variables (e.g., race) [40]. Similarly, predictions
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to new climate scenarios such as increased temperature and extreme weather events require new
representative concentration pathways [12]. To enhance the generalization capability, it is often
necessary to increase the diversity of training samples. However, in some scenarios, data from
specific interactions remain inaccessible, such as risk scores of multiple diseases involving novel
combinations of factors including age, physiological indicators, and biochemical markers (see Figure
1). Therefore, unseen feature combinations impose a significant challenge to precise predictions,
especially when involving multiple outputs.

To this end, in this paper, we address this issue by reducing it to only a couple of input features.
This issue is known as the Combinatorial Distribution Shift (CDS) problem [46]. Under CDS, the
training data are i.i.d. sampled from the training distribution Dtrain with corresponding label zi,
where (xi, yi) ⊂ X × Y are the input feature combinations from the feature domains X and Y ,
and zi = h⋆(xi, yi) ∈ RK denotes the K outputs determined by the vector-valued ground truth
function h⋆. Then the problem reduces to predict the new interactions of input combinations (x, y)
sample from Dtest, where the probability density or mass of test samples (x, y) under Dtrain may be
zero. Therefore, the goal of the MOR problem becomes: how can we generalize to the new feature
combinations that have never appeared in the training distribution?

Figure 1: An example of MoR under
CDS: prediction of multi-disease risk
scores for novel feature combinations of
physiological parameters (e.g., tempera-
ture and blood pressure) that lie outside
the training distribution.

It should be noticed that the MOR community has low
awareness of CDS and current methods struggle to ad-
dress these challenges. Traditional models dependent on
static datasets, fail to capture the variability in practical
applications, making them ineffective with new data com-
binations. This research gap underscores the urgent need
for dynamic MOR models that better adapt to the evolving
input landscapes seen in real-world deployments.

To address this bottleneck, we formulate the issue as a gen-
eralized tensor completion problem, arranging the predic-
tions into a third-order tensor Z(x, y, :) = h⋆(x, y) ∈ RK .
Consequently, the prediction of test data can be intuitively
interpreted as vector-valued predictions for Missing Not
At Random (MNAR) [38] scenarios in multivariate func-
tion (see Eq. (4) for more details). While low-rank tensor
decomposition techniques, particularly tensor Singular
Value Decomposition (t-SVD) [27, 26, 61], have proven
effective in recovering missing entries for discrete data,
adapting these methods to the complex domain of possibly
continuous multivariate functions requires a fundamental
re-establishment of the existing t-SVD framework to address the inherent challenges posed by this
transition.

Our contributions. This paper proposes a novel tensor decomposition perspective for multi-output
regression under CDS. It analyzes spectral properties that enable handling such shifts, and introduces
an algorithm with theoretical guarantees to improve prediction accuracy. The key contributions are:

• To the best of our knowledge, we are the first to identify and define the problem of multi-output
regression under CDS, revealing the challenges that arise when the training distribution fails to
cover all combinations of input features.

• We propose a theoretical framework of Functional Tensor Singular Value Decomposition (Ft-SVD),
which extends the classical t-SVD to infinite and continuous feature domains, providing a natural
tool for representing and analyzing multi-output functions.

• Under the Ft-SVD framework, we formulate the multi-output regression problem under CDS
as a low-rank tensor estimation problem under the MNAR setting, and introduce a series of
assumptions about the true functions, training and testing distributions, and spectral properties of
the embeddings, making the problem more tractable.

• We develop a tailored Double-Stage Empirical Risk Minimization (ERM-DS) algorithm that uses
specific hypothesis classes in each sub-domain to better capture the spectral decay patterns across
different sub-domains, and provide theoretical guarantees for the algorithm’s performance under
CDS.
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Brief related work. Our work is related to the areas of multi-output regression, tensor completion,
and learning under distribution shift. Multi-output regression has been studied extensively, with
approaches ranging from multi-task learning [13, 6] to shared representation learning [39], linear
models [11], kernel methods [2], and neural networks [9]. However, these methods often assume
that the training and test data come from the same distribution. Tensor completion has seen advance-
ments with various decomposition techniques [24, 50, 41] and methods for handling non-random
missing patterns [54, 14], but they do not consider the specific challenges of multi-output regression
under CDS. Various types of distribution shifts, such as covariate shift [45], concept drift [19],
and domain adaptation [44], have been studied, with recent work addressing distribution shift in
multi-output regression by aligning distributions through invariant representations [33]. Recent func-
tional tensor decomposition advancements include spectral tensor-train for high-dimensional function
evaluations [7], Tucker-neural network for data recovery [37], Bayesian CP/Tucker approach for
uncertainty quantification [18], guaranteed functional CP decomposition for functional data analysis
[23], and functional Tensor-Train for efficient multivariate function representation [20]. Equivariant
disentangled transformation for domain generalization under combination shift was studied through
category theory [59]. Simchowitz et al. [46] proposed the ERM-DS framework for robust learning
under CDS. Our work extends the ERM-DS framework to multi-output regression by representing
vector-valued functions as embeddings in a Hilbert t-module and leveraging tensor algebra to capture
interdependencies among multiple outputs.

Notations. We use lowercase boldface, and uppercase boldface letters to denote vectors, e.g.,
a ∈ Rm, and matrices, e.g., A ∈ Rm×n, respectively. A 3-way tensor of size 1 × 1 × K is also
named a t-scalar, denoted by underlined lowercase, e.g., t, a 3-way tensor of size d× 1×K is called
a t-vector and denoted by underlined lowercase boldface, e.g., t, whereas a 3-way tensor of size
m× n×K is also called a t-matrix and denoted by underlined uppercase, e.g., T. For any tensor
T ∈ Rm×n×K , we use T(i) to denote its i-th frontal slice. For A ∈ Rm×m, σj(A) ≥ 0 denotes its
j-th largest singular value; for symmetric A, λj(A) denotes its j-th largest eigenvalue.

2 Functional t-Singular Value Decomposition for Multi-output Regression

2.1 A t-SVD Perspective of Multi-output Regression

Consider a simpler case where the feature domains X and Y are finite sets. Here, we can represent
the vector-valued ground truth h⋆ as a tensor Z ∈ R|X |×|Y|×K , where each tube Z(ix, jy, :) =
h⋆(x, y) ∈ RK corresponds to the K outputs for the input feature combination (x, y) indexed by
(ix, jy). Then, the multi-output regression problem for a new feature combination (x′, y′) becomes a
tensor completion task, where the goal is to estimate the missing tube of Z at the index (ix′ , jy′).

To tackle general tensor completion problems, the framework of t-SVD [26, 27] offers an ideal
tool [35, 32, 58]. The motivation behind t-SVD stems from the observation that under certain
linear transformations M , tensors may exhibit stronger low-rank characteristics than in their original
domain. This enhancement of low-rankness often arises due to intrinsic correlations within the data,
which these transformations can exploit more effectively. Recent research has focused on using
an orthogonal matrix M to define the transform M due to its advantageous properties [34, 51], a
convention that this paper also adopts2. Given an orthogonal matrix M ∈ RK×K , we define the
associated linear transform M(·) and its inverse M−1(·) on any tensor T ∈ Rm×n×K as follows:

M(T) := T×3 M, and M−1(T) := T×3 M−1, (1)

where ×3 denotes the mode-3 tensor-matrix product [25]. In real applications, the choice of the
transformation matrix M is often guided by the inherent characteristics of the signal being modeled.
Popular choices include the Discrete Cosine Transform (DCT) matrix for smooth and periodic
signals [34, 57, 32], the Discrete Wavelet Transform (DWT) matrix for multi-resolution analysis
[49], data-dependent transformations that adapt to the dataset’s specific characteristics [58], and
graph spectral projection matrices for data structured in non-Euclidean spaces [16]. By selecting a
transformation matrix that aligns with the signal properties, t-SVD can more effectively uncover the
low-rank structure and enable efficient representation and processing of the data.

2We restrict M to be a orthogonal matrix for simplicity of discussions. But our results still hold with simple
extensions if necessary for unitary M used in [27].
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Based on the linear transform M , the t-product is specifically defined.
Definition 1 (t-product [25]). The t-product of tensors A ∈ Rm×n×K and B ∈ Rn×k×K under the
transform M in Eq. (1) is denoted by A ∗M B and defined as the tensor C ∈ Rm×k×K such that
M(C) =M(A)⊙M(B) in the transformed domain, where ⊙ denotes the tensor frontal-slice-wise
product (see Definition 4).

This paper also follows the definitions of t-transpose, t-identity tensor, t-orthogonal tensor, and
f-diagonal tensor given by [25]. Based on these definitions, the t-SVD is introduced as follows:
Definition 2 (t-SVD, tubal rank [25, 27]). The tensor singular value decomposition (t-SVD) of
T ∈ Rm×n×K under the transform M in Eq. (1) is given by:

T = U ∗M S ∗M V⊤, (2)

where U ∈ Rm×m×K and V ∈ Rn×n×K are t-orthogonal tensors, S ∈ Rm×n×K is an f-diagonal
tensor, and (·)⊤ denotes the t-transpose. The tubal rank of tensor T is defined as the number of
non-zero tubes in S in Eq. (2), i.e.,

rt(T) := |{i : S(i, i, :) ̸= 0, i ≤ min{m,n}}|.

Based on t-SVD, extensive tensor completion models [32, 58, 52] provide robust support for MOR
with discrete combinatorial features. However, in many machine learning settings, feature domains
X and Y are infinite and potentially continuous sets, posing significant challenges to the traditional
t-SVD. Here, t-SVD becomes inapplicable due to the potentially non-discrete nature of these domains,
necessitating a novel approach to effectively handle infinite and continuous feature domains. This
leads us to consider: how can we extend the powerful t-SVD framework to address multi-output
regression problems in the context of infinite and continuous feature domains?

2.2 Functional t-Singular Value Decomposition

To address the above challenge, we propose a novel theoretical framework that extends the founda-
tional principles of t-SVD for infinite and continuous feature domains. By introducing a new theorem,
we enable the representation of data and functions defined on these domains while preserving the
key properties of t-SVD. This extension allows us to employ t-SVD in a principled way for learning
vector-valued functions and tackling related problems, opening new possibilities for applying such
methods to a wider range of learning tasks.
Theorem 1 (Functional t-Singular Value Decomposition). Let F : X × Y → RK be a square-
integrable vector-valued function with Lipschitz-smooth domains X ⊂ RD1 and Y ⊂ RD2 . Then,
there exist sets of functions {ϕ

i
}∞i=1 ⊂ L2(X ;RK) and {ψ

i
}∞i=1 ⊂ L2(Y;RK), and a sequence of

t-scalars3 {σi}∞i=1 ⊂ NK with limi→∞ σi = 0, satisfying the functional t-Singular Value Decompo-
sition (Ft-SVD):

F (x, y) =

∞∑
i=1

ϕ
i
(x) ∗M σi ∗M ψ

i
(y), (3)

where the convergence is in the L2 sense. The functions ϕ
i

and ψ
i

are called the left and right
t-singular functions, respectively, and the t-scalars σi are called the t-singular values. The orthonor-
mality conditions

∫
X ϕi(x) ∗M ϕ

j
(x)dx = δijM

−1(1) and
∫
Y ψi(y) ∗M ψj(y)dy = δijM

−1(1)

hold, where 1 ∈ R1×1×K is the t-scalar with all entries equal to 1, and δij is the Kronecker delta.

The proof is provided in Appendix B.2.1. The Ft-SVD theorem provides a principled conceptual
framework for decomposing a multivariate function, which maps pairs of inputs from domains X
and Y into a vector in RK . Essentially, this theorem states that such a function can be expressed as
an infinite series of products of three components: t-singular functions from X and Y (ϕ

i
and ψ

i
,

respectively), and a series of t-singular values (σi). This decomposition is analogous to breaking
down a complex multivariate relationship into simpler, interpretable modes of variation, where each
mode is scaled by its importance, signified by the corresponding t-singular value σi.

3With a slight abuse of notation, we define the t-product between two vectors in RK by treating them as
R1×1×K t-scalars. For the sake of simplicity and clarity, we do not explicitly distinguish between RK and
R1×1×K when the context is clear and there is no risk of confusion.
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Unlike t-SVD, which factorizes a tensor using a finite number of t-rank-one components, representing
the original function exactly using Ft-SVD may require an infinite number of t-rank-one components
in Eq. (3). However, in most practical applications, an approximation with a finite number of
components is often desired due to computational constraints and the need for a more compact
representation. The natural follow-up inquiry is: how can we achieve a finite approximation of the
original function using Ft-SVD?

To address this question, we can leverage principles akin to the Eckart-Young theorem for t-SVD
[27], which identifies the best low-tubal-rank tensor approximation by minimizing the Frobenius
norm error. Building upon these principles, we demonstrate that an optimal rank-r approximation
also exists for functions represented using Ft-SVD (see the proof in Appendix B.2.2):
Theorem 2 (r-term truncated Ft-SVD). Let F : X × Y → RK be a square-integrable function with
the Ft-SVD given by Theorem 1. For any r ∈ N, the r-term truncated Ft-SVD is defined as

Fr(x, y) :=

r∑
i=1

ϕ
i
(x) ∗M σi ∗M ψ

i
(y).

Then, Fr(x, y) is the best r-term approximation to F (x, y) in the L2 sense within Ft-SVD framework.
Moreover, the approximation error is given by: ∥F (x, y)− Fr(x, y)∥2L2(X×Y;RK) =

∑∞
i=r+1 ∥σi∥2.

This theorem highlights the optimality of the truncated Ft-SVD in approximating vector-valued
functions, making it a potentially useful tool for function compression, denoising, and other appli-
cations involving low-rank approximations of functions. However, the error term, an infinite sum∑∞

i=r+1 ∥σi∥22, may still be difficult to bound in the worst case. This raises the question: are there
situations where the error terms are well-controlled?

In many practical scenarios, the inherent spatial or temporal correlations within data often lead to
significant smoothness in functions, a trait crucial for applications in image processing, machine
learning, computer vision, climate modeling, and time series analysis, and fluid dynamics [15, 36, 3,
4, 29, 42]. This smoothness property can be leveraged to show that the r-term approximation error of
Ft-SVD is indeed well-controlled. The following Theorem 3 shows that if the function components
belong to a Sobolev space Hs(Y), which captures their smoothness, then the t-singular values of
the function decay rapidly. This rapid decay effectively controls the approximation error, keeping it
bounded and manageable. The proof can be found in Appendix B.2.3.
Theorem 3 (Spectral decay of smooth functions). Let Y ⊂ RD2 be a domain satisfying the strong
local Lipschitz condition, and let F : X × Y → RK be a vector-valued function with components
F (i)(x, y), for all i ∈ [K]. Suppose there exists a constant s > 0 such that F (i) ∈ L2(X , Hs(Y))
for all i ∈ [K], where Hs(Y) denotes the s-order Sobolev space on Y . Then, the singular values σi

of F satisfy the polynomial decay rate ∥σi∥2 ≤ O(i−1− 2s
D2 ). Moreover, the optimal approximation

error of the truncated Ft-SVD with rank r is upper bounded by O((r + 1)−
2s
D2 ) in the L2 sense.

The rapid spectral decay in the Ft-SVD framework, as guaranteed by the Sobolev smoothness
assumption on the output functions, has significant implications for the generalization performance
of multi-output regression models. By promoting solutions with rapid spectral decay, the Ft-SVD
framework can effectively constrain the complexity of the learned function, striking a balance between
fitting the training data and maintaining simplicity. The significance of the spectral decay property in
the Ft-SVD framework becomes even more apparent when considering multi-output regression under
CDS. In the next section, we will delve into how the approximate low-rankness of the multi-output
ground truth, as implied by the rapid spectral decay, provides a key insight into the generalization
under CDS. Specifically, we will explore how the spectral decay of the ground truth in the Ft-SVD
framework plays a crucial role in enabling effective generalization under combinatorial shifts.

3 An Ft-SVD-based Framework For Multi-output Regression under CDS

3.1 Generalized Tensor Completion with MNAR for MOR under CDS

We propose a theoretical framework based on Ft-SVD to formulate the CDS problem in multi-output
regression. The key idea is to represent multi-output functions as t-bilinear embeddings in a Hilbert
t-Module, a generalization of Hilbert spaces for handling vector-valued functions. We introduce
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a series of assumptions on the ground-truth functions, the training and test distributions, and the
spectral properties of the embeddings. These assumptions allow us to characterize the multi-output
regression problem under CDS as a low-rank tensor estimation problem under MNAR settings.

To set the stage, we first define the concept of a Hilbert t-Module, which serves as the foundation for
our t-bilinear representation.
Definition 3 (Hilbert t-Module). LetR be the ring of K-dimensional real vectors with t-product. A
Hilbert t-Module is a moduleM overR equipped with anR-valued inner product ⟨·, ·⟩M, which is
complete with respect to the ℓ2-norm induced by theR-valued inner product.4

Intuitively, a Hilbert t-Module extends the classical Hilbert space to accommodate vector-valued
functions, allowing us to perform inner products and norm calculations in a way that respects the
tensor structure. This provides a natural framework for representing multi-output functions. With the
Hilbert t-Module in place, we can now state our key assumption on the ground-truth functions:
Assumption 1 (t-Bilinear representation). We have the following assumptions on the ground truth:

(I) There is a Hilbert t-Module (M, ⟨·, ·⟩M) and two embeddings f⋆ : X →M and g⋆ : Y →M
satisfying that h⋆(x, y) := ⟨f⋆(x), g⋆(y)⟩M is the Bayes optimal predictor on Dtrain and Dtest,
i.e., EDtrain [z|x, y] = EDtest [z|x, y] = h⋆(x, y). Hereafter, we call h⋆(x, y) the ground truth.

(II) We also assume that for some B > 0, such that P(x,y,z)∼Dtrain
[∥z∥2 ≤ B2] = 1, and

max
{
supx∈X ∥f

⋆(x)∥M, supy∈Y ∥g⋆(y)∥M
}
≤ B.

This assumption postulates that the ground-truth functions admit a t-bilinear representation in terms
of two embeddings in a Hilbert t-Module, and the inner product of these embeddings gives the Bayes
optimal predictor for both the training and testing distributions. The t-bilinear form is a natural
extension of the bilinear form in Ref. [46], and it allows us to capture the multi-dimensional structure
of the problem. While the t-bilinear representation is expressive, we need additional assumptions on
the training and test distributions to make the problem tractable under CDS:
Assumption 2 (Coverage of training and test distribution, Assumption 2.2 in Ref. [46]). There
exist constants κtst, κtrn > 0 and marginal distributions DX ,1,DX ,2 over X , and DY,1,DY,2 over
Y , with product measures Di⊗j := DX ,i ⊗ DY,j , such that for all (x, y) ∈ X × Y , the following
Radon–Nikodym derivative conditions hold: (I) Training coverage: dDi⊗j(x,y)

dDtrain(x,y)
≤ κtrn for (i, j) ∈

{(1, 1), (1, 2), (2, 1)}, and (II) Test coverage: dDtest(x,y)∑
i,j∈{1,2} dDi⊗j(x,y)

< κtst.

In words, this assumption requires that the training distribution covers the key feature combinations
in D1⊗1,D1⊗2 and D2⊗1, while the test distribution is allowed to include unseen combinations in
D2⊗2. The constants κtrn, κtst quantify the degree of coverage5.

While Assumption 2 characterizes the relationship between the training and test distributions, it
does not directly control the impact of distribution shifts on the model’s performance. For this, we
introduce a further assumption on the covariate shift:
Assumption 3 (Controlled covariate shifts). There exists a κcov ≥ 1 such that, for any v ∈ M,
the following inequalities hold: Ex∼DX ,2

[∥⟨f⋆(x), v⟩M∥2] ≤ κcov · Ex∼DX ,1
[∥⟨f⋆(x), v⟩M∥2] and

Ey∼DY,2
[∥⟨g⋆(y), v⟩M∥2] ≤ κcov · Ey∼DY,1

[∥⟨g⋆(y), v⟩M∥2].

This assumption can be seen as a t-Module variant of Assumption 2.3 in Ref. [46]. It essentially
bounds the worst-case impact of covariate shift on the model’s performance, ensuring that the error
on the unseen distributionD2⊗2 is controlled by the error on the training distribution (up to a constant
κcov)6. This is a key ingredient that allows us to provide generalization guarantees under CDS.

Finally, to leverage the spectral structure of the embeddings, we make the following assumptions:
Assumption 4 (Polynomial spectral decay). Consider the t-covariances Σf⋆ := EDX ,1

[f⋆ ∗M (f⋆)⊤]
and Σg⋆ := EDY,1

[g⋆ ∗M (g⋆)⊤]. We have the following assumptions:

4The ℓ2-norm used here differs from the traditional C*-algebra norm in the definition of Hilbert C*-modules,
as it does not satisfy the C*-equality ∥x∥2 = ∥⟨x, x⟩M∥R. Despite this difference, we still refer to this structure
as a Hilbert t-Module to emphasize its similarities with Hilbert C*-modules. See Definition 12 for more details.

5We give a probabilistic version of this assumption in Assumption 6.
6A slacked version of Assumption 3 can be found in Assumption 7.
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(I) Balanced embeddings: The ground truth embeddings f⋆ and g⋆ reside in an appropriate basis of
M such that Σf⋆ = Σg⋆ =: Σ⋆

1⊗1; we also assume λ1(M(Σ⋆
1⊗1)

(i)) > 0 holds for all i ∈ [K].

(II) Polynomial spectral decay: Each of the K frequency components M(Σ⋆
1⊗1)

(i) of the t-covariance
Σ⋆

1⊗1 exhibits a polynomial singular value decay pattern, but potentially with different decay
rates γi > 0, i.e., σj(M(Σ⋆

1⊗1)
(i)) ≤ Cj−(1+γi),∀j ∈ N,∀i ∈ [K].

Assumption 5 (Small low-rank approximation error of (f⋆, g⋆) on Dtrain). Let P(i)
k denote the

projection onto the top-k eigenspace of M(Σ⋆
1⊗1)

(i), which represents the i-th frequency compo-
nent (∀i ∈ [K]) of Σ⋆

1⊗1 induced by the operator M(·) in Eq. (1). Define ApxErr(i)k (x, y) :=

(M(h⋆(x, y))(i) − ⟨P(i)
k M(f⋆(x))(i),P(i)

k M(g⋆(y))(i)⟩)2 as the error between the ground truth
h⋆(x, y) and the optimal rank-k approximations of the ground truth embeddings (f⋆, g⋆) over the
training data Dtrain for all rank k ∈ N in each i-th frequency component. We assume that

EDtrain
[ApxErr(i)k (x, y)] ≤ κapx · ED1⊗1

[ApxErr(i)k (x, y)], ∀i ∈ [K].

0 50 100 150 200 250
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Figure 2: An illustration of the varying rates of spectral decay
across different frequency components following Discrete
Cosine Transform (DCT). For this example, we consider a
discrete tensor T ∈ R240×320×5, which comprises the initial
five frames of the reshaped Akiyo video sequence. This
tensor serves as an instance of f⋆ in Assumption 4-(II), with
the transform M represented by the DCT operation.

Assumptions 4 and 5 postulate that
the ground-truth embeddings have a
favorable spectral structure. Specif-
ically, they assume that the embed-
dings are balanced in an appropriate
basis, and their spectrum decays poly-
nomially (possibly at different rates
for different frequency components).
Fig. 2 illustrates the varying rates of
spectral decay exhibited by the DCT
frequency components of the Akiyo
video data7. This empirical observa-
tion serves as a compelling motiva-
tion for Assumption 4-(II). Assump-
tion 5 implies that the training distri-
bution Dtrain is sufficiently represen-
tative of the true function h⋆ in each
frequency component. It guarantees
that if we find embeddings that well
approximate h⋆ on the training data,
they will also perform well on the ref-
erence distribution D1⊗1.

Formulating MOR under CDS as generalized tensor completion with MNAR. Based on the
assumptions, we can formulate the MOR problem under CDS as a tensor completion problem under
the MNAR setting. Specifically, given the training data {(xi, yi, zi)}ni=1 drawn from Dtrain, we aim
to estimate the underlying embeddings f⋆ and g⋆ by solving the following problem:

min
f,g∈M

1

n

∑n

i=1
ℓ(⟨f(xi), g(yi)⟩M, zi), (4)

where ℓ(·, ·) is a suitable loss function. Problem (4) can be interpreted as a tensor completion problem
with MNAR: (1) The t-bilinear form ⟨f⋆(x), g⋆(y)⟩M encodes the function h⋆(x, y) as a (generalized)
tensor. (2) The training data only covers a subset of the feature combinations due to Assumption 2.
(3) The goal is to estimate the complete tensor from the partially observed tensor entries. By solving
Problem (4), we obtain the estimated embeddings f̂ and ĝ, which can be used to make predictions on
a new test point (x, y) via the t-bilinear form ⟨̂f(x), ĝ(y)⟩M.

3.2 Algorithms for Robust Generalization of Multi-output Regression under CDS

How does ERM-based multi-output regression perform under CDS? A natural approach to
training a multi-output regression model is to fix a target rank r ∈ N and compute an Empirical Risk

7The original video can be accessed at http://trace.eas.asu.edu/yuv/index.html.
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Minimizer (ERM) by

(̂ferm, ĝerm
) ∈ argmin

f∈Fr,g∈Gr

1

n

n∑
i=1

∥f(xi)⊤ ∗M g(yi)− zi∥2, (5)

where (·)⊤ denotes the t-transpose (see Definition 6), and function classes Fr,Gr are given in
Assumption 8. Assumption 8 ensures that the function classes Fr and Gr are sufficiently expressive
to approximate the true embeddings f⋆ and g⋆, while also having controlled complexity in terms of
their covering numbers. With the assumption in place, we can obtain the following generalization
guarantee for the ERM solution (see the proof in Appendix D.2):

Theorem 4 (Excess Risk Bound for ERM under CDS). Suppose the learned embeddings (̂ferm, ĝerm
)

are α-conditioned and (ϵtrn, ϵD1⊗1)-accurate embeddings satisfying8 ϵ̆
(i)
D1⊗1

≤ σ̆⋆,(i)
1 /(40r) for all

i ∈ [K]. Then, under Assumptions 1 to 5 and 8, the excess risk of the ERM solution on Dtest can be
bounded up to a constant factor c = poly(κcov, κtst, κtrn) with probability at least 1− δ:

αr2
∑
i

(σ̆⋆,(i)
r )2 + r4tail⋆2(r) + r2(tail⋆1(r))

2 +
αr6tail⋆2(r)

2

σ2︸ ︷︷ ︸
approximation error

+ r4∆n +
αr6

σ2
∆2

n︸ ︷︷ ︸
statistical error

,

where α := maxi{αi}, σ := mini{σ̆⋆,(i)
r } > 0, tail⋆q(r) :=

∑K
i=1

∑
j>r(σ̆

⋆,(i)
j )q, q ≥ 1, ∆n =

B4(N (r, 2B/n) + log 2
δ )/n with N (r, ϵ) = N (Fr, ϵ/(2B), ∥ ·∥∞) ·N (Gr, ϵ/(2B), ∥ ·∥∞). Here,

σ̆
⋆,(i)
j := σj

(
M(Σ⋆

1⊗1)
(i)
)

denotes the j-th largest singular value of the i-th frequency component
M(Σ⋆

1⊗1)
(i) of the t-covariance operator Σ⋆

1⊗1, and N (F , ϵ, ∥ · ∥∞) denotes the covering number
of a function class at scale ϵ.

Extending the framework of Ref. [46], this theorem bounds the excess risk of the ERM solution for
multi-output regression under CDS, incorporating both approximation and statistical errors. Our key
contribution, the Ft-SVD for infinite-dimensional tensor completion, addresses multi-output MOR
while considering spectral decay across frequency components. However, Theorem 4 has two primary
limitations: (1) It assumes that the learned embeddings are α-conditioned and (ϵtrn, ϵD1⊗1

)-accurate,
which may not be achievable with ERM. (2) The theorem requires that the minimum singular value
σ̆
⋆,(i)
r is strictly positive for each frequency component i ∈ [K]. This condition may not hold for

t-embeddings that exhibit varying spectral decay patterns across different frequency components.
In practice, multi-output ground truths often demonstrate diverse spectral decay patterns, making
it challenging for the hypothesis classes Fr and Gr to capture precise low-rank structures across
different frequency components (See Fig. 2 for example).

ERM-DS: Addressing the limitations of single-stage ERM. To address the weaknesses of single-
stage ERM, we propose the Double-Stage Empirical Risk Minimization (ERM-DS) algorithm. ERM-
DS uses a two-stage training process with hypothesis classes tailored to each frequency component,
better capturing varying spectral decay patterns and balancing model complexity with generalization
ability. Our work extends the ERM-DS framework, originally proposed by Simchowitz et al. for
robust learning under CDS [46], to address the challenging setting of multi-output regression. By rep-
resenting vector-valued functions as embeddings in a Hilbert t-module and employing tensor algebra,
we capture the complex interdependencies among multiple outputs, enabling robust generalization.

Unlike Assumption 8, the ERM-DS algorithm considers fine-grained hypothesis classes satisfying
Assumption 9, which defines function classes specifically for each frequency component to better
capture the distinct decay behaviors exhibited by the ground truth in each frequency component. This
allows ERM-DS to adapt to the varying spectral properties of the true embeddings across different
frequency components, leading to improved generalization performance9. The ERM-DS algorithm
consists of four main steps:

8The α-conditioned embeddings and (ϵtrn, ϵD1⊗1)-accurate embeddings are defined in Definition 17 and
Definition 18, respectively. We require ϵ̆(i)D1⊗1

≤ σ̆
⋆,(i)
1 /(40r), where ϵ̆

(i)
D1⊗1

is the i-th element of vector ϵD1⊗1

in the definition of (ϵtrn, ϵD1⊗1)-accurate embeddings.
9Please refer to Appendix D.3 for the details of Assumption 9 and the ERM-DS algorithm.
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1. Overparameterized Training: Train an overparameterized model (̃f, g̃) to approximate the
unknown true predictive functions f⋆ and g⋆ by choosing their frequency components separately
via K parallel ERM sub-problems (Eq. (18)).

