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Abstract

Set theory is foundational to mathematics and, when sets are finite, to reasoning
about the world. An intelligent system should perform set operations consis-
tently, regardless of superficial variations in the operands. Initially designed for
semantically-oriented NLP tasks, large language models (LLMs) are now being
evaluated on algorithmic tasks. Because sets are comprised of arbitrary symbols
(e.g. numbers, words), they provide an opportunity to test, systematically, the in-
variance of LLMs’ algorithmic abilities under simple lexical or semantic variations.
To this end, we present the SETLEXSEM CHALLENGE, a synthetic benchmark
that evaluates the performance of LLMs on set operations. SETLEXSEM assesses
the robustness of LLMs’ instruction-following abilities under various conditions,
focusing on the set operations and the nature and construction of the set members.
Evaluating seven LLMs with SETLEXSEM, we find that they exhibit poor robust-
ness to variation in both operation and operands. We show – via the framework’s
systematic sampling of set members along lexical and semantic dimensions – that
LLMs are not only not robust to variation along these dimensions but demon-
strate unique failure modes in particular, easy-to-create semantic groupings of
"deceptive" sets. We find that rigorously measuring language model robustness
to variation in frequency and length is challenging and present an analysis that
measures them independently. The code for reproducing the results of this pa-
per, and for generating the SETLEXSEM CHALLENGE dataset, is available at
https://github.com/amazon-science/SetLexSem-Challenge.

1 Introduction

Transformer models (Vaswani et al. [2017]) were initially devised and used for traditional natural
language processing tasks, such as machine translation, natural language inference, or question
answering (Vaswani et al. [2017], Devlin et al. [2019], Wang et al. [2018], Rajpurkar et al. [2018]).
More recently, auto-regressive Transformers pre-trained on Internet-scale datasets and fine-tuned to
conform to human preferences on a curated set of instructions (Ouyang et al. [2022]) – colloquially,
large language models (LLMs) – have been shown to exhibit impressive performance on some
analytical tasks, such as mathematics (Cobbe et al. [2021], Hendrycks et al. [2021a]), reasoning (Dua
et al. [2019]), and computer programming (Chen et al. [2021]). The increasing adoption of these
models requires that we carefully interpret and interrogate their behaviors and the datasets on which
they are evaluated. Careful evaluation exposes weaknesses and irregularities that inform users about
the quality of models they may adopt. It can also inform model designers about the limitations of
current architectures and requirements of future ones.

We should be clear-eyed about the limitations of existing datasets. Multiple choice tasks are not
uncommon among them. A multiple-choice task setup constrains the complexity of the problem
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Figure 1: To evaluate the robustness of LLMs to semantic variation in set members, we create
“deceptive” sets. To construct such sets, we sample a pair of hypernyms (e.g. “mammal” and
“vehicle”) and, from them, a set of their hyponyms in three conditions: (1) with the hyponyms as
sampled, (2) with half of the set members swapped, and (3) randomly sampled. LLMs exhibit a
unique failure mode under the second condition (swapped) and the mean and variance in accuracy of
the first condition (not swapped) is better than that of the random baseline. See Figure 7 for results.

posed to the system being evaluated. More concerning is that zero-shot task performance of an LLM
tends to be better on datasets that existed before it was trained than on those that were released after
[Li and Flanigan, 2024]. This suggests that datasets or tasks may be leaking into the LLM training
procedure. The ways this might happen are numerous. A dataset – its training set, test set, or even
both – might be included in the LLM training set (dataset leakage). Or a proprietary instruction
dataset that contains tasks similar to those in a public dataset might be created and used during the
instruction tuning process (task leakage). Zhang et al. [2024] found that overlap between training
and evaluation data is reported for only 30% of LLMs. Synthetic benchmarks may address these
problems, even if imperfectly. A synthetic dataset can require an LLM to perform a procedure of
complexity greater than answering a multiple choice question and it can control the complexity of the
procedure itself. The task leakage problem is more challenging, but a synthetic dataset may at least
circumvent dataset leakage by supporting regeneration with different parameters.

We present SETLEXSEM, a synthetic set theory benchmark that controls both the difficulty of the
task and the objects on which a task is performed. SETLEXSEM focuses on set theoretical operations
because sets can comprise objects of unconstrained type. The members of a set can be anything
that can be named or described. Other fields of mathematics are constrained in their operands.
Arithmetic works on numbers, and geometry on shapes, and while logic can operate on things
that can be named, it is constrained in their relationships. We have thus focused on set operations
because of their flexibility with respect to operands, particularly because they enable a systematic
and simultaneous testing of language models’ analytical task performance under controlled variation
of the task operands.

A truly intelligent system should exhibit System 2 thinking [Kahneman, 2011], which implies
performing tasks consistently regardless of incidental features. Consequently, the figure of merit of
SETLEXSEM is the variance of accuracy, not average accuracy. The more robust the system is, the
less variance it should exhibit as incidental features of a task vary. We categorize incidental features
throughout this paper as follows:

• Analytical Task performance should not vary with either computational complexity of the
task – as shown in Table 1 – or the task’s scale (i.e. the size of the operands A and B).

