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Abstract

In the Inertial Confinement Fusion (ICF) process, roughly a 2mm spherical shell
made of high-density carbon is used as a target for laser beams, which compress
and heat it to energy levels needed for high fusion yield in nuclear fusion. These
shells are polished meticulously to meet the standards for a fusion shot. However,
the polishing of these shells involves multiple stages, with each stage taking several
hours. To make sure that the polishing process is advancing in the right direction,
we are able to measure the shell surface roughness. This measurement, however,
is very labor-intensive, time-consuming, and requires a human operator. To help
improve the polishing process we have released the first dataset to the public
that consists of raw vibration signals with the corresponding polishing surface
roughness changes. We show that this dataset can be used with a variety of
neural network based methods for prediction of the change of polishing surface
roughness, hence eliminating the need for the time-consuming manual process.
This is the first dataset of its kind to be released in public and its use will allow the
operator to make any necessary changes to the ICF polishing process for optimal
results. This dataset contains the raw vibration data of multiple polishing runs
with their extracted statistical features and the corresponding surface roughness
values. Additionally, to generalize the prediction models to different polishing
conditions, we also apply domain adaptation techniques to improve prediction
accuracy for conditions unseen by the trained model. The dataset is available in
https://junzeliu.github.io/Diamond-Polishing-Dataset/.

1 Introduction

In the wake of significant breakthroughs in achieving ignition as highlighted by [Abu-Shawareb et al.,
2024, Moses, 2010], the Inertial Confinement Fusion (ICF) program at the National Ignition Facility
(NIF) has shifted its focus towards establishing a viable, high yield fusion platform. The series of
successful experiments, achieving gains greater than one subsequent to the initial demonstration of
ignition, signal the onset of a robust research phase. This advancement underscores the importance
of enhancing the energy output, which not only facilitates exploration within the realms of high
energy density physics previously beyond reach but also lays down the foundational principles for
conceptualizing high gain (significantly greater than 10) strategies essential for the efficacious harness
of energy through nuclear fusion.

Achieving an optimized laser energy output from the apparatus at the NIF is crucial for the ame-
lioration of net energy yield from the experiments conducted therein. This necessitates continuous
improvements in both the design and manufacturing technology of the targets – the experimental
entities subjected to laser irradiation for fusion. The construction quality of these ICF targets, which
involves complex assemblies of numerous precision-engineered components, is imperative for ensur-
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Figure 1: Overview of the ICF shell fabrication process

ing the maximized and efficient use of the deposited laser energy. These assemblies are crucial as
they ensure the formation of a defect-free solid phase of deuterium-tritium (DT) fuel when prepared
at approximately 19K, an aspect extensively discussed by Hamza [2005].

For high-yield ICF experiments, it is imperative to generate and maintain high pressures and tem-
peratures, lasting on the order of several nanoseconds, to overcome the Coulomb barrier inhibiting
the fusion of DT nuclei. This condition is facilitated by substantial compression of a hollow sphere
of solid fuel, leading to the ignition of a burn wave that propagates throughout the fuel mass, a
concept detailed in the works of [Lindl et al., 1992, Lindl, 1995, Hurricane et al., 2023]. This
compression is primarily achieved through the enormous reactionary implosive force generated by
the extremely rapid ablation of a capsule, colloquially termed as the ‘rocket,’ housing the DT fuel.
Made predominantly of low atomic number (low Z) materials such as diamond-like high-density
carbon (HDC) – as detailed in the works of [Haan et al., 2011, Ross et al., 2015, Clark et al., 2018] –
this capsule undergoes instantaneous compression to a fraction of its original size at the culmination
of the implosion sequence.

Given the capsule’s central role in achieving efficient compression for ignition, its structural integrity
is paramount. Defects within the capsule could become significant sources of instabilities that impede
the desired uniform and symmetric implosion process, as discussed in prior research including
[Hurricane et al., 2023, Casey et al., 2015, Schmitt et al., 2013]. To ensure an optimal implosion,
it is thus critical that the capsule’s surface is uniformly smooth and devoid of any microscopic
irregularities such as pits or foreign particles.