2. t-Covariance Estimation: Estimate the t-covariances of the embeddings using additional unla-
beled examples to capture the important directions of variation (Eq. (19)).

3. Dimension Reduction: Compute low-rank projections using the estimated covariances and obtain
reduced-rank embeddings by projecting the overparameterized embeddings onto the low-rank
t-subspace (Eq. (20)).

4. Distillation: Fine-tune the reduced-rank embeddings by approximating their frequency compo-
nents separately in the transformed domain, minimizing a combination of empirical risk and
consistency with the reduced-rank embeddings (Eq. (21)).

The theoretical guarantees for the performance of the ERM-DS algorithm are provided in Theorem 5:
Theorem 5 (Excess Risk Bound for ERM-DS under CDS). Under appropriate conditions on
algorithm parameters and sample sizes10, for any δ > 0, the ERM-DS solution achieves an excess risk
bound of c′(ϵ2+

∑K
i=1(1+γ

−2
i )r−2γi

i,cut ) with probability at least 1−δ. Here, c′ = poly(κcov, κtst, κtrn)

is a problem-dependent constant, ϵ > 0 is the desired accuracy level, {ri,cut}Ki=1 are cutoff rank
parameters in ERM-DS, and {γi}Ki=1 are parameters related to spectral decay in Assumption 4.

The proof is given in Appendix D.3. Theorem 5 provides a generalization error bound for the ERM-
DS algorithm in multi-output regression under CDS. The expected squared error between predicted
and true outputs can be bounded by two main terms: the desired accuracy level ϵ2, adjustable by
algorithm parameters and a term depending on the spectral decay properties of the true embeddings
in each frequency component, represented by

∑K
i=1(1 + γ−2

i )r−2γ
i,cut, which captures approximation

error due to low-rank structure and target function complexity.

Numerical Experiments. As the first theoretical work on the MOR problem under CDS, this paper
proposes the novel Ft-SVD theoretical framework, along with related assumptions and algorithm
design. The experiments conducted serve solely as a conceptual validation using synthetic data. We
consider the settings when X and Y are finite, in which case MOR under CDS naturally degener-
ates to tensor completion with MNAR tubes. We construct a ground truth tensor X composed of
factor tensors11 A1,B1,A2,B2, where range(A2) ⊂ range(A1) and range(B2) ⊂ range(B1). The
singular values of M(A1)

(i),M(B1)
(i) follow a power-law decay σ[1]

j = j−(1+γ)/2, while those of

M(A2)
(i),M(B2)

(i) are set to σ[2]
j = cjκσ

[1]
j , where cj ∈ (0, 1) is a uniform random variable, κ

controls the covariate shift, and the transform M(·) is chosen as DFT. To simulate CDS, we perform
two-stage sampling on X: first, we randomly sample entries with rate srall; second, we sample the top
block X11 (A1,B1) with a lower rate sr11, leaving the bottom block X22 (A2,B2) as the unobserved
test set. We compare the proposed ERM-DS algorithm with the single-stage one, evaluating their test
risks under different CDS intensities (by varying the κ parameter that controls the covariate shift)
and different percentages of training data. As shown in Fig. 3, the ERM-DS algorithm consistently
outperforms the single-stage ERM across all settings. On the left, we observe that as κ increases, in-
dicating more severe covariate shift, the test risk of both algorithms rises, but the ERM-DS algorithm
maintains a significant advantage over the single-stage ERM, with the performance gap widening for
larger κ values. On the right, the results demonstrate that the ERM-DS algorithm achieves lower test
risks compared to the single-stage ERM under varying training data sizes, highlighting its robustness
even with limited training samples. Overall, Fig. 3 shows the ERM-DS algorithm achieves lower
test risks in handling the CDS problem across different covariate shift intensities and training data
availabilities.

4 Extensions, Conclusion and Limitation

Extension to higher-order Ft-SVD. Our Ft-SVD framework, while designed for 3-order tensors, is
not strictly limited to two-dimensional input cases. It is versatile enough to handle multi-dimensional

10Detailed conditions are provided in Theorem 6, Appendix D.3.
11Details of the experiments are shown in Appendix A.3.
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Figure 3: Test risk under different experimental settings. (left) Comparison of test risk over κ
(covariate shift intensity) for single and double training approaches. (right) Test risk over the
percentage of training data for ERM and ERM-DS.

inputs that can be divided into two distinct sets. Extending Ft-SVD to higher-order cases is indeed
non-trivial and we show a preliminary conjecture of a higher-order extension motivated by Ref. [53]:

Let F :
∏N

i=1Xi → RK be a square-integrable vector-valued function12, where Xi ⊂ RDi for
i = 1, . . . , N . Then there exist sets of functions {Un

i }∞i=1 ⊂ L2(Xn;RK) for each n = 1, . . . , N ,
and a core function S :

∏N
i=1 N → RK , such that F can be represented as F (x1, . . . , xN ) =∑∞

i1,...,iN=1 S(i1, . . . , iN ) ∗M
N∏
∗

n=1

Un
in
(xn) . Here,

∏
∗ denotes the sequential t-product, which

applies the t-product operation sequentially to the functions Un
in
(xn). The convergence of this infinite

sum is in the L2 sense. We also have

• Orthogonality: ∀n ∈ [N ], the functions {Un
i } satisfy:

∫
Xn

Un
i (x)∗M (Un

j (x))
⊤dx = δijM

−1(1).

• Core properties: The core function S has two key characteristics:

i) All-orthogonality: For all 1 ≤ n ≤ N and all α ̸= β, we have
∫∏

i̸=n Xi
S(. . . , α, . . .)⊤ ∗M

S(. . . , β, . . .)
∏

i ̸=n dxi = 0. This means that slices of the core tensor are t-orthogonal.
ii) Ordering: For all n = 1, . . . , N , we have ∥Sxn=1∥L2 ≥ ∥Sxn=2∥L2 ≥ · · · , where
∥Sxn=α∥L2 denotes the L2 norm of S with its n-th mode fixed at α. This property en-
sures a unique ordering of the components.

This decomposition generalizes the concept of Ft-SVD to multilinear functions. It is interesting to
generalize the various higher-order variants of t-SVD [22, 31, 43, 1] to functional settings.

Conclusion. The paper addresses the challenge in multi-output regression where training distribution
does not cover all input feature combinations, leading to CDS. We introduce a new methodology
within a generalized tensor decomposition framework, named Ft-SVD, to tackle this challenge by
treating the problem as a tensor completion task under the missing-not-at-random setting. The paper
highlights the role of spectral decay of the true embeddings in enhancing model generalization and,
through detailed analysis, establishes how multi-output models can manage combinatorial shifts,
improving prediction accuracy for new and unseen input combinations.

Limitation. This paper introduces a tensor spectral theory framework to address MOR under CDS,
marking an early theoretical exploration in this field. However, several limitations are recognized.
First, spectral methods may not fully capture the complexity of real-world data, and the robustness
of controlled experimental results remains uncertain. We encourage future research to refine these
methods, aiming to develop more effective solutions. Furthermore, an open problem remains in
extending the framework to accommodate more than two combinatorial features. Initial investigations
suggest that the approach in Ref. [46] does not readily generalize to cases with more than two feature
combinations, potentially requiring new mathematical tools to address this challenge.

12Note: In the domain of F ,
∏N

i=1 Xi denotes the Cartesian product of the spaces X1, . . . , XN , not to be
confused with the product operations used in the decomposition.
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Figure 4: Overview of the core research content in this paper.

The appendix provides additional materials, detailed proofs, and extended discussions to support
the main content of the paper Generalized Tensor Decomposition for Multi-Output Regression with
Combinatorial Distribution Shifts. An overview of the core research content in this paper is shown
in Fig. 4. We summarize the notations in Table 1 which provides a comprehensive list of the main
symbols, along with their descriptions. The symbols are categorized based on their roles, such as
input and output spaces, distributions, embeddings, error terms, hypothesis classes, and algorithmic
parameters.

The purpose of this appendix is to offer a comprehensive and rigorous treatment of the theoretical
foundations, algorithmic details, and experimental results that underpin the proposed Functional
t-Singular Value Decomposition (Ft-SVD) framework for multi-output regression under CDS.

The appendix is organized as follows:

• In Appendix A, we discuss potential applications of the proposed Ft-SVD framework, provide a
detailed review of related work, and present details in the experiments.

• Appendix B delves into the theoretical foundations of the Ft-SVD framework. We start by
introducing the preliminaries of t-Singular Value Decomposition (t-SVD) and then present the
Functional t-SVD, along with the proofs of its key properties (Theorems 1 and Theorem 2). We
also discuss the low-tubal-rank approximability of smooth functions and provide the proof of
Theorem 3.

• Appendix C provides further explanations and insights into the Ft-SVD framework for multi-
output regression under CDS. We offer more details on the Hilbert t-Module, t-bilinear embed-
dings, and the assumptions used in our analysis. We also present a more in-depth discussion of the
proposed algorithms, including the Empirical Risk Minimization (ERM) and the Double-Stage
ERM (ERM-DS).

• In Appendix D, we present a comprehensive analysis of the algorithms proposed in the main
paper. We start by deriving an error decomposition that forms the basis for our theoretical
guarantees. We then provide detailed proofs for the performance bounds of the ERM and
ERM-DS algorithms, along with the necessary lemmas and change-of-measure results. This
appendix also includes a discussion on the risk bound for t-bilinear combinatorial extrapolation,
which is a key component of our analysis.

Broader effects. The paper provides a new tensor spectral perspective for the multi-output regression
problem due to combinatorial distribution shift. It focuses solely on these technical aspects and does
not have potential societal impacts.
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Table 1: Symbol table
Symbol Description
X Input space for the first feature
Y Input space for the second feature
RK Output space, where K is the number of outputs
M(·) Linear transform induced by an orthogonal matrix M ∈ RK×K in Eq. (1)

M(T)(i) or T̆
(i)

i-th frequency component of T in the M -domain
M The Hilbert t-module (Definition 12) used in Assumption 1
⟨·, ·⟩M Inner product in the Hilbert t-moduleM
∥ · ∥M Norm induced by the inner product in the Hilbert t-moduleM (in ℓ2 sense)
f⋆, g⋆ Ground truth embeddings, where f⋆ : X →M and g⋆ : Y →M
h⋆ Ground truth function, where h⋆(x, y) = ⟨f⋆(x), g⋆(y)⟩M
Dtrain Training distribution over X × Y × RK

Dtest Testing distribution over X × Y × RK

DX ,1,DX ,2 Marginal distributions over X
DY,1,DY,2 Marginal distributions over Y
Di⊗j Product measure of DX ,i and DY,j , where i, j ∈ {1, 2}
Σ⋆

1⊗1 t-covariance operator of the ground truth embeddings on D1⊗1

M(Σ⋆
1⊗1)

(i) i-th frequency component of the t-covariance operator Σ⋆
1⊗1

σ̆
⋆,(i)
j j-th largest singular value of M(Σ⋆

1⊗1)
(i)

γi Polynomial decay rate of the singular values of M(Σ⋆
1⊗1)

(i)

P⋆
k t-projection operator of multi-rank-k defined by Σ⋆

1⊗1
f⋆k, g⋆k Ground truth embeddings truncated at multi-rank k
tail(i)⋆q (k) q-th power tail sum of singular values of M(Σ⋆

1⊗1)
(i), starting from index k

tail⋆q(k) q-th power tail sum of singular values of M(Σ⋆
1⊗1), starting from multi-index k

f̂erm, ĝerm
Learned embeddings by ERM, where f̂erm : X →M and ĝ

erm
: Y →M

f̂ds, ĝds
Learned embeddings by ERM-DS, where f̂ds : X →M and ĝ

ds
: Y →M

R(f, g;D) Excess risk of embeddings (f, g) under distribution D
∆0(f, g,k) Weighted error term for embeddings (f, g) at multi-rank k
∆1(f, g,k) Unweighted error term for embeddings (f, g) at multi-rank k
∆2(f, g,k) Factor recovery error term for embeddings (f, g) at multi-rank k on D2⊗2

∆apx(k) Approximation error at multi-rank k
∆train(k) Error on the training distribution at multi-rank k
α Conditioning vector for the learned embeddings
ϵtrn Accuracy vector for the learned embeddings on Dtrain

ϵD1⊗1
Accuracy vector for the learned embeddings on D1⊗1

ϵ̆
(i)
trn Accuracy for the i-th frequency component of the learned embeddings on Dtrain

ϵ̆
(i)
D1⊗1

Accuracy for the i-th frequency component of the learned embeddings on D1⊗1

σi,cut Cut-off singular value parameter for the i-th frequency component in ERM-DS
ri,cut Cut-off rank parameter for the i-th frequency component in ERM-DS algorithm
σcut := (σi,cut)

K
i=1 Parameter vector of cut-off singular values in the ERM-DS algorithm

rcut := (ri,cut)
K
i=1 Parameter vector of cut-off ranks in the ERM-DS algorithm

ERR
(i)
DT (ri,cut, σi,cut) Error term for the i-th frequency component in the ERM-DS algorithm

Fk,Gk Hypothesis classes for the t-embeddings at rank k
F̆ (i)

k , Ğ(i)k Hypothesis classes for i-th frequency component of the t-embeddings at rank k
N (k, ϵ) Covering number for the hypothesis classes (Fk,Gk) at scale ϵ
N̆ (i)(k, ϵ) Covering number for the hypothesis classes (F̆ (i)

k , Ğ(i)k ) at scale ϵ
∆n Statistical error term depending on the sample size n
a ≲⋆ b a ≤ c · b for some c at most polynomial in the problem constants κcov, κtrn, κapx
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A Prevalence of MoR under CDS, Related Work, and Details of Experiments

A.1 Prevalence of MoR under CDS across Domains

The challenge of Multi-output Regression under Combinatorial Distribution Shifts (MoR under CDS)
is pervasive across a wide spectrum of real-world applications. The following examples illustrate the
ubiquity of this problem in diverse domains:

• Healthcare: In medical diagnostics, predicting a patient’s risk for multiple diseases (e.g., heart
disease, diabetes) based on various patient attributes (e.g., age, blood pressure, heart rate)
constitutes a multi-output regression problem. However, training data often comes from specific
patient cohorts, covering only a subset of possible attribute combinations. When new patient
groups (e.g., different age brackets or geographic regions) emerge, they introduce novel attribute
combinations, leading to combinatorial distribution shifts. Diagnostic systems must adapt to
these new patient profiles to accurately predict disease risks.

• Marketing: Predicting how different user segments respond to various marketing strategies
(e.g., ad types, promotions) based on user attributes (e.g., age, income) and strategy attributes
(e.g., ad themes, delivery channels) is a multi-output regression task. Training data typically
covers common user-strategy combinations, but when new user groups or marketing strategies
appear, they create unseen attribute combinations, resulting in combinatorial distribution shifts.
Marketing prediction models need to transfer knowledge to these new scenarios to forecast user
responses accurately.

• Materials Science: Predicting the performance of material formulations across multiple metrics
(e.g., hardness, conductivity) based on composition ratios is a multi-output regression problem.
Due to experimental constraints, training data usually includes only a subset of known formu-
lations. When researchers explore novel composition ratios, they encounter new formulation
combinations, leading to combinatorial distribution shifts. Material performance prediction
systems must generalize to these unseen formulations to accelerate materials discovery.

• Transportation: Forecasting multiple traffic flow indicators (e.g., vehicle flow, pedestrian flow)
for different areas and time periods based on area attributes (e.g., road network, land use) and
temporal attributes (e.g., day of the week, holidays) is a multi-output regression task. Training
data may cover only typical area-time combinations, but when new areas develop or novel
temporal patterns emerge, they create unseen attribute combinations, causing combinatorial
distribution shifts. Traffic prediction models must adapt to these new scenarios for effective
transportation planning and management.

• Environmental Monitoring: Predicting concentrations of various pollutants (e.g., PM2.5,
ozone) at different locations and seasons based on location attributes (e.g., terrain, land use) and
meteorological conditions (e.g., temperature, humidity) is a multi-output regression problem.
Training data often comes from specific monitoring stations and time periods, covering a limited
set of location-weather combinations. When new monitoring stations are deployed or unusual
weather patterns occur, they introduce new attribute combinations, leading to combinatorial
distribution shifts. Environmental monitoring systems must generalize to these unseen scenarios
to comprehensively assess environmental quality.

Figure 5: Examples of MoR under CDS across domains

Domain Input Output CDS
Healthcare Patient

attributes
Disease
risks

New patient
groups

Marketing User & strat-
egy attr.

User re-
sponses

New groups/s-
trategies

Materials Composition
ratios

Material
properties

Novel formu-
lations

Transport Area & tem-
poral attr.

Traffic
flow

New areas/pat-
terns

Environment Location &
weather

Pollutants New station-
s/weather

These examples summarized in Fig-
ure 5 underscore the prevalence of
MoR under CDS across various do-
mains. In these scenarios, multiple
prediction tasks share the same input
space, but training distribution cov-
ers only a subset of attribute combina-
tions. The emergence of new attribute
combinations constitutes a combina-
torial distribution shift. Transferring
knowledge from observed combina-
tions to novel ones is a common chal-
lenge in these applications, and ad-
dressing this problem is crucial for
developing robust intelligent systems.
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A.2 Detailed Related Work

Multi-Output Regression. Multi-output regression has been extensively studied in machine learning,
with early works focusing on multi-task learning [13, 6] and recent approaches extending to shared
representation learning [39], linear models [11], kernel methods [2], and neural networks [9]. How-
ever, most of these methods assume that the training and test data come from the same distribution,
which may not hold under distribution shifts. In contrast, our work specifically addresses the problem
of multi-output regression under CDS by proposing a novel theoretical framework based on Ft-SVD
and an extended version of the ERM-DS algorithm.

Tensor Completion. Tensor completion has seen significant advancements with the development
of various tensor decomposition techniques [24, 50, 41] and methods that can handle non-random
missing patterns [54, 14]. While these works provide a foundation for addressing tensor completion,
they do not consider the specific challenges posed by multi-output regression under CDS, such
as dealing with infinite and continuous feature domains. Our work aims to address this gap by
formulating multi-output regression under CDS as a low-rank tensor estimation problem under
the Missing Not At Random (MNAR) setting and developing a tailored ERM-DS algorithm with
theoretical guarantees.

Distribution Shift. Various types of distribution shifts have been studied in machine learning,
including covariate shift [45], concept drift [19], and domain adaptation [44]. Some recent works
have addressed distribution shift in multi-output regression by aligning the distributions through
learning invariant representations [33]. However, these methods typically require access to labeled
data from the target domain, which may not always be available. In contrast, our work focuses on the
specific case of CDS, where the training distribution covers certain marginal distributions of the input
features, but the test distribution involves unseen combinations of these features. We address this
challenge by leveraging the Ft-SVD framework and the ERM-DS algorithm, which do not require
labeled data from the test distribution.

Simchowitz et al. [46] proposed the Double-Stage Empirical Risk Minimization (ERM-DS) frame-
work to address single-output learning under CDS. Our work extends the ERM-DS framework to the
multi-output regression setting by representing vector-valued functions as embeddings in a Hilbert
t-module and leveraging tensor algebra to capture the interdependencies among multiple outputs. The
proposed Ft-SVD theoretical framework, the formulation of multi-output regression under CDS as a
low-rank tensor estimation problem, and the tailored ERM-DS algorithm with theoretical guarantees
aim to contribute to the existing literature on multi-output regression, tensor completion, and distribu-
tion shift, by providing a principled approach to address the specific challenges posed by CDS in
multi-output regression.

A.3 Details of Experiments

As the pioneering theoretical study tackling the multi-output regression problem under combinatorial
distribution shift, this paper proposes the novel Ft-SVD theoretical framework, along with related
assumptions and algorithm design. To validate the proposed approach, we conducted a series of
experiments on synthetic tensor data, serving solely as a conceptual proof-of-concept. Considering
finite feature domains X and Y , the MOR problem under CDS naturally degenerates to tensor
completion with missing-not-at-random (MNAR) tubes. We conducted a series of experiments using
synthetic tensor data. The primary focus of our analysis was to compare the empirical risk of three
algorithms: Single ERM in Eq. (5), Overparameterized Training (Step 1 of ERM-DS), and the
proposed ERM-DS. We generated a synthetic tensor X ∈ R(m1+m2)×(d1+d2)×K . The tensor X was
constructed using a combination of factor tensors A1 ∈ Rm1×r×K , B1 ∈ Rd1×r×K , A2 ∈ Rm2×r×K ,
and B2 ∈ Rd2×r×K , where range(A2) ⊂ range(A1) and range(B2) ⊂ range(B1). The singular value
tubes of A1 and B1 followed a power-law decay with rate γ, i.e., M(σ

[i]
1 ) = repmat(i−(1+γ)/2,K) ∈

R1×1×K , and the singular value tubes of A2 and B2 are set to be M(σ
[i]
2 ) = repmat(ciκσ

[i]
1 ,K) ∈

R1×1×K , and ci ∈ (0, 1) is the random variable following the uniform distribution. Therefore, the
tensor data can be divided into four parts, namely, X11 ∈ Rm1×d1×K ,X12 ∈ Rm1×d2×K ,X21 ∈
Rm2×d1×K and X22 ∈ Rm2×d2×K :[

X11 X12
X12 X22

]
=

[
A1
A2

]
∗M

[
Σ11

Σ22

]
∗M

[
B1
B2

]⊤
(6)
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Figure 6: Test risk on a larger-scale tensor of size 400× 400× 10 using DCT transformation. (left)
Comparison of test risk over κ (covariate shift intensity) for single and double training approaches.
(right) Test risk over the percentage of training data for ERM and ERM-DS.

In this case, the factor tensor can be represented as the features in Eq., that is

f⋆(xi′) = A(i′) and g⋆(yj′) = B(j′), (7)

and the tube X(i′, j′, :) = ⟨f⋆(xi′), g⋆(yj′)⟩ is regarded as the output. Therefore, the data sample can
be regarded as (i′, j′, zi′j′) where zi′j′ = X(i′, j′, :)), i′ ∈ Nm1+m2 and j′ ∈ Nd1+d2 .

To construct Dtrain, the training data are uniformly sampled from three parts, namely, X11,X12 and
X12. The sampling process was performed in two steps. First, we randomly sampled entries from the
subtensor X11 with sampling rate sr1train and from the subtensors X12 and X21 with sampling rates
of sr2train. The block X22 was left unobserved to be the test set. All experiments are implemented in
MATLAB on a Linux server equipped with dual Intel E5 2640v4 and 128GB of RAM. The demo
code can be found at https://github.com/pingzaiwang/FtSVD4MORCDS.

To generate the training and test data, we follow the above construction procedure by letting m1 =
d2 = 80 and m2 = d2 = 120, and the rank r = 15. The singular value decay γ is fixed to 1. The
sample ratio of X11 is simply fixed to be sr1train = 10%. The transform matrix M is adopted the
DFT matrix. In the single training ERM and over-parameter training step, the estimated rank is set
to 2r and 4r, respectively. For simplicity, we let κ ∈ [0.1, 3] and sr2train ∈ [50%, 90%]. For each
experimental setting, we randomly ran the experiments for four times and computed the average test
risk and standard deviation.

In Figs. 3 and 6, we depict the test risk and standard deviation over κ and the percentage of training
data. On the left, we observe that as κ increases, indicating a more severe covariate shift, the test
risk of both algorithms rises, but the ERM-DS algorithm maintains a significant advantage over the
single-stage ERM, with the performance gap widening for larger κ values. On the right, the results
demonstrate that the ERM-DS algorithm achieves lower test risks compared to the single-stage ERM
under varying training data sizes, highlighting its robustness even with limited training samples.

Overall, the ERM-DS algorithm achieves lower test risks and stronger generalization capabilities
compared to the single-stage ERM approach. It is crucial to note that these experiments serve only as
a conceptual validation of the proposed Ft-SVD theoretical framework, aiming to preliminarily verify
the effectiveness of the theoretical methods in handling CDS. Future work is still needed to further
develop more effective and practical algorithms for improved performance on real-world data.
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B Functional t-Singular Value Decomposition

This section provides a comprehensive exploration of the theoretical underpinnings of the Ft-SVD
framework. It begins with an overview of the basics of t-SVD, setting the stage for the introduction
of Ft-SVD. This section includes detailed proofs of key properties, as outlined in Theorems 1 and 2.
Additionally, the appendix examines the low-rank approximability of smooth functions and presents
the proof of Theorem 3, highlighting the theoretical contributions and foundational aspects of Ft-SVD.

B.1 Preliminaries of t-Singular Value Decomposition

We first introduce some basic notations and concepts to lay the foundation for the subsequent
discussions.

Basic notations. For any positive integer n ∈ N, let [n] := {1, · · · , n} be the set of integers from
1 to n. We use lowercase bold letters (e.g., a ∈ Rm) for vectors, and uppercase bold letters (e.g.,
A ∈ Rm×n) for matrices. Following the standard notations in [26], we refer to a third-order tensor of
size 1× 1×K as a t-scalar, denoted by an underlined lowercase letter, e.g., x; a third-order tensor of
size d× 1×K as a t-vector, denoted by an underlined lowercase bold letter, e.g., x; and a third-order
tensor of size m × n × K as a t-matrix, denoted by an underlined uppercase letter, e.g., X. For
A ∈ RK×K , σi(A) ≥ 0 denotes its i-th largest singular value; for symmetric A, λi(A) denotes its
i-th largest eigenvalue, and if A ⪰ 0, A1/2 its matrix square-root.

Given a tensor T, its ℓp-norm is defined as ∥T∥p := ∥vec(T)∥p, and its F-norm is defined as
∥T∥F := ∥vec(T)∥2, where vec(·) denotes the vectorization operation of a tensor [28]. We also use
∥·∥ to represent the ℓ2-norm of vectors, F-norm of matrices and tensors for notation simplicity. For
T ∈ Rm×n×K , we use T(i) or T(:, :, i) to denote its i-th frontal slice. The inner product between two
tensors A and B is defined as ⟨A,B⟩ := vec(A)⊤vec(B). | · | denotes the absolute value of a scalar
or the cardinality of a set, and ◦ denotes the function composition operation. For simplicity, let

T̆ :=M(T)

denote the tensor obtained by applying the M transform to T, as defined in Eq. (1). In the following,
we will frequently use (̆·) and (̆·)

(i)
to representM(·) andM(·)(i), respectively. Here, (̆·) denotes

the tensor or t-embedding after the M transform, while (̆·)
(i)

refers to its i-th frontal slice, i.e.,
the i-th frequency component (or the i-th sub-domain).

Concepts related to t-SVD. Due to space limitations, some concepts related to t-SVD were omitted in
the main text. We provide additional explanations here, as these concepts are crucial for understanding
the properties and operational rules of t-SVD.

Definition 4 (Frontal-slice-wise product [35]). The frontal-slice-wise product of any two tensors
A ∈ Rm×n×K and B ∈ Rn×k×K , denoted by A⊙ B, is defined as a tensor T such that

T(:, :, i) = A(:, :, i) · B(:, :, i), i ∈ [K],

where · denotes the standard matrix multiplication. The frontal-slice-wise product performs matrix
multiplication on each frontal slice of the tensors, resulting in a new tensor.

Definition 5 (M -block-diagonal matrix). The M -block-diagonal matrix of any tensor T ∈ Rm×n×K ,
denoted by T̄, is the block diagonal matrix whose diagonal blocks are the frontal slices of T̆ :=M(T):

T̄ := bdiag(T̆)

:=


T̆
(1)

T̆
(2)

. . .

T̆
(K)

)

 ∈ RmK×nK .

This concept arranges the slices of a tensor in the frequency domain into a block diagonal matrix,
facilitating the theoretical analysis of t-SVD.
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We further provide some definitions and properties related to t-SVD:

Definition 6 ([25]). The t-transpose of a tensor T ∈ Rm×n×K under the M transform (as shown in
Eq. (1)), denoted by T⊤, satisfies

M(T⊤)(i) =
(
M(T)(i)

)⊤
, i ∈ [K].

In other words, the t-transpose performs a transpose on each slice in the frequency domain and then
transforms back to the time domain. This operation is one of the foundations of t-SVD theory.

Definition 7 ([25]). The t-identity tensor I ∈ Rm×m×K under the M transform satisfies that each
frontal slice of M(I) is an K ×K identity matrix, i.e.,

M(I)(i) = I, i ∈ [K].

It is easy to verify that T ∗M I = T and I ∗M T = T hold for appropriate dimensions. The t-identity
tensor plays a role similar to the identity matrix in t-SVD.

Definition 8 ([25]). A tensor Q ∈ Rd×d×d3 is called t-orthogonal under the M transform if it
satisfies

Q⊤ ∗M Q = Q ∗M Q⊤ = I.

T-orthogonality is an important property of tensor transformations, ensuring that the inner product
and norm of tensors remain invariant before and after the transformation.

Definition 9 ([26]). A tensor is called f-diagonal if all its frontal slices are diagonal matrices.

F-diagonal tensors play a central role in t-SVD decomposition, similar to the singular value matrix in
matrix SVD.

We present some basic facts about t-product:

(a) The t-product of two t-scalars is commutative:

a ∗M b =M−1 (M(a)⊙M(b)) =M−1 (M(b)⊙M(a)) = b ∗M a.

(b) The ℓ2-norm of a t-scalar is defined as

∥a∥2 = ∥M(a)∥2 = ∥M(a)⊙M(a)∥1 = ∥M(a ∗M a)∥1. (8)

(c) The square of the difference between two t-scalars satisfies ∥a− b∥2 ≤ 2(∥a∥2 + ∥b∥2).

(d) The square of the sum of three t-scalars satisfies ∥a+ b+ c∥2 ≤ 3(∥a∥2 + ∥b∥2 + ∥c∥2).

