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Abstract

Federated learning (FL) offers a machine learning paradigm that protects privacy,
allowing multiple clients to collaboratively train a global model while only access-
ing their local data. Recent research in FL has increasingly focused on improving
the uniformity of model performance across clients, a fairness principle known as
egalitarian fairness. However, achieving egalitarian fairness in FL may sacrifice the
model performance for data-rich clients to benefit those with less data. This trade-
off raises concerns about the stability of FL, as data-rich clients may opt to leave
the current coalition and join another that is more closely aligned with its expected
high performance. In this context, our work rigorously addresses the critical con-
cern: Does egalitarian fairness lead to instability? Drawing from game theory and
social choice theory, we initially characterize fair FL systems as altruism coalition
formation games (ACFGs) and reveal that the instability issues emerging from the
pursuit of egalitarian fairness are significantly related to the clients’ altruism within
the coalition and the configuration of the friends-relationship networks among the
clients. Then, we theoretically propose the optimal egalitarian fairness bounds
that an FL coalition can achieve while maintaining core stability under various
types of altruistic behaviors. The theoretical contributions clarify the quantitative
relationships between achievable egalitarian fairness and the disparities in the sizes
of local datasets, disproving the misconception that egalitarian fairness inevitably
leads to instability. Finally, we conduct experiments to evaluate the consistency of
our theoretically derived egalitarian fairness bounds with the empirically achieved
egalitarian fairness in fair FL settings.

1 Introduction

Federated learning (FL) has emerged as a significant learning paradigm in which clients utilize their
local data to train a global model collaboratively without sharing data and has attracted researchers
from various fields, especially in domains where data privacy and security are critical, such as
healthcare, finance, and social networks [1, 2, 3]. In vanilla FLs, different clients sharing the same
global model may experience varying performance (i.e., error) due to differences in the amount
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of data contributed by each client. As clients may lack access to significant data resources due to
objective or unavoidable factors, such as regional specificity and historical inequalities, recent works
[4, 5, 6, 7, 8, 9] have focused on ensuring that the performance of global model across the clients
roughly comparable or even equal, termed as “egalitarian fairness”. In FLs complying with egalitarian
fairness, the performance of the global model on clients contributing high data resources may decrease
to enhance the performance on other clients contributing lower data resources, particularly when local
datasets are heterogeneous. This case could potentially cause higher-resource clients to leave the
current grand coalition and form a sub-coalition to achieve desired performance, thereby disrupting
the core stability [10, 11] of the FL. In game theory, a coalition is said to be core-stable if no sub-
coalition exists such that the players of that sub-coalition can obtain a payoff no less than they are
allocated in the original coalition and at least one player of that sub-coalition can obtain a payoff
greater than it was allocated in the original coalition. Otherwise, the original coalition is said to be
blocked.

Prior works [12, 13, 14, 15] have primarily examined the effects of pursuing performance optimality
on the core stability of FLs, leaving the effect of fairness unexplored. These works view the FL
process as a hedonic game [16] and assume that clients are selfish, with clients’ utility functions being
their own performance and only influenced by other individuals in the same coalition. However, in the
real world, clients’ behaviors are more complex: clients may form friends-relationships and exhibit
altruism towards each other. Various external factors, such as commercial ties, welfare purpose, or
shared research interests, etc, influence the relationships between clients. For instance, branches of
the same corporation can be considered as friends due to common commercial goals. In contrast,
branches from rival companies may be viewed as non-friends. Hospitals collaborating on developing
a diagnostic model for welfare purposes can also be regarded as friends. Under altruistic behavior,
a player’s utility depends not only on their own performance but also on the performance of their
friends. Furthermore, altruistic behaviors in FL, which have been largely overlooked in previous work,
are particularly crucial when considering the impact of egalitarian fairness on stability. Altruistic
behaviors influence the willingness of clients to sacrifice a certain degree from optimal performance
[17, 18]. Considering the friend-relationships, Nguyen et al. [19] introduced altruistic hedonic
games (AHGs), wherein players gain utility from their own valuation of the current coalition and the
valuation of their friends within the same coalition. However, players who are friends may not be
in the same coalition, but they can still influence each other’s utility in the coalitions. For instance,
altruistic hospital clients might choose to leave one coalition to join another where their friend
hospitals are, aiming to enhance each other’s performance collaboratively. When the FL process
is described as AHGs, which excludes some friends’ influence on a player’s altruistic behavior, it
may lead to a core-stable coalition in terms of local utilities but non-Pareto optimal in local errors.
An alternative coalition structure exists where each client encounters an error not higher than that
observed within the core-stable coalition structure, with at least one client experiencing a lower error.

In this context, we pose the following open questions: How does egalitarian fairness affect the
stability of FLs? How does this impact vary when clients exhibit altruistic behaviors? What is the
optimal egalitarian fairness that a stable FL can achieve?

Our contributions. We initiate discussions to address the above questions by proposing the game
model under altruistic behaviors in Section 4. Based on the degree of altruism, we define three
types of client behavior: purely selfish (non-altruistic), purely altruistic, and friendly altruistic.
Existing research on egalitarian fairness mainly involves two implementations: optimizing the
global model towards the worst-performing client [5, 20, 6] or simultaneously to all clients [4, 7, 8].
Correspondingly, we further distinguish altruism into a min-based and a mean-based aggregation of
the friends’ performance: welfare altruism and equal altruism. We model the collaborative training
involving clients with altruistic behavior as altruism coalition formation games (ACFGs), where
clients’ utilities depend on a network of friends via one of the above cases of altruism. We theoretically
demonstrate that the ACFGs result in a core-stable grand coalition, which is also Pareto-optimal in
local errors.

In Section 5, we demonstrate in detail that egalitarian fairness does not necessarily lead to instability;
rather, it depends on the behaviors of the clients and the topology of the friends-relationship networks.
We theoretically propose the optimal egalitarian fairness bounds that a core-stable FL can obtain.
These bounds are functions of the disparities between the dataset sizes within the clients’ friends
network and the global minimal one. The established fairness bounds can be utilized to set a
reasonable level of fairness in fair FLs. The proofs for these fairness bounds are modular. Beyond
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establishing tight fairness bounds, part of the contribution of this work lies in the analysis methodology
used to derive these bounds.

The main contributions in this paper are primarily theoretical. However, we also conduct experiments
to assess the consistency of the theoretically proposed fairness bounds with the empirically achieved
fairness in fair FLs.

2 Related work

Stability in FL. Existing results on stability in FL mainly focus on a particular aspect of the entire
issue. For instance, Donahue et al. [12] have first formulated the model sharing problem as a
hedonic game, in which each player derives some cost (error) from the coalition they join. The
aim of their research is to identify the conditions when the grand coalition or partitions of players
are stable for varying federation aggregation mechanisms. In their subsequent work [15], they
have further contributed to calculating an optimal (minimum error) federating arrangement and
analyzing the differences between stable arrangements and optimal arrangements using the canonical
game-theoretic tools of the Price of Anarchy and the Price of Stability. Chaudhury et al. [14]
have defined a fairness concept based on core stability, which requires that no subset of agents can
benefit significantly than in grand coalition, and proposed CoreFed, an FL protocol to implement
a core-stable predictor. Blum et al. [21] have proposed a stable and envy-free equilibrium-based
collaboration protocol to meet the client’s learning objectives while keeping their local data collection
burden low. However, the impact of fairness on FL stability remains unexplored in existing work.
Moreover, current research on the stability of FL is limited to the assumption of selfish individuals
who compete with each other to win the game and maximize their own profits.

Altruism in game theory. From more background on game theory and social choice theory, altruism
[22, 23, 24] has been considered for cooperative games to date, in which the players’ payoffs in the
resulting game do not only depend on their individual payoffs but also on the neighborhood graph
and the aggregation functions that reflect the social context. Numerous studies [25, 26, 27, 28] have
highlighted the ubiquity and rationality of human altruism from economic, neural, and evolutionary
perspectives. Rothe [22] has systematically introduced certain notions of altruism into existing
game-theoretic models in both non-cooperative and cooperative games. Kerkmann et al. [29] have
formally distinguished three degrees of altruism: selfish-first, equal-treatment, and altruistic-treatment
preferences and studied both the axiomatic properties and the computational complexity of stability
in altruistic hedonic games. In their other work [30], they have additionally studied stability notions
and computational analysis of altruism in coalition formation games. These works in game theory,
where altruistic players only prefer coalitions with more friends, are constrained in the FL setting
when additional model performance on both the player and their friends need to be considered.

3 Preliminaries

Model and assumptions. Let’s consider a setup involving N clients, where the i-client possesses
a local dataset Di of size ni. The local datasets are samples drawn from data distribution Pi(y|x).
Each client can train a model M with parameter θi locally, resulting in P (M(x, θi)|x) → Pi(y|x).
In addition to local training, clients can participate in collaborative training with other clients and
form an FL coalition, denoted as π. Within this coalition, clients share their local model parameters.
These shared parameters are then aggregated according to a specific rule, θ =

∑
i∈π(ni·θi)∑

i∈π ni
.