The existing methodology for fabricating the capsule involves embedding a layer of tungsten-doped
HDC between two undoped layers, utilizing a plasma-assisted chemical vapor deposition process
on a spherical, ultra-smooth silicon mandrel, which is subsequently removed. This manufacturing
process ensures the inner surface of the capsule meets the requisite surface quality specifications,
albeit leaving the outer HDC surface significantly rough. Consequently, this necessitates a subsequent
precision polishing process to refine the outer surface to meet ignition quality standards – a detailed
approach reported by [Schmitt et al., 2013, Biener et al., 2009]. This intricate polishing procedure not
only aims at achieving the required surface smoothness but also corrects the dimensions to achieve
precise specifications for ICF experiments.

Leveraging hydrodynamic simulations enriched with empirical data from NIF experiments provides a
deeper insight into how initial defects might amplify into significant instabilities during the implosion
process and impact the fusion yield. Such simulations, depicted in the works of [Clark et al., 2019,
2013], are instrumental in establishing specifications regarding the permissible size and number of
defects, aiming at the minimization of pits to boost overall performance.

As shown in Figure 1, the established protocol for crafting ultrasmooth HDC surfaces comprises an
initial lapping process followed by subsequent ultra-precision polishing stages. This regimen is akin
to processes used in the preparation of gem-quality materials and aims at not just reducing the initial
surface roughness but also achieving accurate diameter tolerances and infusing the final surface with
a spectacular finish – the average roughness (Sa) being on the order of a few nanometers, as has been
previously discussed.

Despite the ancient heritage and extensive application of mechanical polishing, our comprehensive
understanding of the underlying phenomena remains unsettled, rendering the outcomes of ultrafine
polishing significantly unpredictable. This unpredictability underlines the importance of implement-
ing real-time monitoring techniques to identify potential defect-inducing anomalies at their nascent
stages and to determine the optimal termination point for the polishing process. Advancements
in micro-electro-mechanical systems (MEMs)-based sensor technologies and artificial intelligence
now facilitate high resolution, real-time monitoring of the polishing process. This technological
leap enables the precise identification of anomalies and the determination of process endpoints, as
discussed in this paper.
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Accordingly, we introduce herein a novel dataset, comprising raw vibration signals emanating from
the machinery engaged in the surface polishing of the spheres, collected using an Accelerometer, and
surface roughness measurements during the various polishing stages. This dataset is instrumental in
automating the assessment of surface roughness. Moreover, it holds the potential to support a broad
range of research efforts in material science, physics, and computer science—fields that are essential
to the multi-billion-dollar nuclear fusion industry. This dataset is posited as an invaluable resource
for researchers dedicated to refining surface polishing techniques and understanding the impact of
surface characteristics on HDC capsule performance. In concert with this data, we delineate our
evaluative approach employing advanced machine learning techniques to dissect different aspects of
this methodical approach, thereby providing a comprehensive overview of our concerted efforts to
refine the polishing process and ensure the production of capsules of the highest structural integrity.
An automated method to predict surface roughness directly from vibration signals can eliminate the
need for human intervention to stop polishing and the time-consuming process of manual surface
roughness measurements. Along with this dataset we provide some experiment baselines with neural
network models for prediction of surface roughness from vibration data. To generalize the prediction
models to different polishing conditions, we also apply domain adaptation techniques to improve
prediction accuracy for conditions unseen by the trained model.

The paper is organized as follows: section 2 presents the related work to our dataset and the baseline
methods that we used, section 3 explains the dataset and its construction process, section 4 contains
the proposed baseline experiments on the dataset, section 5 highlights some limitations of the dataset,
and last but not least section 6 concludes the paper and summarizes the important takeaways.

2 Related Work

Investigations into the use of vibration data for applications such as predicting surface roughness
have gained traction across various engineering fields. However, the specific application of this data
within nuclear fusion and precision manufacturing remains largely unexplored.

2.1 Historical use of vibration data in process monitoring

The foundational work on the application of vibration data in manufacturing started with Hether-
ington et al. [1999], who examined its use in monitoring surface conditions of dielectric wafers.
While promising, this approach faced limitations in nanoscale applications, where precise cessation
thresholds are crucial. Subsequent research has advanced towards more sophisticated models that
integrate in-process conditions with surface quality assessments: Bukkapatnam et al. [2008] and
Kong et al. [2011] explored regression and Bayesian models to correlate process parameters with
vibration characteristics. Advanced signal processing methods like wavelet packet decomposition
and polynomial regression were utilized by Garcia Plaza et al. [2018] and Plaza and López [2018] to
enhance the understanding of these correlations.