(e) For any f, g ∈ Rm×1×K , we can upper bound ∥f⊤ ∗M g∥2 by ∥f∥2∥g∥2 due to:

∥f⊤ ∗M g∥2 = ∥M(f⊤ ∗M g)∥2 (Orthogonality of M)

= ∥̆f
⊤
⊙ ğ∥2 (Definition of M(·))

=

K∑
i=1

(
(̆f

(i)
)⊤ğ(i)

)2
≤

K∑
i=1

(
∥̆f

(i)
∥∥ğ(i)∥

)2
(Cauchy-Schwartz inequality)

≤

(
K∑
i=1

∥̆f
(i)
∥2
)(

K∑
i=1

∥ğ(i)∥2
)

= ∥̆f∥2∥ğ∥2 = ∥f∥2∥g∥2. (Orthogonality of M)

The above inequalities characterize the properties of t-product from different perspectives and serve
as the foundation for subsequent theoretical analyses.
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Tensor Tubal-rank and tensor multi-rank as measures of low-tankness in the transformed
domain. The tensor singular value decomposition (t-SVD) of T ∈ Rm×n×K under the transform
M in Eq. (1) is given by:

T = U ∗M S ∗M V⊤, (9)
where U ∈ Rm×m×K and V ∈ Rn×n×K are t-orthogonal tensors, S ∈ Rm×n×K is an f-diagonal
tensor, and (·)⊤ denotes the t-transpose.

According to Definition 2, the tubal rank of tensor T is the number of non-zero tubes in S in Eq. (2),
i.e.,

rt(T) := |{i : S(i, i, :) ̸= 0, i ≤ min{m,n}}|.

The tubal rank is also equal to the maximum rank of the frontal slices of T̆, i.e.,

rt(T) = max
i
{rank(M(T)(i))},

which means that the tubal rank is a complexity measure of the low-rankness in the transformed
domain. Within the context of t-SVD, we have another rank definition:

Definition 10 (Tensor multi-rank [60]). The multi-rank of T ∈ Rm×n×K under the transform M in
Eq. (1) is defined as the vector of matrix ranks of all the frontal slices of M(T), i.e.,

rmul(T) := (rank(M(T)(1)), . . . , rank(M(T)(K)))⊤ ∈ NK .

The relationship between the tubal rank and multi-rank is given by

rt(T) = ∥rmul(T)∥∞,

where ∥ · ∥∞ denotes the ℓ∞-norm of a vector.

The multi-rank can be seen as a fine-grained low-rankness measure in the transformed domain
compared to the tubal rank. It captures the notion of structural simplicity by assigning a rank value
to each frontal slice of the transformed tensor. A low rank value for a frontal slice suggests that the
corresponding frequency component of the data can be well-approximated by a low-dimensional
subspace, indicating a strong correlation or pattern within that slice. Conversely, a high rank
value implies that the corresponding frequency component is more complex and requires a higher-
dimensional subspace to capture its information content. The multi-rank provides a more detailed
characterization of the low-rank structure of a tensor in the transformed domain. While the tubal rank
gives a single value representing the overall low-rankness of the tensor, the multi-rank offers a vector
of rank values, each corresponding to a specific frontal slice. This allows for a more nuanced analysis
of the tensor’s complexity along its different frequency components.

B.2 Functional t-Singular Value Decomposition

B.2.1 Proof of the Ft-SVD Theorem

The Functional t-Singular Value Decomposition (Ft-SVD) in Theorem 1 is an extension of the
traditional t-SVD framework to infinite and continuous feature domains. This theoretical approach
enables the representation of data and functions defined on these domains while preserving the
core properties of t-SVD. By generalizing t-SVD to functional settings, Ft-SVD facilitates the
development of efficient and robust algorithms for learning vector-valued functions, addressing
complex interdependencies among multiple outputs, and solving related problems in a unified and
principled manner. We provide the proof of Theorem 1 as follows.

Proof of Theorem 1. The key idea of proving the Functional t-SVD is to define appropriate Hilbert
spaces and linear operators, and then use the spectral theorem for compact operators to establish the
existence and properties of the Functional t-SVD.

Step 1: Defining the t-Linear Operators. We first define a R1×1×K-valued inner product, referred
to as the t-inner product, along with the corresponding t-linear operators. Let L2(X ;R1×1×K) and
L2(Y;R1×1×K) be the set of square-integrable vector-valued functions from X and Y to R1×1×K ,
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respectively. The t-inner product is defined as:

⟨F,G⟩L2(X ;R1×1×K) :=

∫
X
F (x) ∗M G(x)dx,

where ∗M denotes the t-product.

Define the t-linear operator T : L2(Y;R1×1×K)→ L2(X ;R1×1×K) as:

(T G)(x) :=
∫
Y
F (x, y) ∗M G(y)dy,

and its adjoint operator T ∗ : L2(X ;R1×1×K)→ L2(Y;R1×1×K) as:

(T ∗H)(y) :=

∫
X
F (x, y) ∗M H(x)dx.

To show that T ∗ is indeed the adjoint of T , we verify that ⟨T G,H⟩L2(X ;R1×1×K) =
⟨G, T ∗H⟩L2(Y;R1×1×K):

⟨T G,H⟩L2(X ;R1×1×K) =

∫
X
(T G)(x) ∗M H(x)dx

=

∫
X

(∫
Y
F (x, y) ∗M G(y)dy

)
∗M H(x)dx

=

∫
Y
G(y) ∗M

(∫
X
F (x, y) ∗M H(x)dx

)
dy

=

∫
Y
G(y) ∗M (T ∗H)(y)dy

= ⟨G, T ∗H⟩L2(Y;R1×1×K),

where we used the commutativity of the t-product for t-scalars to interchange the order of integration
and the t-product.

Then, we establish the self-adjointness of the operators T T ∗ and T ∗T . Consider the operators
T T ∗ : L2(X ;R1×1×K) → L2(X ;R1×1×K) and T ∗T : L2(Y;R1×1×K) → L2(Y;R1×1×K). To
show that T T ∗ is self-adjoint, we verify that ⟨T T ∗F,G⟩L2(X ;R1×1×K) = ⟨F, T T ∗G⟩L2(X ;R1×1×K):

⟨T T ∗F,G⟩L2(X ;R1×1×K) = ⟨T ∗F, T ∗G⟩L2(Y;R1×1×K) = ⟨F, T T ∗G⟩L2(X ;R1×1×K), (10)

where we used the adjoint property of T ∗ in the first equality. The self-adjointness of T ∗T can be
shown similarly.

Step 2: Establishing Spectral Properties in the Transformed Domain. The next step is to
transform the operators to the transformed domain defined by transform M in Eq. (1) and establish
their spectral properties. Define T̆ := M(T ) : L2(Y;R1×1×K) → L2(X ;R1×1×K) and T̆ ∗ :=
M(T ∗) : L2(X ;R1×1×K)→ L2(Y;R1×1×K) as the transformed operators for any vector-valued
functions G ∈ L2(Y;R1×1×K) and H ∈ L2(X ;R1×1×K), respectively:

M(T G)(y) :=M
(
(T G)(y)

)
and M(T ∗H)(x) :=M

(
(T ∗H)(x)

)
,

where M is the invertible linear transform in Eq. (1). We similarly define operators M(T T ∗) :
L2(X ;R1×1×K)→ L2(X ;R1×1×K) and M(T ∗T ) : L2(Y;R1×1×K)→ L2(Y;R1×1×K) by

M(T T ∗H)(x) :=M
(
(T T ∗H)(x)

)
and M(T ∗T G)(y) :=M

(
(T ∗T G)(y)

)
,

We proceed to show that:

T̆ T̆ ∗ =M(T T ∗) and T̆ ∗T̆ =M(T ∗T ).
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To verify these identities, consider any H ∈ L2(X ;R1×1×K):

M((T T ∗)H)(x) =M
(
(T T ∗)H(x)

)
=M

(∫
X

(∫
Y
F (x, y) ∗M F (x′, y) dy

)
∗M H(x′) dx′

)
(i)
=

∫
X

(∫
Y
F̆ (x, y)⊙ F̆ (x′, y) dy

)
⊙ H̆(x′) dx′

=
(
(T̆ T̆ ∗)H̆

)
(x),

where ⊙ denotes the frontal slice-wise product, and step (i) applies the definition of the t-product,
with the notation F̆ (x, y) =M(F (x, y)). This verifies that M(T T ∗) = T̆ T̆ ∗. A similar approach
confirms M(T ∗T ) = T̆ ∗T̆ .

We now characterize the frequency-specific behavior of T T ∗ and T ∗T by performing eigende-
compositions on each of their K frequency “component” (i.e., the “frontal slices” of operators
T̆ T̆ ∗ and T̆ ∗T̆ , respectively). Specifically, for any H ∈ L2(X ;R1×1×K), we define the operator
M(T T ∗)(i) : L2(X ;R)→ L2(X ;R) by

(M(T T ∗)(i)H̆(i))(x) :=M ((T T ∗H)(x))
(i)
, i ∈ [K]

as the “i-th frequency componen” of T T ∗ in the transformed domain induced by transform M(·).
Thus, we have:(

M(T T ∗)(i)H̆(i)
)
(x) =

∫
X

∫
Y
F̆ (x, y)(i) · F̆ ∗(x′, y)(i) · H̆(x′)(i) dy dx′,

where · denotes the standard multiplication.

Next, we show that M(T T ∗)(i) is a compact and self-adjoint operator on the Hilbert space L2(X ;R).
(1) Compactness: Note that one condition of Theorem 1 is that the vector-valued function F (x, y) is
square-integrable, implying that M(F (x, y)(i)) satisfies the Hilbert-Schmidt condition:∫

X

∫
Y
M(F (x, y)(i))2dxdy ≤

∫
X

∫
Y

K∑
i=1

M(F (x, y)(i))2dxdy

=

∫
X

∫
Y
∥M(F (x, y))∥2dxdy

(i)
=

∫
X

∫
Y
∥F (x, y)∥2dxdy

(ii)
< ∞

where ∥ · ∥ denotes the ℓ2-norm of t-scalars (i.e., vectors), (i) holds since M is an orthogonal matrix
in Eq. (1), and (ii) is due to the square-integrability of F (x, y).

(2) Self-adjointness: It can be readily verified that M(T T ∗)(i) is also a self-adjoint operator on the
Hilbert space L2(X ;R), following equations analogous to Eq. (10), and thus we omit it.

Similarly, the operators M(T ∗T )(i) also satisfies compactness and self-adjointness.

Then, by the spectral theory of compact linear operator in Hilbert spaces [56], there exist orthonormal
eigenfunctions {ui,j}∞j=1 and {vi,j}∞j=1 and non-descending non-negative eigenvalues {ωi,j}∞j=1
such that:

M(T T ∗)(i)ui,j = ωi,jui,j and M(T ∗T )(i)vi,j = ωi,jvi,j ∀(i, j) ∈ [K]× N. (11)
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Then, for each i ∈ [K], we can express F̆ (x, y)(i) using the eigenfunctions and eigenvalues as
follows:

F̆ (x, y)(i) =

∞∑
j=1

ω
1/2
i,j · ui,j(x) · vi,j(y), ∀i ∈ [K],

which is equivalent to the slice-wise product formulation:

M(F )(x, y) =

∞∑
j=1

φ̆
j
(x)⊙ ς̆j ⊙ ψ̆j

(y),

where φ̆
j
(x), ς̆j , ψ̆j

(y) ∈ R1×1×K satisfy

φ̆
j
(x)(i) = ui,j(x), ς̆

(i)
j = ω

1/2
i,j , and ψ̆

j
(y)(i) = vi,j(y), ∀(i, j) ∈ [K]× N.

Step 3: Transforming Back to the Original Domain. In this final step, we apply the inverse
transform M−1 from Eq. (1) to return to the original domain and construct the Functional t-SVD of
F . The decomposition of F is given by:

F (x, y) =

∞∑
j=1

ϕ
j
(x) ∗M σj ∗M ψ

j
(y), (12)

where the t-singular values and t-singular functions are defined as follows:

σj =M−1(ς̆j), ϕ
j
(x) =M−1(φ̆

j
(x)), and ψ

j
(y) =M−1(ψ̆

j
(y)).

The orthonormality conditions∫
X
ϕ
i
(x) ∗M ϕ

j
(x)dx = δijM

−1(1),

∫
Y
ψ
i
(y) ∗M ψ

j
(y)dy = δijM

−1(1)

result from the orthonormality of {ui,j}∞j=1 and {vi,j}∞j=1 (from Eq. (11)) and the properties of the
transform M(·) specified in Eq. (1). This concludes the proof.

B.2.2 Proof of the r-Term Truncated Ft-SVD Theorem

Theorem 2 provides an extent of the Eckart-Young theorem for t-SVD [27] to the proposed Ft-SVD
framework. It highlights the optimality of the truncated Ft-SVD in approximating vector-valued
functions, making it a valuable tool for applications such as function compression, denoising, and
other tasks that benefit from low-rank approximations of functions. The proof is given as follows.

Proof of Theorem 2. Let G ∈ L2(X × Y;R1×1×K) be an arbitrary r-term t-product expansion:

G(x, y) =

r∑
i=1

ai(x) ∗M λi ∗M bi(y), (13)

where ai ∈ L2(X ;R1×1×K), bi ∈ L2(Y;R1×1×K), λi ∈ R1×1×K .

Our goal is to show that

∥F − Fr∥L2(X×Y;R1×1×K) ≤ ∥F −G∥L2(X×Y;R1×1×K)

for all G ∈ Kr, where Kr is the set of all r-term t-product expansions.

Recall that F̆ (i) = M(F )(:, :, i) denotes the i-th (i ∈ [K]) frequency component of F in the
transformed domain induced by Eq. (1). According to the construction of the functional t-singular
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value decomposition in the proof of Theorem 1, we have:

F̆ (i)(x, y) =

∞∑
j=1

ϕ̆
(i)

j
(x) · σ̆(i)

j · ψ̆
(i)

j
(y), Ğ(i)(x, y) =

r∑
j=1

ă
(i)
j (x) · λ̆

(i)

j · b̆
(i)
j (y),

where the sequences (σ̆
(i)
j ) and (λ̆

(i)

j ) are in non-ascending order, and the sets

{ϕ̆
(i)

j
}∞j=1, {ψ̆

(i)

j
}∞j=1, {ă

(i)
j }rj=1, and {b̆(i)j }rj=1 are orthonormal bases in their respective

spaces: ∫
X
ϕ̆
(i)

j
(x)ϕ̆

(i)

k
(x)dx = δjk,

∫
Y
ψ̆
(i)

j
(y)ψ̆

(i)

k
(y)dy = δjk,∀(j, k) ∈ N2,∫

X
ă
(i)
j (x)ă

(i)
k (x)dx = δjk,

∫
Y
b̆
(i)
j (y)b̆

(i)
k (y)dy = δjk,∀(j, k) ∈ [r]2.

Now, let’s consider the approximation error:

∥F −G∥2L2(X×Y;R1×1×K) =

∫
X

∫
Y
∥F (x, y)−G(x, y)∥22dydx

=

∫
X

∫
Y
∥M(F (x, y)−G(x, y))∥22dydx

=

K∑
i=1

∫
X

∫
Y
|F̆ (i)(x, y)− Ğ(i)(x, y)|2dydx

=

K∑
i=1

∥F̆ (i) − Ğ(i)∥2L2(X×Y;R)

≥
K∑
i=1

∥
∞∑
j=1

ϕ̆
(i)

j
· σ̆(i)

j · ψ̆
(i)

j
−

r∑
j=1

ϕ̆
(i)

j
· σ̆(i)

j · ψ̆
(i)

j
∥2L2(X×Y;R)

=

K∑
i=1

∥
∞∑

j=r+1

ϕ̆
(i)

j
· σ̆(i)

j · ψ̆
(i)

j
∥2L2(X×Y;R)

=

K∑
i=1

∞∑
j=r+1

(σ̆
(i)
j )2 =

∞∑
j=r+1

∥σj∥22.

The last equality holds due to the orthonormality of the bases {ϕ̆
(i)

j
}∞j=1 and {ψ̆

(i)

j
}∞j=1. The inequality

in the sixth line becomes an equality when

ϕ̆
(i)

j
(x) = ă

(i)
j (x), σ̆

(i)
j = λ̆

(i)

j , ψ̆
(i)

j
(y) = b̆

(i)
j (y), ∀j ∈ [r], i ∈ [K],

⇒ ϕ
j
(x) = aj(x), σj = λj , ψ

j
(y) = bj(y), ∀j ∈ [r].

This choice of aj , λj , and bj corresponds to the best L2-approximation by finite sums of functions
with separable variables [48, 47].

Therefore, we have shown that ∥F − Fr∥2L2(X×Y;R1×1×K) =
∑∞

j=r+1 ∥σj∥22, which is the minimum
approximation error among all r-term t-product expansions. This completes the proof.

B.2.3 Smooth Functions Exhibit Favorable Low-rank Approximability under Ft-SVD

The Sobolev spaces are a family of function spaces that play a crucial role in the theory of partial
differential equations, signal processing and machine learning [3, 4, 29, 42]. They are defined by
combining conditions on the function itself and its derivatives up to a certain order.

In our settings, let Y ⊂ RD2 be a domain satisfying the strong local Lipschitz condition, and let
f : X × Y → R1×1×K be a vector-valued function with components f (i)(x, y), i = 1, . . . ,K.

28



Suppose there exists a constant s > 0 such that f (i) ∈ L2(X , Hs(Y)) for all i, where Hs(Y) denotes
the s-order Sobolev space on Y . The function class L2(X , Hs(Y)) is a type of mixed-norm Sobolev
space that arises when dealing with functions defined on a product domain X × Y , where X is
a domain in RD1 and Y is a domain in RD2 satisfying the strong local Lipschitz condition. The
strong local Lipschitz condition on a domain Y ⊂ RD2 requires that, locally around each boundary
point y0 ∈ ∂Y , there exists a Lipschitz parametrization of the boundary, ensuring a certain level of
regularity and avoiding pathological features like cusps, which is crucial for establishing various
results in the theory of Sobolev spaces.

For a vector-valued function f : X × Y → R1×1×K with components f (i)(x, y), i = 1, . . . ,K, the
condition f (i) ∈ L2(X , Hs(Y)) means that each component function f (i) belongs to the mixed-norm
Sobolev space L2(X , Hs(Y)). The space L2(X , Hs(Y)) is defined as the set of all vector-valued
functions g : X × Y → R1×1×K with components g(i)(x, y), such that for each i = 1, . . . ,K, the
following norm is finite:

∥g(i)∥L2(X ,Hs(Y)) :=

(∫
X
∥g(i)(x, ·)∥2Hs(Y) dx

)1/2

,

where ∥g(i)(x, ·)∥Hs(Y) denotes the Sobolev norm of order s for the function g(i)(x, ·) considered as
a function of the y variable alone, with x treated as a parameter. More precisely, the Sobolev norm
∥g(i)(x, ·)∥Hs(Y) is defined as:

∥g(i)(x, ·)∥Hs(Y) :=

∑
|α|≤s

∫
Y
|Dα

y g
(i)(x, y)|2 dy

1/2

,

where Dα
y denotes the weak (or distributional) derivative of order α with respect to the y variable, and

the sum is taken over all multi-indices α = (α1, α2, . . . , αD2) with |α| = α1 + α2 + · · ·+ αD2 ≤ s.
Theorem 3 quantifies the relationship between the smoothness of a vector-valued function and the
decay of its t-singular values, as well as the approximation error of its truncated t-SVD. It provides a
theoretical foundation for using t-SVD to approximate smooth vector-valued functions and highlights
the role of the function’s smoothness and the domain’s dimensionality in the approximation accuracy.
The proof of Theorem 3 is given as follows:

Proof of Theorem 3. Let f : X × Y → R1×1×K be a vector-valued function with components
f (i)(x, y), i = 1, . . . ,K. The condition f (i) ∈ L2(X , Hs(Y)) implies that each component function
f (i) belongs to the mixed-norm Sobolev space L2(X , Hs(Y)).

Consider the i-th frequency component f̆ (i)(x, y) of f in the transformed domain induced by the
transform M defined in Eq. (1). By the definition of M(·), we have

f̆ (i)(x, y) =

K∑
k=1

mikf
(k)(x, y), (14)

which is a linear combination of the component functions f (k)(x, y) in the original domain. Since
each f (k) ∈ L2(X , Hs(Y)), it follows that f̆ (i) ∈ L2(X , Hs(Y)) as well.

Next, we apply Theorem 3.2 from Ref. [21] to the function f̆ (i). This theorem states that for a
function g ∈ L2(X , Hs(Y)), the singular values σj(g) satisfy the decay estimate

σ2
j (g) ≤ diam(Y)2sCext(Y, s)Cem(D2, s) · ∥g∥L2(X ,Hs(Y)) · j−1− 2s

D2 , (15)

where Cext(Y, s) is the extension constant that depends on Y and s only, and Cem(D2, s) is the
embedding constant from ℓD2/(D2+2s),1 to ℓD2/(D2+2s),∞ given by

Cem(D2, s) = 2D2/2π−sΓ(s+ 1/2)/Γ(1− s), (16)

with Γ(·) denoting the Gamma function.

29



Applying the estimate (15) to each frequency component f̆ (i), we obtain

σ2
j (f̆

(i)) ≤ diam(Y)2sCext(Y, s)Cem(D2, s) · ∥f̆ (i)∥L2(X ,Hs(Y)) · j−1− 2s
D2 , ∀i ∈ [K], j ∈ N.

(17)

Now, recall from the construction of the functional t-SVD in the proof of Theorem 1 that the t-scalars
σj satisfy

∥σj∥2 =

K∑
i=1

σ2
j (f̆

(i)).

Combining this with the previous estimate, we deduce that

∥σj∥2 =

K∑
i=1

σ2
j (f̆

(i))

≤ diam(Y)2sCext(Y, s)Cem(D2, s) ·
K∑
i=1

∥f̆ (i)∥L2(X ,Hs(Y)) · j−1− 2s
D2 .

Finally, according to Theorem 2, the rank-r approximation error of f can be bounded as follows:

min
f̃∈Fr

∥f − f̃∥2L2(X×Hs(Y))

=

∞∑
j=r+1

∥σj∥2

≤
∞∑

j=r+1

diam(Y)2sCext(Y, s)Cem(D2, s) ·
K∑
i=1

∥f̆ (i)∥L2(X ,Hs(Y)) · j−1− 2s
D2

≤
∞∑

j=r+1

diam(Y)2sCext(Y, s)Cem(D2, s) ·
K∑
i=1

∥f̆ (i)∥L2(X ,Hs(Y))
D2

2s
(r + 1)−

2s
D2

= diam(Y)2sCext(Y, s)Cem(D2, s) ·
K∑
i=1

∥f̆ (i)∥L2(X ,Hs(Y))
D2

2s
(r + 1)−

2s
D2 ,

which completes the proof.

30



C Additional Explanations of Ft-SVD Framework for MOR under CDS

C.1 More Explanations about the Hilbert t-Module, t-Bilinear Embeddings, and Assumptions

C.1.1 About the Definition of Hilbert t-Module

Definition 11 (Ring of K-dimensional vectors with t-product). LetR := R1×1×K be the set of all
real t-scalars of K-dimensionality which is isomorphic to RK . For any a, b ∈ R, we define their
t-product as:

a ∗M b =M−1(M(a)⊙M(b))

where M : R → R is the linear transform induced by a given K × K orthogonal matrix M in
Eq. (1), and the slice-wise-product ⊙ degenerates to the element-wise product here.

(R,+, ∗M ) forms a ring with the t-product and standard vector addition, which we call the ring
of K-dimensional real vectors with t-product. Specifically, for any a, b, c ∈ R and α, β ∈ R, the
following properties hold:

1. (Associativity of addition) (a+ b) + c = a+ (b+ c).

2. (Commutativity of addition) a+ b = b+ a.

3. (Additive identity) There exists an element 0 ∈ R such that a+ 0 = a for all a ∈ R.

4. (Additive inverses) For each a ∈ R, there exists an element −a ∈ R such that a+ (−a) = 0.

5. (Associativity of multiplication) (a ∗M b) ∗M c = a ∗M (b ∗M c).

6. (Distributivity of multiplication over addition) a∗M (b+c) = a∗M b+a∗M c and (a+b)∗M c =
a ∗M c+ b ∗M c.

7. (Multiplicative identity) There exists an element 1 ∈ R such that a ∗M 1 = a for all a ∈ R.

8. (Scalar multiplication) (αβ)a = α(βa), α(a+ b) = αa+ αb, and (α+ β)a = αa+ βa.

Definition 12 (Hilbert t-Module over R). Let R be the ring of K-dimensional real vectors with
t-product as defined above. A Hilbert t-Module over R is a moduleM over R equipped with an
R-valued inner product ⟨·, ·⟩M :M×M→R satisfying the following conditions:

1. (Conjugate symmetry) ⟨f, g⟩M = ⟨g, f⟩M for all f, g ∈ M, where the overline denotes the
element-wise complex conjugate.13

2. (Linearity in the second argument) ⟨f, g
1
+ g

2
⟩M = ⟨f, g

1
⟩M + ⟨f, g

2
⟩M and ⟨f, g ∗M a⟩M =

⟨f, g⟩M ∗M a for all f, g, g
1
, g

2
∈M and a ∈ R.

3. (Positivity) ⟨f, f⟩M ≥ 0 (element-wise) for all f ∈M, with equality if and only if f = 0.

The Hilbert t-ModuleM is required to be complete with respect to the ℓ2-norm induced by the
R-valued inner product:

∥f∥M := ∥f∥ℓ2 =

√√√√ K∑
i=1

(⟨f, f⟩M)2i ,

where (⟨f, f⟩M)i denotes the i-th component of the vector ⟨f, f⟩M.

Remark. The ℓ2-norm used here differs from the traditional C*-algebra norm in the definition of
Hilbert C*-modules, as it does not satisfy the C*-equality ∥f∥2 = ∥⟨f, f⟩M∥R [25, 8]. Despite this
difference, we still refer to this structure as a Hilbert t-Module to emphasize its similarities with
Hilbert C*-modules.

13In the case of real Hilbert t-Modules, this condition reduces to the usual symmetry property ⟨f, g⟩M =

⟨g, f⟩M.
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The benefits of using ℓ2-norm for multi-output regression instead of the standard C* norm
The choice of the ℓ2-norm for Hilbert t-modules in the context of multi-output regression offers
several advantages over the standard C* norm:

1. Geometric interpretation and learning theory: The ℓ2-norm, as the Euclidean distance between
vectors, provides a natural and intuitive way to measure the similarity between vector-valued
functions. This geometric interpretation aligns well with the learning theory for vector-valued
functions, where the goal is often to find a function that minimizes the expected risk or empirical
risk, which are typically defined using the ℓ2-norm.

2. Computational efficiency and scalability: The ℓ2-norm is computationally more efficient than
the C* norm, especially for high-dimensional vector-valued functions. This computational
advantage is crucial for large-scale multi-output regression problems, where the number of
outputs and the dimensionality of the input space can be large. The ℓ2-norm allows for the
development of more scalable and efficient learning algorithms.

3. Theoretical foundations and connections: The ℓ2-norm is closely related to the theory of Hilbert
spaces, which provides a rich set of tools and results for studying vector-valued functions.
By using the ℓ2-norm, Hilbert t-modules can leverage the well-established theory of Hilbert
spaces, including concepts such as orthogonality, projection, and spectral decomposition. These
theoretical foundations can guide the design and analysis of multi-output regression algorithms.

4. Practical applications and existing methods: The ℓ2-norm is widely used in various practical
applications, such as signal processing, computer vision, and control systems. Many existing
multi-output regression methods, such as multi-task learning, multi-label classification, and
multi-target regression, are based on the ℓ2-norm. By adopting the ℓ2-norm, Hilbert t-modules
can readily benefit from and contribute to these existing methods and applications.

Although the ℓ2-norm may not satisfy all the properties of the standard C* norm, it offers significant
benefits for multi-output regression. The use of the ℓ2-norm in Hilbert t-modules opens up new oppor-
tunities for the development of efficient, scalable, and theoretically grounded multi-output regression
methods. It also facilitates the integration of multi-output regression with other areas of machine
learning and signal processing, where the ℓ2-norm is widely used. The name "Hilbert t-module"
highlights the connection to the well-established theory of Hilbert spaces while acknowledging the
specific choice of the ℓ2-norm and the potential for further generalization and exploration in the
context of multi-output regression.

Now we have a Hilbert t-ModuleM over the ringR of K-dimensional real vectors with t-product.
The elements ofM can be thought of as vector-valued functions or tensors, and we consider a linear
transform M induced by an orthogonal matrix M that allows us to represent these elements in the
frequency domain. We also define the associated Hilbert spaceHj as follows:

Definition 13 (Hilbert space Hj). For each j = 1, . . . ,K, let Hj be a Hilbert space over the
field of real numbers R. We assume that for any element f ∈ M, its j-th frequency component

f̆
(i)

:= M(f)(i) belongs to Hj , i.e., f̆
(i)
∈ Hj . The Hilbert space Hj is equipped with an inner

product ⟨·, ·⟩Hj
: Hj ×Hj → R satisfying the following properties:

1. (Conjugate symmetry) ⟨x, y⟩Hj
= ⟨y, x⟩Hj

for all x, y ∈ Hj .

2. (Linearity in the second argument) ⟨x, y1 + y2⟩Hj
= ⟨x, y1⟩Hj

+ ⟨x, y2⟩Hj
and ⟨x, αy⟩Hj

=
α⟨x, y⟩Hj for all x, y, y1, y2 ∈ Hj and α ∈ R.

3. (Positivity) ⟨x, x⟩Hj ≥ 0 for all x ∈ Hj , with equality if and only if x = 0.

The Hilbert spaceHj is complete with respect to the norm induced by the inner product: ∥x∥Hj
=√

⟨x, x⟩Hj for all x ∈ Hj .

In essence, Hj is a standard Hilbert space associated with the j-th frequency component of the
elements in the Hilbert t-ModuleM. The inner product and norm inHj satisfy the usual properties
of a Hilbert space, and the completeness ensures that limits of Cauchy sequences inHj also belong
toHj .

This definition allows us to work with the frequency components of the elements in the Hilbert
t-Module using the tools and properties of Hilbert spaces. In particular, it enables us to apply the
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Cauchy-Schwarz inequality in each Hj , which is a key step in proving the inequality between the
norm of the inner product and the product of the norms in the Hilbert t-Module.