The above weighted aggregation known as FedAvg [31] is a widely used FL aggregation mechanism.
We measure the aggregated global model’s performance on the client’s local dataset in the coalition
through the expected error erri(π) = Ex,y∼Di

[∥M(x, θ)− y∥]. A lower erri(π) implies that the
coalition π is more valuable for the i-th client. To determine a tight fairness bound, an FL model that
gives exact errors for each client is necessary. Therefore, we build our work on the mean estimation
task developed by Donahue et al. [12], which develops the closed-form local errors as in Lemma 1.
It’s important to note that while we utilize this model, the questions posed by Donahue et al. [12]
significantly differ from the focus of this paper: they focused on developing the error models in FL
setting and identifying the stable conditions for selfish-clients forming coalitions, while our work
explores the relations between fairness and core-stability in FL settings when clients exhibit altruistic
behaviors.
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Lemma 1 (Corollary 4.3 in [12]) In an FL setting with N clients, each client possesses a local
dataset Di of size ni. The local dataset of each client Di is with mean θi and standard deviation ϵi,
where

(
θi, ϵ

2
i

)
∼ Θ. When FL trains a global model for mean estimation and employs FedAvg for

aggregation, the expected mean squared error (MSE) for a client with ni samples within coalition π
is as follows,

erri(π) =
µe∑
j∈π nj

+ σ2 ·

∑
j∈π,j ̸=i n

2
j +

(∑
j∈π,j ̸=i nj

)2
(∑

j∈π nj

)2 , (1)

where µe = E(θi,ϵ2i )∼Θ

[
ϵ2i
]

denotes the expected value of the variance of the dataset distribution,

and σ2 = var (θi) denotes the variance between the means of the clients’ local datasets.

Fairness definition. We explore egalitarian fairness in Definition 1, a fairness notion that assesses
whether the global model exhibits equitable performance across clients with varying data resources.
Definition 1 (Egalitarian fairness) For the clients within a coalition π holding datasets of vary-
ing sizes {n1, n2, ..., nN} and experiencing errors {err1(π), err2(π), ..., errN (π)}, the coalition
structure π satisfy λ-egalitarian fairness if there exists a constant λ such that,

erri(π)

errj(π)
≥ λ, ni ≤ nj . (2)

Here, λ is the fairness bound. When λ = 1, the coalition π is said to satisfy strict egalitarian fairness.

4 Game model

Before delving into the impact of fairness on the stability of the FL, we first define the concepts from
the perspective of game theory and social choice theory. All proofs for this section are in Appendix.
Definition 2 (Value) In the context of collaborative gaming, the value quantifies the payoff accrued
to the i-th player as a result of participating within the current coalition π. Within the framework of
FL, the value is defined as the error of the global model evaluated on the i-th client’s local dataset as
vi(π) = erri (π).

Definition 3 (Friend) In a broader sociological context, the friend is considered the most intimate,
trustful, and voluntarily chosen tie people maintain. Within the framework of FL, the friend set of the
i-th client, denoted as Fi, is defined as the clients whose value is also expected to be better when i-th
client makes a coalition participation decision.

Definition 4 (Core stability) The grand coalition πg (the coalition consisting of all players) is
considered to be core-stable if there does not exist nonempty sub-coalition πs ⊂ πg such that
πs ≻i πg for ∀i ∈ πs, where ≻ is used to denote a preference relation. In other words, no nonempty
sub-coalition πs ⊂ πg blocks πg .

Based on the above notions, we define altruism in FL as the client’s choice to remain within or exit
the existing coalition π, influenced by the acquired values of their friends ∀f ∈ Fi. Previous research
on egalitarian fairness has primarily focused on two approaches: optimizing the global model towards
the worst-performing client [5] or simultaneously to all clients [6]. Correspondingly, we classify
altruism into two categories: welfare altruism and equal altruism. In the case of welfare altruism,
a client’s primary concern is for the friend who is in the worst situation. On the other hand, equal
altruism implies that a client shows equal concern for all friends. The aggregate values for welfare
and equal altruism are defined as minf∈Fi ({vf (π)}) and 1

|Fi|
∑

f∈Fi
vf (π), respectively.

4.1 Client behavior

We divide client behavior into three types based on the degree of altruism: purely selfish (non-
altruistic), purely altruistic and friendly altruistic.

• Purely selfish: A purely selfish client opts to stay or leave the current coalition π, based solely on
its own value, i.e., according to value definition, a purely selfish client prefers to join a coalition that
offers a lower value vi and conversely, to leave a coalition that results in a higher value vi. The utility
function of a purely selfish client is defined as ups

i (π) = vi (π).
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• Purely altruistic: A purely altruistic client chooses to stay or leave the current coalition π,
only based on the value received by its friends. Corresponding to welfare and equal altruism, the
utilities of a purely altruistic client are defined as upa

i (π) = maxf∈Fi ({vf (π)}) and upa
i (π) =

1
|Fi|

∑
f∈Fi

vf (π), respectively.

• Friendly altruistic: A friendly altruistic client decides whether to stay or leave the current coalition,
π, based on its own value and the value its friends receive. Corresponding to welfare and equal
altruism, the utility function of a friendly altruistic client is defined as ufa

i (π) = w ·vi(π)+(1−w) ·
maxf∈Fi∪{i} ({vf (π)}) and ufa

i (π) = w · vi(π) + (1− w) · 1
|Fi|+1

∑
f∈Fi∪{i} vf (π) respectively,

where w ∈ (0, 1) is selfishness degree parameter.

Given two coalitions π1 and π2, π1 ≻i π2 occurs if and only if ui(π1) ≤ ui(π2). Donahue et al. [15]
have established the sufficient conditions for achieving core-stability under the assumption of selfish
clients, as in Lemma 2. Building upon their findings, we further introduce these conditions to cover
scenarios of altruistic behaviors, as in Corollary 1.

Lemma 2 (Lemma 10 in [15]) When clients are purely selfish, for a set of clients with ni ≤ µe

σ2 , the
grand coalition πg is core-stable.

Corollary 1 For a set of players where ni ≤ µe

σ2 , the grand coalition πg remains core-stable when
the clients are either purely altruistic or friendly altruistic. The proof is provided in Appendix A.2.

4.2 Altruism hedonic game vs. altruism coalition formation game

Existing research [12, 14, 32] views FL as a hedonic game, where the players only care about the
identity of the players in their coalition. Correspondingly, within the framework of the altruism
hedonic game (AHG), the set of friends influencing the i-th client’s participation decision is
confined to Fi → Fi ∩ πi, where πi represents the coalition to which the i-th client belongs.
In AHG, excluding some friends from a client’s altruistic behavior can result in a core-stable
coalition structure that is non-Pareto optimal in terms of local errors. The non-Pareto optimal
indicates that an alternative coalition structure can be established where each client encounters
an error not higher than that observed within the core-stable coalition structure, with at least one
client experiencing a lower error. Such a core-stable coalition structure contradicts the assumption
of rationality among clients. For example, Table 1 shows the error and utility of 4 friendly
welfare altruistic (w = 0.5) clients in the mean estimation task. In a fully connected friends-
relationship network (Relation I in Figure 1), we first employ the AHG model to analyze the FL
system. We recognize that the core-stable coalition structure Πstable = {{1,2} , {3} , {4}}
is non-Pareto optimal in local errors as there exists another alternative structure,

Client 1 Client 2

Client 3 Client 4

Client 1 Client 2

Client 3 Client 4

Figure 1: Friends-relationship networks: fully con-
nected relation I (left) and partially connected rela-
tion II (right).

i.e., Πalter = {{1, 2, 3} , {4}}, in which
the errors are not greater than in Πstable

(i.e., erri(Πalter) ≤ erri(Πstable),∀i ∈
{1, 2, 3, 4}) and at least one client exhibits less
error than that in Πstable (i.e., erri(Πalter) ≤
erri(Πstable),∀i ∈ {1, 2, 3}). To ensure a core-
stable coalition structure that guarantees Pareto
optimality and adheres to the rationality assump-
tions of the players, we model the FL process
with altruistic behavior as an altruism coalition
formation game (ACFG), where a client’s utility
is derived from the entire friend-network, regardless of whether the friends belong to the same
coalition as the client. The ACFG fully captures the impact of altruistic behavior on a client’s decision
to stay or leave a coalition; for example, a client may opt to leave the current coalition to satisfy
the needs of friends in other coalitions, a scenario that AHG can not capture. As shown in Table 1,
the core-stable coalition structure of a fully connected friends-relationship network under ACFG,
Πstable = {{1,2,3,4}}, is Pareto-optimal in local errors across clients.

Proposition 1 (Pareto-optimality in error, Appendix A.3) Consider the FL system described as an
ACFG, a core-stable coalition structure is also Pareto-optimal in local errors across all clients.
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Table 1: The error and utility for friendly welfare altruistic clients within fully connected and partially
connected friendship networks under AHG and ACFG frameworks, respectively.