2.2 Recent advancements in vibration data and use of ML in manufacturing processes

By utilizing vibration data Jin et al. [2023b] implemented hypothesis testing on bearing area curves
to inform decisions in surface finishing of non-flat geometries. Hanchate et al. [2023] and Botcha
et al. [2018] demonstrated the application of vibration data to predict surface roughness and monitor
dynamics in smart grinding and cylindrical plunge grinding processes, respectively. Real-time process
monitoring using vibration data alongside video sensors was notably enhanced by Galla et al. [2024],
who applied machine learning and Explainable-AI to distinguish between normal and anomalous
interactions during shell polishing. Jin et al. [2023a] developed a statistical model that effectively
estimates surface roughness and improves process understanding but falls short in making predictions
during the process, illustrating the challenge of implementing real-time predictive capabilities in
these contexts. Alexos et al. [2023] also utilized Machine Learning techniques for surface roughness
prediction of polishing spheres. While all these studies have utilized vibration signals and machine
learning in the context of shell polishing and other precision manufacturing processes, there remains
a pressing need for benchmarking and standardization of data to address diverse problems in this
domain.
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Figure 2: Overview of data collection process

2.3 Contribution and impact of the presented dataset

Our dataset paper introduces a uniquely curated dataset for polishing diamond spheres in nuclear
fusion technology, accompanied by advanced machine learning models that establish new standards
in predictive modeling and real-time anomaly detection. By providing this dataset, we enable
the development and validation of machine learning models that achieve high accuracy in surface
roughness prediction and facilitate domain-specific analyses. This initiative not only fills a critical gap
in the available data resources but also sets a benchmark for future innovations in the field, promoting
a deeper understanding and enhanced control over precision manufacturing processes.

3 Dataset Description and Construction

In this section, we describe the data and the process with which we gathered them and constructed
them. Figure 2 provides the complete overview.

3.1 HDC deposition and polishing setup

High-density carbon (HDC) was deposited in a microwave plasma-enhanced CVD (MPECVD)
reactor. After coating, capsules were polished in a proprietary-design v-groove polisher with a
diamond grinding disk as described in previous work Biener et al. [2009]. During the polishing
process, the instrument was stopped periodically to inspect the surface roughness of the HDC capsule.
An accelerometer (Kistler K-Shear 8702B500) was attached to the polishing motor body using dental
epoxy in order to collect vibrational data from the process. The accelerometer data was collected via
a computer-connected amplifier and controlled using custom software written in Labview. Data was
generated as a voltage vs. time signal.

3.1.1 Baseline polishing dataset collection

Two batches were polished in and measured using standard conditions to complete the baseline
dataset. The first batch underwent polishing in 24 hour increments over a total of four stages. At each
stage, accelerometer sensor data was collected at a 10kHz sampling rate. Data was collected over
the entire run, generating 24 hour time-series datasets. Additionally, a second batch was polished
with extra focus on the early-in-time changes to the surface morphology. The polishing process
was interrupted every 0.1 hours and shells were removed from the polisher, cleaned by sonication
in solvent, and surface roughness data was collected. A total of 18 0.1 hour accelerometer/surface
roughness data pairs were collected before the batch was subsequently polished for an additional 72
hours in 12 hour increments.

3.1.2 Test dataset collection

A total of three batches were polished to generate the test dataset. Each batch was polished using
the same coating and polishing conditions as the baseline batches and vibrational data was collected.
The three batches were each polished for 96-100 hours in 24 or 25 hour increments. For one of the
batches, surface roughness data was collected every 30 minutes over 1.5 hours and paired with a
vibrational spectra dataset to collect early-in-time changes.

3.1.3 Manual surface roughness measurements

Surface roughness was measured optically using a scanning laser confocal microscope (Keyence
VK-X3100) with a 100x objective lens and a 2mm working distance. A single image measuring
approximately 144µm x 108µm was taken on 3-6 capsules for each polishing stage. The surface
roughness measurement was made using the Keyence Multi-file Analyzer software. Two filters,
a short-pass and long-pass frequency filter, were used to eliminate features smaller than 500nm
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Figure 3: The figure presents the progress of the surface roughness during the polishing process for
four different batches. We observe a sharp linear decline in the first hour, and a gradual log decline
for the rest of the process. Our motivation for labelling the 6-minute samples lies in this observation.