We also have a Cauchy-Schwarz-like inequality in Hilbert t-Modules as follows.

Lemma C.1 (Cauchy-Schwarz inequality in Hilbert t-Modules). It holds for any f, g ∈M that

∥⟨f, g⟩M∥2 ≤ ∥f∥2M · ∥g∥2M.

Proof. Let f, g ∈M be two elements of the Hilbert t-Module. We begin by expanding the left-hand
side of the inequality:

∥⟨f, g⟩M∥2

=

K∑
i=1

(
(⟨f, g⟩M)i

)2
(Definition of the ℓ2-norm onR)

=

K∑
i=1

 K∑
j=1

mij⟨fj , gj⟩Hj

2

(Definition of the inner product onM)

≤
K∑
i=1

 K∑
j=1

m2
ij

 K∑
j=1

⟨fj , gj⟩
2
Hj

 (Cauchy-Schwarz inequality on RK)

=

K∑
i=1

 K∑
j=1

⟨fj , gj⟩
2
Hj

 (Orthogonality of M)

≤
K∑
i=1

 K∑
j=1

∥fj∥2Hj
· ∥g

j
∥2Hj

 (Cauchy-Schwarz inequality onHj)

=

 K∑
j=1

∥fj∥2Hj

 ·
 K∑

j=1

∥g
j
∥2Hj


= ∥f∥2M · ∥g∥2M, (Definition of the norm onM)

which completes the proof.

C.1.2 One the Expressive Power of Hilbert t-Module and embeddings

The Functional t-SVD theorem states that for a square-integrable vector-valued function F : X×Y →
R1×1×K , there exist orthonormal sets of functions {ϕ

i
}∞i=1 ⊂ L2(X ;R1×1×K) and {ψ

i
}∞i=1 ⊂

L2(Y;R1×1×K), and a sequence of t-scalars {σi}∞i=1 ⊂ R1×1×K , such that

F (x, y) =

∞∑
i=1

ϕ
i
(x) ∗M σi ∗M ψ

i
(y).

Now, consider the Ground Truth Representation assumption, which posits the existence of a Hilbert
t-Module (M, ⟨·, ·⟩M) and two embeddings f⋆ : X 7→ M and g⋆ : Y 7→ M, such that the true
function h⋆(x, y) can be expressed as the inner product of these embeddings:

h⋆(x, y) =
〈
f⋆(x), g⋆(y)

〉
M .

Assuming that the true function h⋆ is square-integrable, i.e., h⋆ ∈ L2(X × Y;R1×1×K), the
Functional t-SVD theorem implies that it admits a representation of the form

h⋆(x, y) =

∞∑
i=1

ϕ
i
(x) ∗M σi ∗M ψ

i
(y).
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In this context, the Hilbert t-ModuleM can be interpreted as the space spanned by the left singular
functions {ϕ

i
}∞i=1, and the embeddings f⋆ and g⋆ can be defined as

f⋆(x) =
∞∑
i=1

ϕ
i
(x) ∗M M−1(M(σi)

1
2 ),

g⋆(y) =

∞∑
i=1

ψ
i
(y) ∗M M−1(M(σi)

1
2 ),

where the square root operation (·) 1
2 is performed element-wisely. With these definitions, the inner

product of the embeddings in the Hilbert t-ModuleM recovers the true function:〈
f⋆(x), g⋆(y)

〉
M =

∞∑
i=1

ϕ
i
(x) ∗M σi ∗M ψ

i
(y) = h⋆(x, y).

This demonstrates that, under the square-integrability assumption, the Functional t-SVD theorem
provides a constructive way to obtain a Hilbert t-Module and embeddings that satisfy the t-bilinear
representation assumption (Assumption 1). The theorem reveals a deep connection between the
spectral decomposition of vector-valued functions and the geometric structure of Hilbert t-Modules,
which can be exploited to develop efficient algorithms for multi-output regression and analysis.
The use of the t-product (∗M ) highlights the role of the tensor structure in this framework, and the
consistent notation for the singular functions (ϕ

i
and ψ

i
) emphasizes their fundamental importance

in the construction of the Hilbert t-Module and the associated embeddings.

C.1.3 More Explanations for the Assumptions

Explanation of Assumption 1. Assumption 1 is the cornerstone of the proposed theoretical
framework for multi-output regression under CDS. It establishes a connection between the ground
truth function and the geometry of a Hilbert t-Module, which is a generalization of a Hilbert space
that accommodates vector-valued functions.

Part (I) of the assumption postulates that the ground truth function h⋆(x, y), which maps input pairs
(x, y) to vector-valued outputs, admits a t-bilinear representation in a Hilbert t-Module (M, ⟨·, ·⟩M).
This means that there exist two embeddings, f⋆ : X → M and g⋆ : Y → M, such that h⋆(x, y)
can be expressed as the inner product of these embeddings, i.e., h⋆(x, y) = ⟨f⋆(x), g⋆(y)⟩M. The
t-bilinear form is a natural extension of the bilinear form used (in single-output learning) [46], and it
allows us to capture the multi-dimensional structure of the problem.

The assumption further states that this t-bilinear representation is the Bayes optimal predictor on both
the training distribution Dtrain and the test distribution Dtest. This means that among all measurable
functions, the t-bilinear representation minimizes the expected loss on both distributions. This
assumption provides a clear learning objective and a benchmark for the performance of any learning
algorithm.

Part (II) of the assumption imposes regularity and boundedness conditions on the output variable z and
the embeddings f⋆(x) and g⋆(y). It assumes that the squared ℓ2-norm of z is bounded by B2 almost
surely under the training distribution Dtrain, and the Hilbert t-Module norms of the embeddings are
uniformly bounded by the same constant B. These conditions are crucial for deriving theoretical
guarantees and ensuring the well-posedness of the learning problem. They prevent pathological cases
and ensure that the learning problem is tractable.

Intuitively, Assumption 1 tells us that the ground truth function has a simple and interpretable structure
(t-bilinear representation) that is optimal on both the training and testing distributions. Moreover, the
output and the embeddings are well-behaved (bounded). This sets the stage for the learning problem
and provides a clear target for any learning algorithm.

Explanation of Assumption 2. Assumption 2 characterizes the relationship between the training
and testing distributions in the context of CDS. In real-world applications, it is common for the testing
distribution to differ from the training distribution. CDS is a specific type of distribution shift where
the testing distribution includes novel combinations of features that are not present in the training
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distribution. Following Ref. [46], we can also relax Assumption 2 through a probabilistic manner as
follows:

Assumption 6 (Coverage of training and test distribution (probabilistic version), Assumption 2.2b
in Ref. [46]). There exist constants κtst, κtrn > 0, ηtst, ηtrn ∈ (0, 1] and marginal distributions
DX ,1,DX ,2 over X , and DY,1,DY,2 over Y , with product measures Di⊗j := DX ,i ⊗ DY,j , such
that the following conditions in Radon–Nikodym derivatives hold for all (x, y) ∈ X × Y:

PDi⊗j

[
dDi⊗j(x, y)

dDtrain(x, y)
> κtrn

]
≤ ηtrn, (i, j) ∈ {(1, 1), (1, 2), (2, 1)} (Training coverage)

PDtest

[
dDtest(x, y)∑

i,j∈{1,2} dDi⊗j(x, y)
> κtst

]
≤ ηtst. (Test coverage)

Assumption 6 formalizes this notion by introducing marginal distributions DX ,1,DX ,2 over the input
space X and DY,1,DY,2 over the output space Y . The product measures Di⊗j := DX ,i ⊗ DY,j

represent different combinations of these marginal distributions.

The assumption requires that the training distribution Dtrain covers the key feature combinations
((1,1), (1,2), (2,1)) of these product measures, while allowing the testing distribution Dtest to include
unseen combinations (e.g., (2,2)). The coverage is quantified by the constants κtrn, κtst, ηtrn, ηtst, which
provide some flexibility in the assumption.

Intuitively, this assumption tells us that the training distribution should be diverse enough to cover
the key aspects of the marginal distributions, but it doesn’t need to cover all possible combinations.
The testing distribution, on the other hand, can include novel combinations that are not present in the
training distribution. This is a realistic assumption in many practical scenarios.

Explanation of Assumption 3. Assumption 3 is a technical assumption that controls the impact
of covariate shift on the model’s performance. Covariate shift refers to the situation where the
distribution of the input features changes between the training and testing distributions. Motivated by
Assumptionn2.3b in Ref. [46] we can also consider a slacked version of Assumption 3 as follows.

Assumption 7 (Controlled covariate shifts, slacked version). There exists a κcov ≥ 1 and ηcov ∈ (0, 1]
such that, for any v ∈M, the following inequalities hold:

Ex∼DX ,2
[∥⟨f⋆(x), v⟩M∥2] ≤ κcov · Ex∼DX ,1

[∥⟨f⋆(x), v⟩M∥2] + ηcov∥v∥2M
Ey∼DY,2

[∥⟨g⋆(y), v⟩M∥2] ≤ κcov · Ey∼DY,1
[∥⟨g⋆(y), v⟩M∥2] + ηcov∥v∥2M.

The assumption states that for any t-vector v in the Hilbert t-ModuleM, the expected squared norm
of the t-inner product between v and the embeddings f⋆(x) and g⋆(y) under the unseen distributions
DX ,2 and DY,2 is bounded by a constant factor κcov times the same quantity under the training
distributions DX ,1 and DY,1, plus a small constant ηcov times the squared Hilbert t-Module norm of
v.

Intuitively, this assumption ensures that the behavior of the embeddings doesn’t change too much
under covariate shift. It bounds the worst-case impact of the shift on the model’s performance. This
is a key ingredient in providing generalization guarantees under CDS.

Without this assumption, the model’s performance on the testing distribution could be arbitrarily bad,
even if it performs well on the training distribution. The assumption ensures that the performance
degradation is controlled, which is essential for learning under distribution shift.

Explanation of Assumption 4. Assumption 4 postulates favorable spectral properties of the ground
truth embeddings f⋆ and g⋆. The spectral properties refer to the behavior of the singular values of the
embeddings’ t-covariance operators.

Part (I) of the assumption, termed “Balanced embeddings,” posits that the embeddings are balanced
in an appropriate basis of the Hilbert t-Module, such that their t-covariances Σf⋆ and Σg⋆ equal a
common t-covariance Σ⋆

1⊗1. This assumption might initially appear restrictive, but mathematically, it
is very mild. Specifically, we can always find a pair of invertible t-linear transformations Tf and Tg
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such that:
Tf ∗M Σf⋆ ∗M T⊤

f = Tg ∗M Σg⋆ ∗M T⊤
g =: Σ⋆

1⊗1.

In other words, by applying suitable transformations to the embeddings f⋆ and g⋆, their t-covariances
can be aligned to a common t-covariance Σ⋆

1⊗1 in a transformed basis of the Hilbert t-Module.
Practically, the assumption of balanced embeddings can be viewed as a form of normalization or
standardization. By aligning their t-covariances, we ensure that the embeddings have similar scales
and orientations in the Hilbert t-Module, facilitating the learning process and simplifying theoretical
analysis.

Part (II) of the assumption, termed “Polynomial spectral decay,” assumes that each frequency
component of Σ⋆

1⊗1 in the transformed domain induced by the transform M(·) exhibits a polynomial
singular value decay, potentially with different decay rates γi for different components.

Intuitively, this assumption tells us that the information in the embeddings is concentrated in a few
principal directions (corresponding to the large singular values), and the importance of the remaining
directions decays polynomially. This is a common assumption in many learning problems, and it
allows us to effectively approximate the embeddings using low-rank structures.

The polynomial decay assumption is more flexible than the often-used exponential decay assumption,
as it allows different frequency components to decay at different rates. This is particularly useful in
the context of multi-output regression, where different outputs may have different spectral properties.

Explanation of Assumption 5. Assumption 5 essentially states that the error between the optimal
rank-k embeddings and the ground truth function h⋆ over the training data Dtrain is bounded by a
constant factor κapx times the error over a reference distribution D1⊗1. This assumption ensures
that the training data provides a good approximation of the ground truth function in each frequency
sub-domain.

Intuitively, this assumption implies that the training data Dtrain is sufficiently representative of the
true function h⋆ in each frequency sub-domain induced by the transformationM(·). It guarantees that
if we find embeddings that well approximate h⋆ on the training data, they will also perform well on
the reference distribution D1⊗1. More specifically, ApxErr(i)k (x, y) measures the squared difference
between the inner product of the optimal rank-k embeddings (PkM(f⋆(x))(i) and PkM(g⋆(y))(i))
and the i-th frequency component of the true function (M(h⋆(x, y))(i)) for a given pair of inputs
(x, y). By taking the expectation of this error over the training distribution Dtrain and the reference
distribution D1⊗1, we obtain a measure of how well the rank-k embeddings approximate the true
function in each frequency sub-domain.

The assumption states that the expected approximation error over the training data is bounded by
a constant factor κapx times the expected error over the reference distribution, for all frequency
sub-domains i ∈ [K]. This means that the training data provides a good approximation of the true
function in each sub-domain, relative to the reference distribution.

The significance of this assumption lies in its importance for generalization analysis under CDS.
By ensuring that the training data adequately represents the true function within each frequency
sub-domain, it enables the learning of embeddings that effectively capture essential characteristics of
the true function. This, in turn, allows the learned model to generalize well to unseen combinations of
input features, provided that the spectral properties of the true function are favorable (e.g., exhibiting
polynomial decay as assumed in Assumption 4), thereby accommodating the multi-output nature of
the problem.

C.2 More Details of the Algorithms

C.2.1 Limitations of ERM for multi-output regression under CDS.

In the ERM model (5), the function classes Fr,Gr are given as follows:

Assumption 8 (Hypothesis classes in the ERM Model (5)). For each k ∈ N, there exist function
classes Fk ⊆ {X → Rk×1×K} and Gk ⊆ {Y → Rk×1×K} satisfy:
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(a) There exist some (f, g) ∈ Fk×Gk such that ⟨f(x), g(y)⟩t := (f(x))⊤∗Mg(y) = ⟨f⋆k(x), g⋆k(y)⟩M
for all (x, y) ∈ X × Y .

(b) The function classes Fk and Gk have their ϵ-covering numbers bounded as follows:
logN (Fk, ϵ, ∥ · ∥∞) ≤ NFk

(ϵ) and logN (Gk, ϵ, ∥ · ∥∞) ≤ NGk
(ϵ), where NFk

and NGk

are non-decreasing functions of k and decreasing functions of ϵ > 0.

(c) There exists some B > 0, such that max
{
supx∈X ∥f(x)∥M, supy∈Y ∥g(y)∥M

}
≤ B.

This assumption specifies the hypothesis classes Fr and Gr used in the ERM problem (5). It ensures
that these classes are sufficiently expressive to approximate the true embeddings f⋆ and g⋆, while
also having controlled complexity in terms of their covering numbers. With these assumptions in
place, we can obtain the generalization guarantee for the ERM solution in Theorem 4. However, the
single-stage ERM approach has several limitations when applied to multi-output regression under
CDS:

• Lack of adaptivity to spectral decay patterns: The hypothesis classes Fr and Gr used in the
single-stage ERM approach do not explicitly take into account the potentially varying spectral
decay patterns of the ground truth embeddings along different frequency components of the
transform M(·). As a result, the learned embeddings may not adequately capture the distinct
decay behaviors in different frequency sub-domains, leading to suboptimal approximations.

• Global learning and complexity control: The single-stage ERM approach learns the embeddings
f̂erm and ĝ

erm
globally, without considering the specific characteristics of different frequency sub-

domains. This global learning approach may not be able to adapt to the nuances and variations
in the decay patterns across sub-domains. Moreover, the complexity of the hypothesis classes
Fr and Gr is controlled globally through their covering numbers, which may not provide a
fine-grained enough complexity control to capture the differences in the decay patterns.

• Suboptimal generalization guarantees: Due to the limitations mentioned above, the single-stage
ERM approach may result in suboptimal generalization guarantees for multi-output regression
under CDS. The learned embeddings may not generalize well to new feature combinations,
particularly when the spectral decay patterns vary significantly across different frequency sub-
domains.

C.2.2 Double-Stage ERM (ERM-DS) for improved multi-output regression under CDS.

To address these weaknesses, we propose a Double-Stage Empirical Risk Minimization (ERM-DS)
algorithm. This approach employs a two-stage training process with more specific hypothesis classes
to better capture the varying spectral decay patterns across sub-domains. By striking a balance
between model complexity and generalization ability, ERM-DS aims to overcome the limitations
of the single-stage ERM approach and provide improved generalization guarantees for multi-output
regression under CDS.

The framework of Double-Stage Empirical Risk Minimization is first proposed by Ref. [46] to address
robust learning under CDS (for single-output learning), our work extends this framework to the
more complex setting of multi-output regression with t-bilinear embeddings. By learning vector
functions as embeddings in a Hilbert t-module and leveraging tensor algebra, we capture the intricate
dependencies among multiple outputs.

To more accurately capture the varying spectral decay patterns of the ground truth along each
frequency component of the transform M(·), the algorithm learns the t-bilinear embeddings f⋆ and

g⋆ by approximating their frequency components f̆
⋆,(i)

and ğ⋆,(i) separately in each i-th frequency
sub-domain. This is achieved by employing function classes specifically characterized for each
sub-domain, allowing the algorithm to adapt to the distinct decay behaviors exhibited by the ground
truth in each frequency range. By treating each sub-domain independently and using specialized
function classes, the algorithm can better capture the nuances and variations in the decay patterns,
leading to a more precise approximation of the t-bilinear embeddings f⋆ and g⋆.
Assumption 9 (Function Approximation in Transformed sub-frequency components Separately). In
any sub-frequency component i ∈ [K], for each k ∈ N, there exist function classes F̆ (i)

k ⊆ {X →
Rk} and Ğ(i)k ⊆ {Y → Rk} satisfy:
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(a) sup
f∈F̆(i)

k

supx∈X ∥f(x)∥ ≤ B and sup
g∈Ğ(i)

k

supy∈Y ∥g(y)∥ ≤ B.

(b) There exist some (f, g) ∈ F̆ (i)
k × Ğ(i)k such that ⟨f(x), g(y)⟩ = ⟨̆f

⋆,(i)

k (x), ğ⋆,(i)
k

(y)⟩ for all

(x, y) ∈ X ×Y , where f̆
⋆,(i)

k (x), ğ⋆,(i)

k
(y) are the projections of f̆

⋆,(i)
(x) and ğ⋆,(i)(y) in the top-k

eigenspaces of M(Σ⋆
1⊗1)

(i), respectively.

(c) The function classes F̆ (i)
k and Ğ(i)k have their ϵ-covering numbers bounded as follows:

logN (F̆ (i)
k , ϵ, ∥ · ∥∞) ≤ MF̆(i)

k

(ϵ) and logN (Ğ(i)k , ϵ, ∥ · ∥∞) ≤ MĞ(i)
k

(ϵ), where MF̆(i)
k

and
MĞ(i)

k

are non-decreasing functions of k and decreasing functions of ϵ > 0.

The algorithm consists of the following key steps:

Step 1: Overparameterized Training. In the first stage, ERM-DS trains an overparameterized
model (̃f, g̃) with high capacity to approximate the unknown true predictive functions f⋆ and g⋆. This
allows the algorithm to handle the uncertainty in the true predictive functions, which are unknown
and potentially intricate. The over-parameterized model is trained by minimizing the empirical risk
on labeled training data {(x1,j , y1,j , z1,j)}n1

j=1 sampled i.i.d. from Dtrain. Instead of training (̃f, g̃)
within a single optimization problem as in Eq. (5), we consider choosing their frequency components
in the transformed domains induced by M(·), separately via K parallel ERM sub-problems as
follows:

(̆̃f(i), ˘̃g(i)) ∈ argmin
(f,g)∈F̆(i)

p ×Ğ(i)
p

1

n1

n1∑
j=1

(⟨f(x1,j), g(y1,j)⟩ −M(z1,j)(i))2, ∀i ∈ [K]. (18)

In this equation, (̆̃f(i), ˘̃g(i)) represents the i-th frequency component of the overparameterized model

(̃f, g̃) in the transformed domain, and F̆ (i)
p and Ğ(i)p denote the function classes for f and g, respectively.

The objective is to minimize the squared difference between the inner product of f(x1,j) and g(y1,j)
and the i-th component of the transformed target variable M(z1,j), averaged over the training data.

By solving these K parallel ERM sub-problems, the algorithm learns the frequency components of
the overparameterized model in the transformed domains. This approach allows for a more flexible
and potentially more accurate approximation of the unknown true predictive functions, compared to
training the model within a single optimization problem.

Step 2: t-Covariance Estimation. To leverage the assumption that the true predictive functions
have a low-rank structure (Assumption 4), the algorithm estimates the t-covariances of the embeddings
using n2 additional unlabeled examples {(x2,j , y2,j)}n2

j=1 sampled from D1⊗1:

Σ̂f̃ :=
1

n2

n2∑
i=1

f̃(x2,j) ∗M f̃(x2,j)⊤, Σ̂g̃ :=
1

n2

n2∑
i=1

g̃(y2,j) ∗M g̃(y2,j)⊤. (19)

These covariance estimates capture the important directions of variation in the learned embeddings
and will be used for dimension reduction in the next step.

Step 3: Dimension Reduction. Using the estimated covariances, the algorithm computes low-rank
projections (Q̂r̂, r̂) using the DimReduce function in Algorithm 1 with a target ranks rcut ∈ NK and
cutoff parameters σcut ∈ RK in each frequency domain:

(Q̂r̂, r̂)← DimReduce(Σ̂f̃ + µIp, Σ̂g̃ + µIp, rcut,σcut), (20)

where µ is a regularization parameter and I is the t-identity tensor. The reduced-rank embeddings
are then obtained by projecting the overparameterized embeddings onto the low-rank t-subspace:
hred(x, y) := f̃(x)⊤ ∗M Q̂r̂ ∗M g̃(y).

The high capacity of the overparameterized model makes it prone to overfitting, especially when the
training data is limited. However, the true predictive functions can be effectively approximated using
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Algorithm 1 DimReduce(X,Y, r,σ′)

1: Input: Two t-covariances tensors X,Y ∈ Rp×p×K , r = (r1, . . . , rK)⊤ ∈ NK , σ′ =
(σ′

1, . . . , σ
′
K)⊤ ∈ RK .

2: Initialize Q = 0 ∈ Rp×p×K

3: for i = 1 to K do
4: Compute Wi := X

1
2
i (X

1
2
i YiX

1
2
i )

− 1
2 X

1
2
i , where Xi =M(X)(i),Yi =M(Y)(i).

5: Compute Σi := W
1
2
i YiW

1
2
i .

6: Set si ← max
{
s ∈ [ri] : σs(Σi) ≥ σ′

i, σs(Σi)− σs+1(Σi) ≥ σs(Σi)
ri

}
.

7: Let Psi denote the projection onto the top si eigenvectors of Σi.

8: Compute Qsi := W− 1
2

i PsiW
1
2
i and set Q(i) ← Qsi .

9: end for
10: Return (M(Q), s) where s = (s1, . . . , sK) ∈ NK .

fewer dimensions due to their low-rank structure. By projecting the embeddings onto a low-rank
subspace, the algorithm reduces the model’s complexity and mitigates overfitting. This dimensionality
reduction step helps strike a balance between model capacity and generalization ability. It enables the
model to focus on the most important patterns in the data while discarding less informative directions.
This step is crucial for improving the model’s generalization performance and preventing it from
memorizing noise or irrelevant details in the training data.

Step 4: Distillation. In the final stage, the algorithm fine-tunes the reduced-rank embeddings

(̂fds, ĝds
) by approximating their frequency components (

˘̂f(i)ds ,
˘̂g(i)ds ) separately in the transformed

domain induced by M(·). This is achieved by minimizing a combination of two loss functions:

(
˘̂f(i)ds ,

˘̂g(i)
ds ) ∈ argmin

(f,g)∈F̆(i)
r̂i

×Ğ(i)
r̂i

L̂
(i)
(3)(f, g) + νiL̂

(i)
(4)(f, g), (21)

where ν = (ν1, · · · , νK)⊤ ∈ RK is a vector of regularization parameters and the function classes
F̆ (i)

r̂i
and Ğ(i)r̂i

have reduced complexity compared to F̆ (i)
p and Ğ(i)p .

The first loss L̂(i)
(3) is the empirical risk in the i-th frequency domain on n3 additional labeled examples

{(x3,j , y3,j , z3,j)}n3
j=1 sampled from Dtrain:

L̂(3)(f, g) =
1

n3

n3∑
j=1

(⟨f(x3,i), g(y3,i)⟩ −M(z3,i)(i))2.

By minimizing this loss, the algorithm ensures that the embeddings accurately capture the relation-
ships between the input features and the target outputs.

The second loss L̂(i)
(4) is a regularization term that encourages consistency with the reduced-rank

embeddings hred on n4 unlabeled examples {(x4,j , y4,j)}n4
j=1 sampled from D1⊗1:

L̂
(i)
(4)(f, g) =

1

n4

n4∑
i=1

(⟨f(x4,i), g(y4,i)⟩ −M(hred(x4,i, y4,i))
(i))2.

By learning to match the reduced-rank embeddings hred on these unlabeled samples, the final model
becomes more robust to distribution shifts.

Intuitively, the distillation step allows the model to learn from both labeled and unlabeled data,
leveraging the information captured by the reduced-rank embeddings to improve its generalization
ability. The regularization term acts as a guide, encouraging the fine-tuned embeddings to maintain
the important patterns and structures learned during the previous steps while adapting to new feature
combinations. By combining the empirical risk and the regularization term, ERM-DS strikes a
balance between fitting the labeled training data and being robust to distribution shifts. This helps the
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model generalize well to unseen feature combinations and ensures stable performance even when the
test distribution differs from the training distribution.

C.2.3 The Role of Balanced t-Covariance Operator: Capturing Knowledge under CDS

The t-covariance operator Σ⋆
1⊗1 is central to the Ft-SVD framework for multi-output regression

under combinatorial distribution shift, capturing the spectral properties and low-rank structure of
the predictive functions across K frequency components. Defined as the common t-covariance of
balanced embeddings f⋆ and g⋆ on D1⊗1, Σ⋆

1⊗1 reflects the intrinsic low-dimensional structure and
shared patterns across feature combinations. Its spectral decay, indicating the eigenvalue decay of its
frontal slices in the transformed domain, guides the Ft-SVD framework in aligning embeddings with
principal eigenfunctions, enabling effective knowledge transfer under distribution shift.

Estimated from D1⊗1 := DX ,1 ⊗ DY,1, the t-covariance operator supports three main steps the
ERM-DS algorithm:

• Estimation: Using unlabeled samples from D1⊗1 to identify significant variation directions in
embeddings.

• Dimension Reduction: Employing spectral decay to compute low-rank projections that balance
capacity and generalization.

• Distillation: Constructing a regularization term to align fine-tuned and reduced-rank embeddings,
enhancing robustness.

At its core, Σ⋆
1⊗1 acts as a form of transferable “knowledge” for multi-output problems under

combinatorial distribution shifts, capturing and transferring crucial patterns across feature com-
binations. Its spectral properties and principal eigenfunctions encapsulate the low-dimensional
structure, guiding the model to focus on the most transferable features and achieve generalization
in shifted distributions. Through Σ⋆

1⊗1, the Ft-SVD framework and ERM-DS enable effective
knowledge transfer and address the complexities of combinatorial distribution shift.
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D Analysis of the Proposed Algorithms

In this section, we embark on a comprehensive theoretical analysis of the ERM and ERM-DS
algorithms for multi-output regression under the challenging setting of CDS. Our primary goal is to
establish rigorous generalization guarantees for these algorithms.

Challenges. In the our settings of multi-output regression under CDS, several key challenges arise.
Firstly, the algorithms must be able to effectively capture the complex relationships between the
input features and the multiple output variables, even when the training data only covers a limited
range of feature combinations. Secondly, the spectral decay patterns of the true embeddings, which
encode the intrinsic structure of the data, may vary across different sub-domains (i.e., frequency
components), necessitating algorithms that can adapt to these variations. Finally, the presence of
distribution shift between the training and test domains can significantly impact the generalization
performance, requiring algorithms that can mitigate the effects of this shift.

Section organization. To address these challenges and provide a comprehensive analysis of the
ERM and ERM-DS algorithms, we organize this section into three key subsections.

• First, we introduce a technical tool that allows us to decompose the excess risk of the algorithms
into various interpretable terms, such as the approximation error, statistical error, and distribution
shift terms in Appendix D.1. This decomposition forms the foundation of our subsequent analysis
and provides valuable insights into the factors influencing the generalization performance.

• Second, we focus on the theoretical analysis of the ERM algorithm in Appendix D.2. We
present the main theorem that provides generalization guarantees for the ERM solution under
certain conditions and outline the key steps in proving this theorem. Through this analysis, we
highlight the limitations of the ERM approach, such as its lack of adaptivity to the spectral decay
patterns and suboptimal generalization guarantees, motivating the need for a more sophisticated
algorithm.

• Third, we introduce the ERM-DS algorithm as a response to the limitations of the ERM ap-
proach in Appendix D.3. We provide an overview of the key steps of the algorithm, including
overparameterization, covariance estimation, dimension reduction, and distillation, and explain
how each step contributes to the improved generalization performance. Through a high-level
sketch of the proof for the main theorem, we highlight the key ideas and techniques used in each
step of the algorithm and discuss how the error terms are controlled by carefully selecting the
algorithm parameters and sample sizes.

Addtional notations. To facilitate the analysis, we introduce some additional notations. We use
a ≲ b to denote a ≤ c · b for some absolute constant c; we use a ≲⋆ b to denote a ≤ c · b for some c
that is at most polynomial in the problem constants κcov, κtrn, κapx.