• Lexico-semantic Task performance should not vary as the lexical or semantic aspects of the
sets A and B are varied.
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SETLEXSEM is a benchmark of the robustness of a system – robustness to variations in task complex-
ity and to variations in task content. The results presented here indicate that current LLMs are not
robust – in a System 2 sense – along any of the dimensions that the benchmark evaluates. Further, the
results show that LLM are particularly not robust to easy-to-create semantic groupings of "deceptive"
sets, as shown in Figure 1. This latter result has, we believe, significant implications for the design of
any future model that aspires to achieve System 2 robustness.

Table 1: The set operations evaluated in SETLEXSEM. Performing them requires composing simple
logic ∧ (∨) and membership ∈ (/∈) functions.

Operation Notation Definition

Union A ∪B {x : x ∈ A ∨ x ∈ B}
Intersection A ∩B {x : x ∈ A ∧ x ∈ B}
Difference A \B {x : x ∈ A ∧ x /∈ B}
Symmetric difference A△B {x : (x ∈ A ∧ x /∈ B) ∨ (x /∈ A ∧ x ∈ B)}

2 Related work

Our work most directly extends existing investigations into the limitations of auto-regressive LLMs.

Auto-regressive models can generate plausible yet inaccurate output for scientific writing, as shown
by Zheng and Zhan [2023]. Lin et al. [2021] show that auto-regressive models do not work well
for predicting answers to problems that have a time complexity in the order of polynomial time.
Auto-regressive models can generate accurate intermediate reasoning steps only when the training
data exhibits well-defined patterns relating variables to the output [Prystawski et al., 2023]. The
studies by Welleck et al. [2022], Geirhos et al. [2020], and Bogin et al. [2022] demonstrate that there is
a disparity in the performance of the auto-regressive models on the in-distribution and out-distribution
sets. These studies highlight the importance of evaluating models beyond standard benchmarks and
across various aspects of generalization.

A number of benchmark datasets and collections of datasets have been developed or curated for the
purpose of stress testing the capabilities of LLMs on analytical tasks, such as reasoning (Dua et al.
[2019], Sakaguchi et al. [2021]), math (Cobbe et al. [2021], Hendrycks et al. [2021a]), and code
generation Chen et al. [2021]. Influential multitask collections include Hendrycks et al. [2021b],
Srivastava et al. [2023], and Suzgun et al. [2023].

In this work, we also seek to isolate the effects of token length or frequency on task performance.
Studies have shown that evaluations can be confounded by the contents of the training data. Basmov
et al. [2024] show that LLMs’ task performance on reading comprehension is confounded by the
world knowledge instilled in them during training. Razeghi et al. [2022] show that the performance
of LLMs on numerical tasks degrades with inverse proportionality to the frequency of the numerical
operands in the training set. Dziri et al. [2023] investigate the limits of LLMs at tasks requiring
function composition, such as multiplication, and show that degradation in accuracy is proportional
the depth of the computational graph. Anil et al. [2022] investigate failure modes of LLMs when
evaluated on tasks of length greater than those on which they were trained. Prompting techniques for
improving the length generalization of LLMs were demonstrated in Bueno et al. [2022].

One possible source of the algorithmic limitations of LLMs is that they perform a fixed amount of
computation at inference time. Changing the amount of inference computation to fit the task may be
a promising direction to pursue to mitigate these problems. Indeed, in Schwarzschild et al. [2021],
Bansal et al. [2022] the authors demonstrate improved generalization with a recurrent network by
performing additional recurrent steps.

Much recent research has focused on developing prompting techniques that improve LLMs’ perfor-
mance. Brown et al. [2020] show that LLMs with few-shot examples perform better than smaller
languages models with task-specific fine-tuning. Adding diversity as part of these few-shot examples
improves the generalization ability as demonstrated by Levy et al. [2022]. Algorithmic prompting
has been proved to improve the performance of LLMs for algorithmic reasoning tasks (Zhou et al.
[2022]). Similarly, multiple studies (Wei et al. [2022], Qin et al. [2023], Merrill and Sabharwal
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[2023]) demonstrate that Chain-of-Thought (CoT) prompting improves LLMs’ abilities on various
reasoning tasks (arithmetic, symbolic, and algorithmic).

3 Dataset

The SETLEXSEM dataset evaluates the robustness of language models along two dimensions: analyti-
cal and lexico-semantic. Robustness in this context is System 2 robustness and requires that a perfect
intelligent system exhibit no variance in task performance as incidental aspects of the input vary. The
analytical component of the task is performing set operations and includes varying set operations and
the sizes of the sets. The lexico-semantic component is due to set members being written symbols
with meanings, and written symbols have many features that are incidental to set operations.

When constructing SETLEXSEM, we systematically vary the hyperparameters listed in Table 2. For a
given hyperparameter set, we create a 50 occurrences of a prompt, each with different samples of the
sets A and B.

Table 2: Hyperparameters of SETLEXSEM prompts. Hyperparameters marked with ∗ were generated
only using formal demonstration phrasing. See the main text for any additional caveats.