(approximately 3 pixels) and larger than 25µm (approximately 25% of the short axis of the image).
The short-pass filter was used to reduce noise below the resolution limit of the microscope while
the long-pass filter was used to eliminate lens artifacts which dominate the surface roughness
measurements at very low Sa values. Additionally, a spherical surface correction (F-operation) was
used to flatten the data and prevent the curvature of the HDC capsule from affecting the surface
roughness data.

4 Experiments

To guide practitioners on how to use our dataset, we provide an example ML workflow and some
baselines for the regression task described in the previous section. The baselines we provide in this
section are based on the extracted statistical features from the raw vibration signals.

4.1 Experiment outline

Our dataset presents a regression problem with mapping from raw vibration signals to a change of
surface roughness value (deltaSa).

As noted, vibration data, denoted by xt for t ∈ {1, . . . , T}, is collected at each stage of the experiment
using an accelerometer. The data is captured continuously throughout the experiment with T
representing the total duration, and is collected at a high resolution with a sampling rate of 10 kHz,
corresponding to a sampling interval of 0.0001 seconds.

Surface roughness measurements are captured at the start and end of each polishing stage, which
typically are 12-hr or 24-hr long. However, in order to create sufficient data to train an ML model, we
segment each vibration data into 6-minute samples and then for each sample, the surface roughness
measurements are interpolated to determine the corresponding Sa and ∆Sa values. Based on the real
polishing trends seen in Figure 3 for several polishing batches, our interpolation utilizes a model that
integrates both linear and logarithmic changes to reflect the observed data trends: we approximate a
linear change in surface roughness during the first hour of the polishing run, followed by a logarithmic
change for the remainder of the process. Additionally, we see that the major changes happening in
the first hour in Figure 3; on an average we saw a 64% decline in Sa in the first hour for the depicted
runs. We assume the same 64% decline during our interpolation.

Over a 24-hour polishing stage, this results in a total of 240 vibration samples, each paired with their
corresponding ∆Sa values determined using our above interpolation method. From each 6-minute
vibration sample, 11 statistical features are extracted to characterize the data: kurtosis, skewness,
variance, mean, peak acceleration, RMS acceleration, crest factor, shape factor, entropy, impulse
factor, and margin factor. These features are depicted in table 1.

For domain detection, we use a mix of polishing batches, code named as S173, S179, S211, S233
and S238, as our train and test data. We note that each polishing batch consists of multiple polishing
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Table 1: Statistical features for vibration data and their formulae
Feature Description Formula

Kurtosis Measure of the "tailedness" of the probability distribution n
∑

(xi−x̄)4

(
∑

(xi−x̄)2)2

Skewness Measure of the asymmetry of the probability distribution n
∑

(xi−x̄)3

(n−1)(n−2)σ3

Variance Measure of the dispersion of a set of values 1
n

∑
(xi − x̄)2

Mean Average of the values 1
n

∑
xi

Peak Acceleration Maximum absolute value in the acceleration signal max |xi|
RMS Acceleration Root mean square of the acceleration signal

√
1
n

∑
x2
i

Crest Factor Ratio of the peak value to the RMS value Peak
RMS

Shape Factor Ratio of the RMS value to the mean absolute value RMS
1
n

∑
|xi|

Entropy Measure of the randomness in the signal −
∑

pi log(pi)
Impulse Factor Ratio of the peak value to the mean absolute value Peak

1
n

∑
|xi|

Margin Factor Ratio of the peak value to the square of the mean value Peak
( 1

n

∑
xi)

2

runs as mentioned in section 3. We formulated this as a multi-class classification problem, utilizing
11 statistical features extracted from each 6-minute vibration data sample to classify the domain. .

For our regression experiments, both with a neural network and the domain adaptation method applied
to the same network, we used polishing batches S173, S179, and S211 as training/source data, and
S233 and S238 as testing/target data. In the domain adaptation approach, we test and adapt separately
for each of the testing data. For polishing batches S173, S211, and S233, we used only the first
polishing run of approximately 25 hours where only the start and end Sa values are known. We
divided the 25 hours into 6-minute samples and determined intermediate Sa values by assuming a
linear change with 64% decline in Sa for the first hour and a logarithmic change for the remaining
hours as described in Section 4.1. For S179, we used 18 6-min samples corresponding to the first
108 mins of polishing, followed by a 12-hour polishing run. For the first 18 samples, we got the Sa
values/6-min from actual manual measurements but for the next 12-hr run we only had start and end
Sa values known, which we then divided it into 6-minute samples and assumed a logarithmic change.
For S238, we used four polishing runs: first three runs of 30 minutes each, followed by one run of
23.5 hours. We assumed a linear decline in the first two 30-min runs and a logarithmic decline for the
remaining runs.