Given a probability distribution D on (x, y) ∈ X × Y pairs, we define the excess risk of the
embeddings (̂f, ĝ) as R(̂f, ĝ;D) := E(x,y)∼D[∥⟨̂f(x), ĝ(y)⟩M − h⋆(x, y)∥2], which quantifies the
expected squared difference between the product of the embeddings and the true relationship h⋆(x, y)
within a Hilbert t-moduleM. We often omit the function dependence on (x, y) in expectations for
brevity. For all embeddings f, g ∈M and distribution D, we decompose the risk as:

R(f, g;D) := E(x,y)∈D[∥f(x)⊤ ∗M g(y)− h⋆(x, y)∥2]
= E(x,y)∈D[∥M(f(x)⊤ ∗M g(y)− h⋆(x, y))∥2]

= E(x,y)∈D[∥̆f(x)⊤ ⊙ ğ(y)− h̆⋆(x, y)∥2]

= E(x,y)∈D

[
K∑
i=1

(
(̆f

(i)
(x))⊤ğ(i)(y)− h̆⋆

(i)
(x, y)

)2
]

=

K∑
i=1

E(x,y)∈D

[(
(̆f

(i)
(x))⊤ğ(i)(y)− h̆⋆

(i)
(x, y)

)2
]

︸ ︷︷ ︸
=:R̆i(f,g;D)

.
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In words, the riskR(f, g;D) measures the expected squared difference between the predicted output
f(x)⊤ ∗M g(y) and the true output h⋆(x, y) under the distribution D. It quantifies how well the
embeddings f and g approximate the true relationship h⋆ on average. The key idea in the risk
decomposition is to transform the risk into the frequency domain using the transform M(·) and
then decompose it into a sum of risks over individual frequency components, such that the tools
developed in Ref. [46] can be applied. This is achieved by expressing the risk in terms of the frontal
slices of the transformed embeddings f̆ and ğ, and the transformed true output h̆⋆. By defining the
risk R̆i(f, g;D) for each frequency component i, we can analyze the performance of the embeddings
in a more fine-grained manner. This decomposition allows us to study the behavior of the embeddings
in different frequency components and identify the sources of error that contribute to the overall risk.
Finally, we can express the total risk R(̂f, ĝ;Dtest) as the sum of the risks R̆i(̂f, ĝ;Dtest) over all
frequency components.

We also define some key quantities related to the spectral properties of the embeddings and the
t-covariance operators, including the full-multi-rank embeddings, the t-singular values σj(f, g) and

σj (̆f
(i)
, ğ(i)), the tail sums tail(i)⋆q , tail⋆q(k), and tail⋆q(k) as follows.

• Full-multi-rank embeddings: Given a vector r = (r1, . . . , rK)⊤ ∈ NK , we say that a pair

of R∥r∥∞×1×K-embeddings (f, g) are full-multi-rank-r if the ri-th singular value σri(
˘̂f(i), ˘̂g(i))

is strictly positive for each frequency component i ∈ [K] . This condition ensures that the
embeddings have sufficient expressive power and that their spectral properties are well-defined
in each frequency component.

• t-singular values σj(f, g) and σj (̆f
(i)
, ğ(i)): The t-singular values σj(f, g) are defined as the

t-singular values of the product of the square roots of the covariance operators EDX ,1
[f ∗M f⊤]

and EDY,1
[g ∗M g⊤]:

σj(f, g) := σj

(
EDX ,1

[f ∗M f⊤]
1
2 ∗M EDY,1

[g ∗M g⊤]
1
2

)
.

Similarly, σj (̆f
(i)
, ğ(i)) denotes the singular values of the product of the square roots of the

covariance operators in the i-th frequency component:

σj (̆f
(i)
, ğ(i)) := σj

(
EDX ,1

[̆f
(i)
(̆f

(i)
)⊤]

1
2 · EDY,1

[ğ(i)(ğ(i))⊤]
1
2

)
.

These singular values capture the interactions between the left and right embeddings in each
individual frequency component, providing a more fine-grained characterization of their relation-
ship.

• Tail sums tail(i)⋆q (ki), tail⋆q(k), and tail⋆q(k): The tail sums measure the decay of the singular
values in different frequency components and provide a way to quantify the complexity of the
embeddings.

(a) tail(i)⋆q (ki) denotes the sum of the q-th powers of the singular values beyond index ki in the
i-th frequency component:

tail(i)⋆q (ki) :=
∑
ji>ki

(
σ̆
⋆,(i)
ji

)q
, q ≥ 1,

where σ̆⋆,(i)
j := λj(M(Σ⋆

1⊗1)
(i)) are the singular values of the covariance operator Σ⋆

1⊗1 in the
i-th frequency component.
(b) tail⋆q(k) denotes the sum of the q-th powers of the singular values beyond index k across all
frequency components:

tail⋆q(k) :=
K∑
i=1

∑
j>k

(
σ̆
⋆,(i)
j

)q
, q ≥ 1.
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(c) Given a vector k = (k1, . . . , kK)⊤ ∈ NK , tail⋆q(k) is a more general version of tail⋆q(k),
where the summation is taken beyond index ki in each frequency component i:

tail⋆q(k) :=
K∑
i=1

∑
ji>ki

(
σ̆
⋆,(i)
ji

)q
, q ≥ 1.

These tail sums capture the complexity of the embeddings by measuring the decay of their
singular values. A rapidly decaying spectrum (i.e., small tail sums) indicates that the embeddings
have a low-rank structure and can be well-approximated by a small number of principal compo-
nents. Conversely, slowly decaying tail sums suggest that the embeddings are more complex and
require a larger number of components to capture their variability.

Furthermore, we introduce the multi-rank-k t-projection operator P⋆
k, which projects an embedding

onto the top principal directions in each frequency component.
Definition 14 (Multi-rank-k t-projection operator). Let k = (k1, · · · , kK)⊤ ∈ NK . The multi-rank-k
projection operator P⋆

k :M→M on the range of Σ⋆
1⊗1 satisfies

(M(P⋆
kf))(i) = P̆ki

f̆
(i)
,∀i ∈ [K], (22)

where P̆ki
is the orthogonal projection operator onto the top-ki eigenspaces of range(M(Σ⋆

1⊗1)
(i)).

P⋆
k projects the embedding f onto the top ki principal directions in each frequency component, serving

the purpose of dimensionality reduction and extracting key information.

Definition 14 introduces the concept of the multi-rank-k t-projection operator P⋆
k, which plays a

crucial role in dimensionality reduction and information extraction within the Hilbert t-module
framework. This operator is designed to capture the most significant components of an embedding f
by projecting it onto the top ki principal directions in each frequency component.

The P⋆
k operator offers a principled approach to tackle the CDS challenge by exploiting the low-rank

structure of the multi-output functions in the transformed domain. By projecting the embeddings
onto the top ki principal directions in each frequency component, P⋆

k effectively captures the most
significant patterns and correlations present in the data, even in the presence of CDS. The key idea is
that the low-rank structure of the multi-output functions, as revealed by the spectral decomposition
of the covariance operator Σ⋆

1⊗1, remains relatively stable across different feature combinations.
In other words, the principal directions along which the functions exhibit the highest variability or
energy concentration are likely to be shared among different combinations of input features.
Lemma D.1 (Properties of P⋆

k). Let k = (k1, · · · , kK)⊤ ∈ NK . The multi-rank-k projection
operator P⋆

k :M→M has the following properties:

1. Self-adjointness: ⟨P⋆
kf, g⟩M = ⟨f,P⋆

kg⟩M.

2. Idempotence: P⋆
kP

⋆
kf = P⋆

kf.

Proof. By definition, we have(
M(⟨P⋆

kf, g⟩M)
)(i)

= ⟨(M(P⋆
kf))(i), ğ(i)⟩Hi

= ⟨P̆ki
f̆
(i)
, ğ(i)⟩Hi

= ⟨̆f
(i)
, P̆ki

ğ(i)⟩Hi
,

holds for all i ∈ [K] where ⟨·, ·⟩Hi
denotes the inner product of Hilbert space defined in Definition

13. Self-adjointness and idempotence reflect the basic properties of projection operators.

Definition 15 below introduces the concepts of the balanced t-embeddings and balancing t-operator.
The main idea behind these concepts is to balance the left and right t-embeddings in a way that
preserves their spectral properties while simplifying the analysis.
Definition 15 (Balanced t-embeddings, balancing t-operator). Given a fixed vector of integers
r = (r1, · · · , rK)⊤ ∈ NK . For a pair of R∥r∥∞×1×K -embeddings (̂f, ĝ), if their t-covariance tensors

EDX ,1
[̂f ∗M f̂

⊤
] = EDY,1

[ĝ ∗M ĝ⊤], then (̂f, ĝ) is said to be balanced t-embeddings.

For full-multi-rank-r R∥r∥∞×1×K-embeddings (̂f, ĝ), an operator T : R∥r∥∞×1×K → R∥r∥∞×1×K

is defined as a balancing t-operator if it satisfies: (a) the pair of t-embeddings (̃f, g̃) = (T−1f̂,Tĝ) is
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balanced, and (b) σri(M(EDX ,1
[̃f ∗M f̃

⊤
])(i)) = σri(M(EDY,1

[g̃ ∗M g̃⊤])(i)) = σri(
˘̂f(i), ˘̂g(i)) for

all i ∈ [K].

The key property of the balanced t-embeddings is that the ri-th singular values of the t-covariance
tensors EDX ,1

[̃f ∗M f̃
⊤
] and EDY,1

[g̃ ∗M g̃⊤] in each frequency component i ∈ [K] are equal to the

ri-th singular value of the original embeddings (˘̂f(i), ˘̂g(i)). Intuitively, the balancing operator helps
to align the spectral properties of the left and right embeddings, making them more compatible and
easier to analyze. By balancing the t-embeddings, we can focus on their essential characteristics and
ignore any irrelevant or redundant information that may complicate the analysis.

The balancing t-operator plays a crucial role in the definition of aligned k-proxies.
Definition 16 (Aligned proxies for t-embeddings). Given a fixed vector of integers r =
(r1, · · · , rK)⊤ ∈ NK . We say ιr : R∥r∥∞×1×K →M is a t-isometric inclusion if it preserves t-inner
products, i.e., v⊤ ∗M w = ⟨ιr(v), ιr(w)⟩M. Let f̂ : X → R∥r∥∞×1×K and ĝ : Y → R∥r∥∞×1×K be
full-multi-rank-r. We say (f, g) are aligned k-proxies for (̂f, ĝ) if: (a) f = (ιr ◦ T−1)̂f, g = (ιr ◦ T)ĝ,
where ιr : R∥r∥∞×1×K → M is a t-isometric inclusion, and T is the balancing t-operator in
Definition 15, and (b) for14 P⋆

k being the multi-rank-k t-projection operator defined by Σ⋆
1⊗1, we

have

range(P⋆
k) ⊆ range(EDX ,1

[f ∗M f⊤]). (23)

The concepts of t-isometric inclusion and aligned k-proxies are essential for establishing the general-
ization bounds for the ERM-DS algorithm. These concepts allow us to relate the learned embeddings
to the true embeddings and control the approximation error.
Definition 17 (α-Conditioned embeddings). Given vectors r = (ri)

K
i=1 ∈ NK and α = (αi)

K
i=1 ∈

RK where αi ≥ 1 for all i ∈ [K], we say R∥r∥∞×1×K-embeddings (̂f, ĝ) are α-conditioned with
multi-rank r if

σri(
˘̂f(i), ˘̂g(i))2 ≥ σ⋆

ri (̆f
⋆,(i)

, ğ⋆,(i))2/αi, ∀i ∈ [K],

where σri(
˘̂f(i), ˘̂g(i)) denotes the ri-th singular value of the learned embeddings (̂f, ĝ) in the i-th fre-

quency component, and σ⋆
ri (̆f

⋆,(i)
, ğ⋆,(i)) is the corresponding singular value of the true embeddings

(f⋆, g⋆).

The α-conditioned property ensures that the learned embeddings (̂f, ĝ) have singular values that are
not too small compared to those of the true embeddings (f⋆, g⋆), up to a constant factor αi in each
frequency component i. This condition guarantees that the learned embeddings capture the essential
spectral properties of the true embeddings and have sufficient expressive power to approximate
the true relationship between the input features and the output variables. The constants αi ≥ 1
provide flexibility in the condition, allowing for some discrepancy between the singular values of the
learned and true embeddings. Smaller values of αi indicate a tighter condition, requiring the learned
embeddings to be more closely aligned with the true embeddings in terms of their spectral properties.
The α-conditioned property is important in the analysis of multi-output regression algorithms under
CDS because it helps control the approximation error in the generalization bounds. By ensuring that
the learned embeddings have sufficient expressive power, this condition enables the algorithms to
effectively capture the intrinsic structure of the data and achieve good generalization performance.
Definition 18 ((ϵtrn, ϵD1⊗1)-accurate embeddings). Given vectors r = (ri)

K
i=1 ∈ NK , ϵtrn =

(ϵ̆
(i)
trn )

K
i=1 ∈ RK , ϵD1⊗1

= (ϵ̆
(i)
D1⊗1

)Ki=1 ∈ RK where ϵ̆(i)trn , ϵ̆
(i)
D1⊗1

≥ 0 for all i ∈ [K], we say

R∥r∥∞×1×K-embeddings (̂f, ĝ) are (ϵtrn, ϵD1⊗1
)-accurate with tensor multi-rank r if

R̆(i)(
˘̂f(i), ˘̂g(i);Dtrain) ≤ (ϵ̆

(i)
trn )

2, ∀i ∈ [K],

inf
r′≥ri

R̆(i)
[r′](

˘̂f(i), ˘̂g(i);D1⊗1) ≤ (ϵ̆
(i)
D1⊗1

)2, ∀i ∈ [K],

14In case of non-uniqueness, any choice of the t-projections works.
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where R̆(i)
[si]

(
˘̂f(i), ˘̂g(i);D1⊗1) is the excess risk relative to h̆

⋆,(i)

si
= ⟨̆f

⋆,(i)

si
, ğ⋆,(i)

si
⟩, evaluated on the

top-block distribution D1⊗1:

R̆(i)
[si]

(
˘̂f(i), ˘̂g(i);D1⊗1) := E(x,y)∼D1⊗1

[(⟨˘̂f(i)(x), ˘̂g(i)(y)⟩Hi − h̆
⋆,(i)

si
(x, y))2]. (24)

The (ϵtrn, ϵD1⊗1
)-accurate property ensures that the learned embeddings (̂f, ĝ) closely approximate the

true embeddings (f⋆, g⋆) in terms of the excess risk on both the training distributionDtrain and the top-

block distributionD1⊗1. The first condition, R̆(i)(
˘̂f(i), ˘̂g(i);Dtrain) ≤ (ϵ̆

(i)
trn )

2, requires that the excess

risk of the learned embeddings on the training distribution is bounded by (ϵ̆
(i)
trn )

2 in each frequency
component i. This condition ensures that the learned embeddings fit the training data well and capture

the underlying patterns in the data. The second condition, infr′≥ri R̆
(i)
[r′](

˘̂f(i), ˘̂g(i);D1⊗1) ≤ (ϵ̆
(i)
D1⊗1

)2,
requires that the excess risk of the learned embeddings on the top-block distribution, relative to
the best rank-r′ approximation of the true embeddings for any r′ ≥ ri, is bounded by (ϵ̆

(i)
D1⊗1

)2 in
each frequency component i. This condition ensures that the learned embeddings generalize well
to the top-block distribution and can effectively capture the important spectral components of the
true embeddings. The constants ϵ̆(i)trn and ϵ̆(i)D1⊗1

quantify the degree of accuracy, with smaller values
indicating a better approximation. The (ϵtrn, ϵD1⊗1

)-accurate property is important in the analysis
of multi-output regression algorithms under CDS because it helps control the estimation error in
the generalization bounds. By ensuring that the learned embeddings closely approximate the true
embeddings on the relevant distributions, this condition enables the algorithms to achieve good
generalization performance and mitigate the impact of distribution shift.

D.1 Error Decomposition

In this section, we present a technical method that breaks down the excess risk of the algorithms into
distinct, interpretable components, such as the approximation error, statistical variance, and terms
capturing the effects of distribution shift. The main idea in this section builds on Ref. [46]. For
completeness, we provide a detailed overview of the error decomposition framework used to analyze
the generalization performance of multi-output regression algorithms under CDS. Our objective is to
establish an upper bound on the population riskR(̂f, ĝ;Dtest) for the test distribution in terms of the
training distribution risk and additional error terms that account for distribution shift.

To achieve this, we introduce key error terms that capture different aspects of the shift between training
and test data, defining these terms to address the challenges of CDS in multi-output regression. We
then present a series of lemmas that bound the test risk in terms of these error terms, which collectively
lead to the final error decomposition. This culminates in Lemma D.2, summarizing the decomposition
and providing insights into the algorithm’s generalization behavior under CDS.

D.1.1 Key Error Terms

Definition 19. Given functions f : X → M and g : Y → M and k = (k1, · · · , kK)⊤ ∈ NK , we
define several key error terms as follows:

∆0(f, g,k) := max
{
ED1⊗1

[
∥⟨f⋆k, g⋆k − g⟩M∥2

]
, ED1⊗1

[
∥⟨f⋆k − f, g⋆k⟩M∥

2
]}

(weighted error)

∆1(f, g,k) := max
{
EDX ,1

∥f⋆k − f∥2M, EDY,1
∥g⋆k − g∥2M

}
(unweighted error)

∆2(f, g,k) := max
{
EDX ,2

∥f⋆k − f∥2M, EDY,2
∥g⋆k − g∥2M

}
(D2⊗2-recovery error)

∆apx(k) := R(f⋆k, g⋆
k;D1⊗1) (approximation error)

∆train(k) := R(f⋆k, g⋆
k;Dtrain). (error on training distribution)

When it is clear from the context, we will use the shorthand notation ∆0,∆1,∆2, ∆apx, and ∆train,
respectively, for convenience.
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These error terms are essential for assessing the performance of embeddings f and g across different
distributions:

• Weighted Error ∆0(f, g,k): Measures discrepancies between true embeddings (f⋆k, g⋆k) and
learned embeddings (f, g) underD1⊗1, focusing on the weighted differences along each direction.

• Unweighted Error ∆1(f, g,k): Captures unweighted differences between true and learned
embeddings under D1, assessing how well (f, g) approximate (f⋆k, g⋆

k) without specific weighting.

• D2⊗2-Recovery Error ∆2(f, g,k): Represents discrepancies under D2⊗2, evaluating differences
between true and learned embeddings in this setting.

• Approximation Error ∆apx(k): Measures how well the true embeddings (f⋆k, g⋆k) capture the
actual relationships under D1⊗1.

• Training Error ∆train(k): Indicates the risk of true embeddings (f⋆k, g⋆k) on the training distribu-
tion Dtrain, reflecting their alignment with the training data.

D.1.2 Error Decomposition Lemma

Lemma D.2 (Error decomposition on Dtest). Suppose Assumption 2 and Assumption 3 hold. For
any vector k = (k1, · · · , kK)⊤ satisfying k ≤ r element-wisely with some fixed vector of integers
r = (r1, · · · , rK)⊤ ∈ NK , and any aligned k-proxies (f, g) of the R∥r∥∞×1×K-embeddings (̂f, ĝ),

denote ∆0 = ∆0(f, g,k) and ∆1 = ∆1(f, g,k). Let σ ≤ mini∈[K] σri(
˘̂f(i), ˘̂g(i)) be a lower bound

on σri(
˘̂f(i), ˘̂g(i)), which satisfies σ2

i ∈ (0, tail
(i)⋆
2 (ki) + ∆0 +∆train] for all i ∈ [K]. Then,

R(f, g;Dtest) ≲⋆ ∆2
1 +

1

σ2
(∆apx +∆0 +∆train)

2
.

The proof closely follows that of Proposition 4.1b in Ref. [46] and proceeds by incrementally
bounding the risk on the test distribution Dtest through a sequence of lemmas. In these lemmas,
rather than applying Assumption 2 and Assumption 3 directly, we employ their relaxed forms as
given in Assumption 6 and Assumption 7. This adjustment allows us to handle cases where coverage
and covariate shift conditions hold only in a probabilistic or approximate sense, thus broadening the
applicability of the result.

First, we apply Lemma D.3 to decompose the risk on Dtest into the risk on the bottom-right block
distribution D2⊗2 and the risk on the training distribution Dtrain.

Lemma D.3 (Error decomposition on Dtest). Under Assumption 6 and Assumption 8, the following
holds for any f : X →M and g : Y →M:

R(f, g;Dtest) ≤ κtst
(
R(f, g;D2⊗2) + 3κtrnR(f, g;Dtrain)

)
+ 4B4(ηtst + 3κtstηtrn).

Next, we focus on bounding the risk on D2⊗2 using Lemma D.4. This lemma reveals that the
dominant term in the risk decomposition is the weighted error ∆0, while the unweighted errors ∆1

and ∆2 contribute only quadratically:

Lemma D.4 (Error decomposition on D2⊗2). Under Assumption 6, Assumption 7 and Assumption 8,
for any f : X →M, g : Y →M, and k ∈ NK:

R(f, g;D2⊗2) ≲ κ2cov(∆0 + (∆1)
2 +∆apx) + (∆2)

2 + κcovκtrn∆train +B4κcov(ηcov + ηtrn),

where above we suppress error term dependence on f, g,k.

To bound the term ∆2, we leverage the assumption that (f, g) are aligned k-proxies of (̂f, ĝ), along
with the construction in Definition 16. This allows us to apply Lemma D.5 and obtain a bound on ∆2

in terms of the training error ∆train, the weighted error ∆0, and the approximation error ∆apx(k):

Going forward, recall the construction in Definition 16 that

σri(
˘̂f(i), ˘̂g(i)) := σri(M(EDX ,1

[f ∗M f⊤])(i)), ∀i ∈ [K].
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where the positivity is a consequence of the assumption that (̂f, ĝ) are full-multi-rank. We may now
bound ∆2.

Lemma D.5 (Decomposition of ∆2). Suppose (f, g) are aligned k-proxies of (̂f, ĝ). Then, we have

(min
i
{σri(

˘̂f(i), ˘̂g(i))})∆2 ≲ ∆train + κcov(∆0 +∆apx(k)) +B2(ηcov + ηtst),

where above we suppress dependence on f, g,k in all error terms.

Lastly, it is noteworthy that the multi-rank-k approximation error under the D1⊗1 distribution is
precisely the tail term tail⋆2(k). We can exploit this crucial fact by replacing the ∆apx(k) term in the
previous error decompositions with tail⋆2(k).

Lemma D.6. We have ∆apx(k) = R(f⋆k, g⋆k;D1⊗1) = tail⋆2(k).

Proof of Lemma D.2. First, we apply Lemma D.3 to decompose the risk on Dtest into the risks on
D2⊗2 and Dtrain. We then further decompose the risk on D2⊗2 into various error terms using Lemma
D.4. Next, we bound ∆2 by leveraging Lemma D.5 and the assumption that (f, g) is an aligned
k-agent of (̂f, ĝ). Substituting the bound on ∆2 back into the risk decomposition on D2⊗2, and
applying Lemma D.6 to replace ∆apx(k) with tail⋆2(k). Finally, we combine the error terms using
the condition on σ to obtain the final result.

D.1.3 Proof of Lemma D.3

Lemma D.7. Under Assumption 6, we have for any (i, j) ∈ {(1, 1), (1, 2), (2, 1)}

R(f, g;Di⊗j) ≤ 4B4ηtrn + κtrnR(f, g;Dtrain).

Proof of Lemma D.7. To bound the risk underDi⊗j in terms of the training distribution, we introduce
a density-based event and apply it to control expectations.

Define the event Etrain,i⊗j for any (i, j) ∈ {(1, 1), (1, 2), (2, 1)} as follows:

Etrain,i⊗j :=

{
dDi⊗j(x, y)

dDtrain(x, y)
≤ κtrn

}
.

This event limits the density ratio between Di⊗j and Dtrain, ensuring that Di⊗j does not deviate
excessively from the training distribution.

Now, for any function h : X × Y → R1×1×K with ∥h(x, y)∥ ≤ M , we proceed to bound the
expectation under Di⊗j :

EDi⊗j [∥h(x, y)∥2] ≤M2PDi⊗j [¬Etrain,i⊗j ] + EDi⊗j [∥h(x, y)∥2I{Etrain,i⊗j}].

The first term represents cases where Etrain,i⊗j does not hold, bounded by M2PDi⊗j [¬Etrain,i⊗j ].
For the second term, we leverage Etrain,i⊗j to express the expectation under Dtrain:

EDi⊗j
[∥h(x, y)∥2I{Etrain,i⊗j}] = EDtrain

[
∥h(x, y)∥2I{Etrain,i⊗j} ·

dDi⊗j(x, y)

dDtrain(x, y)

]
.

Since Etrain,i⊗j holds in this term, the density ratio is bounded by κtrn, giving:

EDi⊗j
[∥h(x, y)∥2] ≤M2PDi⊗j

[¬Etrain,i⊗j ] + EDtrain
[κtrn∥h(x, y)∥2].

Substituting PDi⊗j [¬Etrain,i⊗j ] ≤ ηtrn yields:

EDi⊗j [∥h(x, y)∥2] ≤M2ηtrn + κtrnEDtrain [∥h(x, y)∥2].
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Now, let h(x, y) = ⟨f(x), g(y)⟩M − h⋆(x, y). Note that

∥h(x, y)∥2 = ∥⟨f(x), g(y)⟩M − h⋆(x, y)∥2

≤ 2(∥⟨f(x), g(y)⟩M∥2 + ∥⟨f⋆(x), g⋆(y)⟩M∥2)
≤ 4B4.

(25)

Then, ∥h(x, y)∥2 is bounded by 4B4, giving:

EDi⊗j [∥h(x, y)∥2] ≤ 4B4ηtrn + κtrnR(f, g;Dtrain),

which completes the proof.

Proof of Lemma D.3. To bound the excess risk under Assuption 6, we decompose the expected norm
of a function under Dtest by defining a density-based event and applying it to control expectations.

First, we define the density-based event Etest to control the ratio between the density of Dtest and a
mixture of reference distributions Di⊗j :

Etest :=

{
dDtest(x, y)∑

i,j∈{1,2} dDi⊗j(x, y)
≤ κtst

}
.

This event ensures that Dtest does not deviate excessively from the reference distributions, allowing
us to manage expectations over Dtest using properties of the distributions Di⊗j .

Next, we bound the expected norm of any function h(x, y) : X × Y → R1×1×K with ∥h(x, y)∥2 ≤
M2 under Dtest. We decompose this expectation as follows:

EDtest
[∥h(x, y)∥2] ≤M2PDtest

[¬Etest] + EDtest
[I{Etest}∥h(x, y)∥2].

The first term accounts for cases where Etest does not hold, bounded by M2PDtest
[¬Etest]. The

second term, where Etest holds, allows us to use the density ratio to write:

EDtest
[I{Etest}∥h(x, y)∥2] =

∫
(x,y)

∥h(x, y)∥2 ·

( ∑
i,j∈{1,2}

dDi⊗j(x, y)

)
· dDtest(x, y)∑

i,j∈{1,2} dDi⊗j(x, y)
I{Etest}.

Since Etest holds in this term, the density ratio is bounded by κtst, leading to:

EDtest
[∥h(x, y)∥2] ≤M2PDtest

[¬Etest] + κtst

∫
(x,y)

∥h(x, y)∥2 ·

( ∑
i,j∈{1,2}

dDi⊗j(x, y)

)
.

We rewrite the integral using the expectations over Di⊗j , yielding:

EDtest [∥h(x, y)∥2] ≤M2PDtest [¬Etest] + κtst

2∑
i,j=1

EDi⊗j [∥h(x, y)∥2].

Finally, noting that PDtest [¬Etest] ≤ ηtst, we have:

EDtest
[∥h(x, y)∥2] ≤M2ηtst + κtst

2∑
i,j=1

EDi⊗j
[∥h(x, y)∥2].

Now, let h(x, y) = ⟨f(x), g(y)⟩M − h⋆(x, y), where ∥h(x, y)∥2 is bounded by 4B4 by Eq. (25).
This gives:

R(f, g;Dtest) ≤ 4B4ηtst + κtst

2∑
i,j=1

EDi⊗j
[∥h(x, y)∥2].
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By applying Lemma D.7, we further bound the sum over Di⊗j for all pairs except (2, 2):∑
i,j ̸=(2,2)

R(f, g;Di⊗j) ≤ 12B4ηtrn + 3κtrnR(f, g;Dtrain).

Therefore, combining these results, we conclude:

R(f, g;Dtest) ≤ κtst
(
R(f, g;D2⊗2) + 3κtrnR(f, g;Dtrain)

)
+ 4B4(ηtst + 3κtstηtrn).

D.1.4 Proof of Lemma D.4

Lemma D.4 establishes bounds on the risk under D2⊗2, highlighting that the primary contribution in
the risk decomposition comes from the weighted error term ∆0. In contrast, the unweighted errors
∆1 and ∆2 have only a quadratic impact. Before proceeding with the proof of Lemma D.4, we first
present a lemma that assists in expanding the risk termR(f, g;D2⊗2) by breaking it down into more
manageable components.

Lemma D.8. For any function h⋆ : X × Y → R1×1×K , and for f1, f2 ∈ X → M and g
1
, g

2
∈

Y →M, we have

∥⟨f1, g1
⟩M − h⋆∥2

≤ 2∥⟨f2, g2⟩M − h
⋆∥2 + 6∥⟨f1 − f2, g2⟩M∥

2 + 6∥⟨f2, g1 − g
2
⟩M∥2 + 6∥f1 − f2∥2M∥g1

− g
2
∥2M.

Proof of Lemma D.8. To simplify notation, let h1 = ⟨f1, g1⟩M and h2 = ⟨f2, g2⟩M. Our goal is to
bound the expression ∥h1 − h

⋆∥2 using h2 and differences between f1, f2 and g
1
, g

2
.

We start by expanding ∥h1 − h
⋆∥2 − ∥h2 − h

⋆∥2 as follows:

∥h1 − h
⋆∥2 − ∥h2 − h

⋆∥2 = ⟨h1 − h
⋆ + h2 − h

⋆, h1 − h2⟩ .