Hyperparameter Values

Operation {∩,∪, \,△}
Operand size {2, 4, 8, 16}
Token type {number,word}
Token length {undefined, 1, 2, 3, 4}
Token frequency∗ Deciles {1, . . . , 9} of vocabulary by rank frequency
Semantic similarity∗ Words in set A share one hypernum, in set B share another
Prompting method {Simple baseline,Chain of thought (CoT)}
Demonstration phrasing {natural, formal}
Number of in-context demonstrations {0, 1, 3, 5}

Analytical Analytical robustness is measured by varying four set operations – union (∪) , intersec-
tion (∩), difference (\), and symmetric difference (△) – and the size of the operands. For an arbitrary
set operation ⊙ and sets A and B, when evaluating A⊙B with some concrete A and B, we ensured
that |A| = |B| and |A| ∈ {2, 4, 8, 16}.

Lexico-semantic Lexico-semantic robustness is measured by varying the characteristics of the
symbols of which sets consist. For any pair of set A, the members are sampled randomly from some
population or subset thereof. Members can be constrained to adhere to constraints on lexical form
(e.g. only numbers, only words of a certain length), on frequency (e.g. more common words), or on
semantics (e.g. only hyponyms with a shared hypernym).

Note the lexico-semantic hyperparameters marked with an ∗ in Table 2. When prompts are generated
for these conditions, only CoT prompting and formal demonstration phrasing is used. To understand
how sets were sampled for these conditions, see Sections 3.2.1 and 3.2.2.

Additional sources of variation Another set of hyperparameters varies the form of the prompt
itself. We employ two standard prompting methods: a simple baseline prompt and a Chain of
Thought (CoT) prompt. CoT prompting encourages step-by-step reasoning, which can improve LLM
performance on reasoning tasks [Wei et al., 2022]. Demonstrations are phrased in either a natural or
formal style.

Lastly, as we varied the number of demonstrations for in-context learning, k ∈ {0, 1, 3, 5}, all other
parameters were kept fixed, including the sampled sets A and B. Per one LLM vendor’s suggestion
(Anthropic [2024]), we used XML tags to delimit sections. Since SETLEXSEM measures variance,
whether these tags affect absolute task accuracy is, however, irrelevant.

See Figure 2 for an example of a representative prompt and the prompt hyperparameters.
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3.1 Sampling

Recall that our benchmark evaluates binary operations A⊙B on sets A and B. To create the dataset,
we sample new instances of A and B simultaneously using methods intended to determine the impact
of various factors – like set size, token length, or semantic similarity – on accuracy. We describe
each method here. Currently, in all prompts, we use set size m ∈ {2, 4, 8, 16}. Unless otherwise
noted, |A∪B| = 2m except when collisions occur between one or more elements of A and B during
sampling.

3.1.1 Numbers

When sampling numbers, SETLEXSEM samples integers uniformly from [0, n − 1], where n is
the specified upper bound. We also optionally limited the number of digits in a sampled number.
For instance, setting token-length=3 in SETLEXSEM restricts the sampled numbers to the range
[100, 1000).

3.1.2 Words

When sampling words, SETLEXSEM samples words from the NLTK Wordlist corpus (Bird and Loper
[2004]), which contains a comprehensive list of English words. It optionally limit the number of
characters in a sampled word. For example, setting token-length=4 in SETLEXSEM ensures that
all sampled words have exactly four characters (e.g., “love”).

3.2 Targeted sampling

SETLEXSEM contains sampling procedures to enable measuring the robustness of systems to variance
in (corpus-level) term frequency and to semantic similarity of set members. We describe them here.

3.2.1 Words by frequency

To investigate the potential impact of word frequency on task performance, we developed a sampler
that creates prompts for comparing accuracy on sets containing more frequent or less frequent words.
This sampler (1) ranks the words from the NLTK English Wordlist corpus based on their frequency
in the Google Books Ngram corpus (Google [2024]) and (2) then segments them into deciles. Words
from a specific decile are then sampled to create the sets A and B of a set of prompts. Our use of
Google Books Ngram frequencies does not guarantee that the vocabulary’s rank frequency matches
any particular system’s training corpus frequency. Rather, it approximates frequencies due to the lack
of public disclosure about most large systems’ training set frequencies.

Ending

You are given two sets. Set A is (32, 77). Set B is (81, 38).   You are given the following task: 
<task>

Print the set    .             of A and B as a Python set.

</task>

These are some examples: 
<examples> 
- If set A is (10, 63) and set B is (64, 57), print (64, 57, 10, 63), because 64, 57, 10, and 63 are 
in either A or B. 
- If set A is (51, 30) and set B is (90, 84), print (90, 51, 84, 30), because 90, 51, 84, and 30 
are in either A or B. 
- If set A is (98, 12) and set B is (96, 21), print (96, 98, 12, 21), because 96, 98, 12, and 21 are 
in either A or B. 
</examples> 
Do not explain your reasoning.

Do not write a code or script or use any tools.

At last, provide only the final answer as a mathematical set, without any code or additional 
context.

Do not include anything other than your final answer in your response within <answer></
answer> XML tags.

The answer can be an empty set.

Stop after printing.