Error (=ups) Utility ufa in AHG
(Relation I)

Utility ufa in ACFG
(Relation I)

Utility ufa in ACFG
(Relation II)Coalition

Structure err1 err2 err3 err4 u1 u2 u3 u4 u1 u2 u3 u4 u1 u2 u3 u4

{1} 2.0 / / / 2.0 / / / 2.0 / / / 2.0 / / /
{2} / 2.0 / / / 2.0 / / / 2.0 / / / 2.0 / /
{3} / / 1.0 / / / 1.0 / / / 1.22 / / / 1.22 /
{4} / / / 0.666 / / / 0.666 / / / 1.020 / / / 0.770

{1,2} 1.5 1.5 / / 1.5 1.5 / / 1.5 1.5 / / 1.5 1.5 / /
{2,3} / 1.555 0.888 / / 1.555 1.222 / / 1.590 1.256 / / 1.590 1.222 /
{3,4} / / 1.12 0.72 / / 1.12 0.92 / / 1.31 1.11 / / 1.31 0.92
{1,3} 1.555 / 0.888 / 1.555 / 1.222 / 1.590 / 1.256 / 1.590 / 1.256 /
{1,4} 1.625 / / 0.625 1.625 / / 1.125 1.625 / / 1.125 1.625 / / 0.756
{2,4} / 1.625 / 0.625 / 1.625 / 1.125 / 1.625 / 1.125 / 1.625 / 0.756

{1,2,3} 1.375 1.375 0.875 / 1.375 1.375 1.125 / 1.375 1.375 1.125 / 1.375 1.375 1.125 /
{1,2,4} 1.44 1.44 / 0.64 1.44 1.44 / 1.04 1.44 1.44 / 1.04 1.44 1.44 / 0.82
{1,3,4} 1.388 / 1.055 0.722 1.388 / 1.222 1.055 1.694 / 1.527 1.361 1.694 / 1.527 0.888
{2,3,4} / 1.388 1.055 0.722 / 1.388 1.222 1.055 / 1.694 1.527 1.361 / 1.694 1.222 0.888

{1,2,3,4} 1.306 1.306 1.020 0.734 1.306 1.306 1.163 1.020 1.306 1.306 1.163 1.020 1.306 1.306 1.163 0.877

5 Egalitarian fairness bound in core-stable federated learning

5.1 Does egalitarian fairness lead to instability?

To achieve egalitarian fairness in FL [4, 5, 20, 6, 7, 8], resource-advantaged clients may sacri-
fice local error to improve error uniformity of global model across all participants, creating a
motivation for these resource-advantaged clients to leave the FL framework. In this part, we
initially reveal the factors that impact the emergence of issue “egalitarian fairness leads to in-
stability”. As demonstrated in Table 1, the most egalitarian fair coalition structure is grand
coalition, ΠG = {πg} = {{1, 2, 3, 4}}, with a fairness bound λ = 1.306/0.734 ≈ 1.78.

Table 2: Notation Definitions.
Notation Description

πc The complement coalition of a coali-
tion πs: πc = πg \ πs.

Ns The sum of the dataset sizes in πs:
Ns =

∑
i∈πs

ni.
Nc The sum of the dataset sizes in πc:

Nc =
∑

i∈πc
ni.

Ng The sum of the dataset sizes in the
grand coalition: Ng =

∑
i∈πg

ni.
m The index of the client with the

smallest dataset size in πg: m =
argmini∈πg

{ni}.
l The index of the client with the

largest dataset size in πg: l =
argmaxi∈πg

{ni}.

When all clients are purely selfish and fo-
cus solely on minimizing their local error,
the coalition structure ΠG is not core-stable.
The current core stable coalition structure
is Πstable = {{1,2,3} , {4}} with a fairness
bound λ = 1.375/0.666 ≈ 2.06. However,
when clients exhibit altruistic behavior, and the
friends-relationship network is fully connected
(Relation I), the most egalitarian fair coalition
structure Πstable = ΠG = {{1,2,3,4}} with
a fairness bound λ = 1.306/0.734 ≈ 1.78
is also core stable. The finding demonstrates
whether “egalitarian fairness leads to instabil-
ity” is influenced by the clients’ behavior. Fur-
thermore, when the friends-relationship network
among the clients changes to partially connected
(Relation II), leading to the coalition structure
ΠG = {{1, 2, 3, 4}} becoming not core-stable
anymore and the current core stable coalition
structure is Πstable = {{1,2,3} , {4}} with a fairness bound λ = 1.375/0.666 ≈ 2.06. The obser-
vation demonstrates that, under altruistic behaviors, the diverse friends-relationship networks also
impact whether “egalitarian fairness leads to instability”.

From the above analysis, we observe a varying optimal fairness achieved within the core-stable
coalition under diverse client behaviors and friends-relationship networks, highlighting a significant
problem to guide the setting of fairness in FL: for an FL system, what is the optimal egalitarian
fairness that can be achieved without compromising the core-stability of the FL system?
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5.2 Optimal egalitarian fairness bound

We define a distance function to measure the dataset size of a client relative to all other clients within
the same coalition π,

d(π, nj) =
(∑

i∈π n
2
i − n2

j

)
+
(∑

i∈π ni − nj

)2
. (3)

Given the grand coalition πg in an FL system consists of a set of N clients with local dataset size
ni ≤ µe

σ2 and based on the properties of mean estimation task in Corollary 1, the grand coalition πg is
core-stable. In this context, we give the tight egalitarian fairness bound achieved by πg in Proposition
2∼ 6. For any coalition πs ⊂ πg, we unify the common notations to represent the data size within
this subset and its complement, as well as the specific individual indices in Table 2.
Proposition 2 (Optimal egalitarian fairness under purely selfish behaviors, Appendix A.4.1) Con-
sidering all clients act purely selfish, the grand coalition πg remains core-stable if the achieved
egalitarian fairness is bounded by:

λ ≥ maxπs⊂πg

{
Ns

2

Ng
2 · Ng·nl+d(πg,nm)

Ns·nl+d(πs,nkπs
)

}
, where kπs = argmini∈πs

{ni} . (4)

Proposition 2 demonstrates that an increase in the heterogeneity of clients’ local dataset
sizes—reflected by the difference between the smallest dataset size overall and those within any given
subset coalition—the achievable egalitarian fairness of a core-stable grand coalition becomes poorer.
Furthermore, we can obtain a sufficient condition for achieving strict egalitarian fairness (λ = 1) in a
core-stable coalition with purely selfish clients based on Equation (4).
Corollary 2 The core-stable grand coalition πg, comprising all selfish clients, can asymptotically
achieve strict egalitarian fairness, provided that the local dataset sizes of all clients are equal. The
proof is given in Appendix A.4.2.

Proposition 3 (Optimal egalitarian fairness under purely welfare altruistic behaviors, Appendix
A.4.3) Considering all clients act purely welfare altruistic, the grand coalition πg remains core-stable
if the achieved egalitarian fairness is bounded by:

λ ≥ maxπs∈πg

{
min

(
Ns

2

Ng
2 · Ng·nl+d(πg,nm)

Ns·nl+d(πs,f
opt
πs,1)

, Nc
2

Ng
2 · Ng·nl+d(πg,nm)

Nc·nl+d(πc,f
opt
πs,2)

)}
,

where
kπs,1 = argmini∈πs

{minf∈Fi∩πsnf} , kπs,2 = argmini∈πs
{minf∈Fi∩πcnf} ,

fopt
πs,1

= argminf∈Fkπs,1
∩πs

nf , f
opt
πs,2

= argminf∈Fkπs,2
∩πc

nf .

(5)

Proposition 3 demonstrates that the achieved egalitarian fairness declines as the gap between the
smallest dataset size overall and the smallest dataset size within any given friends-relationship
network increases. This gap is significantly smaller than that in purely selfish cases, thereby facilitating
improved egalitarian fairness and creating a more relaxed condition for achieving strict egalitarian
fairness as in Corollary 3.
Corollary 3 The core-stable grand coalition πg , consisting of purely welfare clients, can asymptoti-
cally achieve strict egalitarian fairness if all clients are friends with the client possessing the smallest
dataset size and Ng → ∞. The proof is given in Appendix A.4.4.

Proposition 4 (Optimal egalitarian fairness under purely equal altruistic behaviors, Appendix A.4.5)
Considering all clients act purely equal altruistic, the grand coalition πg remains core-stable if the
achieved egalitarian fairness is bounded by:

λ ≥ max
πs∈πg

(
|Fkπs

|·Ns
2Nc

2

Ng
2 · Ng·nl+d(πg,nm)

Q

)
,

where

kπs
= argmini∈πs

1
|Fi|

(∑
f∈Fi∩πs

nf +
∑

f∈Fi∩πc
nf

)
,

Q = N2
c ·
∑

f∈Fkπs
∩πs

(Ns · nl + d(πs, nf )) +N2
s ·
∑

f∈Fkπs
∩πc

(Nc · nl + d(πc, nf )) .