This identity allows us to split the difference in terms of the inner products of h1 − h2 and each of
the terms h1 − h

⋆ and h2 − h
⋆.

Next, applying the Cauchy-Schwarz inequality, we get:

∥h1 − h
⋆∥2 − ∥h2 − h

⋆∥2 ≤ ∥h1 − h2∥2 + 2∥h2 − h
⋆∥ · ∥h1 − h2∥.

Expanding and rearranging terms, we conclude that:

∥h1 − h
⋆∥2 ≤ 2∥h1 − h2∥2 + 2∥h2 − h

⋆∥2.

To bound ∥h1 − h2∥2, we expand this term as:

∥h1 − h2∥2 = ∥⟨f1, g1⟩M − ⟨f2, g2⟩M∥
2

= ∥⟨f1 − f2, g2
⟩M + ⟨f2, g1 − g

2
⟩M + ⟨f1 − f2, g1 − g

2
⟩M∥2.

Using the Cauchy-Schwarz inequality on each term separately, we obtain:

∥h1 − h2∥2 ≤ 3∥⟨f1 − f2, g2⟩M∥
2 + 3∥⟨f2, g1 − g

2
⟩M∥2 + 3∥⟨f1 − f2, g1 − g

2
⟩M∥2.

Finally, applying the Cauchy-Schwarz inequality again to the last term, we have:

∥h1 − h2∥2 ≤ 3∥⟨f1 − f2, g2
⟩M∥2 + 3∥⟨f2, g1

− g
2
⟩M∥2 + 3∥f1 − f2∥2M∥g1 − g

2
∥2M.

Combining this with our earlier bound on ∥h1 − h
⋆∥2, we arrive at the final result:

∥h1 − h
⋆∥2 ≤ 2∥⟨f2, g2

⟩M − h⋆∥2+6∥⟨f1 − f2, g2
⟩M∥2+6∥⟨f2, g1

− g
2
⟩M∥2+6∥f1−f2∥2M∥g1−g

2
∥2M.

This completes the proof.
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Proof of Lemma D.4. The proof approach follows the structure of Lemma L2.b in Ref. [46]. The
primary distinction is that our proof deals with t-embeddings within the Hilbert t-ModuleM for
multi-output regression, while Lemma L2.b in Ref. [46] addresses single-output learning.

Step 1: Tackling covariate shift underD2⊗2. To analyze the impact of covariate shift underD2⊗2,
let’s set f1 = f, g

1
= g, f2 = f⋆k, and g

2
= g⋆

k. With this setup, we can apply Lemma D.8 to bound
the difference in risk as follows:

ED2⊗2
[∥⟨f, g⟩M − h⋆∥2]− 2ED2⊗2

[∥⟨f⋆k, g⋆
k⟩M − h

⋆∥2]

≤ 6

(
ED2⊗2∥⟨f− f⋆k, g

⋆
k⟩M∥

2 + ED2⊗2∥⟨f
⋆
k, g− g⋆k⟩M∥

2 + ED2⊗2 [∥f− f⋆k∥2M∥g− g⋆k∥
2
M]

)
(i)

≤ 6κcov

(
ED2⊗1

∥⟨f− f⋆k, g
⋆
k⟩M∥

2 + ED1⊗2
∥⟨f⋆k, g− g⋆k⟩M∥

2
)

+ 6ED2⊗2
∥f− f⋆k∥2M∥g− g⋆

k∥
2
M + 48B2ηcov

(ii)
= 6κcov

(
ED2⊗1

∥⟨f− f⋆k, g
⋆
k⟩M∥

2 + ED1⊗2
∥⟨f⋆k, g− g⋆

k⟩M∥
2
)

+ 6EDX ,2
∥f− f⋆k∥2M · EDY,2

∥g− g⋆k∥
2
M + 48B4ηcov

(iii)

≤ 6κcov

(
ED2⊗1∥⟨f− f⋆k, g

⋆
k⟩M∥

2 + ED1⊗2∥⟨f
⋆
k, g− g⋆k⟩M∥

2
)
+ 6(∆2)

2 + 48B4ηcov, (26)

where each step is justified as follows:

• In (i), we apply Lemma D.9 to bound ED2⊗2
∥⟨f− f⋆k, g⋆k⟩M∥

2 and ED2⊗2
∥⟨f⋆k, g− g⋆k⟩M∥

2.
This is possible since ∥g − g⋆k∥M ≤ ∥g∥M + ∥g⋆

k∥M ≤ 2B and similarly, ∥f − f⋆k∥M ≤
∥f∥M + ∥f⋆k∥M ≤ 2B.

• In (ii), we utilize the fact that D2⊗2 = DX ,2 ⊗ DY,2 is a product measure, allowing us to
separate the expectations over DX ,2 and DY,2.

• In (iii), we introduce the term (∆2)
2 = (∆2(f, g, k))

2 to further simplify the expression.

Thus, Equation (26) provides the bound on the risk under D2⊗2, accounting for covariate shifts in the
multi-output setting.

Step 2: Expanding Terms under D1⊗2 and D2⊗1. In this step, we expand the first two terms
from Equation (26) to further analyze their contributions.

Starting with ⟨f− f⋆k, g⋆k⟩M, observe that:

⟨f−f⋆k, g
⋆
k⟩M = ⟨f, g⋆k⟩M−h

⋆
k = ⟨f, g⟩M−h⋆k+⟨f, g⋆k−g⟩M = ⟨f, g⟩M−h⋆k+⟨f

⋆
k, g

⋆
k−g⟩M+⟨f−f⋆k, g

⋆
k−g⟩M.

With this, we can bound:

ED2⊗1
∥⟨f− f⋆k, g

⋆
k⟩M∥

2

≤ 3ED2⊗1
[∥⟨f, g⟩M − h⋆k∥2] + 3ED2⊗1

∥⟨f⋆k, g⋆k − g⟩M∥2 + 3ED2⊗1
∥⟨f− f⋆k, g

⋆
k − g⟩M∥2

(i)

≤ 3ED2⊗1
[∥⟨f, g⟩M − h⋆k∥2] + 3κcovED1⊗1

∥⟨f⋆k, g⋆k − g⟩M∥2 + 3ED2⊗1
∥f⋆k − f∥2M∥g⋆k − g∥2M + 12B4ηcov,

where in (i) we use Lemma D.9 to bound terms involving covariate shifts.

Next, we expand and bound the product of norms term as follows:

ED2⊗1
∥f⋆k − f∥2M∥g⋆k − g∥2M = EDX ,2

∥f⋆k − f∥2M · EDY,1
∥g⋆k − g∥2M

≤ 1

2κcov

(
EDX ,2

∥f⋆k − f∥2M
)2

+
κcov

2

(
EDY,1

∥g⋆k − g∥2M
)2

≤ 1

2κcov
(∆2)

2 +
κcov

2
(∆1)

2,
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where we have used the definitions of ∆2 and ∆1 from Definition 19.

Summing up these results, we obtain:

ED2⊗1
∥⟨f− f⋆k, g

⋆
k⟩M∥

2

≤ 3ED2⊗1
[∥⟨f, g⟩M − h⋆k∥2] + 3κcov

(
ED1⊗1

∥⟨f⋆k, g⋆
k − g⟩M∥2 +

1

2
(∆1)

2
)
+

3

2κcov
(∆2)

2 + 12B4ηcov.

Using a similar argument, we can bound the other term as:

ED1⊗2
∥⟨f⋆k, g− g⋆k⟩M∥

2

≤ 3ED1⊗2
[∥⟨f, g⟩M − h⋆k∥2] + 3κcov

(
ED1⊗1

∥⟨f− f⋆k, g
⋆
k⟩M∥

2 +
1

2
(∆1)

2
)
+

3

2κcov
(∆2)

2 + 12B4ηcov.

Now, define:
∆off = ED1⊗2 [∥⟨f, g⟩M − h

⋆
k∥2] + ED2⊗1 [∥⟨f, g⟩M − h

⋆
k∥2].

Thus, we can combine these results as:

ED2⊗1
∥⟨f− f⋆k, g

⋆
k⟩M∥

2 + ED1⊗2
∥⟨f⋆k, g− g⋆

k⟩M∥
2

≤ 3ED1⊗2
[∥⟨f, g⟩M − h⋆k∥2] + 3ED2⊗1 [∥⟨f, g⟩M − h

⋆
k∥2]

+ 3κcov

(
2ED1⊗1

∥⟨f− f⋆k, g
⋆
k⟩M∥

2 + (∆1)
2
)
+

3

κcov
(∆2)

2 + 24B4ηcov

= 3∆off + 3κcov(2∆0 + (∆1)
2) +

3

κcov
(∆2)

2 + 24B4ηcov. (27)

Step 3: Consolidating Results. Combining Equation (27) and Equation (26), we obtain:

ED2⊗2 [∥⟨f, g⟩M − h
⋆∥2]− 2ED2⊗2 [∥⟨f

⋆
k, g

⋆
k⟩M − h

⋆∥2]

≤ 6κcov

(
ED2⊗1∥⟨f− f⋆k, g

⋆
k⟩M∥

2 + ED1⊗2∥⟨f
⋆
k, g− g⋆k⟩M∥

2
)
+ 6(∆2)

2 + 48B4ηcov

≤ 18κcov∆off + 18κ2cov(2∆0 + (∆1)
2) + 24(∆2)

2 + (144κcov + 48)B4ηcov.

Rearranging terms, we get:

ED2⊗2 [∥⟨f, g⟩M − h
⋆∥2] ≤ 18κ2cov(2∆0 + (∆1)

2) + 24(∆2)
2 + (144κcov + 48)B4ηcov

+ 18κcov∆off + 2ED2⊗2
[∥⟨f⋆k, g⋆k⟩M − h

⋆∥2]. (28)

Step 4: Final Bound. To finalize, we need to bound Equation (28). By Lemma D.10, we have:

ED2⊗2
[∥⟨f⋆k, g⋆k⟩M − h

⋆∥2] = R(f⋆k, g⋆k;D2⊗2) ≤ κ2covR(f
⋆
k, g

⋆
k;D1⊗1) + 2κcovηcovB

4.

Similarly, for ∆off , by Lemma D.10:

∆off := ED1⊗2
[∥⟨f, g⟩M − h⋆k∥2] + ED2⊗1

[∥⟨f, g⟩M − h⋆k∥2]
≤ 2ED1⊗2 [∥⟨f, g⟩M − h

⋆∥2] + 2ED2⊗1 [∥⟨f, g⟩M − h
⋆∥2]

+ 2ED1⊗2
[∥h⋆k − h

⋆∥2]︸ ︷︷ ︸
=R(f⋆k ,g⋆k ;D1⊗2)

+2ED2⊗1
[∥h⋆k − h

⋆∥2]︸ ︷︷ ︸
=R(f⋆k ,g⋆k ;D2⊗1)

≤ 2ED1⊗2
[∥⟨f, g⟩M − h⋆∥2] + 2ED2⊗1

[∥⟨f, g⟩M − h⋆∥2]
+ 4κcovR(f⋆k, g⋆k;D1⊗1) + 4ηcovB

4.
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Thus,

18κcov∆off + 2ED2⊗2 [∥⟨f
⋆
k, g

⋆
k⟩M − h

⋆∥2]

≤ (4 · 18 + 2)κ2covR(f
⋆
k, g

⋆
k;D1⊗1) + (4 · 18 + 4)κcovηcovB

4

+ (2 · 18)κcov
(
ED1⊗2

[∥⟨f, g⟩M − h⋆∥2] + ED2⊗1
[∥⟨f, g⟩M − h⋆∥2]

)
= 74κ2covR(f

⋆
k, g

⋆
k;D1⊗1) + 76κcovηcovB

4 + 36κcov
(
R(f, g;D1⊗2) +R(f, g;D2⊗1)

)
.

Using Lemma D.7:

R(f, g;D1⊗2) +R(f, g;D2⊗1) ≤ 2κtrnR(f, g;Dtrain) + 8B4ηtrn,

we get:

18κcov∆off + 2ED2⊗2 [∥⟨f
⋆
k, g

⋆
k⟩M − h

⋆∥2]

≤ 74κ2covR(f
⋆
k, g

⋆
k;D1⊗1) + 72κcovκtrnR(f, g;Dtrain) + 288ηtrnκcovB

4 + 76κcovηcovB
4.

Summing everything up, we obtain:

ED2⊗2
[∥⟨f, g⟩M − h⋆∥2] ≤ 18κ2cov(2∆0 + (∆1)

2) + 24(∆2)
2 + 72κcovκtrnR(f, g;Dtrain)︸ ︷︷ ︸

=∆train

+ 74κ2covR(f
⋆
k, g

⋆
k;D1⊗1)︸ ︷︷ ︸

=∆apx

+268κcovB
4ηcov + 288ηtrnκcovB

4.

Dropping constants, we conclude:

R(f, g;D2⊗2) = ED2⊗2
[∥⟨f, g⟩M − h⋆∥2]

≲ κ2cov(∆0 + (∆1)
2 +∆apx) + (∆2)

2 + κcovκtrn∆train +B4κcov(ηcov + ηtrn).

D.1.5 Key Change-of-Measure Lemmas

We begin by establishing some important change-of-measure results.
Lemma D.9 (Change of Measure: Factor Estimation Error). Under Assumption 7 and Assumption 8,
the following holds for any i, j ∈ {1, 2} and any (̃f, g̃),

• EDi⊗2
[∥⟨̃f, g⋆k⟩M∥

2] ≤ κcovEDi⊗1
[∥⟨̃f, g⋆k⟩M∥

2] +B2ηcov

• ED2⊗j
[∥⟨f⋆k, g̃⟩M∥2] ≤ κcovED1⊗j

[∥⟨f⋆k, g̃⟩M∥2] +B2ηcov.

The same holds if g⋆
k (resp. f⋆k) are replaced by g⋆

>k := g⋆− g⋆k (resp. f⋆>k := f⋆− f⋆k) or g⋆ (resp. f⋆).

Proof of Lemma D.9. We start by proving the first part under Assumption 7; the extension to the
second part follows a similar approach. Specifically, we have:

EDi⊗2
[∥⟨̃f, g⋆k⟩M∥

2] = EDX ,i
[EDY,2

[∥⟨̃f, g⋆k⟩M∥
2]] (by Fubini’s theorem)

= EDX ,i
[EDY,2

[∥⟨̃f,P⋆
kg⋆k⟩M∥

2]]

≤ EDX ,i
[κcovEDY,1

[∥⟨P⋆
k f̃, g⋆⟩M∥2] + ηcov∥P⋆

k f̃∥2M] (by Assumption 7)

≤ EDX ,i
[κcovEDY,1

[∥⟨P⋆
k f̃, g⋆⟩M∥2] + ηcov∥̃f∥2M] (since P⋆

k is a projection)

≤ EDX ,i
[κcovEDY,1

[∥⟨P⋆
k f̃, g⋆⟩M∥2] +B2ηcov] (by Assumption 8)

= κcovEDX ,i⊗DY,1
[∥⟨P⋆

k f̃, g⋆⟩M∥2] +B2ηcov (by Fubini’s theorem)

= κcovEDX ,i⊗DY,1
[∥⟨̃f, g⋆k⟩M∥

2] +B2ηcov.
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The second part of the lemma follows similarly. To derive analogous bounds for g⋆ − g⋆
k, we note

that g⋆ − g⋆k = (I − P⋆
k)g⋆, where I − P⋆

k is also a projection operator. A similar argument applies
for bounding f⋆ − f⋆k.

Finally, the bounds for f⋆ and g⋆ are simpler to establish, as they do not require commuting the
projection operator.

Lemma D.10 (Change of Measure: Approximation Error). The following bounds hold:

• The risks on the product distributions D1⊗2 and D2⊗1 are bounded by

R(f⋆k, g⋆
k;D1⊗2) ∨R(f⋆k, g⋆k;D2⊗1) ≤ κcov∆apx(k) + ηcovB

2.

• The risk on the product distribution D2⊗2 is bounded by

R(f⋆k, g⋆k;D2⊗2) ≤ κ2cov∆apx(k) + 2κcovηcovB
2.

Proof of Lemma D.10. Introduce the shorthand f⋆>k := f⋆ − f⋆k and g⋆
>k := g⋆ − g⋆k. Note that

f⋆>k = (I − P⋆
k)f

⋆, g⋆
>k = (I − P⋆

k)g
⋆,

which implies that both f⋆>k and g⋆
>k are B-bounded by Assumption 8.

Since P⋆
k is an orthogonal projection, I−P⋆

k is also an orthogonal projection, meaning it is self-adjoint
and idempotent. Therefore, we can write:

h⋆ − ⟨f⋆k, g⋆k⟩M = ⟨f⋆, g⋆⟩M − ⟨P⋆
kf⋆, g⋆⟩M

= ⟨(I − P⋆
k)f

⋆, g⋆⟩M
= ⟨(I − P⋆

k)
⊤(I − P⋆

k)f
⋆, g⋆⟩M

= ⟨(I − P⋆
k)f

⋆, (I − P⋆
k)g

⋆⟩M
= ⟨f⋆>k, g

⋆
>k⟩M.

(29)

Thus, by applying Lemma D.9 and noting that f⋆>k is B-bounded, we have:

R(f⋆k, g⋆k;D1⊗2) = ED1⊗2 [∥h
⋆ − ⟨f⋆k, g⋆k⟩M∥

2]

= ED1⊗2
[∥⟨f⋆>k, g

⋆
>k⟩M∥

2]

≤ κcovED1⊗1 [∥⟨f
⋆
>k, g

⋆
>k⟩M∥

2] + ηcovB
2.

Similarly, we can boundR(f⋆k, g⋆k;D2⊗1) as:

R(f⋆k, g⋆k;D2⊗1) ≤ κcovED1⊗1 [∥⟨f
⋆
>k, g

⋆
>k⟩M∥

2] + ηcovB
2.

Finally, applying Lemma D.9 twice, we find:

R(f⋆k, g⋆
k;D2⊗2) = ED2⊗2 [∥h

⋆ − ⟨f⋆k, g⋆
k⟩M∥

2]

= ED2⊗2
[∥⟨f⋆>k, g

⋆
>k⟩M∥

2]

≤ κcovED1⊗2 [∥⟨f
⋆
>k, g

⋆
>k⟩M∥

2] + ηcovB
2

≤ κ2covED1⊗1
[∥⟨f⋆>k, g

⋆
>k⟩M∥

2] + (κcovηcov + ηcov)B
2

≤ κ2covED1⊗1 [∥⟨f
⋆
>k, g

⋆
>k⟩M∥

2] + 2κcovηcovB
2 (since κcov ≥ 1)

= κ2covED1⊗1
[∥h⋆ − ⟨f⋆k, g⋆

k⟩M∥
2] + 2κcovηcovB

2

= κ2covR(f
⋆
k, g

⋆
k;D1⊗1) + 2κcovηcovB

2.

This completes the proof.

53



D.1.6 Proof of Lemma D.5

Proof of Lemma D.5. The lemma states that if (f, g) are aligned k-proxies of (̂f, ĝ), then the following
inequality holds:

(min
i
{σri(

˘̂f(i), ˘̂g(i))})∆2 ≲ ∆train + κcov(∆0 +∆apx(k))

where ∆2 := max
{
EDX ,2

∥f⋆k − f∥2M,EDY,2
∥g⋆k − g∥2M

}
.

Lemma D.5 expresses that under the aligned proxies condition, the deviation ∆2 between (f, g) and
their rank-k approximations (f⋆k, g⋆

k) under distributions DX ,2,DY,2 can be controlled by the error
∆train on the training distribution, the weighted embedding estimation error ∆0, and k-approximation
error ∆apx(k), as long as the estimated embeddings (̂f, ĝ) have positive minimum singular values on
the corresponding modes. This lemma quantifies the effect of the aligned proxies condition.

The main idea of the proof is to consider EDX ,2
∥f⋆k − f∥2M and EDY,2

∥g⋆k − g∥2M separately and
relate them to ∆0,∆apx(k),∆train using the properties of aligned proxies. Since the arguments for
the two parts are symmetric, we focus on how to handle EDY,2

∥g⋆k − g∥2M.

Our aim is to bound ∆2. We focus on bounding EDY,2
∥g⋆k− g∥2M, for the bound on EDX ,2

∥f⋆k− f∥2M
is analogous. Further, let us recall what it means for (f, g) to be aligned k-proxies. This means that
(a) f = (ιr ◦ T−1)̂f, g = (ιr ◦ T)ĝ, where ιr : R∥r∥∞×1×K →M is an isometric inclusion, and T is
the balancing operator for tensors, and (b) for P⋆

k being the multi-rank-k projection defined by Σ⋆
1⊗1,

we have ∀i ∈ [K]:

range(P⋆
k) ⊆ range(EDX ,1

[f ∗M f⊤])⇒ range(M(P⋆
k)

(i)) ⊆ range(EDX ,1
[̆f
(i)
(̆f

(i)
)⊤]). (30)

Let V := range(EDX ,1
[̆f
(i)
(̆f

(i)
)⊤]). Since f̂, ĝ are full-multi-rank-r, V = range(M(ιr)

(i)) =

range(EDY,1
[ğ(i)(ğ(i))⊤]). Moreover, range(EDY,1

[ğ⋆,(i)
ki

(ğ⋆,(i)

ki
)⊤]) = range(M(P⋆

k)
(i)) ⊆ Vri .

Hence, by Lemma D.11 , ğ(i)(y), ğ⋆,(i)

ki
(y) ∈ V almost surely, and thus, ğ⋆,(i)

ki
(y) − ğ(i)(y) ∈ V

with probability one. In addition, since V has dimension ri, it follows that for any v ∈ V , and since

σri(EDX ,1
[̆f
(i)
(̆f

(i)
)⊤]) = σri(

˘̂f(i), ˘̂g(i)) > 0,

v⊤EDX ,1
[̆f
(i)
(̆f

(i)
)⊤]v ≥ ∥v∥2 · σri(

˘̂f(i), ˘̂g(i)), ∀i ∈ [K].

Therefore

∥g⋆k − g∥2M =
K∑
i=1

∥ğ⋆,(i)
ki
− ğ(i)∥2 (Transformed to M -domain)

≤
K∑
i=1

1

σri(
˘̂f(i), ˘̂g(i))

(ğ⋆,(i)

ki
− ğ(i))⊤EDX ,1

[̆f
(i)
(̆f

(i)
)⊤](ğ⋆,(i)

ki
− ğ(i))

=
1

mini σri(
˘̂f(i), ˘̂g(i))

K∑
i=1

EDX ,1
[⟨(ğ⋆,(i)

ki
− ğ(i)), f̆

(i)
⟩2]

=
1

mini σri(
˘̂f(i), ˘̂g(i))

EDX ,1
[⟨(g⋆k − g), f⟩2M].

Therefore,

EDY,2
∥g⋆

k − g∥2M ≤ EDY,2

[
EDX ,1

[⟨g⋆k − g, f⟩2M]
]

=
1

mini σri(
˘̂f(i), ˘̂g(i))

ED1⊗2 [⟨f, g⋆k − g⟩2M].
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In other words, we bound EDY,2
∥g⋆k − g∥2M by relating an expectation involving DX ,1. Now, we can

further expand

⟨f, g⋆k − g⟩M = ⟨f, g⋆
k⟩M − ⟨f, g⟩M = ⟨f, g⋆k⟩M − h

⋆ − (⟨f, g⟩M − h⋆)
= ⟨f− f⋆k, g

⋆
k⟩M − (h⋆ − ⟨f⋆k, g⋆k⟩M)− (⟨f, g⟩M − h⋆).

Hence,

min
i
σri(

˘̂f(i), ˘̂g(i))EDY,2
∥g⋆k − g∥2M

≤ 3ED1⊗2
∥⟨f− f⋆k, g

⋆
k⟩M∥

2 + 3ED1⊗2
∥h⋆ − ⟨f⋆k, g⋆k⟩M∥

2 + 3ED1⊗2
∥⟨f, g⟩M − h⋆∥2

≤ 3ED1⊗2
∥⟨f− f⋆k, g

⋆
k⟩M∥

2 + 3R(f⋆k, g⋆
k,D1⊗2) + 3R(f, g,D1⊗2).

By Lemma D.9 and the fact that ∥f − f⋆k∥M is 2B-bounded,

ED1⊗2
∥⟨f− f⋆k, g

⋆
k⟩M∥

2 ≤ κcovED1⊗1
∥⟨f− f⋆k, g

⋆
k⟩M∥

2 + 4B4ηcov = κcov∆0 + 4B4ηcov.

By Lemma D.10,R(f⋆k, g⋆k;D1⊗2) ≤ κcovR(f⋆k, g⋆k;D1⊗1) + ηcovB
4 = κcov∆apx + ηcovB

4. Finally,
by applying Lemma D.7,

R(f, g;D1⊗2) ≤ 4B4ηtst + κtrnR(f, g;Dtrain) = 4B4ηtst + κtrn∆train.

Thus, mini{σri(
˘̂f(i), ˘̂g(i))}·EDY,2

∥g⋆k−g∥2M ≤ 3κcov(∆0+∆apx)+3κtrn∆train+12B4ηcov + ηtst.

Considering the symmetric argument for EDX ,2
∥f⋆k−f∥2M and taking the maximum of the two bounds,

we arrive at the conclusion of the lemma:

(min
i
{σri(

˘̂f(i), ˘̂g(i))})∆2 ≲ ∆train + κcov(∆0 +∆apx(k)) +B4(ηcov + ηtst).

This completes the proof.

Lemma D.11 (Lemma L.7 in Ref. [46]). Let DX be a distribution over X , let Σ = EDX [ff
⊤],

and let P be the orthogonal projection on range(Σ). Then Pf = f DX -almost surely; that is,
PDX [f(x) ∈ range(Σ)] = 1.

D.1.7 Proof of LemmeD.6

Proof of Lemma D.6. Since the t-projection operators are self-adjoint and idempotent, we begin by
expressing the risk term as follows:

R(f⋆k, g⋆k;D1⊗1) = ED1⊗1

[
∥f⋆k(x)⊤ ∗M g⋆k(y)− ⟨f

⋆(x), g⋆(y)⟩M∥2
]
.

Rewriting this in terms of projection operators, we have

R(f⋆k, g⋆k;D1⊗1) = ED1⊗1

[
∥⟨P⋆

kf⋆(x),P⋆
kg⋆(y)⟩M − ⟨f⋆(x), g⋆(y)⟩M∥2

]
= ED1⊗1

[
∥⟨P⋆

kf⋆(x), g⋆(y)⟩M − ⟨f⋆(x), g⋆(y)⟩M∥2
]

= ED1⊗1

[
∥⟨(I − P⋆

k)f
⋆(x), g⋆(y)⟩M∥2

]
.

Next, switching to the M -domain by transforming into individual components, we find

R(f⋆k, g⋆k;D1⊗1) = ED1⊗1

[
K∑
i=1

⟨(I− P̆
(i)
)̆f

⋆,(i)
(x), ğ⋆,(i)(y)⟩2H

]
.

Since expectation and summation are interchangeable, we can separate the components as

R(f⋆k, g⋆k;D1⊗1) =

K∑
i=1

ED1⊗1

[
⟨(I− P̆

(i)
)̆f

⋆,(i)
(x), ğ⋆,(i)(y)⟩2H

]
.
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Using the trace operator to express this in matrix form, we get

R(f⋆k, g⋆k;D1⊗1) =

K∑
i=1

Tr
(
(I− P̆

(i)
) · EDX ,1

[̆
f
⋆,(i)

(x)̆f
⋆,(i)

(x)⊤
]
· (I− P̆

(i)
)EDY,1

[
ğ⋆,(i)(y)ğ⋆,(i)(y)⊤

])
.

Since EDX ,1

[̆
f
⋆,(i)

(x)̆f
⋆,(i)

(x)⊤
]
= M(Σ⋆

1⊗1)
(i) and EDY,1

[
ğ⋆,(i)(y)ğ⋆,(i)(y)⊤

]
= M(Σ⋆

1⊗1)
(i),

we obtain

R(f⋆k, g⋆k;D1⊗1) =

K∑
i=1

Tr
(
(I− P̆

(i)
) ·M(Σ⋆

1⊗1)
(i) · (I− P̆

(i)
)M(Σ⋆

1⊗1)
(i)
)
.

Finally, by summing over the eigenvalues of the transformed covariance matrices, we find

R(f⋆k, g⋆
k;D1⊗1) =

K∑
i=1

∑
j>ki

λj

(
M(Σ⋆

1⊗1)
(i)
)2

:= tail⋆2(k).

This completes the proof.

D.2 Excess Risk Bounds for the ERM Model

In this section, we analyze the ERM algorithm for multi-output regression under CDS. Our primary
objective is to establish a rigorous upper bound on the excess riskR(̂ferm, ĝerm

;Dtest) of the ERM

solution (̂ferm, ĝerm
) obtained by Model (5).

Recall that Theorem 4 states the following: Given vectors r = (ri)
K
i=1 ∈ NK , α = (αi)

K
i=1 ∈ RK ,

ϵtrn = (ϵ̆
(i)
trn )

K
i=1 ∈ RK , ϵD1⊗1

= (ϵ̆
(i)
D1⊗1

)Ki=1 ∈ RK where αi ≥ 1, and ϵ̆(i)trn , ϵ̆
(i)
D1⊗1

≥ 0 for all

i ∈ [K], suppose the learned embeddings (̂ferm, ĝerm
) are α-conditioned and (ϵtrn, ϵD1⊗1

)-accurate,

satisfying ϵ̆(i)D1⊗1
≤ σ̆

⋆,(i)
1 /(40r) for all i ∈ [K]. Then, under Assumptions 1 to 5 and 8, the excess

risk of the ERM solution on Dtest can be bounded up to a constant factor c = poly(κcov, κtst, κtrn)
with probability at least 1− δ:

αr2
∑
i

(σ̆⋆,(i)
r )2 + r4tail⋆2(r) + r2(tail⋆1(r))

2 +
αr6(tail⋆2(r))

2

σ2︸ ︷︷ ︸
approximation error

+ r4∆n +
αr6

σ2
∆2

n︸ ︷︷ ︸
statistical error

,

where α := maxi{αi}, σ := mini{σ̆⋆,(i)
r } > 0, ∆n = B4(N (r, 2B/n) + log 2

δ )/n with
N (r, ϵ) = N (Fr, ϵ/(2B), ∥ · ∥∞) · N (Gr, ϵ/(2B), ∥ · ∥∞).