K-Shots

Task union

union, intersection, difference, symmetric differenceOperation Type

Operand Size = {2, 4
 Set A is (11, 75, 60, 52)
 Set A is (“h”, “b”)


Token Length = {None, 1, 2, 3, 4
 Set A is (1, 5)  -- Token Type is “Numbers
 Set A is (“boy”, “tri”) -- Token Type is “Words”

Set 
Construction

Formal Language:

<task> Print the set difference of A and B as a 
Python set. </task>

Natural Language:

<task> Print the set of members belonging to A and 
not to B as a Python set. </task>

Demonstration 
Phrasing

Allow Empty Ending:

The answer can be an empty set.

CoT Ending:

You are an expert in performing set-operation in 
mathematics. Think step by step. Explain your step-by-
step reasoning process in detail within <thinking></
thinking> XML tags.

Prompting 
Strategy

Set A is (32, 77). Set B is (81, 38).

Figure 2: Example of our baseline prompt with sets of size two. Every prompt follows this template:
set construction, task definition, demonstrations, and final instructions. Note that the baseline prompt
instructs the LLM not to explain its reasoning whereas the chain-of-thought prompt instructs the
model to think step by step. In this example, the set members are numbers and each token in a set is
two characters long. The prompt explicitly instructs the model not to use external tools, should they
be available to it. Additional examples of prompts are provided in the Appendix.
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3.2.2 Mixtures of semantically-related (“deceptive”) words

We hypothesized that LLMs’ abilities to follow instructions and perform in-context learning might
fail when performing set operations involving a mixture of two semantically-related groups of words.
Our intuition was that since LLMs internally operate on embeddings, the semantic relatedness of the
words within and between the sets might contradict the algorithm implied by the instruction or the
in-context demonstrations.

To test this hypothesis, we developed a hyponym sampler using WordNet (Miller [1995]). With this
sampler, a set is sampled such that all members are hyponyms of the same hypernym. For example,
all the members of set A might be subtypes of “mammal”, while the members of set B might be
subtypes of “vehicle” (cf. Figure 1). We evaluate with these sets in three conditions: (1) the sampled
sets, grouped by hypernym, (2) half of the words from each set are swapped with the same number
of words from the other set – creating a artificial semantic bifurcation within each set – and (3) a
random baseline in which the hyponym vocabulary is randomly sampled. We hereafter refer to these
sets as comprising “deceptive” words.

4 Evaluation

We now describe the behavior of a set of seven LLMs on SETLEXSEM – namely, OpenAI GPT-3.5,
three of Anthropic’s Claude models (Instant, Haiku, and Sonnet), Mistral AI-Large, Mistral Small,
and Meta LLaMa 3 70b. With every model, we used a temperature of 0.251, top-k of 20, and top-p of
0.25.

Task performance is measured as accuracy. It can be argued that a more appropriate metric is one
that assigns partial credit, as suggested by the analysis in Schaeffer et al. [2024]. That argument
is appropriate to refute claims about capabilities of LLMs that emerge seemingly ex nihilo with
increased scale. For SETLEXSEM, the nuance of the argument is unnecessary, as the emphasis is on
variance, not changes in behavior during scaling.

Across all SETLEXSEM prompts, the minimum and maximum mean accuracy (SD) are 69.37 (29.34)
and 85.09 (16.06). See Figure 3 for complete distributions. Of these, GPT-3.5 has the highest
minimum accuracy (69.03), mean (85.09), and lowest standard deviation (16.06).

Unless otherwise noted, distributions in subsequent analyses in this section are aggregates of the
distributions shown here.

Claude Instant Claude Haiku Claude Sonnet GPT 3.5-Turbo-0613Mistral Large-2402 Mistral Small-2402 Meta Llama3-70b
LLM
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Figure 3: Aggregate accuracy of LLMs on SETLEXSEM. Each distribution consists of 12,400
prompts. This is 400 fewer than the 12,800 that should be expected given (1) that we did not do k-shot
prompting in these runs and (2) the number of other hyperparameters in Table 2. The discrepancy is
due to the case where token length is 1, which has fewer prompts due to sampling with replacement.

4.1 Analytic

Here we remark on the robustness of LLMs to variation in the analytic incidental features – set
operation and set size – defined by SETLEXSEM. LLMs’ ability to perform set operations accurately

1We have observed that LLMs’ behaviors tends to be most stable with a modest but non-zero temperature, so
we did not vary temperature here.
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depends on the operation (Figure 4a). Notice the increasing negative skew towards lower accuracy
going from union to symmetric difference along the x-axis. A similar and quite dramatic skew
towards lower accuracy occurs when the set size increase from 2 to a still-modest 16 members (Figure
4b). The variance across operations and operand sizes suggest, for instance, that as set size increases
further, we should expect a more rapid decline in accuracy on symmetric difference than on union.

Union Intersection Difference Symmetric
difference

Set operation

0
20
40
60
80

100

Av
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(a) Distributions of accuracy on each set operation
across all experimental configurations.

2 4 8 16

Operand size
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(b) Distributions of accuracy on each set size across
all experimental configurations.