(6)

Proposition 4 shows that the egalitarian fairness bound for purely equal altruistic clients is influenced
by the gap between the smallest dataset size overall and the weighted sum of dataset sizes within
any given friends-relationship network. According to Propositions 5 and 6, the egalitarian fairness
bounds in the context of friendly altruism behavior are shaped by two factors: (1) the heterogeneity
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of clients’ local dataset sizes and (2) the difference between the smallest dataset size in the grand
coalition and either the smallest dataset size or weighted sum of dataset sizes within established
friends-relationship networks. The selfishness degree parameter (w) balances the relative significance
of these two factors.
Proposition 5 (Optimal egalitarian fairness under friendly welfare altruistic behaviors, Appendix
A.4.6) Considering all clients act friendly welfare altruistic, the grand coalition πg remains core-
stable if the achieved egalitarian fairness is bounded by:

λ ≥ max
πs∈πg

{
min

(
Ns

2

Ng
2 · Ng·nl+d(πg,nm)

Q1
, Ns

2Nc
2

Ng
2 · Ng·nl+d(πg,nm)

Q2

)}
,

where
kπs,1 = argmini∈πs

{
w · ni + (1− w) ·minf∈Fi∩πs∪{i} nf

}
,

kπs,2 = argmini∈πs
{w · ni + (1− w) ·minf∈Fi∩πc

nf} ,
fopt
πs,1

= argminf∈Fkπs,1
∩πs∪{kπs,1}nf , f

opt
πs,2

= argminf∈Fkπs,2
∩πc

nf ,

Q1 = Ns · nl + w · d(πs, nkπs,1
) + (1− w) · d(πs, f

opt
πs,1

),

Q2 = N2
c · w ·

(
Ns · nl + d(πs, nkπs,2)

)
+N2

s · (1− w) ·
(
Nc · nl + d(πc, f

opt
πs,2

)
)
.

(7)

Proposition 6 (Optimal egalitarian fairness under friendly equal altruistic behaviors, Appendix
A.4.7) Considering all clients act friendly equal altruistic, the grand coalition πg remains core-stable
if the achieved egalitarian fairness is bounded by:

λ ≥ maxπs∈πg

(
(|Fkπs

|+1)·Ns
2·Nc

2

Ng
2 · Ng·nl+d(πg,nm)

Q

)
,

where

kπs
= argmini∈πs

(
w · ni + (1− w) · 1

|Fi|+1 ·
(∑

f∈Fi∩πs∪{i} nf +
∑

f∈Fi∩πc
nf

))
,

F̂s = Fkπs
∩ πs ∪ {kπs} , F̂c = Fkπs

∩ πc,
Q = w ·

(
|Fkπs

|+ 1
)
·N2

c ·
(
Ns · nl + d(πs, nkπs

)
)
+

(1− w) ·

(
N2

c ·
∑

f∈F̂s

(Ns · nl + d(πs, nf )) +N2
s ·

∑
f∈F̂c

(Nc · nl + d (πc, nf ))

)
.

(8)

The given propositions establish tight egalitarian fairness bounds in core-stable FLs and demonstrate
that the achievable egalitarian fairness for a collection of clients varies depending on the clients’
behaviors and friends-relationship networks. Furthermore, these propositions can be adapted to
situations where clients exhibit heterogeneous behaviors within an FL system as follows.

5.3 Heterogeneous behaviors

When client behaviors exhibit heterogeneity in an FL system, the achievable egalitarian fairness for a
core-stable grand coalition πg is determined by the maximum egalitarian fairness bounds calculated
across sub-coalitions formed by clients with homogeneous behaviors.
Example 1 An example to calculate the achievable egalitarian fairness bound under heterogeneous
behaviors is as follows: for a set of N clients, where clients i ∈ C = {1, 2, ..., S} act selfishly and
the remaining act purely welfare altruistic, the achieved egalitarian fairness of πg is bounded by,

λ ≥ maxπs⊂πg

max

Ns
2

Ng
2 · Ng·nl+d(πg,nm)

Ns·nl+d(πs,nkselfish
) ,min

Ns
2

Ng
2 · Ng·nl+d(πg,nm)

Ns·nl+d(πs,f
opt
altruistic,1)

,

Nc
2

Ng
2 · Ng·nl+d(πg,nm)

Nc·nl+d(πc,f
opt
altruistic,2)


 ,

where
kselfish = argmini∈πs∩C {ni} ,

kaltruistic,1 = argmini∈πs\C {minf∈Fi∩πs
nf} , kaltruistic,2 = argmini∈πs\C {minf∈Fi∩πc

nf} ,
fopt
altruistic,1 = argminf∈Fkaltruistic,1

∩πs
nf , f

opt
altruistic,2 = argminf∈Fkaltruistic,2

∩πc
nf .

(9)

6 Evaluation

In following experiments, we validate the tightness and applicability of the analyzed fairness bounds
for the given tasks.
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Purely welfare altruisticPurely selfish

Friendly equal altruisticFriendly welfare altruistic

Client 1 Client 2

Client 4 Client 3

Purely equal altruistic

Friends-relationship network

Figure 2: Fully connected: theoretically derived egalitarian fairness bounds (green dashed line) align
with empirically achieved egalitarian fairness within the core-stable grand coalition (red solid line)
under different client behaviors.

6.1 Settings

To conduct the experiments, we first give a fair FL framework to implement egalitarian fairness,
where a coefficient p is introduced to increase the aggregation weight of clients who received higher

local errors: θC =
∑

i∈C(ni· errpi ·θi)∑
i∈C(ni·errpi )

. The preceding discussions are independent of the fair FL

framework chosen. We follow up on the task models proposed by Donahue et al. [12]. The first case
is a mean estimation task involving a fixed set of 4 players. Each player has a fixed number of samples,
specifically {20, 40, 50, 100}. Each player draws their local data samples from their true distribution
with parameters Yi ∼ (θi, ϵi), where the samples are independent and identically distributed (i.i.d.).
Here, θi ∼ N (µ = 0, σ2 = 1) and ϵi ∼ 125×Beta(a = 8, b = 2). To further validate the
adaptability of this theoretical results, we introduce additional linear regression task with a fixed set
of 3 players. Each player has a fixed number of samples, specifically {50, 100, 200}. Each player
draws 2-dimensional input features from their own input distribution, X 1

i ,X 2
i ∼ N (µ = 0, σ2 = 1).

The output label is drawn from Yi ∼ 250×Beta(a = 8, b = 2). All experiments are conducted on
Intel(R) Xeon(R) Gold 5318Y CPU @ 2.10GHz.

6.2 Results

We conduct the effectiveness and tightness validation of the theoretical egalitarian fairness bound
across diverse scenarios include (1) different client behaviors (Figure 2), (2) different structures
of friends-relationship networks (Figure 3). The results demonstrate the alignment between our
theoretically derived egalitarian fairness bound (green dashed line) and the empirically achieved
egalitarian fairness within the core-stable grand coalition (red solid line) under both fully connected
and partially connected friends-relationship networks.

In Appendix A.5, we conduct additional experiments to further validate the effectiveness of the
theoretical results under (3) heterogeneous client behaviors (Figure 4) and (4) additional regression
task (Figure 5).

7 Discussion and Limitations

In this section, we outline the scope of our work and identify several limitations of our theoretical
and experimental results, which could serve as potential starting points for future work.

More complex task scenarios. This work paves the way for future research within the domain of FL.
Initially, it would be insightful to explore the impact of other notions of fairness, such as proportional
fairness [33]—where a client’s payoff is proportional to its data contribution—on the stability of FL.
Moreover, for theoretical proofs, our work is built upon the exact-error task models developed by
Donahue et al. [12]; future work could be extended to more complex collaborative training tasks.
Initially, we chose the maximum and linear weighting of errors to construct the utility functions
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Purely welfare altruistic under Relation I Friendly equal altruistic  under Relation IIIFriendly welfare altruistic  under Relation II

Client 1 Client 2

Client 4 Client 3

Client 1 Client 2

Client 4 Client 3

Relation I Relation II Relation III

Client 1 Client 2

Client 4 Client 3

Figure 3: Partially connected: theoretically derived egalitarian fairness bounds (green dashed line)
align with empirically achieved egalitarian fairness within the core-stable grand coalition (red solid
line) under different client behaviors.

because they are simple and typical examples for theoretical analysis. Moving forward, our key
theoretical ideas can be extended to a broader class of utility functions in the form of generalized
mean, which encompasses many prominent social welfare functions, i.e., weighted power-mean
welfare function [34] (as in Appendix A.4.8).

Incentive Mechanisms and Client Behavior Dynamics. As we discover the bounds of egalitarian
fairness that a stable coalition can achieve, a practical question arises: How can we correspondingly
design suitable incentive mechanisms to retain clients in the coalition when high egalitarian fairness
is a mandatory requirement? Given that altruism is closely related to stability when pursuing fairness,
further exploration into how various human behaviors—such as reciprocity, bounded rationality, risk
aversion, and risk tolerance—impact the stability of FLs in achieving specific objectives would be of
profound interest.

Overfitting. Centering on exploring the relationship between egalitarian fairness and stability, we
use the stylized model in Lemma 1, which provides a closed-form error to derive precise relations
and generate insights into fairness settings in fair FLs. However, overfitting [35] in machine learning
leads to uncertainty in the error outlined in Equation 1, which is influenced by model structure and
parameters, choice of training algorithms, and the specific data distributions of clients, etc. Extending
our theoretical analysis to establish fairness bounds in specific model states, such as overfitting, is
considerably more complex and remains an open area of research; however, our approach may still
provide a valuable foundation for further exploration.

8 Conclusion

In this work, we have rigorously answered a previously unexplored but critical question: Does
egalitarian fairness lead to instability? Through our analysis, we have explored the influence of
clients’ altruistic behaviors and the configuration of the friend-relationship network on the achievable
egalitarian fairness within a core-stable federated learning (FL) coalition. Our research has identified
the optimal egalitarian fairness bounds without compromising core stability from a theoretical
standpoint. The outcomes of our research can be leveraged to establish appropriate egalitarian
fairness in FL implementation, which plays a crucial role in improving the alignment of FL processes
with societal welfare and ethical standards.
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A Appendix

A.1 Monotonicity of error with dataset size

Lemma 3 (Monotonicity) For any two clients within the same coalition, i, j ∈ π, if ni > nj ,
erri(π) < errj(π). Conversely, if erri < errj , ni > nj .