To prove Theorem 4, we begin by applying Lemma D.2 with the multi-rank parameter r =
(r, . . . , r)⊤ ∈ RK , where r is the tubal-rank parameter of the embeddings in the ERM formu-
lation (5). This lemma provides a general decomposition of the excess risk into several key error
terms, each capturing a different aspect of the learning problem:

R(̂ferm, ĝerm
;Dtest) ≲⋆

(
∆2

1 +
1

σ2
(∆apx +∆0 +∆train)

2

)
.

This decomposition lays the groundwork for our subsequent analysis, as it allows us to focus on
bounding each error term separately.

Next, we introduce a set of conditions on the ERM solution to ensure its quality and enable more
refined bounds. Specifically, we assume that the learned embeddings (̂ferm, ĝerm

) are α-conditioned
and (ϵtrn, ϵD1⊗1

)-accurate, as formalized in Definition 17 and Definition 18, respectively.

Moreover, we impose a constraint on the rank r of the embeddings, requiring that r ≤
σ̆
⋆,(i)
1 /(40ϵ̆

(i)
D1⊗1

) for all i ∈ [K]. Under these assumptions, we can leverage the powerful Lemma
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D.22 to obtain a more refined bound on the excess risk:

R(̂ferm, ĝerm
;Dtest)

=

K∑
i=1

R̆(i)(
˘̂f(i)erm,

˘̂g(i)
erm;Dtest)

≲⋆

K∑
i=1

(
r4(ϵ̆

(i)
D1⊗1

)2 + αir
2(σ̆

⋆,(i)
r+1 )

2 + (tail
(i)⋆
1 (r))2

)
+ αi

(
r6(ϵ̆

(i)
D1⊗1

)4 + (ϵ̆
(i)
trn )

4 + (tail
(i)⋆
2 (r))2

(σ̆
⋆,(i)
r )2

)

≲⋆ r
4 · err21⊗1 +max

i
{αi} · r2

K∑
i=1

(
(σ̆

⋆,(i)
r+1 )

2 + (tail
(i)⋆
1 (r))

)

+max
i
{αi}

(
r6i
∑

i(ϵ̆
(i)
D1⊗1

)4 +
∑

i(ϵ̆
(i)
trn )

4 +
∑

i(tail
(i)⋆
2 (r))2

(mini σ̆
⋆,(i)
r )2

)

≲⋆ r
4 · err21⊗1 +max

i
{αi} · r2∥σ⋆

r+1∥2 + tail⋆1(r)
2 +max

i
{αi}

(
r6i · err41⊗1 + err4trn + (tail⋆2(r))

2

(mini σ̆
⋆,(i)
r )2

)
,

where errtrn := R(̂ferm, ĝerm
;Dtrain) and err1⊗1 := R(̂ferm, ĝerm

;D1⊗1) denote the accuracy on
Dtrain and D1⊗1, respectively. This bound reveals the intricate dependencies of the excess risk on
various problem parameters, such as the accuracy of the learned embeddings (err1⊗1 and errtrn), the
conditioning of the true embeddings (αi), and the spectral properties of the true embeddings (σ⋆

r+1,
tail⋆1(r), and tail⋆2(r)). However, to make this bound more explicit, we still need to control the error
terms errtrn and err1⊗1.

To this end, we use Lemma D.12 below to establish high-probability bounds on the excess risks
R(̂ferm, ĝerm

;Dtrain) and R(̂ferm, ĝerm
;D1⊗1) of the empirical risk minimizers (̂ferm, ĝerm

). These
bounds are expressed in terms of the true risk R(f⋆r , g⋆r ;Dtrain), the tail sum tail⋆2(r), and the
covering number N (r, 2B/n), which quantifies the complexity of the hypothesis class. By carefully
balancing these terms, Lemma D.12 provides the key ingredients needed to control errtrn and err1⊗1.

Lemma D.12. Under Assumptions 1 to 5 and 8, let (̃f, g̃) ∈ Fp ×Gp be empirical risk minimizers on
n i.i.d. samples (xi, yi, zi) ∼ Dtrain. Then, for any δ ∈ (0, 1), the followings hold with probability
at least 1− δ:

R(̂ferm, ĝerm
;Dtrain) ≤ 2R(f⋆r , g⋆

r
;Dtrain) +

368B4(N (r, 2B/n) + log 2
δ )

n

R(̂ferm, ĝerm
;Dtrain) ≤ 2κapxtail

⋆
2(r) +

368B4(N (r, 2B/n) + log 2
δ )

n

R(̂ferm, ĝerm
;D1⊗1) ≤ κtrn

(
2κapxtail

⋆
2(r) +

368B4(N (r, 2B/n) + log 2
δ )

n

)
.

where N (r, ε) = N (Fr, ε/(2B), ∥ · ∥∞) · N (Gr, ε/(2B), ∥ · ∥∞).

Proof of Lemma D.12. The lemma is proved as follows:

• The first inequality is a direct consequence of Lemma D.19. Here, we take the function class
Φ = Fr × Gr. Moreover, by Assumption 8,

sup
f∈Fr,g∈Gr

sup
x,y
∥⟨f(x), g(y)⟩M − ⟨f⋆(x), g⋆(y)⟩M∥ ≤ 2B2,

Then, we can choose U = 2B2 and ϵ = 2B2/n in Lemma D.19. Note that, according to
Lemma D.20, it holds that

N (Φ, 2B2/n, ∥ · ∥∞) ≤ N (Fr, 2B/n, ∥ · ∥∞) · N (Gr, 2B/n, ∥ · ∥∞).
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• The second inequality uses Assumption 8 to bound R(f⋆p, g⋆p;Dtrain) ≤ κapxR(f⋆p, g⋆p;D1⊗1),
and noting the fact thatR(f⋆p, g⋆p;D1⊗1) = tail⋆2(p) by Lemma D.6.

• The third inequality uses Assumption 2, incurring an addition factor of κtrn.

Now, we can proceed to derive a more explicit bound on the excess risk.

Proof of Theorem 4. By combining the results of Lemmas D.2, D.22, and D.12, and introduc-
ing some convenient shorthand notations (σ = mini σ̆

⋆,(i)
r > 0, α = maxi αi, and ∆n =

B4(N (r,2B/n)+log 2
δ )

n ), we arrive at the following bound:

R(̂ferm, ĝerm
;Dtest)

≲⋆ r
4 · err21⊗1 +max

i
{αi} · r2∥σ⋆

r+1∥2 + (tail⋆1(r))
2 +max

i
{αi}

(
r6i · err41⊗1 + err4trn + (tail⋆2(r))

2

(mini σ̆
⋆,(i)
r )2

)

≲⋆ r
4 · tail⋆2(r) + αr2∥σ⋆

r+1∥2 + r2 · tail⋆1(r)2 + r4
B4(N (r, 2B/n) + log 2

δ )

n

+ α
r6 · tail⋆2(r)2

σ2
+ α

r6

σ2

(
B4(N (r, 2B/n) + log 2

δ )

n

)2

≲⋆ r
4 · tail⋆2(r) + αr2

∑
i

(σ̆⋆,(i))2 + r2 · tail⋆1(r)2 +
αr6 · tail⋆2(r)2

σ2︸ ︷︷ ︸
approximation error

+ r4∆n +
αr6

σ2
∆2

n︸ ︷︷ ︸
statistical error

.

Limitations of the ERM Model. The ERM Model (5) faces several challenges in multi-output
regression under CDS:

• Inflexibility in adapting to spectral decay patterns: The hypothesis classes Fr and Gr in single-
stage ERM do not account for varying spectral decay patterns across different frequency com-
ponents induced by the transform M(·). Consequently, the learned embeddings may fail to
capture distinct decay characteristics within each frequency sub-domain, resulting in suboptimal
approximations.

• Lack of localized learning and complexity control: The ERM approach learns the embeddings
f̂erm and ĝ

erm
globally, disregarding the unique properties of each frequency sub-domain. This

global learning strategy can miss the nuanced decay variations across sub-domains. Additionally,
controlling the complexity of Fr and Gr through global covering numbers may be too coarse to
effectively capture these variations.

• Limited generalization performance: Due to these constraints, the single-stage ERM approach
may offer limited generalization guarantees for multi-output regression under CDS. The embed-
dings may struggle to generalize to new feature combinations, especially when spectral decay
patterns differ significantly between frequency sub-domains.

D.3 Excess Risk Bounds for ERM-DS

The ERM-DS algorithm is introduced to address the limitations inherent in the ERM approach. This
section provides a comprehensive analysis of the ERM-DS algorithm. The algorithm consists of four
main stages: overparameterization, t-covariance estimation, dimension reduction, and distillation.
We analyze each stage separately and then combine the results to obtain an overall generalization
bound. We first give a detailed version for Theorem 5 as follows.
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Theorem 6. For any ri,cut ≳⋆ poly(C/σ⋆
1) and ϵ, δ > 0, there exists a choice of σcut > 0,

p ≲⋆ (mini ri,cut)
c for some universal c > 0, and sample sizes n1:4 satisfy Condition 8, such that

with νi = r4i,cut and µ = B2/n1, the ERM-DS algorithm satisfies with probability at least 1− δ:

E(x,y)∈Dtrain
[∥̂fds(x)

⊤ ∗M ĝ
ds
(y)− h⋆(x, y)∥2] ≲⋆ ϵ

2 + C2
K∑
i=1

(1 + γ−2
i )r−2γi

i,cut .

Our proof follows the core idea and approach of Theorem 6 in Ref. [46]. The main steps of the proof
are provided as follows.

Analysis of Step 1 (Overparameterization). We begin with a precise analysis of the first phase of
the double-stage ERM. We first show that after the first step, we have the following upper bound on
the excess risk on Dtrain and D1⊗1.

Lemma D.13 (Guarantee for ERM-DS, Step 1). Let (̃f, g̃) be the obtained t-embeddings obtained
via Step 1 of ERM-DS on n1 i.i.d. samples (x1,j , y1,j , z1,j) ∼ Dtrain. Then, for any δ ∈ (0, 1), the
followings hold with probability at least 1− δ:

R(̃f, g̃;Dtrain) ≤ 2R(f⋆p, g⋆p;Dtrain) +
368B4(

∑
i N̆

(i)(p, 2B/n1) +K log 2K
δ )

n1

R(̃f, g̃;Dtrain) ≤ 2κapxtail
⋆
2(p) +

368B4(
∑

i N̆
(i)(p, 2B/n1) +K log 2K

δ )

n1

R(̃f, g̃;D1⊗1) ≤ κtrn

(
2κapxtail

⋆
2(p) +

368B4(
∑

i N̆
(i)(p, 2B/n1) +K log 2K

δ )

n1

)
.

where N̆ (i)(p, ϵ) = N (F̆ (i)
p , ϵ/(2B), ∥ · ∥∞) · N (Ğ(i)p , ϵ/(2B), ∥ · ∥∞).

This lemma establishes upper bounds on the excess risk of the initial embeddings (̃f, g̃) obtained in
Step 1 of ERM-DS for both the training distribution Dtrain and distribution D1⊗1. It refines Lemma
D.12. The main difference from Lemma D.12 lies in the covering numbers N̆ (i)(p, 2B/n1), which
here relate specifically to the function classes F̆ (i)

p and Ğ(i)p in Assumption 9, rather than to F and G
in Assumption 8. The proof is similar and leverages techniques from statistical learning theory, along
with the specific properties of the function classes F̆ (i)

p and Ğ(i)p .

Proof of Lemma D.13. As R(̃f, g̃;D) =
∑K

i=1 R̆(i) (̆̃f(i), ˘̃g(i);D), we prove the result by upper

bounding the excess risk in all the transformed sub-domains. For all i ∈ [K], let (̆̃f(i), ˘̃g(i)) ∈
F̆ (i)

p × Ğ(i)p be empirical risk minimizers on n1 i.i.d. samples (xj , yj , z̆
(i)
j ) ∼ Dtrain. Then, we will

prove that for any δ ∈ (0, 1), the followings hold with probability at least 1− δ/K:

R̆(i) (̆̃f(i), ˘̃g(i);Dtrain) ≤ 2R̆(i)(̆f
⋆,(i)

p , ğ⋆,(i)
p

;Dtrain) +
368B4(N̆ (i)(p, 2B/n1) + log 2K

δ )

n1

R̆(i) (̆̃f(i), ˘̃g(i);Dtrain) ≤ 2κapxtail
(i)⋆
2 (p) +

368B4(N̆ (i)(p, 2B/n1) + log 2K
δ )

n1

R̆(i) (̆̃f(i), ˘̃g(i);D1⊗1) ≤ κtrn

(
2κapxtail

(i)⋆
2 (p) +

368B4(N̆ (i)(p, 2B/n1) + log 2K
δ )

n1

)
. (31)

• The first inequality is a direct consequence of Lemma D.19. Here, we take the function class
Φ = F̆ (i)

p × Ğ(i)p . Moreover, by Assumption 9,

sup
f̆(i)∈F̆(i)

p ,ğ(i)∈Ğ(i)
p

sup
x,y
∥⟨̆f

(i)
(x), ğ(i)(y)⟩ − ⟨̆f

⋆,(i)
(x), ğ⋆,(i)(y)⟩∥ ≤ 2B2,
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Then, we can choose U = 2B2 and ϵ = 2B2/n1 in Lemma D.19. Note that, according to
Lemma D.21, it holds that

N (Φ, 2B2/n1, ∥ · ∥∞) ≤ N (F̆ (i)
p , B/n1, ∥ · ∥∞) · N (Ğ(i)p , B/n1, ∥ · ∥∞).

• The second inequality uses Assumption 9 to bound R̆(i)(̆f
⋆,(i)

p , ğ⋆,(i)
p

;Dtrain) ≤

κapxR̆(i)(̆f
⋆,(i)

p , ğ⋆,(i)
p

;D1⊗1), and noting the fact that R̆(i)(̆f
⋆,(i)

p , ğ⋆,(i)

p
;D1⊗1) = tail

(i)⋆
2 (p).

• The third inequality uses Assumption 2, incurring an addition factor of κtrn.

Analysis of Step 2 (t-Covariance Estimation) and Step 3 (Dimension Reduction). Next, we
analyze the effect of the t-covariance estimation and dimension reduction steps in ERM-DS. Let
(̃f, g̃) be the empirical risk minimizers from Step 1, and let Q̂r̂ be the balancing projection onto the
t-eigenvectors of M(Σ̂g̃), where r̂ = (r̂1, . . . , r̂K)⊤ ∈ NK . We define the following effective error
term in each transformed sub-domain:

˘̃ϵ(i)(p, n1, δ)
2

:= κtrn

(
2κapxtail

(i)⋆
2 (p) +

(368 + 2)B4(N̆ (i)(p, 2B/n1) + log 6K
δ )

n1

)
,∀i ∈ [K].

To select the rank r̂ for dimension reduction, we use parameters σcut = (σi,cut)
K
i=1 ∈ RK and

rcut = (ri,cut)
K
i=1 ∈ NK . Motivated by Definition F.1 in Ref. [46], we consider the following “good”

event Espec(r̂,σcut, rcut), under which the choices of σcut and rcut are sufficient for finding suitable
ranks r̂i for all the i-th frequency components (∀i ∈ [K]).

Definition 20 (Good spectral event in all the transformed sub-domains, adapted from Definition F.1
in Ref. [46]). For parameters σcut = (σi,cut)

K
i=1 ∈ RK and rcut = (ri,cut)

K
i=1 ∈ NK used in Step 3

of ERM-DS, we define Espec(r̂,σcut, rcut) as the event that the following inequalities hold in each
frequency component i ∈ [K]:

σ̆⋆
r̂i ≥

3

4
σi,cut, σ⋆

r̂i+1 ≤ 3σi,cut, σ̆⋆
r̂i − σ̆

⋆
r̂i+1 ≥

σ̆⋆
r̂i

3ri,cut

tail
(i)⋆
2 (r̂i) ≤ tail

(i)⋆
2 (ri,cut) + 9σ2

i,cutri,cut, tail
(i)⋆
1 (r̂i)

2 ≤ 18r2i,cutσ
2
i,cut + 2tail

(i)⋆
1 (ri,cut)

2.

The following lemma shows that under appropriate conditions, the excess risk of the reduced-rank
embeddings (̃f, Q̂r̂ ∗M g̃) can be bounded in terms of the effective error ˘̃ϵ(i)(p, n1, δ). The proof
involves a delicate balance between the eigenvalues of the estimated and ground truth covariance
operators, as well as careful control of the approximation and estimation errors.

Lemma D.14 (Guarantee for Double-Training, Step 2 & Step 3). Suppose the parameters σcut =
(σi,cut)

K
i=1 and rcut = (ri,cut)

K
i=1 satisfy σi,cut ∈ [2σ⋆

i,rcut
, 2
3eσ

⋆
i,1], for all i ∈ [K]. Assume

n1 ≥ p ≥ 2, n1 ≥ maxi{B2/σ2
i,cut}, µ = B2/n1, n2 ≥ 722maxi{r2i,cut}n91 log(24pK/δ), and

˘̃ϵ(i)(p, n1, δ)
2 ≤ σ2

i,cut/(64r
2
i,cut) for all i ∈ [K]. Then, with probability at least 1 − 2

3δ, we
have the following upper bound on the excess risk of hred(x, y) to the multi-rank-r̂ ground truth
h⋆r̂ := (f⋆r̂ )⊤ ∗M g⋆

r̂ on D1⊗1:

R[̂r](̃f, Q̂r̂ ∗M g̃;D1⊗1) ≤ 3000

K∑
i=1

r2i,cut˘̃ϵ
(i)(p, n1, δ)

2.

Moreover, on this event, supx,y |⟨̆̃f
(i)(x),

˘̂Q(i)
r̂i
˘̃g(i)(y)⟩| ≤

√
2n1B

2 and Espec(r̂,σcut, rcut) holds.
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The derivation of Lemma D.14 utilizes Proposition F.2 from Ref. [46] across all K subdomains in
parallel. This approach extends the proposition’s application to our specific multi-output regression
context. As the adaptation follows directly, the detailed proof is omitted.

Analysis of Step 4: Distillation After Step 4 of ERM-DS, we obtain embedding (̂fds, ĝds
) which

satisfy the following lemma.

Lemma D.15. Suppose it holds that ∥ ˘̂Q(i)
r̂i
∥op ≤

√
2n1, ∀i ∈ [K]. Then, with probability at least

1− δ/(3K), the regularized risk in the i-th frequency component satisfy

R̆(i)(
˘̂f(i)ds ,

˘̂g(i)ds ;Dtrain) +
ν̆(i)

2
R̆(i)

[ri]
(
˘̂f(i)ds ,

˘̂g(i)
ds ;D1⊗1)

≤ 2κapxtail
(i)⋆
2 (ri) + 3ν̆(i)R̆(i)

[ri]
(̆̃f(i), ˘̂Qri · ˘̃g

(i);D1⊗1) + 368

(
1 +

2ν̆(i)n1n3
n4

)
B4(Nri,n4

+ log(12K/δ))

n3
.

This lemma provides upper bounds on the training and testing risks of the final embeddings (̂fds, ĝds
)

in terms of the tail sum tail
(i)⋆
2 (ri), the excess risk R̆(i)

[ri]
(̆̃f(i), ˘̂Qri · ˘̃g

(i);D1⊗1), and the covering
number N ri, n4. The proof of this lemma relies on a careful decomposition of the excess risk and the
application of concentration inequalities. The proof of Lemma D.15 is provided in Appendix D.3.1.

We now provide a sufficient condition for parameter settings and sample sizes to improve the bound
in Lemma D.15.

Lemma D.16. Suppose that the parameters in ERM-DS are chosen as µ = B2/n1, and other
parameters (p,σcut, rcut), the sample sizes n1, . . . , n4, and parameter ν = (ν̆(i))Ki=1 ∈ RK satisfy
that for some C ≲⋆ 1, ∀i ∈ [K]

• σi,cut ∈ [2σ̆⋆
ri,cut

, 2
3e σ̆

⋆
1 ], tail

⋆
2(p) ≤

σ2
i,cut

Cr2i,cut
, and p ≥ 2;

• n1 ≥ p+ Cmax{1, B4}maxi{σ−2
i,cutr

2
i,cut(N̆

(i)(p, 2B/n1) + log(K/δ))},

• n2 ≥ 722maxi{r2i,cut}n91 log(24pK/δ),

• n4 ≥ n1n3 max{2ν̆(i), 3}.

Then, with probability at least 1− δ, the event Espec(r̂,σcut, rcut) in Definition 20 holds and

R̆(i)(
˘̂f(i)ds ,

˘̂g(i)ds ;Dtrain) + ν̆(i)R̆(i)
[r̂i]

(
˘̂f(i)ds ,

˘̂g(i)ds ;D1⊗1)

≲⋆ tail
(i)⋆
2 (ri,cut) + ri,cutσ

2
i,cut + ν̆(i)r2i,cuttail

(i)⋆
2 (p)

+
B4(N (r̂i, 2B/n4) + log(K/δ))

n3
+
ν̆(i)r2i,cutB

4(N (p, 2B/n1) + log(K/δ))

n1
.

Lemma D.16 follows from the application of Proposition F.1 in Ref. [46] to our context. The steps
align closely with those in the referenced proposition, so the detailed proof is omitted here.

To ensure the successful application of the ERM-DS algorithm, we must carefully select the parame-
ters ν̆(i) to control the error terms. However, before diving into this crucial step, let us first establish
a refined set of sufficient conditions for the algorithm parameters and sample sizes, which will serve
as the foundation for our analysis.

First, let us focus on the algorithm parameters, as outlined in Condition 7. We require that the
parameters ri,cut, σi,cut, and p satisfy a series of intricate relationships. These relationships, expressed
in parts (a), (b), and (c) of the condition, ensure that the algorithm’s components are well-balanced
and can effectively capture the underlying structure of the data.

Condition 7 (Algorithm parameters). Let ci,1 be some unspecified parameter satisfying 1 ≤ ci,1 ≲⋆ 1.
We stipulate that the algorithm parameters (σi,cut, ri,cut, p) satisfy
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(a) ri,cut ≥ ci,1 and tail
(i)⋆
2 (ri,cut) ≤ 1

ci,1
r2i,cut(σi,cut)

2;

(b) tail
(i)⋆
2 (p) ≤ 1

ci,1

σ2
i,cut

r5i,cut
;

(c) σi,cut ∈ [2σ̆⋆
ri,cut

, 2
3e σ̆

⋆
1 ].

Next, we turn our attention to the sample size requirements, as specified in Condition 8.

Condition 8 (Sample size conditions). Let ci,2 be some unspecified parameter satisfying ci,2 ≲⋆ 1.
We stipulate that, given δ ∈ (0, 1),

• The supervised sample sizes of n1, n3 satisfy

n1 ≥ p+B4 max
i
{ci,2(N̆ (i)(p, 2B/n1) + log

K

δ
)r4i,cutσ

−2
i,cut},

n3 ≥ max
i
{ci,2B4(N (ri,cut, B/n4) + log

K

δ
)σ−2

i,cut}

• The unsupervised sample sizes n2, n4 satisfy

n2 ≥ 722n91 log(24pK/δ)max
i
{r2i,cut}, n4 ≥ n1n3 max

i
{r4i,cut}.

With these conditions in place, we can now state the main result of our analysis, as presented in
Theorem 9. This theorem provides a powerful guarantee for the performance of the ERM-DS
algorithm, as measured by the risk function R(̂fds, ĝds

;Dtest). The theorem asserts that, with high
probability, this risk can be bounded by a sum of terms that depend on the parameters ri,cut, σi,cut,
and the tail sums of the singular values, tail(i)⋆1 and tail

(i)⋆
2 .

Theorem 9. Suppose the parameters of ERM-DS satisfy σcut, rcut, p, sample sizes n1, . . . , n4, and
ν̆(i) = r4i,cut, µ = B2/n1 and fix a probability of error δ ∈ (0, 1). Then, as long σcut, rcut, p satisfy
Condition 7 and n1:4 satisfy Condition 8, it holds with probability at least 1− δ,

R(̂fds, ĝds
;Dtest) ≲⋆

K∑
i=1

(
r2i,cutσ

2
i,cut + tail

(i)⋆
1 (ri,cut)

2 +
tail

(i)⋆
2 (ri,cut)

2

(σi,cut)2

)
.

The proof of this theorem relies on a careful analysis of the error terms and their relationships to
the algorithm parameters and sample sizes. By leveraging the conditions we have established, along
with advanced techniques from tensor algebra and empirical process theory, we can derive the stated
bound on the risk function.

Proof of Theorem 9. Our goal is to bound the generalization error of the ERM-DS algorithm in each
subdomain after transformation:

R̆(i)(
˘̂f(i)ds ,

˘̂g(i)ds ;Dtest) ≲⋆ r
2
i,cutσ

2
i,cut + tail

(i)⋆
1 (ri,cut)

2 +
tail

(i)⋆
2 (ri,cut)

2

(σi,cut)2︸ ︷︷ ︸
=:ERR

(i)
DT (ri,cut,σi,cut)

, ∀i ∈ [K].

The key to the proof is to leverage the properties of each step in the algorithm and recursively bound
the generalization error. While the overall proof strategy follows the ideas from [46], we extend
these results to the multi-output setting using tensor algebra, which requires handling the additional
complexity introduced by the tensor structure and the Hilbert t-Module framework.

Step 1: Based on Lemma D.22, if the learned embeddings (
˘̂f(i)ds ,

˘̂g(i)ds ) have risk (ϵ̆
(i)
trn )

2 on

the training set Dtrain and truncated risk (ϵ̆
(i)
D1⊗1

)2 on distributio D1⊗1, and satisfy ϵ̆
(i)
D1⊗1

≤
min{σ̆⋆,(i)

1 /40r̂i, σ̆
⋆,(i)
r̂i

/4}, then their generalization error on the test distribution Dtest can be
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bounded as (with αi ≤ 2) for all i ∈ [K]:

R̆(i)(
˘̂f(i)ds ,

˘̂f(i)ds ;Dtest)

≲⋆

{
r̂4i (ϵ̆

(i)
D1⊗1

)2 + tail
(i)⋆
1 (r̂i)

2 + r̂2i (σ̆
⋆,(i)
r̂i+1)

2
}
+

{
(r̂3i (ϵ̆

(i)
D1⊗1

)2 + (ϵ̆
(i)
trn )

2 + tail
(i)⋆
2 (r̂i))

2

(σ̆
⋆,(i)
r̂i

)2

}
.

Step 2: Recall that in the ERM-DS algorithm, we choose r̂i ≤ ri,cut and ν̆(i) = r4i,cut. In this case,

as long as ϵ̆(i)D1⊗1
≤ min{σ̆⋆,(i)

1 /40ri,cut, σ̆
⋆,(i)
ri,cut/4}, we can obtain for all i ∈ [K]:

R̆(i)(
˘̂f(i)ds ,

˘̂g(i)ds ;Dtest)

≲⋆

{
ν̆(i)(ϵ̆

(i)
D1⊗1

)2 + tail
(i)⋆
1 (r̂i)

2 + r̂2i (σ̆
⋆,(i)
r̂i+1)

2
}
+

{
(ν̆(i)(ϵ̆

(i)
D1⊗1

)2 + (ϵ̆
(i)
trn )

2 + tail
(i)⋆
2 (r̂i))

2

(σ̆
⋆,(i)
r̂i

)2

}
.

Step 3: Conditioned on the occurrence of the good spectral event Espec(r̂,σcut, rcut) (Definition 20),
we can further constrain the generalization error using the spectral properties provided by this event:

R̆(i)(
˘̂f(i)ds ,

˘̂g(i)ds ;Dtest) ≲⋆

{
ν̆(i)(ϵ̆

(i)
D1⊗1

)2 + r2i,cutσ
2
i,cut + tail

(i)⋆
1 (ri,cut)

2
}

+

{
(ν̆(i)(ϵ̆

(i)
D1⊗1

)2 + (ϵ̆
(i)
trn )

2 + ri,cut(σi,cut)
2 + tail

(i)⋆
2 (ri,cut))

2

(σi,cut)2

}
.

Step 4: Substituting the specific forms of (ϵ̆(i)trn )
2 and (ϵ̆

(i)
D1⊗1

)2 from Lemma D.16, and leveraging the
high-probability event described in the same lemma, we can deduce:

ν̆(i)(ϵ̆
(i)
D1⊗1

)2 ≤ ν̆(i)(ϵ̆(i)D1⊗1
)2 + (ϵ̆

(i)
trn )

2

≲⋆ tail
(i)⋆
2 (ri,cut) + ri,cutσ

2
i,cut + r6i,cuttail

(i)⋆
2 (p)

+
B4(N (r̂i, 2B/n4) + log(K/δ))

n3
+
ν̆(i)r2i,cutB

4(N (p, 2B/n1) + log(K/δ))

n1︸ ︷︷ ︸
≤2σ2

i,cut under Condition 8

≲ tail
(i)⋆
2 (ri,cut) + ri,cutσ

2
i,cut + r6i,cuttail

(i)⋆
2 (p).

This step involves balancing the algorithm parameters, sample sizes, and spectral decay rates across
all sub-domains to ensure that the error terms are well-controlled.

Step 5: Substituting the above inequality into the bound from Step 3 yields the result stated in the
theorem:

R̆(i)(
˘̂f(i)ds ,

˘̂g(i)
ds ;Dtest) ≲⋆ r

2
i,cutσ

2
i,cut + tail

(i)⋆
1 (ri,cut)

2 +
tail

(i)⋆
2 (ri,cut)

2

(σi,cut)2
,

provided that the small tail assumption tail
(i)⋆
2 (p) ≤ (σi,cut)

2

r5i
is satisfied and that the conditions on

the algorithm parameters and sample sizes in Lemma D.16 hold, which are ensured by Conditions 7
and 8.