Figure 4: LLM accuracy on set operations varies (a) by operation and (b) by operand size. A violin
plot is a distribution of accuracy. Each point in the distribution is the fraction of times correct out of
50 samples of different sets while holding a prompt (and its hyperparameters) constant. See Table 2
for hyperparameters.

4.2 Lexico-semantic

In this section, we report the robustness of the LLMs we tested to variation in incidental lexico-
semantic features.

Numbers and words When we control the lexical form of set members, and plot LLM accuracy
separately on words or on numbers across set operations, we observe that accuracy is everywhere
worse with numbers. See Figure 5 for the distributions.

Notice in Table 2 that we sampled words and numbers of lengths {1, 2, 3, 4} as well as with no
explicit constraint on length. The numbers, however, were sampled from the range [0, 9999]. This
length constraint on numbers may be a confounding variable, implying that token length affects
accuracy.

Union Intersection Difference Symmetric
difference

Set operation
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Token type
Numbers
Words

Figure 5: LLM accuracy on set operations appears to exhibit exhibits some bias in favor of words
over numbers, but this result is inconclusive.
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Token frequency SETLEXSEM allows controlling the length and frequency of set member tokens
when constructing prompts (see Section 3.2.1). This feature enables, although imperfectly, separating
the confounding variables of token length and frequency. We show results here across all deciles of
rank frequency for tokens of length 3 and 5. Across all deciles, mean accuracy of tokens of length 5
is always greater than that of tokens of length 3. See Table 7 and Figure 6a. And length 5 tokens are
always more common (except perhaps for decile 9, where there are very few tokens), as shown in 6b.

Due to budget constraints, the results we obtained in this section are from running prompts only
against Claude Haiku.
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2nd decile 3rd decile 4th decile 5th decile

60 30 0 30 60
Accuracy
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60 30 0 30 60
Accuracy

7th decile

60 30 0 30 60
Accuracy

8th decile

60 30 0 30 60
Accuracy

9th decile

(a) Distributions of the difference in accuracy between tokens of length 5 and of length 3. Differences are
between averages across 50 samples using prompts created with the same set of hyperparameters. The first
decile is not shown because there are no tokens of length 3 with rank frequency in that decile.

1 2 3 4 5 6 7 8 9
Deciles
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(b) Distributions of token length across deciles of the vocabulary.

Figure 6: LLM accuracy is not invariant to the incidental features token length or token frequency.
Controlling for both length and frequency, accuracy is lower (a) for sets consisting of tokens of length
3 than for those consisting of tokens of length 5, across all deciles, and (b) tokens of length 3 are also
less frequent across all deciles.

Deceptive sets The results of running prompts containing sets consisting of samples of semantically-
related words are shown in Figure 7. The “deceptive” distributions shown comprise the sets described
in Section 3.2.2. In the not swapped case, the set A comprises words with one common hypernym and
B consists of words with some other common hypernym. This creates a hard semantic bifurcation
between the sets. In the swapped case, half of the words from set A are swapped with half from
set B. This creates a hard semantic bifurcation within the sets. The random baseline consists of all
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the words across all prompts created in the process of sampling for all “deceptive” prompts. In the
baseline case, there is no significant semantic bifurcation between or within sets.

As is illustrated clearly in Figure 7a, it is easiest for an LLM to perform set operations with these
“deceptive” sets when each set is semantically uniform (not swapped case). This outcome is consistent
with intuitions about the representations of similar words in embedding space. Because in this case
all members of set A are similar to one another, and all members of set B are similar to one another,
and all members of set A are dissimilar to those of set B, it’s easier for a model to follow the prompt
instructions. The average and variance of task performance is reduced in the random baseline case,
because there’s no regularity of orientation of the embeddings within each set. Variance increases
sharply in the swapped case. Again, this comports with intuition. The introduction of a semantic
bifurcation within each set increases the difficulty of the task and causes a mismatch between the
surface and the semantic senses of set membership.

While we have some preliminary results to suggest that k-shot prompting with a larger k than we
tested (cf. Table 2) with may correct this behavior, but a system that truly exhibits System 2 thinking
should not behave this way in the first place.

Due to budget constraints, the results we obtained in this section are from running prompts only
against Claude Haiku.
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(a) Variance in task accuracy across all set operations.
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Random Baseline
Deceptive, swapped
Deceptive, not swapped

(b) Variance in task accuracy by set operation.

Figure 7: Distributions of accuracy of LLMs on sets comprising “deceptive” words. In the not-
swapped case, sets are as they were originally sampled (with the words in a given set having
a common hypernym). In the swapped case, half of the deceptive set members are swapped
between sets. The random baseline is a random sampling of words from the same vocabu-
lary. An example of the swapping case: the sets {appearing, nan, grandpa, turnout} and
{presence, gramps, appearance, granny} are a mixture of words denoting grandparents and
words denoting coming into view. We only use formal language phrasing for this experiment. Each
distribution consists of 6400 prompts for the Figure (a), and 1600 prompts for Figure (b).
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5 Discussion

While we have demonstrated here that today’s LLMs are not robust to variations of the analytical
and lexico-semantic features that SETLEXSEM tests, the long march of science towards greater
understanding, and of technology towards greater sophistication, may imply that future systems may
indeed be robust to such variations. System 2 thinking may be mechanized. In such a possible future,
synthetic datasets like SETLEXSEM could be used to verify that systems that society has become
generally confident in are indeed invariant in the ways we desire. In the meantime, our dataset and
others like it serve as guideposts to systems designers indicating deficiencies that need to be corrected.