Proof Based on the exact errors in Lemma 1, it’s natural that if ni > nj , erri(π) < errj(π). Denote
Ns =

∑
k∈π nk, N̂s =

∑
k∈π n

2
k, if erri < errj , it holds that,

µe
Ns

+ σ2 · N̂s−n2
i+(Ns−ni)

2

N2
s

< µe
Ns

+ σ2 · N̂s−n2
j+(Ns−nj)

2

N2
s

→ −2σ2·Ns·ni
N2

s
<

−2σ2·Ns·nj

N2
s

→ ni > nj

. (10)

A.2 Core-stable conditions

Corollary 1 For a set of players where ni ≤ µe

σ2 , the grand coalition πg remains core-stable when the
clients are either purely altruistic or friendly altruistic.

Proof In a grand coalition πg comprising N clients, each client holds a local dataset with size
ni ≤ µe

σ2 . Based on Lemma 2, when ni ≤ µe

σ2 , it holds that erri(πg) ≤ erri(πs). Whether within πg

or a subset πs ⊂ πg, the i-th purely welfare altruistic client focuses on the same friend, that is, the
k-th client, where k = argmin

f∈Fi

{nf}.

errk(πg) ≤ errk(πs) ⇒ min
f∈Fi

({errf (πg)}) ≤ min
f∈Fi

({errf (πs)}) ,∀i, πs ⊂ πg. (11)

Therefore, the πg is core-stable for purely welfare altruistic clients. For the purely equal altruistic
client, the optimal individual error under πg also leads to the optimality of the average multi-
individual error and the following equation holds:

1

|Fi|
∑
f∈Fi

errf (πg) ≤
1

|Fi|
∑
f∈Fi

errf (πs), ∀i, πs ⊂ πg. (12)

Therefore, the πg is core-stable for purely equal altruistic clients.

The utilities of friendly altruistic clients are a weighted combination of the utilities under selfish and
purely altruistic behaviors. According to the established core-stability when clients are selfish and
purely altruism, the condition ni ≤ µe

σ2 facilitates utility minimization within the grand coalition πg

for clients with selfish and purely altruistic behaviors. Thus, this condition also leads to the utilities
within the grand coalition πg being minimized for clients exhibiting friendly altruistic behaviors.

A.3 Pareto-Optimality

Proportion 1 (Pareto-Optimality in error) Consider the FL system described as an ACFG, a core-
stable coalition structure is also Pareto-optimal in local errors across all clients.

Proof We prove the Proportion 1 by contradiction. Consider N clients. Assume that a core-stable
coalition structure ΠCS is not Pareto-optimal. Then, there exists a Pareto-optimal coalition structure
ΠPO that satisfies the following conditions:

erri (ΠCS) ≥ erri (ΠPO) , ∀i ∈ {N} ,
errj (ΠCS) > errj (ΠPO) , ∃j ∈ {N} . (13)

For clients exhibit altruism with selfishness degree parameter w ∈ [0, 1], it holds that:

w · vj (ΠCS) + (1− w) · vk∈Fj∪{j} (ΠCS) > w · vj (ΠPO) + (1− w) · vk∈Fj∪{j} (ΠPO) , (14)

which is contradicts the assumption of ΠCS is core-stable. Based on the above, a core-stable
federation structure is also Pareto-optimal under ACFG.
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A.4 Egalitarian fairness bound

A.4.1 Proof of Proposition 2

Proposition 2 (Optimal egalitarian fairness under purely selfish behaviors) Considering all clients
act purely selfish, the grand coalition πg remains core-stable if the achieved egalitarian fairness is
bounded by:

λ ≥ maxπs⊂πg

{
Ns

2

Ng
2 · Ng·nl+d(πg,nm)

Ns·nl+d(πs,nkπs
)

}
,

where
kπs

= argmini∈πs
{ni} .

(15)
Proof In a coalition structure with N clients, denoted by πg = {1, 2, ..., N}, where each client
possesses a local dataset of size nj , the concept of λ-egalitarian fairness stipulates that erri(πg)

errj(πg)
≥

λ, ni ≤ nj . In a context where clients are purely selfish, the coalition πg maintains core-stable
if, for any potential sub-coalition πs ⊂ πg, there is at least one client who prefers πg over πs, this
means that ∃i ∈ πs, ui(πg) ≤ ui(πs), or equivalently, ∃i ∈ πs, erri(πg) ≤ erri(πs). According to
the egalitarian fairness definition, it holds that,

erri(πg) ≤
max {errj(πg)}Nj=1

λ
. (16)

To satisfy for ∀πs ⊂ πg , ∃i ∈ πs, erri(πg) ≤ erri(πs), the lowest λ is bounded by Equation (17).

max {erri(πg)}Ni=1

λ
≤ min

πs⊂πg

{
max
i∈πs

{erri(πs)}
}
. (17)

Based on Lemma 3, we denote m = argmax
i∈πg

{erri(πg)} = argmin
i∈πg

{ni} and kπs
=

argmax
i∈πs

{erri} = argmin
i∈πs

{ni}, then the above equation is equivalent to,

errm(πg)

λ
≤ min

πs⊂πg

{
errkπs

(πs)
}
. (18)

We first give the lowest fairness bound λ for a specific πs,

errm(πg)

λ
≤ errkπs

(πs). (19)

Based on Lemma 1, the above equation can be transformed as,

µe∑
i∈πg

ni
+ σ2 ·

∑
i∈πg,i ̸=m n2

i+
(∑

i∈πg,i ̸=m ni

)2(∑
i∈πg

ni

)2

≤ λ ·

(
µe∑

i∈πs
ni

+ σ2 ·
∑

i∈πs,i ̸=kπs
n2
i+

(∑
i∈πs,i ̸=kπs

ni

)2

(
∑

i∈πs
ni)

2

)
.

(20)

Denote Ns =
∑

i∈πs
ni and Ng =

∑
i∈πg

ni, we have,

µe

Ng
+ σ2 ·

∑
i∈πg,i ̸=m n2

i+(Ng−nm)2

N2
g

≤ λ ·
(

µe

Ns
+ σ2 ·

∑
i∈πs,i ̸=kπs

n2
i+(Ns−nkπs )

2

N2
s

)
. (21)

Multiplying each side of the above equation by N2
gN

2
s ,

µe ·Ng ·Ns
2 + σ2 ·Ns

2 ·
(∑

i∈πg,i ̸=m n2
i + (Ng − nm)2

)
≤ λ ·

(
µe ·Ns ·Ng

2 + σ2 ·Ng
2 ·
(∑

i∈πs,i ̸=kπs
n2
i +

(
Ns − nkπs

)2))
.

(22)

Thus, the lowest fairness bound λ satisfies,

λ ≥
µe·Ng·Ns

2+σ2·Ns
2·
(∑

i∈πg,i ̸=m n2
i+(Ng−nm)2

)
µe·Ns·Ng

2+σ2·Ng
2·
(∑

i∈πs,i ̸=kπs
n2
i+(Ns−nkπs )

2
) → fRHS . (23)
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Taking the derivative of fRHS with respect to σ, we have:

f ′
RHS,σ =

µe·Ng·Ns
2+σ2·Ns

2·
(∑

i∈πg,i ̸=m n2
i+(Ng−nm)2

)
(
µe·Ns·Ng

2+σ2·Ng
2·
(∑

i∈πs,i ̸=kπs
n2
i+(Ns−nkπs )

2
))2

=
2σ·µe·N2

s ·N
2
g ·

(
Ns·

(∑
i∈πg,i ̸=m n2

i+(Ng−nm)2
)
−Ng·

(∑
i∈πs,i ̸=kπs

n2
i+(Ns−nkπs )

2
))

(
µe·Ns·Ng

2+σ2·Ng
2·
(∑

i∈πs,i ̸=kπs
n2
i+(Ns−nkπs )

2
))2 .

(24)

For f1 = Ns ·
∑

i∈πg,i̸=m n2
i − Ng ·

∑
i∈πs,i̸=kπs

n2
i , since the growth rate of

∑
i∈πs,i̸=kπs

n2
i is

faster than that of Ns, it is reasonable to assume that f1 is decreasing with respect to Ns. The
minimum value occurs when πs = πg , at which point,

f1 =
∑

i∈πg
ni

(∑
j∈πg

n2
j − n2

m

)
−
∑

i∈πg
ni

(∑
j∈πg

n2
j − n2

kπs

)
=
∑

i∈πg
ni

[(∑
j∈πg

n2
j − n2

m

)
−
(∑

j∈πg
n2
j − n2

kπs

)]
> 0.

(25)

Also, f2 = Ns · (Ng − nm)
2 −Ng ·

(
Ns − nkπs

)2
> 0:

f2 = Ns · (Ng − nm)
2 −Ng ·

(
Ns − nkπs

)2
= NsNg(Ng −Ns)−Ngn

2
kπs

+Nsn
2
m + 2NgNs(nkπs

− nm)

= Ng(NgNs −N2
s − n2

kπs
+ n2

m + 2Ns(nkπs
− nm))

= Ng(NgNs −N2
s︸ ︷︷ ︸

>0

+ (nm −Ns)
2 − (nkπs

−Ns)
2︸ ︷︷ ︸

>0

).