4.2 Domain detection

We also investigate the use of vibration data collected from different polishing batch runs to classify
them in separate domains based on the polishing stage. Each domain represents a distinct phase in the
polishing process, with unique properties that share similarities in analysis (e.g., the type of polishing
plate used during a polishing batch).

Our primary challenge is to accurately classify new polishing data into its corresponding domain. This
classification is crucial because each domain requires tailored analysis methods. By classifying the
domain of the data using 11 extracted statistical features, we can design and implement appropriate
analysis techniques. This approach enhances our understanding of the specific characteristics of each
polishing batch, ultimately leading to more precise and effective analysis.

For this domain detection task, we utilized standard classification algorithms such as logistic re-
gression, support vector machines, decision trees, random forest, XGBoost and gradient boosting
algorithms. We select the algorithm that gives the best classification accuracy. The key motivation
here is that the dataset provided can be formulated and utilized as a multi-class classification problem.

4.3 Baseline regression methods

Next, we proposed two baseline methods, both based on neural networks for regression and both
utilize the same neural network. For these two approaches we use a multi-layer perceptron (MLP)
neural network with 2 hidden layers with 100 neurons each and the output layer has one node since
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Figure 4: Our MLP-based regression model that predicts change in surface roughness using the
vibratio features. The model is also augmented to perform domain adaptation by adding a domain
classifier layer that helps to extract features common to both the labeled source polishing domain and
the unlabeled target polishing domain.

the problem we are tackling is a regression problem. The first approach directly uses this neural
network for regression to predict the change in surface roughness.

The second approach is a domain adaptation technique that tries to consider the domain issue of the
data that we described in section 4.2. Briefly, the dataset consists of various polishing runs which
can belong to different domains based on the polishing conditions that were used (such as different
polishing plates). This applies to both the vibration data as well as the target surface roughness of
the polishing runs, which makes the problem we are trying to solve even more challenging. For the
domain adaptation approach we utilized the Unsupervised Domain Adaptation by Backpropagation
method proposed by Ganin and Lempitsky [2015]. As shown in Figure 4, a neural network model
is trained on the labeled data from the source domain (S173, S179, and S211) and is adapted to an
unseen unlabeled data from the target domain (S233 or S238). The idea is to augment the neural
network with a domain classifier (i.e., a simple gradient reversal layer) that allows the model to
extract features common to the two domains. This architecture can be trained by using standard
backpropagation, and it is a perfect candidate for our dataset where we utilize unlabeled test data,
where both the data and the prediction targets belong to different domains.

We assume the following setup where we have input samples x ∈ X and regression outputs y coming
from a space Y . We assume that there exist two distributions S(x, y) and T (x, y) on X

⊗
Y which

refer to source distribution and target distribution (or source and target domains) respectively. Both
distributions are assumed to be unknown and different (a domain shift due to different polishing
conditions). The goal is to predict the regression outputs y of the target domain T (x, y).

The specific domain adaptation method that we utilized here trains a model with a joint loss function
that consists of the regression loss of the labeled source (or training) data, and the binary domain
classification of the two domains, source and target. We do not utilize the surface roughness of
the target domain for the regression loss because they will not be available to the model in real
time during polishing at test time (hence we use an unsupervised adaptation approach). For binary
classification loss, we set labels of 0 for source domain data and labels of 1 for target domain data.
We define the full loss as:

E = Ly + Ld (1)

where Ly is the regression loss of the source domain and Ld is the loss of binary domain classification.
Together, these losses constitute the total loss that is used in backpropagation during training for
domain adaptation.