Notably, the failure mode that current LLMs exhibit on the “deceptive” sets of SETLEXSEM demon-
strates that the relatedness of entities in the hidden states of an instruction-following neural network
can subvert the instruction-following capabilities. To achieve high robustness, then, a model must be
either architecturally equipped to, or at least explicitly trained to, balance instruction following and
semantics. We hope that the research community sees this challenge as a worthy one to address in
future model designs.

We believe the practical implications of SETLEXSEM are substantial. While the current version of
SETLEXSEM is built on formal descriptions of set operations, the dataset generator can be adapted
to create narrative descriptions of set operations. Set operations in natural language or story form
can be created for various application domains, or in multiple languages, and the SETLEXSEM
sampling methods can be extended to support protected classes of people, sentiments, or parts of
speech. This can provide a very rich and challenging venue in which to further test the capabilities
– and particularly the robustness – of language models. We consider this a promising direction for
future work.

6 Conclusion

We have described the SETLEXSEM CHALLENGE, a dataset for evaluating the robustness of LLMs to
incidental variations in task difficulty and task content. It is systematic, covering many set operations
and allowing for systematic variation of the types of set members. Our results across a variety of
commercially-developed LLMs show that they do not exhibit System 2 robustness across variations in
set operation, set size, term type (word or number), or word length, and that “deceptive” sets subvert
their instruction-following ability substantially. SETLEXSEM exposes deficiencies in LLMs and can
inform the research community about possible future directions for their improvement. We hope this
dataset will contribute to the improvement of intelligent systems and to their proper evaluation.
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Table 3: Accuracy of LLMs on SETLEXSEM

LLM Mean Std N (x 50 run each)

Claude Instant 69.37 29.34 18800
Claude Haiku 80.2 22.31 12400
Claude Sonnet 79.55 24.53 12400
GPT 3.5 85.09 16.06 12400
Mistral Large 84.73 23.61 12300
Mistral Small 58.63 35.86 12400
LLaMa 3 70b 75.20 25.91 12400

Table 4: Accuracy across set operations

Set Operation Mean Std N (x 50 run each)

Union 88.88 16.2 51200
Intersection 71.17 28.22 51200
Difference 72.98 24.54 51200
Symmetric difference 65.25 27.84 51200

Table 5: Accuracy across operand sizes

Operand Size Mean Std N (x 50 run each)

2 90.38 13.09 52800
4 80.6 20.41 52800
8 70.46 27.13 52800
16 54.4 27.7 46400

Table 6: Accuracy across set operations for different token types

Set Operation Token type Mean Std N (x 50 run each)

Union Numbers 89.98 15.6 24000
Union Words 87.92 16.67 27200
Intersection Numbers 57.88 33.75 24000
Intersection Words 82.9 14.18 27200
Difference Numbers 70.08 25.2 24000
Difference Words 75.54 23.68 27200
Symmetric difference Numbers 62.03 26.91 24000
Symmetric difference Words 68.09 28.37 27200

Table 7: Difference in mean accuracy between token length 5 and token length 3 across deciles of
rank token frequency. Token length 5 had a higher mean accuracy in all deciles.

Decile Mean Std Min Max N (x 50 run each)

1st - - - - 0
2nd 16.6 21.27 -8.00 84.00 96
3rd 11.2 17.11 -24.00 74.00 128
4th 6.4 11.40 -28.00 40.00 128
5th 1.7 10.22 -26.00 38.00 128
6th 4.9 11.50 -30.00 40.00 128
7th 4.2 14.50 -46.00 44.00 128
8th 2.5 9.19 -22.00 36.00 128
9th 3.8 23.91 -64.00 90.00 96
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Table 8: Accuracy for deceptive words when sampled randomly, with deceptive not swapped, and
deceptive swapped

Sampling Mean Std N (x 50 run each)

Deceptive, not swapped 91.84 10.34 6400
Deceptive, swapped 71.88 26.41 6400
Random Baseline 81.06 15.26 6400

Table 9: Accuracy for deceptive words when sampled randomly, with deceptive not swapped, and
deceptive swapped

Sampling Set Operation Mean Std N (x 50 run each)

Deceptive, not swapped Union 91.56 12.11 1600
Deceptive, not swapped Intersection 91.12 8.08 1600
Deceptive, not swapped Difference 95.88 4.25 1600
Deceptive, not swapped Symmetric difference 88.81 13.47 1600
Deceptive, swapped Union 88.56 15.75 1600
Deceptive, swapped Intersection 50.12 30.75 1600
Deceptive, swapped Difference 82.38 14.03 1600
Deceptive, swapped Symmetric difference 66.44 23.41 1600
Random Baseline Union 80.06 19.65 1600
Random Baseline Intersection 86.69 9.92 1600
Random Baseline Difference 82.5 11.8 1600
Random Baseline Symmetric difference 75 16.02 1600

Table 10: Effect of Formal Language and Plain Language

Prompt Language Mean Std N (x 50 run each)

Formal Language 76.8 25.12 105600
Plain Language 72.2 27.06 99200
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Figure 8: Number of demonstrations and how the relationship between Sets A and B are affecting the
accuracy. As the number of demonstrations increases, the accuracy slightly increases.
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Figure 9: The effect of demonstration phrasing on the performance of set operations. Demonstrations
phrased in formal language resulted in higher average accuracy compared to those phrased in natural
language.