(26)

Based on the above derivation, we can conclude that f ′
RHS,σ > 0. Therefore, the maximum value of

fRHS occurs at the maximum value of σ2. Given our assumption that ni ≤ µe

σ2 ,∀i = 1, ..., N , the
maximum of σ2 is µe

nl
, l = argmax

i∈πg

{ni}. Consequently, the Eq. (23) transforms into,

λ ≥
µe·Ng·Ns

2·nl+µe·Ns
2·
(∑

i∈πg,i ̸=m n2
i+(Ng−nm)2

)
µe·Ns·Ng

2·nl+µe·Ng
2·
(∑

i∈πs,i ̸=kπs
n2
i+(Ns−nkπs )

2
)

= Ns
2

Ng
2 ·

Ng·nl+
(∑

i∈πg,i ̸=m n2
i+(Ng−nm)2

)
Ns·nl+

(∑
i∈πs,i ̸=kπs

n2
i+(Ns−nkπs )

2
) .

(27)

Above all, we can determine the optimal egalitarian fairness bound to maintain the core stability of
the coalition structure πg ,

λ ≥ maxπs∈πg

{
Ns

2

Ng
2 ·

Ng·nl+
(∑

i∈πg,i ̸=m n2
i+(Ng−nm)2

)
Ns·nl+

(∑
i∈πsi̸=kπs

n2
i+(Ns−nkπs )

2
)}

= maxπs∈πg

{
Ns

2

Ng
2 · Ng·nl+d(πg,nm)

Ns·nl+d(πs,nkπs
)

}
.

(28)

A.4.2 Proof of Corollary 2

Corollary 2 The core-stable grand coalition πg, comprising all selfish clients, can asymptotically
achieve strict egalitarian fairness, provided that the local dataset sizes of all clients are equal.

Proof Let’s consider a grand coalition πg that consists of M clients, and a subset πs ⊂ πg that
consists of m clients. According to Proposition 2, when the local dataset sizes of all clients are equal,
the optimal egalitarian fairness that can be achieved is:

λoptimal = max
πs⊂πg

{
Ns

2

Ng
2 · Ng · nl + d(πg, nm)

Ns · nl + d(πs, nkπs
)

}
= max

πs⊂πg

{
m2 ·

(
M +M − 1 + (M − 1)2

)
M2 · (m+m− 1 + (m− 1)2)

}
= 1.

(29)

Therefore, it is proven that the grand coalition πg is capable of achieving strict egalitarian fairness.
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A.4.3 Proof of Proposition 3

Proposition 3 (Optimal egalitarian fairness under purely welfare altruistic behaviors) Considering
all clients act purely welfare altruistic, the grand coalition πg remains core-stable if the achieved
egalitarian fairness is bounded by:

λ ≥ maxπs∈πg

{
min

(
Ns

2

Ng
2 · Ng·nl+d(πg,nm)

Ns·nl+d(πs,f
opt
πs,1)

, Nc
2

Ng
2 · Ng·nl+d(πg,nm)

Nc·nl+d(πc,f
opt
πs,2)

)}
,

where
kπs,1 = argmini∈πs

{minf∈Fi∩πs
nf} , kπs,2 = argmini∈πs

{minf∈Fi∩πc
nf} ,

fopt
πs,1

= argminf∈Fkπs,1
∩πs

nf , f
opt
πs,2

= argminf∈Fkπs,2
∩πc

nf .

(30)
Proof In a context where clients are purely welfare altruistic, the coalition πg maintains core-stable
if, for any potential sub-coalition πs ⊂ πg, there is at least one client who prefers πg over πs, this
means that ∃i ∈ πs, ui(πg) ≤ ui(πs), or equivalently,

∃i ∈ πs,max
f∈Fi

({errf (πg)}) ≤ max

(
max

f∈Fi∩πs

({errf (πs)}) , max
f∈Fi∩πc

({errf (πc)})
)
. (31)

where πc = πg \ πs is the complement of πs. Consequently, to maintain the stability of FL, we can
determine the lower bound of λ by,

max{erri(πg)}N
i=1

λ
≤ minπs⊂πg

(max (maxi∈πs {maxf∈Fi∩πs errf (πs)} ,maxi∈πs {maxf∈Fi∩πc errf (πc)})) .
(32)

The fairness bound λ with respect to a specific πs is,

errm(πg)

λ
≤ max

(
maxf∈Fkπs,1

∩πs errf (πs),maxf∈Fkπs,2
∩πc errf (πc)

)
= max

(
err

f
opt
πs,1

(πs), errfopt
πs,2

(πc)
)
,

(33)

where,
m = argmax

i∈πg

{erri(πg)} = argmin
i∈πg

{ni} ,

kπs,1 = argmax
i∈πs

{maxf∈Fi errf (πs)} = argmin
i∈πs

{minf∈Fi∩πs nf} ,

kπs,2 = argmax
i∈πs

{maxf∈Fi∩πc errf (πc)} = argmin
i∈πs

{minf∈Fi∩πc nf} ,

fopt
πs,1

= argmaxf∈Fkπs,1
∩πs errf (πs) = argminf∈Fkπs,1

∩πs nf ,

fopt
πs,2

= argmaxf∈Fkπs,2
∩πc errf (πc) = argminf∈Fkπs,2

∩πc nf .

(34)

Following the same derivation as in the proof of Proposition 2, the above equation is equivalent to,

λ ≥ min

(
errm(πg)

errfopt
πs,1

(πs)
,

errm(πg)

errfopt
πs,2

(πc)

)
= min

(
Ns

2

Ng
2 · Ng·nl+d(πg,nm)

Ns·nl+d(πs,f
opt
πs,1)

, Nc
2

Ng
2 · Ng·nl+d(πg,nm)

Nc·nl+d(πc,f
opt
πs,2)

)
,

(35)

where
l = argmax

i∈πg

{ni} , Ng =
∑
i∈πg

ni, Ns =
∑
i∈πs

ni, Nc =
∑
i∈πc

ni. (36)

Above all,we can determine the optimal egalitarian fairness bound to maintain the core stability of
the coalition structure πg ,

λ ≥ maxπs∈πg

{
min

(
Ns

2

Ng
2 · Ng·nl+d(πg,nm)

Ns·nl+d(πs,f
opt
πs,1)

, Nc
2

Ng
2 · Ng·nl+d(πg,nm)

Nc·nl+d(πc,f
opt
πs,2)

)}
. (37)

A.4.4 Proof of Corollary 3

Corollary 3 The core-stable grand coalition πg, consisting of purely welfare clients, can asymptoti-
cally achieve strict egalitarian fairness if all clients are friends with the client possessing the smallest
dataset size and Ng → ∞.
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Proof When all clients are friends with the client possessing the smallest dataset size, it holds that
fopt
πs

= m or fopt
πc

= m. Assume that fopt
πs

= m, Corollary 3 can be proven by mathematical
induction as follows. Define the hypothesis H0 as:

H0 : Ns
2

Ng
2 · Ng·nl+d(πg,nm)

Ns·nl+d(πs,nm)
≤ 1, ∀πs ⊂ πg. (38)

When πs contains only one player πs = {nj}, we have,

nj
2

Ng
2 · Ng · nl + d(πg, nm)

nj · nl + d(πs, nm)︸ ︷︷ ︸
equal to 0

Ng→∞
=

nj

Ng︸︷︷︸
approaching 0

+
nj

nl
·
∑

i∈πg
n2
i − n2

m(∑
i∈πg

ni

)2
︸ ︷︷ ︸

approaching 0

+
nj

nl
· (Ng − nm)2

N2
g︸ ︷︷ ︸

less than 1

≤ 1. (39)

Assume that the hypothesis H0 holds when πs contains k players, for π′
s = {πs, n} containing k + 1

players where the new player has a dataset size of n, it holds that,

N ′
s
2

Ng
2 · Ng·nl+d(πg,nm)

N ′
s·nl+d(π′

s,nm)

≤ Ns
2·(Ng·nl+d(πg,nm))+n2·(Ng·nl+d(πg,nm))+2Ns·n(Ng·nl+d(πg,nm))

Ng
2·(Ns·nl+d(πs,nm))+N2

g ·(n·nl+d({n},nm))+2Ns·n·N2
g

,
(40)

where N ′
s =

∑
i∈π′

s
ni. As Ng → ∞, we have,

2Ns·n·(Ng·nl+d(πg,nm))
2Ns·n·N2

g

Ng→∞
= nl

Ng
+

∑
i∈πg

n2
i−n2

m

N2
g

+
(Ng−nm)2

N2
g

≤ 1. (41)

Since H0 holds for any πs, the terms in the numerator are each smaller than the corresponding terms
in the denominator. Thus, it follows that,

N′
s
2

Ng
2 · Ng·nl+d(πg,nm)

N′
s·nl+d(π′

s,nm)
≤ 1. (42)

Therefore, the hypothesis H0 is established. A similar mathematical induction process can be applied
to πc. Thus, λoptimal can approach less than 1 under the given conditions, proving the Corollary 3.