4.4 Results and discussion

Domain Detection results: For domain detection tasks, we conducted a comparative study of various
learning algorithms as mentioned in 4.2 with only using the vibration features (11 statistical features).
The results are presented in Table 2. Our analysis reveals that the gradient boosting algorithm
outperformed the others, achieving 100% accuracy in classifying the different domains: each of the
polishing batches (S179, S173, S211, S233, and S238) belonged to different domains. This result
justifies the need for domain adaptation where testing domains (S233 and S238) are different from
the remaining training domain as needed for accurate Sa predictions.
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Table 2: Domain detection: Performance comparison of domain classification algorithms
Sl.No Algorithm Macro

Precision
Macro
Recall

Macro
F-1 score

Weighted
Precision

Weighted
Recall

Weighted
F-1 score Accuracy

1 Logistic Regression 0.26 0.4 0.3 0.3 0.49 0.35 0.49
2 SVM 0.46 0.6 0.5 0.31 0.48 0.36 0.48
3 Decision Tree 0.93 0.99 0.95 0.99 0.99 0.99 0.99
4 Random Forest 0.9 0.99 0.93 1 0.99 0.99 0.99
5 Gradient Bosst 1 1 1 1 1 1 1
6 XG Boost 0.93 0.99 0.95 0.99 0.99 0.99 0.99

deltaSa prediction results: As mentioned in earlier sections we conduct a regression prediction
based on the 11 statistical features that we extract from the polishing vibration data. We utilize
both a neural network (MLP) and a domain adaptation technique on the same neural network. The
MLP with 2 hidden layers (100 neurons each) is first trained on the training data (S179, S173, and
S211) with Mean Absolute Error (MAE) as the loss function, and tested on S233 and S238 data. The
same MLP is then adapted using a combined loss function of MAE and the domain loss as shown in
Equation 1. The predicted vs. ground truth Sa results are depicted in fig. 5. We note that the MLP
without adaptation achieved a MAE of 0.11nm for the S233 and 0.205nm for the S238. Domain
Adaptation, on the other hand, outperformed the plain Neural Network by a big margin achieving
0.0674nm for the S233 and 0.0634nm for the S238.
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(a) S233 data prediction with the MLP
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(b) S233 data prediction with Domain Adaptation
on the same MLP
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(c) S238 data prediction with the MLP
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(d) S238 data prediction with Domain Adaptation
on the same MLP

Figure 5: Experiments with test data (S233 and S238) with the MLP and the domain adaptation on the
same MLP. We observe that domain adaptation performs better than the network without adaptation
for both datasets. The adaptation of the trained MLP was performed per run for each of the two test
data.

We performed another study where we first adapt the trained MLP on S233 using Domain Adaptation,
and then use the newly adapted model for further Domain Adaptation on S238. We observed that
the performance on the S238 was slightly better at 0.0618nm. In general Domain Adaptation leads
to a lower prediction error just by augmenting the same Neural Network with some extra layers to
perform the domain classification task. As we mentioned earlier, the reason that we used Domain
Adaptation is because the training polishing condition can be very different from the testing data.
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Our experiments above demonstrate how our dataset can be effectively used in predicting deltaSa for
different batches of polishing runs, providing substantial insights into the model’s ability to generalize
across varying conditions.

5 Limitations

Data Augmentation. A limitation of the dataset is the methodology we followed to produce more
data points. As the Sa values need to be manually measured which is a very time consuming task, it is
hard to get a lot of Sa data for robust ML training. Therefore, we decided to split the runs in smaller
6-minute samples and assume a linear and log decline in Sa as described in section 4.1. Although not
the most accurate method, our assumption is based on the empirical data corresponding to several
polishing batches as shown in Figure 3.

Extracted Features. Another limitation lies in the statistical features that we decided to extract
from the raw vibration data. As we mentioned in section 4.1, the 11 statistical features that we
decided to utilize might not be very representative of the raw vibration data. Analyzing the raw
vibration data is difficult on its own due to its size; ≈ 24 hours with a sampling rate of 10kHz, which
leads to massive files for each polishing run. We therefore decided to extract features in the time
domain with statistical features. However, since we provide all of the raw vibration data, the users
can utilize other statistical features for modeling as they see fit.

Data Collection. The collection of the raw vibration signal data is a very expensive process and this
is the main reason of the limited amount of data that we provide in this first version of this dataset. To
overcome this temporary limitation we tried augmenting the data as mentioned earlier in this section
by splitting each polishing run on 6-minute samples. From the baseline experiments, we observe that
the data we have provided in this dataset along with the data splitting is enough for the models to
achieve a good performance. We will keep updating our dataset repository with more data as we
generate them.