Table 11: The effect of token type, token length, and operand size on the accuracy of Anthropic
Claude Haiku. Mean Accuracy is the average percentage of correct responses given by the LLM. StD
is the standard deviation of the accuracy. Key findings include: (1) Accuracy generally decreases
with increasing token length and operand size, (2) The model performs better on words than numbers
for most cases, and (3) Variability in performance increases with longer token lengths and larger
operand sizes.

Token type Token length Operand size Mean Accuracy % StD

Numbers 1 2 93.6 9.9
Numbers 1 4 93.5 10.4
Numbers 2 2 92.2 9.5
Numbers 2 4 77.7 19.0
Numbers 3 2 93.4 6.9
Numbers 3 4 75.5 21.4
Numbers 4 2 82.8 17.3
Numbers 4 4 63.5 27.2

Words 1 2 87.9 12.4
Words 1 4 84.1 17.0
Words 2 2 94.8 5.6
Words 2 4 88.4 8.8
Words 3 2 99.1 1.6
Words 3 4 87.9 9.8
Words 4 2 96.8 3.4
Words 4 4 93.8 6.0
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Table 12: For numbers, the mean accuracy decreases as the token length increases, dropping from
93.5% for single-digit numbers to 73.2% for 4-digit numbers. In contrast, the mean accuracy for
words shows an opposite trend, increasing from 86.0% for single-letter words to 95.3% for 4-letter
words. The standard deviation also decreases with longer word tokens, indicating more consistent
performance. These results suggest that the token recognition model performs better with longer word
tokens but struggles with longer numerical tokens, potentially due to differences in the underlying
patterns and representations of these token types.

Token type Token length Mean Accuracy % Std

Numbers 1 93.5 10.2
Numbers 2 85.0 16.6
Numbers 3 84.5 18.2
Numbers 4 73.2 24.7

Words 1 86.0 14.9
Words 2 91.6 8.1
Words 3 93.5 8.9
Words 4 95.3 5.1

Table 13: A smaller operand size has a higher mean accuracy for both numbers and words. As
mentioned in the main text, words have a higher accuracy compared to numbers (and less variations).

Token type Operand size Mean Accuracy % Std

Numbers 2 90.5 12.4
Numbers 4 77.6 22.9

Words 2 94.7 8.2
Words 4 88.5 11.6
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Table 14: For numbers, the CoT and self-reflection prompting method with allowing empty set and
higher k-shots (3 or 5) achieves the highest mean accuracy (around 87-88%) and lowest standard
deviation (around 14-16%). For words, the CoT and self-reflection prompting method with allowing
empty set generally performs the best, with the highest mean accuracy (around 93-95%) and lowest
standard deviation (around 5-8%), especially with lower k-shots (0 or 1). The base prompt without
allowing empty set tends to have lower mean accuracy and higher standard deviation for both numbers
and words. Higher k-shots generally improve mean accuracy for numbers, but the effect is less clear
for words.

Token type Prompting method K Shots Mean Accuracy % Std

Numbers Base Prompt 0 80.6 20.9
Numbers Base Prompt 1 80.8 22.8
Numbers Base Prompt 3 87.3 16.4
Numbers Base Prompt 5 81.6 23.3
Numbers Base Prompt (allow empty set) 0 84.9 19.1
Numbers Base Prompt (allow empty set) 1 80.7 21.8
Numbers Base Prompt (allow empty set) 3 86.1 17.6
Numbers Base Prompt (allow empty set) 5 82.5 22.7
Numbers CoT and Self-Reflection 0 82.4 22.1
Numbers CoT and Self-Reflection 1 82.6 19.4
Numbers CoT and Self-Reflection 3 84.8 20.1
Numbers CoT and Self-Reflection 5 86.2 17.7
Numbers CoT and Self-Reflection (allow empty set) 0 83.6 19.9
Numbers CoT and Self-Reflection (allow empty set) 1 85.4 17.2
Numbers CoT and Self-Reflection (allow empty set) 3 87.2 16.1
Numbers CoT and Self-Reflection (allow empty set) 5 88.0 14.7