A.4.5 Proof of Proposition 4

Proposition 4 (Optimal egalitarian fairness under purely equal altruistic behaviors) Considering all
clients act purely equal altruistic, the grand coalition πg remains core-stable if the achieved egalitarian
fairness is bounded by:

λ ≥ max
πs∈πg

(
|Fkπs

|·Ns
2Nc

2

Ng
2 · Ng·nl+d(πg,nm)

Q

)
,

where

kπs
= argmini∈πs

1
|Fi|

(∑
f∈Fi∩πs

nf +
∑

f∈Fi∩πc
nf

)
,

Q = N2
c ·
∑

f∈Fkπs
∩πs

(Ns · nl + d(πs, nf )) +N2
s ·
∑

f∈Fkπs
∩πc

(Nc · nl + d(πc, nf )) .

(43)

Proof In a context where clients are purely equal altruistic, the coalition πg maintains core-stable
if, for any potential sub-coalition πs ⊂ πg, there is at least one client who prefers πg over πs, this
means that ∃i ∈ πs, ui(πg) ≤ ui(πs), or equivalently,

∃i ∈ πs,
1

|Fi|
∑
f∈Fi

errf (πg) ≤
1

|Fi|

 ∑
f∈Fi∩πs

errf (πs) +
∑

f∈Fi∩πc

errf (πc)

 , (44)

where πc = πg \ πs is the complement of πs. Consequently, to maintain the stability of FL, we can
determine the lowest fairness bound λ by,

max{erri(πg)}N
i=1

λ ≤ minπs⊂πg

(
maxi∈πs

{
1

|Fi|

(∑
f∈Fi∩πs

errf (πs) +
∑

f∈Fi∩πc
errf (πc)

)})
.

(45)

The lowest fairness bound λ with respect to a specific πs is,

errm(πg)
λ ≤ 1

|Fkπs
|

(∑
f∈Fkπs

∩πs
errf (πs) +

∑
f∈Fkπs

∩πc
errf (πc)

)
, (46)
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where,
m = argmax

i∈πg

{erri(πg)} = argmin
i∈πg

{ni} ,

kπs = argmax
i∈πs

1
|Fi|

(∑
f∈Fi∩πs

errf (πs) +
∑

f∈Fi∩πc
errf (πc)

)
= argmin

i∈πs

1
|Fi|

(∑
f∈Fi∩πs

nf +
∑

f∈Fi∩πc
nf

)
.

(47)

Following the same derivation as in the proof of Proposition 2, the above equation is equivalent to,

λ ≥ |Fkπs
|·errm(πg)∑

f∈Fkπs
∩πs

errf (πs)+
∑

f∈Fkπs
∩πc

errf (πc)
=

|Fkπs
|·Ns

2Nc
2

Ng
2 · Ng·nl+d(πg,nm)

Q , (48)

where,

l = argmax
i∈πg

{ni} , Ng =
∑

i∈πg
ni, Ns =

∑
i∈πs

ni, Nc =
∑

i∈πc
ni,

Q = N2
c ·
∑

f∈Fkπs
∩πs

(Ns · nl + d(πs, nf )) +N2
s ·
∑

f∈Fkπs
∩πc

(Nc · nl + d(πc, nf )) .
(49)

Above all, we can determine the optimal egalitarian fairness bound to maintain the core stability of
the coalition structure πg ,

λ ≥ max
πs∈πg

(
|Fkπs

|·Ns
2Nc

2

Ng
2 · Ng·nl+d(πg,nm)

Q

)
. (50)

A.4.6 Proof of Proposition 5

Proposition 5 (Optimal egalitarian fairness under friendly welfare altruistic behaviors) Considering
all clients act friendly welfare altruistic, the grand coalition πg remains core-stable if the achieved
egalitarian fairness is bounded by:

λ ≥ max
πs∈πg

{
min

(
Ns

2

Ng
2 · Ng·nl+d(πg,nm)

Q1
, Ns

2Nc
2

Ng
2 · Ng·nl+d(πg,nm)

Q2

)}
,

where
kπs,1 = argmini∈πs

{
w · ni + (1− w) ·minf∈Fi∩πs∪{i} nf

}
,

kπs,2 = argmini∈πs
{w · ni + (1− w) ·minf∈Fi∩πc

nf} ,
fopt
πs,1

= argminf∈Fkπs,1
∩πs∪{kπs,1}nf , f

opt
πs,2

= argminf∈Fkπs,2
∩πc

nf

Q1 = Ns · nl + w · d(πs, nkπs,1
) + (1− w) · d(πs, f

opt
πs,1

)

Q2 = N2
c · w ·

(
Ns · nl + d(πs, nkπs,2

)
)
+N2

s · (1− w) ·
(
Nc · nl + d(πc, f

opt
πs,2

)
)
.

(51)
Proof In a context where clients are friendly welfare altruistic, the coalition πg maintains stability
if, for any potential sub-coalition πs ⊂ πg, there is at least one client who prefers πg over πs, this
means that ∃i ∈ πs, ui(πg) ≤ ui(πs), or equivalently,

∃i ∈ πs, w · erri(πg) + (1− w) · max
f∈Fi∪{i}

({errf (πg)})

≤ max

w · erri(πs) + (1− w) · max
f∈Fi∩πs∪{i}

({errf (πs)}) ,

w · erri(πs) + (1− w) · max
f∈Fi∩πc

({errf (πc)})

 , w ∈ (0, 1),
(52)

where πc = πg \ πs is the complement of πs. Consequently, to maintain the stability of FL, we can
determine the lowest fairness bound of λ by,

w · max{erri(πg)}N
i=1

λ + (1− w) · max{erri(πg)}N
i=1

λ =
max{erri(πg)}N

i=1

λ

≤ minπs⊂πg

(
max

(
maxi∈πs

{
w · erri(πs) + (1− w) ·maxf∈Fi∩πs∪{i} errf (πs)

}
,

maxi∈πs
{w · erri(πs) + (1− w) ·maxf∈Fi∩πc

errf (πc)}

))
.

(53)

The lowest fairness bound λ with respect to a specific πs is,

errm(πg)

λ
≤ max

(
maxi∈πs

{
w · erri(πs) + (1− w) ·maxf∈Fi∩πs∪{i} errf (πs)

}
,

maxi∈πs {w · erri(πs) + (1− w) ·maxf∈Fi∩πc errf (πc)}

)
= max

(
w · errkπs,1

(πs) + (1− w) · errfopt
πs,1

(πs),

w · errkπs,2(πs) + (1− w) · errfopt
πs,2

(πc)

)
,

(54)
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where,
m = argmax

i∈πg

{erri(πg)} = argmin
i∈πg

{ni} ,

kπs,1 = argmax
i∈πs

{
w · erri(πs) + (1− w) ·maxf∈Fi∩πs∪{i} errf (πs)

}
= argmin

i∈πs

{
w · ni + (1− w) ·minf∈Fi∩πs∪{i} nf

}
,

kπs,2 = argmax
i∈πs

{w · erri(πs) + (1− w) ·maxf∈Fi∩πc
errf (πc)}

= argmin
i∈πs

{w · ni + (1− w) ·minf∈Fi∩πc
nf} ,

fopt
πs,1

= argmaxf∈Fkπs,1
∩πs∪{kπs,1} errf (πs) = argminf∈Fkπs,1

∩πs∪{kπs,1} nf

fopt
πs,2

= argmaxf∈Fkπs,2
∩πc errf (πc) = argminf∈Fkπs,2

∩πc nf .

(55)

Following the same derivation as in the proof of Proposition 2, the above equation is equivalent to,

λ ≥ min

(
errm(πg)

w·errkπs,1
(πs)+(1−w)·err

f
opt
πs,1

(πs)
,

errm(πg)
w·errkπs,2

(πs)+(1−w)·err
f
opt
πs,2

(πc)

)
= min

(
Ns

2

Ng
2 · Ng·nl+d(πg,nm)

Q1
, Ns

2Nc
2

Ng
2 · Ng·nl+d(πg,nm)

Q2

)
,

(56)

where,
l = argmax

i∈πg

{ni} , Ng =
∑

i∈πg
ni, Ns =

∑
i∈πs

ni, Nc =
∑

i∈πc
ni,

Q1 = Ns · nl + w · d(πs, nkπs,1) + (1− w) · d(πs, f
opt
πs,1

)

Q2 = N2
c · w ·

(
Ns · nl + d(πs, nkπs,2)

)
+N2

s · (1− w) ·
(
Nc · nl + d(πc, f

opt
πs,2

)
)
.

(57)

Above all, we can determine the optimal egalitarian fairness bound to maintain the core stability of
the coalition structure πg ,

λ ≥ max
πs∈πg

{
min

(
Ns

2

Ng
2 · Ng·nl+d(πg,nm)

Q1
, Ns

2Nc
2

Ng
2 · Ng·nl+d(πg,nm)

Q2

)}
. (58)

A.4.7 Proof of Proposition 6

Proposition 6 (Optimal egalitarian fairness under friendly equal altruistic behaviors) Considering
all clients act friendly equal altruistic, the grand coalition πg remains core-stable if the achieved
egalitarian fairness is bounded by:

λ ≥ maxπs∈πg

(
(|Fkπs

|+1)·Ns
2·Nc

2

Ng
2 · Ng·nl+d(πg,nm)

Q

)
,

where

kπs = argmini∈πs

(
w · ni + (1− w) · 1

|Fi|+1 ·
(∑

f∈Fi∩πs∪{i} nf +
∑

f∈Fi∩πc
nf

))
,

F̂s = Fkπs
∩ πs ∪ {kπs

} , F̂c = Fkπs
∩ πc,

Q = w ·
(
|Fkπs

|+ 1
)
·N2

c ·
(
Ns · nl + d(πs, nkπs

)
)
+

(1− w) ·

(
N2

c ·
∑

f∈F̂s

(Ns · nl + d(πs, nf )) +N2
s ·

∑
f∈F̂c

(Nc · nl + d (πc, nf ))

)
.