6 Conclusions

In this paper, we introduce a novel dataset focused on the surface roughness of Inertial Confinement
Fusion (ICF) capsule targets, monitored through an accelerometer during the polishing process. The
pivotal insight derived from this work is the potential for vibration signals to serve as real-time
proxies for assessing the surface quality of these capsule targets, significantly enhancing efficiency
and resource allocation in their preparation for nuclear fusion applications. Polishing of the ICF
capsules is a meticulous, multi-stage process extending over several days, demanding substantial
resources. Ensuring the process progresses toward optimal outcomes is critical for preventing shell
cracking and achieving precise endpoint detection, thereby necessitating the implementation of an
optimal stopping criterion. The specific aspect of the polishing process addressed by this dataset
is the quantification of shell surface roughness—a procedure traditionally reliant on time-intensive
manual assessments. By enabling the prediction of surface roughness measurements from vibration
data, the dataset we present holds the promise of streamlining this aspect of capsule preparation,
thereby contributing to the advancement of nuclear fusion technology through improved efficiency
and resource utilization.

In conjunction with the dataset, we propose methodologies for data utilization, focusing on the
condensation of the dataset into a subset of extracted, pertinent features. Accompanying the dataset,
we furnish baseline evaluations employing two distinct approaches: a simple neural network model
and a domain adaptation technique on the same network. The rationale behind the incorporation of
the latter method stems from the observed phenomenon of domain shifts affecting both the source
and target data within our dataset. Our hypothesis regarding the advantage of domain adaptation in
mitigating the impact of these domain shifts was validated, as evidenced by the superior performance
of the domain adaptation method when compared to the conventional neural network approach. This
outcome underscores the efficacy of domain adaptation strategies in enhancing the predictability
and applicability of the dataset under conditions of domain variability in polishing settings across
different batches.
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NeurIPS Paper Checklist

The checklist is designed to encourage best practices for responsible machine learning research,
addressing issues of reproducibility, transparency, research ethics, and societal impact. Do not remove
the checklist: The papers not including the checklist will be desk rejected. The checklist should
follow the references and precede the (optional) supplemental material. The checklist does NOT
count towards the page limit.

Please read the checklist guidelines carefully for information on how to answer these questions. For
each question in the checklist:

• You should answer [Yes] , [No] , or [NA] .
• [NA] means either that the question is Not Applicable for that particular paper or the

relevant information is Not Available.
• Please provide a short (1–2 sentence) justification right after your answer (even for NA).

The checklist answers are an integral part of your paper submission. They are visible to the
reviewers, area chairs, senior area chairs, and ethics reviewers. You will be asked to also include it
(after eventual revisions) with the final version of your paper, and its final version will be published
with the paper.

The reviewers of your paper will be asked to use the checklist as one of the factors in their evaluation.
While "[Yes] " is generally preferable to "[No] ", it is perfectly acceptable to answer "[No] " provided a
proper justification is given (e.g., "error bars are not reported because it would be too computationally
expensive" or "we were unable to find the license for the dataset we used"). In general, answering
"[No] " or "[NA] " is not grounds for rejection. While the questions are phrased in a binary way, we
acknowledge that the true answer is often more nuanced, so please just use your best judgment and
write a justification to elaborate. All supporting evidence can appear either in the main paper or the
supplemental material, provided in appendix. If you answer [Yes] to a question, in the justification
please point to the section(s) where related material for the question can be found.

IMPORTANT, please:

• Delete this instruction block, but keep the section heading “NeurIPS paper checklist",
• Keep the checklist subsection headings, questions/answers and guidelines below.
• Do not modify the questions and only use the provided macros for your answers.

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: Yes they are perfectly reflected.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: Yes we have a specific section called Limitations for that.
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Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [NA]

Justification: NA.

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental Result Reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We have provided all the details for the baselines.

Guidelines:

• The answer NA means that the paper does not include experiments.

13



• If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: Yes.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).
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• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: Yes.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [NA]

Justification: NA

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: Yes in the experiments.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
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• The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

• The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: Yes.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [Yes]
Justification: Yes at the corresponding section.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: NA
Guidelines:

• The answer NA means that the paper poses no such risks.
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• Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: Yes.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]

Justification: NA.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: NA.
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Guidelines:
• The answer NA means that the paper does not involve crowdsourcing nor research with

human subjects.
• Including this information in the supplemental material is fine, but if the main contribu-

tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: NA.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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