Lemma D.17. Suppose Assumption 4 holds, and that the algorithm parameters σi,cut, ri,cut, p satisfy
σi,cut ≤ 2

3e σ̆
⋆,(i)
1 , and the following (feasible) constraints

ri,cut ≥ max{ci,1, 3eC(σ̆⋆,(i)
1 )−1}, p ≥ c

− 1
1+2γi

i,1 r
7+5γi
1+2γi
i,cut , σi,cut ≥ 2Cr

−(1+γi)
i,cut .

Then, Condition 7 holds and

ERR
(i)
DT (ri,cut, σi,cut) ≲ σ2

i,cutr
2
i,cut + C2(1 + γ−2

i )r−2γi

cut . (32)
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The proof closely follows that of Lemma E.2 in Ref. [46] and is therefore omitted. This lemma
establishes the relationship between the algorithm parameters (σi,cut, ri,cut, p) and the error term
ERR

(i)
DT (ri,cut, σi,cut), which plays a central role in bounding the excess risk of the algorithm.

Proof of Theorem 6. Our goal is to achieve the desired accuracy level ϵ. To this end, we let σi,cut =
max{2Cr−(1+γi)

i,cut , ϵ/(K1/2ri,cut)}. We then invoke Equation (32), absorb absolute constants into
the ≲⋆ notation, and arrive at the following bound:

R(̂fds, ĝds
;Dtest) ≲⋆ ϵ

2 +

K∑
i=1

(1 + γ−2
i )r−2γi

i,cut . (33)

We confirm that both Condition 7 and Condition 8 hold. Specifically, Condition 7 is satisfied as
ri,cut is large enough (as a polynomial in C/σ̆⋆,(i)

1 ) and p remains within a constant power of ri,cut.
Suitable sample sizes n1, n2, n3, n4 ensure Condition 8, leading to the result by Theorem 9.

D.3.1 Lemmas From Statistical Learning Theory

Lemma D.18 (Bernstein inequality [10]). Let Z1, . . . , Zn ∈ R be i.i.d. random variables with
|Zi| ≤M and Var[Zi] ≤ σ2. Then, with probability at least 1− δ,∣∣∣∣∣ 1n

n∑
i=1

Zi − E[Zi]

∣∣∣∣∣ ≤
√

2σ2 log(1/δ)

n
+
M log(1/δ)

3n
.

Lemma D.19. Let Φ be a function class with functions ϕ : W → Rk, and let ϕ⋆(w) be a target
function defined onW . Assume there exists a constant U > 0 such that supw∈W supϕ∈Φ ∥ϕ(w)−
ϕ⋆(w)∥2 ≤ U , and let N (Φ, ϵ, ∥ · ∥∞) be the ϵ-covering number of Φ. Let D be a joint distribution
onW × Rk such that ∥z − ϕ⋆(w)∥2 ≤ U and E[z|w] = ϕ⋆(w). Define R(ϕ) := Ew∼D[∥ϕ(w) −
ϕ⋆(w)∥22], L̂n(ϕ) := 1

n

∑n
i=1 ∥ϕ(wi) − zi∥22, and R̂n(ϕ) := L̂n(ϕ) − L̂n(ϕ

⋆). Then for any
δ ∈ (0, 1), with probability at least 1− δ,

• any ϕ ∈ Φ satisfy:

R(ϕ) ≤ a

2
R(ϕ) +

(9/a+ 5)U2 log(4N (Φ, U/n, ∥ · ∥∞)/δ)

n
, ∀a > 0. (34)

• all empirical risk minimizers ϕ̂ ∈ argminϕ∈Φ L̂n(ϕ) satisfy:

R(ϕ̂) ≤ 2 inf
ϕ∈Φ

ED[(ϕ(w)− ϕ⋆(w))2] + 92U2

n

(
log 2N (Φ, U/n, ∥ · ∥∞) + log

2

δ

)
. (35)

Proof of Lemma D.19. For each ϕ ∈ Φ, first define the loss function ℓϕ :W × Rk → R as

ℓϕ(w, z) := ∥ϕ(w)− z∥22.

Also, define the excess loss function ∆ℓϕ :W × Rk → R as

∆ℓϕ(w, z) := ℓϕ(w, z)− ℓϕ⋆(w, z) = ∥ϕ(w)− z∥22 − ∥ϕ⋆(w)− z∥22.

We then bound the excess loss function as follows. For any ϕ ∈ Φ and (w, z) ∈ W × Rk, we have:

|∆ℓϕ(w, z)| =
∣∣∥ϕ(w)− z∥22 − ∥ϕ⋆(w)− z∥22∣∣

=
∣∣∥ϕ(w)− ϕ⋆(w) + ϕ⋆(w)− z∥22 − ∥ϕ⋆(w)− z∥22

∣∣
=
∣∣∥ϕ(w)− ϕ⋆(w)∥22 + 2⟨ϕ(w)− ϕ⋆(w), ϕ⋆(w)− z⟩

∣∣
≤ ∥ϕ(w)− ϕ⋆(w)∥22 + 2∥ϕ(w)− ϕ⋆(w)∥2∥ϕ⋆(w)− z∥2
≤ U2 + 2U2 = 3U2.
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Here, the first inequality follows from the Cauchy-Schwarz inequality, and the second inequality uses
the assumptions that supw∈W supϕ∈Φ ∥ϕ(w)− ϕ⋆(w)∥2 ≤ U and ∥z − ϕ⋆(w)∥2 ≤ U .

Next, we construct an ϵ-cover of Φ. Let ϵ > 0 be fixed. By the definition of covering numbers,
there exists an ϵ-cover Φϵ of Φ under the ∥ · ∥∞ norm, such that |Φϵ| = N (Φ, ϵ, ∥ · ∥∞). This
means that for every ϕ ∈ Φ, there exists a ϕϵ ∈ Φϵ such that ∥ϕ− ϕϵ∥∞ ≤ ϵ. We further bound the
difference between the true and empirical excess risks for functions in the cover. For each ϕϵ ∈ Φϵ,
define Zi(ϕϵ) := ∆ℓϕϵ(wi, zi). Then we have: (a) E[Zi(ϕϵ)] = E(w,z)∼D[∆ℓϕϵ(w, z)] =: R(ϕϵ),
(b) |Zi(ϕϵ)| ≤ 3U2 almost surely, and (c) E[Zi(ϕϵ)

2] ≤ 9U2R(ϕϵ).

By Bernstein’s inequality and a union bound over Φϵ, we have with probability at least 1− δ/2, for
all ϕϵ ∈ Φϵ:∣∣∣∣∣R(ϕϵ)− 1

n

n∑
i=1

Zi(ϕϵ)

∣∣∣∣∣ ≤
√

2 · 9U2R(ϕϵ) log(4|Φϵ|/δ)
n

+
U2 log(4|Φϵ|/δ)

n

=

√
18U2R(ϕϵ) log(4N (Φ, ϵ, ∥ · ∥∞)/δ)

n
+
U2 log(4N (Φ, ϵ, ∥ · ∥∞)/δ)

n
.

We then extend the bound to all functions in Φ. For any ϕ ∈ Φ, let ϕϵ ∈ Φϵ be such that ∥ϕ−ϕϵ∥∞ ≤
ϵ. Then, we have:∣∣∣∣∣R(ϕ)− 1

n

n∑
i=1

∆ℓϕ(wi, zi)

∣∣∣∣∣
≤ |R(ϕ)−R(ϕϵ)|+

∣∣∣∣∣R(ϕϵ)− 1

n

n∑
i=1

Zi(ϕϵ)

∣∣∣∣∣+
∣∣∣∣∣ 1n

n∑
i=1

Zi(ϕϵ)−
1

n

n∑
i=1

∆ℓϕ(wi, zi)

∣∣∣∣∣
≤ 2Uϵ+

√
18U2R(ϕϵ) log(4N (Φ, ϵ, ∥ · ∥∞)/δ)

n
+
U2 log(4N (Φ, ϵ, ∥ · ∥∞)/δ)

n
+ 2Uϵ

≤
√

18U2R(ϕ) log(4N (Φ, ϵ, ∥ · ∥∞)/δ)

n
+
U2 log(4N (Φ, ϵ, ∥ · ∥∞)/δ)

n
+ 4Uϵ.

We will choose ϵ and simplify the bound. Set ϵ = U/n. Then, with probability at least 1− δ/2, for
all ϕ ∈ Φ:∣∣∣∣∣R(ϕ)− 1

n

n∑
i=1

∆ℓϕ(wi, zi)

∣∣∣∣∣
≤
√

18U2R(ϕ) log(4N (Φ, U/n, ∥ · ∥∞)/δ)

n
+
U2 log(4N (Φ, U/n, ∥ · ∥∞)/δ)

n
+

4U2

n

≤
√

18U2R(ϕ) log(4N (Φ, U/n, ∥ · ∥∞)/δ)

n
+

5U2 log(4N (Φ, U/n, ∥ · ∥∞)/δ)

n

≤ a

2
R(ϕ) +

(9/a+ 5)U2 log(4N (Φ, U/n, ∥ · ∥∞)/δ)

n

for any a > 0.

Next, we can bound the risk of the ERM solution. Let ϕ̃ ∈ argminϕ∈ΦR(ϕ) be a minimizer of the
true risk. Then, on the event of the previous step, we have:

R(ϕ̂)−R(ϕ̃) = R(ϕ̂)− R̂n(ϕ̂) + R̂n(ϕ̂)− R̂n(ϕ̃) + R̂n(ϕ̃)−R(ϕ̃)
≤ (R(ϕ̂)− R̂n(ϕ̂)) + (R̂n(ϕ̃)−R(ϕ̃))

≤ a

2
(R(ϕ̃) +R(ϕ̂)) + 2 · (9/a+ 5)U2 log(4N (Φ, U/n, ∥ · ∥∞)/δ)

n

≤ aR(ϕ̂) + 2 · (9/a+ 5)U2 log(4N (Φ, U/n, ∥ · ∥∞)/δ)

n
.
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Here, R̂n(ϕ) :=
1
n

∑n
i=1 ∆ℓϕ(wi, zi) is the empirical excess risk, and the first inequality uses the

fact that R̂n(ϕ̂)− R̂n(ϕ̃) ≤ 0 since ϕ̂ minimizes the empirical risk. Choosing a = 1/2, we get:

R(ϕ̂)−R(ϕ̃) ≤ 1

2
R(ϕ̂) +

46U2 log(4N (Φ, U/n, ∥ · ∥∞)/δ)

n
.

Rearranging the terms, we obtain:

R(ϕ̂) ≤ 2R(ϕ̃) +
92U2 log(4N (Φ,M/n, ∥ · ∥∞)/δ)

n

≤ 2 inf
ϕ∈Φ

ED[(ϕ(w)− ϕ⋆(w))2] + 92U2 log(4N (Φ,M/n, ∥ · ∥∞)/δ)

n
.

Lemma D.20. Let F and G be two classes of embedding functions, where f ∈ F maps from an
arbitrary domain X to a Hilbert t-ModuleM and g ∈ G maps from an arbitrary domain Y toM.
Let H be a class of functions of the form h(x, y) = ⟨f(x), g(y)⟩M, where f ∈ F and g ∈ G. Let
NF (ϵ) denote the ϵ-covering number of F , NG(ϵ) denote the ϵ-covering number of G, and NH(ϵ)
denote the ϵ-covering number ofH. If there exists a constant B such that for all f ∈ F , g ∈ G, x ∈ X ,
and y ∈ Y , we have ∥f(x)∥M ≤ B and ∥g(y)∥M ≤ B, then for any ϵ > 0, the following inequality
holds:

NH(ϵ) ≤ NF

( ϵ

2B

)
· NG

( ϵ

2B

)
.

Proof of Lemma D.20. Let {f1, . . . , fNF
} be an ϵ

2B -cover of F and {g
1
, . . . , g

NG
} be an ϵ

2B -cover

of G, where NF = NF
(

ϵ
2B

)
and NG = NG

(
ϵ

2B

)
.

For any h ∈ H, there exist f ∈ F and g ∈ G such that h(x, y) = ⟨f(x), g(y)⟩M. By the definition of
the covering sets, there exist fi and g

j
such that for all x ∈ X and y ∈ Y , we have ∥f(x)− fi(x)∥M ≤

ϵ
2B and ∥g(y)− g

j
(y)∥M ≤ ϵ

2B .

Now, consider the function hij(x, y) = ⟨fi(x), gj(y)⟩M. We have:

∥h(x, y)− hij(x, y)∥ = ∥⟨f(x), g(y)⟩M − ⟨fi(x), gj
(y)⟩M∥

= ∥⟨f(x)− fi(x), g(y)⟩M + ⟨fi(x), g(y)− g
j
(y)⟩M∥

≤ ∥⟨f(x)− fi(x), g(y)⟩M∥+ ∥⟨fi(x), g(y)− g
j
(y)⟩M∥

≤ ∥f(x)− fi(x)∥M∥g(y)∥M + ∥fi(x)∥M · ∥g(y)− g
j
(y)∥M

≤ ϵ

2B
·B +B · ϵ

2B
= ϵ.

This shows that the set {hij : 1 ≤ i ≤ NF , 1 ≤ j ≤ NG} forms an ϵ-cover ofH. The cardinality of
this set is NF ·NG = NF

(
ϵ

2B

)
· NG

(
ϵ

2B

)
, which implies that NH(ϵ) ≤ NF

(
ϵ

2B

)
· NG

(
ϵ

2B

)
.

Lemma D.21. Let F and G be two classes of vector-valued functions, where f ∈ F maps from an
arbitrary domain X to Rr and g ∈ G maps from an arbitrary domain Y to Rr. Let H be a class
of bivariate functions of the form h(x, y) = ⟨f(x), g(y)⟩, where f ∈ F and g ∈ G. Let NF (ϵ)
denote the ϵ-covering number of F , NG(ϵ) denote the ϵ-covering number of G, and NH(ϵ) denote
the ϵ-covering number ofH. If there exists a constant B such that for all f ∈ F , g ∈ G, x ∈ X , and
y ∈ Y , we have ∥f(x)∥ ≤ B and ∥g(y)∥ ≤ B, then for any ϵ > 0, the following inequality holds:

NH(ϵ) ≤ NF

( ϵ

2B

)
· NG

( ϵ

2B

)
.

Proof of Lemma D.21. Let {f1, . . . , fNF } be an ϵ
2B -cover of F and {g1, . . . , gNG} be an ϵ

2B -cover
of G, where NF = NF

(
ϵ

2B

)
and NG = NG

(
ϵ

2B

)
.
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For any h ∈ H, there exist f ∈ F and g ∈ G such that h(x, y) = ⟨f(x), g(y)⟩. By the definition of the
covering sets, there exist fi and gj such that for all x ∈ X and y ∈ Y , we have ∥f(x)− fi(x)∥ ≤ ϵ

2B
and ∥g(y)− gj(y)∥ ≤ ϵ

2B .

Now, consider the function hij(x, y) = ⟨fi(x), gj(y)⟩. We have:

|h(x, y)− hij(x, y)| = |⟨f(x), g(y)⟩ − ⟨fi(x), gj(y)⟩|
= |⟨f(x)− fi(x), g(y)⟩+ ⟨fi(x), g(y)− gj(y)⟩|
≤ |⟨f(x)− fi(x), g(y)⟩|+ |⟨fi(x), g(y)− gj(y)⟩|
≤ ∥f(x)− fi(x)∥ · ∥g(y)∥+ ∥fi(x)∥ · ∥g(y)− gj(y)∥

≤ ϵ

2B
·B +B · ϵ

2B
= ϵ.

This shows that the set {hij : 1 ≤ i ≤ NF , 1 ≤ j ≤ NG} forms an ϵ-cover ofH. The cardinality of
this set is NF ·NG = NF

(
ϵ

2B

)
· NG

(
ϵ

2B

)
, which implies that NH(ϵ) ≤ NF

(
ϵ

2B

)
· NG

(
ϵ

2B

)
.

Proof of Lemma D.15. Let Φ := {(x, y) 7→ ⟨f(x), g(y)⟩, (f(x), g(y)) ∈ F̆ (i)
ri × Ğ

(i)
ri } be a class of

bivariate functions for each i ∈ [K]. We define the following target functions:

ϕ̆
(i)
3,⋆(x, y) := ⟨̆f

⋆,(i)
(x), ğ⋆,(i)(y)⟩,

ϕ̆
(i)
4,⋆(x, y) := ⟨̆̃f

(i)(x),
˘̂Q(i)
ri
˘̃g(i)(y)⟩,

for all i ∈ [K]. Let D3 be the distribution of (x, y, z) ∼ Dtrain, and D4 be the distribution of
(x′, y′, z′), where (x′, y′) ∼ D1⊗1 and z′ = ϕ̆

(i)
4,⋆(x

′, y′). We compute the following bounds:

sup
x,y

max
ϕ∈Φ
∥ϕ(x, y)− ϕ̆(i)3,⋆(x, y)∥ ≤ 2B2,

sup
x,y

max
ϕ∈Φ
∥ϕ(x, y)− ϕ̆(i)4,⋆(x, y)∥ ≤ (1 +

√
2n1)B

2.

According to Lemma D.21, the covering number of Φ satisfies

N (Φ, U/n, ∥ · ∥∞) ≤ N (F̆ (i)
ri , U/(2Bn), ∥ · ∥∞)N (Ğ(i)ri , U/(2Bn), ∥ · ∥∞).

We define the following covering numbers:

Nri,n3
:= N (F̆ (i)

ri , B/n3, ∥ · ∥∞) · N (Ğ(i)ri , B/n3, ∥ · ∥∞),

Nri,n4
:= N (F̆ (i)

ri , (1 +
√
2n1)B/n4, ∥ · ∥∞) · N (Ğ(i)ri , (1 +

√
2n1)B/n4, ∥ · ∥∞).

For k ∈ {3, 4}, let Rk and L̂k,nk
, R̂k,nk

denote the corresponding population and empirical excess
risks as in Lemma D.19. By applying Lemma D.19 with α = 1/2 and a union bound over all i ∈ [K],
we have with probability at least 1− δ/(3K), for all ϕ ∈ Φ:

|R3(ϕ)− R̂3,n3
(ϕ)| ≤ 1

4
R3(ϕ) + (9 · 2 + 5)

(2B2)2(Nri,n3
+ log(12K/δ))

n3
,

|R4(ϕ)− R̂4,n4
(ϕ)| ≤ 1

4
R4(ϕ) + (9 · 2 + 5)

((1 +
√
2n1)B

2)2(Nri,n4
+ log(12K/δ))

n4
.

Now, define the combined population risk Rν̆(i)(ϕ) := R3(ϕ) + ν̆(i)R4(ϕ). Let

ϕ̂ ∈ argmin
ϕ∈Φ

L̂3,n3
(ϕ) + ν̆(i)L̂4,n4

(ϕ)

= argmin
ϕ∈Φ

R̂3,n3(ϕ) + ν̆(i)R̂4,n4(ϕ)
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be an empirical risk minimizer, and let ϕ̃ ∈ argminϕ∈ΦRν̆(i)(ϕ) be a population risk minimizer.
Then, we have

Rν̆(i)(ϕ̂)−Rν̆(i)(ϕ̃)

≤ 1

4
(Rν̆(i)(ϕ̂) +Rν̆(i)(ϕ̃)) + 2(9 · 2 + 5)

4B4(Nri,n3
+ log(12K/δ))

n3

+ 2ν̆(i)(9 · 2 + 5)
(2 + 4n1)B

4(Nri,n4
+ log(12K/δ))

n4

≤ 1

2
Rν̆(i)(ϕ̂) + 184

(
1 +

2ν̆(i)n1n3
n4

)
B4(Nri,n4

+ log(12K/δ))

n3
,

where the last inequality holds because n4 ≥ n1n3 max{2ν̆(i), 3}, ∀i ∈ [K] implies Nri,n4
≥

Nri,n3
.

Rearranging terms, we get

Rν̆(i)(ϕ̂) ≤ 2Rν̆(i)(ϕ̃) + 368

(
1 +

2ν̆(i)n1n3
n4

)
B4(Nri,n4 + log(12K/δ))

n3
.

To conclude the proof, we bound the terms Rν̆(i)(ϕ̂) and Rν̆(i)(ϕ̃). First, for the population risk
minimizer ϕ̃, we have

Rν̆(i)(ϕ̃) = inf
ϕ∈Φ

Rν̆(i)(ϕ)

= inf
(f,g)∈F̆(i)

ri
×Ğ(i)

ri

R̆(i)(f, g;Dtrain) + ν̆(i)ED1⊗1 [(⟨f, g⟩ − ⟨̆̃f
(i),

˘̂Q(i) · ˘̃g(i)⟩)2]

≤ R̆(i)(̆f
⋆,(i)

r , ğ⋆,(i)
r

;Dtrain) + ν̆(i)ED1⊗1
[(⟨̆f

⋆,(i)

r , ğ⋆,(i)
r
⟩ − ⟨̆̃f(i), ˘̂Q(i) · ˘̃g(i)⟩)2]

≤ κapxR̆(i)(̆f
⋆,(i)

ri
, ğ⋆,(i)

ri
;D1⊗1) + ν̆(i)ED1⊗1 [(⟨̆f

⋆,(i)

ri
, ğ⋆,(i)

ri
⟩ − ⟨̆̃f(i), ˘̂Q(i) · ˘̃g(i)⟩)2]

= κapxtail
(i)⋆
2 (ri) + ν̆(i)R̆(i)

[ri]
(̆̃f(i), ˘̂Q(i)

ri · ˘̃g
(i);D1⊗1).

Second, for the empirical risk minimizer ϕ̂, we have
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2
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≤ R̆(i)(
˘̂f(i), ˘̂g(i);Dtrain) + ν̆(i)ED1⊗1
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ri
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ri
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= R3(ϕ̂) + ν̆(i)R4(ϕ̂) + ν̆(i)R̆(i)
[ri]
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(i);D1⊗1)

= Rν̆(i)(ϕ̂) + ν̆(i)R̆(i)
[ri]

(̆̃f(i), ˘̂Qri · ˘̃g
(i);D1⊗1).

Combining the bounds for Rν̆(i)(ϕ̂) and Rν̆(i)(ϕ̃), we conclude

R̆(i)(
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2
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2ν̆(i)n1n3
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)
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+ log(12K/δ))
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,
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which completes the proof.

D.3.2 A Lemma on the Risk Bound for t-Bilinear Combinatorial Extrapolation

We now present a lemma on the risk bound for t-bilinear combinatorial extrapolation. This bound
depends on the upper bound ϵtrn on the risk of the learned embedding (̂f, ĝ) for the training distribution
Dtrain, the upper bound ϵ1⊗1 on the risk for the top-block distribution D1⊗1, and σr (̂f, ĝ).

Lemma D.22. Given vectors r = (ri)
K
i=1 ∈ NK , α = (αi)

K
i=1 ∈ RK , ϵtrn = (ϵ̆

(i)
trn )

K
i=1 ∈ RK , and

ϵD1⊗1
= (ϵ̆

(i)
D1⊗1

)Ki=1 ∈ RK , where αi ≥ 1, ϵ̆(i)trn , ϵ̆
(i)
D1⊗1

≥ 0 for all i ∈ [K], suppose (̂f, ĝ) are
α-conditioned and (ϵtrn, ϵD1⊗1

)-accurate R∥r∥∞×1×K-embeddings of tensor-multl-rank r, where
ri ≤ σ̆⋆,(i)

1 /(40ϵ̆
(i)
D1⊗1

). If σ̆⋆,(i)
ri > 0, then

R̆(i)(
˘̂f(i), ˘̂g(i);Dtest)

≲⋆

(
r4i (ϵ̆

(i)
D1⊗1

)2 + αir
2
i (σ̆

⋆,(i)
ri+1)

2 + tail
(i)⋆
1 (ri)

2
)
+ αi

(
r6i (ϵ̆

(i)
D1⊗1

)4 + (ϵ̆
(i)
trn )

4 + tail
(i)⋆
2 (ri)

2

(σ⋆
ri)

2

)
.

Lemma D.22 provides an upper bound on the excess risk R̆(i)(
˘̂f(i), ˘̂g(i);Dtest) for each i-th frequency

component of the learned embeddings on Dtest. This bound depends on the embedding rank ri,
accuracy parameters ϵ̆(i)trn and ϵ̆(i)D1⊗1

, conditioning parameter αi, and the singular values and tail sums
of the true embeddings. The embeddings must be α-conditioned and (ϵtrn, ϵD1⊗1

)-accurate, with ri
limited relative to σ̆⋆,(i)

1 /ϵ̆
(i)
D1⊗1

.

Proof of Lemma D.22. The proof closely follows the arguments in Theorem 8 of [46], extending
them to the multi-output setting using the tensor algebraic tools developed in our work.

Let s = (s1, · · · , sK)⊤ ∈ NK and ϵ = (ϵ̆i, · · · , ϵ̆K) be such that

ϵ̆2i ≥ inf
s′≥si−1

R̆(i)
[s′](

˘̂f(i), ˘̂g(i);D1⊗1) := ED1⊗1 [(⟨
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si f̆
⋆,(i)

,P⋆
si ğ

⋆,(i)⟩)2], (36)

si <
∥M(Σ⋆

1⊗1)
(i)∥op

40ϵ̆i
, (37)

where P⋆
si is the projection operator onto the top-si eigenspaces of M(Σ⋆

1⊗1)
(i).

Suppose (̂f, ĝ) are full-multi-rank-r. Then there exists an index vector k = (k1, · · · , kK)⊤ ∈ NK

with ki ∈ [min{ri, si − 1}] for all i ∈ [K], and functions f : X → M and g : Y → M such that
(f, g) are aligned k-proxies of (̂f, ĝ). The construction of (f, g) follows the same steps as in the proof

of Theorem 8(a) in [46], applied to each component (˘̂f(i), ˘̂g(i)) separately. Specifically, we set

f̆
(i)

= (ιri ◦ (T̆
(i)
)−1)

˘̂f(i), ğ(i) = (ιri ◦ T̆
(i)
)˘̂g(i),

where ιri : Rri →Mi is a t-isometric inclusion,Mi is the i-th component Hilbert space ofM, and

T̆
(i)

is the balancing operator for (˘̂f(i), ˘̂g(i)) as defined in Lemma 15. The index ki is chosen as the

largest integer in [min{ri, si − 1}] such that σ̆⋆,(i)
ki
− σ̆⋆,(i)

ki+1 ≥
σ̆
⋆,(i)
ki

min{ri,si−1} . The existence of such a

ki is guaranteed by the gap condition (36) and the fact that (˘̂f(i), ˘̂g(i)) are full-rank, as shown in [46].

With the aligned proxies (f, g) constructed, we can bound their error terms using the same arguments
as in the proof of Theorem 8(b) in [46], applied componentwise. This yields the bounds

∆0(̆f
(i)
, ğ(i), ki) + tail

(i)⋆
2 (ki) ≲ tail

(i)⋆
2 (si) + s3i ϵ̆

2
i + si(σ̆
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(i)
, ğ(i), ki) ≲ tail

(i)⋆
1 (si) + (

√
ri + s2i )ϵ̆i + siσ̆

⋆,(i)
si .
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Finally, suppose ϵ̆2i ≤ (1− α−1
i )(σ̆

⋆,(i)
ri )2 for some αi ≥ 1. Then, as shown in the proof of Theorem

8(c) in [46], we have σri(
˘̂f(i), ˘̂g(i))2 ≥ (σ̆

⋆,(i)
ri )2/αi, and hence (̂f, ĝ) are necessarily full-multi-rank-r.

Combining these bounds and applying a refined error decomposition in each i-th frequency component
induced by the transform M(·) in Eq. (1), we arrive at the risk bound
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Here, in the last step, we used the fact that si ≤ ri and ϵ̆i ≤ ϵ̆
(i)
D1⊗1

, and we absorbed the constant
factors into the ≲⋆ notation. This completes the proof of the lemma.
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paper’s contributions and scope?
Answer: [Yes]
Justification: The paper introduces a tensor spectral theory approach to address multi-output
regression challenges under combinatorial distribution shift (CDS), marking a pioneering
theoretical exploration in this area.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: It acknowledges several limitations: the potential inadequacy of the spectral
methods against real-world data complexity and the uncertain robustness of results from
controlled experiments. We suggest future research to refine these methods fostering the
development of more effective solutions.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
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Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]

Justification: The paper provide the full set of assumptions and a complete (and correct)
proof for the theroetical results.

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental Result Reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer:[Yes]

Justification: This paper presents a pioneering theoretical exploration of multi-output regres-
sion challenges under CDS using a generalized tensor spectral theory. Since no existing
algorithms address these specific models, our experiments use numerical simulations with
synthetic data to validate preliminary results. Details are provided in the appendix.

Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).
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(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: We provide the code for our conceptually validation.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: We show the experiment details in the appendix.
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• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: The paper reports error bars and provides appropriate information about the
statistical significance of the experiments, with results obtained from multiple repeated
trials.
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• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: For the experiment, the paper provides sufficient information on the computer
resources needed to reproduce the experiments.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: This paper conforms in every respect with the NeurIPS Code of Ethics.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader Impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]
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Justification: The paper provides a new tensor spectral perspective for the multi-output
regression problem due to combinatorial distribution shift. It focuses solely on these
technical aspects and does not have potential societal impacts.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: This paper does not describe safeguards for the responsible release of data or
models because it focuses exclusively on the technical aspects of addressing combinatorial
distribution shift in multi-output regression. Therefore, this question is not applicable (N/A).

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [NA]

Justification: This paper does not use any external assets such as code, data, or models.
Therefore, the question regarding the crediting of creators or original owners, as well as the
respect for licenses and terms of use, is not applicable (N/A).

75



Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
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• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer:[NA]

Justification: This paper does not introduce any new assets. Therefore, the question regarding
the documentation of new assets is not applicable (N/A).

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their
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limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: This paper does not involve crowdsourcing experiments or research with human
subjects. Therefore, the question regarding instructions, screenshots, and compensation
details is not applicable (N/A).
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• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
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Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: This paper does not involve study participants or human subjects. Therefore,
the question regarding potential risks, disclosures to subjects, and IRB approvals is not
applicable (N/A).
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• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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