(59)
Proof (Proposition 6) In a context where clients are friendly equal altruistic, the coalition πg

maintains core-stable if, for any potential sub-coalition πs ⊂ πg, there is at least one client who
prefers πg over πs, this means that ∃i ∈ πs, ui(πg) ≤ ui(πs), or equivalently,

∃i ∈ πs, w · erri(πg) + (1− w) · 1
|Fi|+1 ·

∑
f∈Fi∪{i}

{errf (πg)}

≤ w · erri(πs) + (1− w) · 1
|Fi|+1 ·

( ∑
f∈Fi∩πs∪{i}

{errf (πs)}+
∑

f∈Fi∩πc

{errf (πc)}

)
.

(60)

Consequently, to maintain the stability of FL, we can determine the lowest fairness bound of λ by,

w ·
max{erri(πg)}N

i=1
λ

+ 1−w
|Fi|+1

·
∑

f∈Fi∪{i}

{
max{erri(πg)}N

i=1
λ

}
=

max{erri(πg)}N

i=1
λ

≤

minπs⊂πg

(
maxi∈πs

{
w · erri(πs) +

1−w
|Fi|+1

·

( ∑
f∈Fi∩πs∪{i}

{errf (πs)}+
∑

f∈Fi∩πc

{errf (πc)}

)})
.

(61)
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The lowest fairness bound λ with respect to a specific πs is,

errm(πg)
λ ≤ w · errkπs

(πs) +
1−w

|Fkπs |+1
·

( ∑
f∈F̂s

{errf (πs)}+
∑

f∈F̂c

{errf (πc)}

)
, (62)

where,
m = argmax

i∈πg

{erri(πg)} = argmin
i∈πg

{ni} ,

kπs = argmax
i∈πs

(
w · erri(πs) + (1− w) · 1

|Fi|+1
·

( ∑
f∈Fi∩πs∪{i}

{errf (πs)}+
∑

f∈Fi∩πc

{errf (πc)}

))
= argmin

i∈πs

(
w · ni + (1− w) · 1

|Fi|+1
·
(∑

f∈Fi∩πs∪{i} nf +
∑

f∈Fi∩πc
nf

))
,

F̂s = Fkπs
∩ πs ∪ {kπs} , F̂c = Fkπs

∩ πc.
(63)

Following the same derivation as in the proof of Proposition 2, the above equation is equivalent to,

λ ≥ (|Fkπs
|+1)·Ns

2·Nc
2

Ng
2 · Ng·nl+d(πg,nm)

Q , (64)

where,

l = argmax
i∈πg

{ni} , Ng =
∑
i∈πg

ni, Ns =
∑
i∈πs

ni, Nc =
∑
i∈πc

ni, (65)

Q = w ·
(
|Fkπs

|+ 1
)
·N2

c ·
(
Ns · nl + d(πs, nkπs

)
)
+

(1− w) ·

(
N2

c ·
∑

f∈F̂s

(Ns · nl + d(πs, nf )) +N2
s ·

∑
f∈F̂c

(Nc · nl + d (πc, nf ))

)
.

(66)

Above all,we can determine the optimal egalitarian fairness bound to maintain the core stability of
the coalition structure πg ,

λ ≥ maxπs∈πg

(
(|Fkπs

|+1)·Ns
2·Nc

2

Ng
2 · Ng·nl+d(πg,nm)

Q

)
. (67)

A.4.8 Fairness Bound Analysis under Generalized-Mean-Form Utility Function

Taking the weighted power-mean welfare function [34] to construct utility function as an example
and considering scenarios where clients exhibit friendly equal altruism, the utility of the i-th client is:

ui(πg) =

 |Fi|∑
i=1

wierr
q
i (πg)

 1
q

. (68)

The coalition πg remains core-stable if, for any potential sub-coalition πs ⊂ πg , there is at least one
client who prefers πg over πs. This implies that ∃i ∈ πs, ui(πg) ≤ ui(πs), or equivalently, |Fi|∑

i=1

wierr
q
i (πg)

 1
q

≤

wi · errqi (πs) +
∑

f∈Fi∩πs

wferr
q
f (πs) +

∑
f∈Fi∩πc

wferr
q
f (πc)

 1
q

.

(69)
Consequently, to maintain the stability of FL, we can determine the lowest fairness bound of λ by,(∑|Fi|

i=1 wi ·
max{errqi (πg)}N

i=1

λ

) 1
q

≤

minπs⊂πg

(
maxi∈πs

(
wi · errqi (πs) +

∑
f∈Fi∩πs

wf · errqf (πs) +
∑

f∈Fi∩πc
wf · errqf (πc)

) 1
q

)
.

(70)
The lowest fairness bound λ with respect to a specific πs is,

errm(πg)

λ
≤

wkπs
· errqkπs

(πs) +
∑
f∈F̂s

wf · errqf (πs) +
∑
f∈F̂c

wf · errqf (πc)

 1
q

, (71)
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where,
πc = πg \ πs,m = argmin

i∈πg

{ni},

kπs
= argmin

i∈πs

(
wi · nq

i +
∑

f∈Fi∩πs
wf · nq

f +
∑

f∈Fi∩πc
wf · nq

f

)
,

F̂s = Fkπs
∩ πs, F̂c = Fkπs

∩ πc.

(72)

Following the same derivation as in the proof of Proposition 2, the above equation is equivalent to,

λ ≥
(

Ns
2·Nc

2

Ng
2

)q
· (Ng·nl+d(πg,nm))q

Q , (73)

where,
Ns =

∑
i∈πs

ni, Nc =
∑

i∈πc
ni, Ng =

∑
i∈πg

ni. (74)

Q = wkπs
·N2q

c ·
(
Ns · nl + d(πs, nkπs

)
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+N2q
c ·
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wf · (Ns · nl + d(πs, nf ))
q

+N2q
s ·

∑
f∈F̂c

wf · (Nc · nl + d (πc, nf ))
q
.

(75)

Above all,we can determine the optimal egalitarian fairness bound to maintain the core stability of
the coalition structure πg ,

λ ≥ maxπs∈πg

((
Ns

2·Nc
2

Ng
2

)q
· (Ng·nl+d(πg,nm))q

Q

)
. (76)

A.5 Additional experiments

A.5.1 Heterogeneous client behaviors

Experiments under heterogeneous client behaviors involved configuring the two clients to exhibit
purely selfish behavior while the rest were modeled as friendly equal altruistic as in Figure 4. The
results verified that our theoretical bound (green dashed line) continued to align with the empirical
fairness results (red solid line) under heterogeneous client behaviors.

Client 1 Client 2

Client 4 Client 3

Purely Selfish Friendly Equal Altruism 

Client 1 Client 2

Client 4 Client 3

Figure 4: Heterogeneous clients’ behaviors: theoretically derived egalitarian fairness bounds (green
dashed line) align with empirically achieved egalitarian fairness within the core-stable grand coalition
(red solid line).

A.5.2 Adaptability

Lastly, we examined the adaptability and task-independence of the proposed egalitarian fairness
bound through another linear regression task, as illustrated in Figure 5. The experiment underscored
that our theoretical bound (green dashed line), independent of task-specific hyperparameters θi or ϵi,
consistently matched the actual fairness achieved within a core-stable grand coalition (red solid line).

Purely Selfish Friendly equal altruisticFriendly welfare altruisticPurely equal altruisticPurely welfare altruistic

Figure 5: Linear regression: theoretically derived egalitarian fairness bounds (green dashed line)
align with empirically achieved egalitarian fairness within the core-stable grand coalition (red solid
line) under different client behaviors.
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• If the contribution is a dataset and/or model, the authors should describe the steps taken
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to reproduce that algorithm.
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the dataset).
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In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.
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• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).
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Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: We provided the experimental setting/details in Section 6.
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• The answer NA means that the paper does not include experiments.
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that is necessary to appreciate the results and make sense of them.
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setting, and the error bar is not applicable.
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• The factors of variability that the error bars are capturing should be clearly stated (for
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• It is OK to report 1-sigma error bars, but one should state it. The authors should
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Answer: [Yes]
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• The answer NA means that the paper does not include experiments.
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or cloud provider, including relevant memory and storage.
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Answer: [Yes]
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• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
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Question: Does the paper discuss both potential positive societal impacts and negative
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Answer: [Yes]
Justification: We provided societal impacts in Section 8.
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• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal
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to particular applications, let alone deployments. However, if there is a direct path to
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to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
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11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: The paper posed no such risks.
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• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
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safety filters.
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• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
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and terms of use were explicitly mentioned and properly respected.
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• The answer NA means that the paper does not use existing assets.
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• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
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