Words Base Prompt 0 92.9 7.5
Words Base Prompt 1 90.1 12.2
Words Base Prompt 3 90.3 12.1
Words Base Prompt 5 86.6 13.8
Words Base Prompt (allow empty set) 0 94.0 5.9
Words Base Prompt (allow empty set) 1 88.5 14.4
Words Base Prompt (allow empty set) 3 89.1 15.2
Words Base Prompt (allow empty set) 5 86.9 14.9
Words CoT and Self-Reflection 0 93.8 6.6
Words CoT and Self-Reflection 1 93.5 7.7
Words CoT and Self-Reflection 3 92.9 8.7
Words CoT and Self-Reflection 5 91.2 9.8
Words CoT and Self-Reflection (allow empty set) 0 94.8 5.6
Words CoT and Self-Reflection (allow empty set) 1 94.4 6.7
Words CoT and Self-Reflection (allow empty set) 3 93.8 7.4
Words CoT and Self-Reflection (allow empty set) 5 92.9 7.6
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Table 15: The LLM performs very well on union operations with around 98% accuracy, but struggles
more with intersection operations, especially for numbers (66% accuracy). For difference and
symmetric difference, the LLM achieves reasonable 80-90% accuracy. Top mistakes often involve
confusing set sizes or elements, like predicting 1 element for a null set intersection. Top correct
responses generally match set sizes or identify null sets correctly. The LLM sometimes generates
made-up values not present in the inputs, though infrequently (G means Ground Truth length of
response, and L means LLM length of response).

0 1 2 3

Token type Numbers Words Numbers Words
Set operation Union Union Intersection Intersection
Max Value -1 -1 -1 -1
Accuracy 98.66 98.59 66.08 89.47
Accuracy Non Empty 98.66 98.59 15.68 7.26
Pct Nullset Correct 0.0 0.0 50.4 82.21
Pct Nullset Wrong 0.0 0.0 33.8 10.19
Pct With Made Up Vals 2.34 9.93 0.14 0.5
N Comparisons 16000 16000 16000 16000
N Correct 15786 15774 10573 14315
N Wrong 214 226 5427 1685
Empty Set Equal Count 0 0 8064 13153
Empty Set Mismatch Count 0 0 5408 1631
Made Up Vals Sum 375 1588 22 80
Did Not Follow Instruction 2 12 0 2
Top1 Mistake (’G8 vs. L7’, 21.5) (’G4 vs. L4’, 8.85) (’G0 vs. L1’, 57.07) (’G0 vs. L1’, 68.01)
Top2 Mistake (’G8 vs. L8’, 21.03) (’G8 vs. L8’, 7.52) (’G0 vs. L2’, 35.6) (’G0 vs. L2’, 24.99)
Top3 Mistake (’G8 vs. L9’, 17.76) (’G4 vs. L15’, 6.19) (’G0 vs. L3’, 4.26) (’G1 vs. L2’, 1.96)
Top1 Correct (’G4 vs. L4’, 45.88) (’G4 vs. L4’, 48.57) (’G0 vs. L0’, 76.27) (’G0 vs. L0’, 91.88)
Top2 Correct (’G8 vs. L8’, 38.2) (’G8 vs. L8’, 43.86) (’G1 vs. L1’, 12.27) (’G1 vs. L1’, 6.38)
Top3 Correct (’G6 vs. L6’, 5.63) (’G7 vs. L7’, 4.59) (’G2 vs. L2’, 8.76) (’G2 vs. L2’, 1.51)

Table 16: The model achieves higher accuracy on word sets compared to number sets, but frequently
makes up values not present in the original sets, especially for symmetric difference on words.
Common mistakes include confusing ground truth lengths 4 and 8 with incorrect LLM response
lengths. Correct responses are most frequent when ground truth and LLM lengths match (G means
Ground Truth length of response, and L means LLM length of response).

0 1 2 3

Token type Numbers Words Numbers Words
Set operation Difference Difference Symmetric difference Symmetric difference
Max Value -1 -1 -1 -1
Accuracy 82.44 89.15 76.96 88.1
Accuracy Non Empty 82.25 89.15 76.78 88.1
Pct Nullset Correct 0.19 0.0 0.18 0.0
Pct Nullset Wrong 0.01 0.0 0.02 0.0
Pct With Made Up Vals 0.18 0.72 3.81 15.66
N Comparisons 16000 16000 16000 16000
N Correct 13191 14264 12313 14096
N Wrong 2809 1736 3687 1904
Empty Set Equal Count 31 0 29 0
Empty Set Mismatch Count 1 0 3 0
Made Up Vals Sum 28 115 609 2506
Did Not Follow Instruction 1 0 1 0
Top1 Mistake (’G4 vs. L3’, 55.07) (’G4 vs. L3’, 56.97) (’G8 vs. L7’, 27.56) (’G8 vs. L7’, 34.45)
Top2 Mistake (’G2 vs. L1’, 28.34) (’G2 vs. L1’, 24.6) (’G8 vs. L6’, 23.16) (’G8 vs. L6’, 17.12)
Top3 Mistake (’G4 vs. L2’, 7.16) (’G4 vs. L2’, 7.14) (’G4 vs. L3’, 17.68) (’G4 vs. L3’, 13.29)
Top1 Correct (’G2 vs. L2’, 55.58) (’G2 vs. L2’, 52.73) (’G4 vs. L4’, 57.16) (’G4 vs. L4’, 53.33)
Top2 Correct (’G4 vs. L4’, 32.89) (’G4 vs. L4’, 41.24) (’G8 vs. L8’, 31.69) (’G8 vs. L8’, 41.38)
Top3 Correct (’G1 vs. L1’, 7.1) (’G3 vs. L3’, 4.61) (’G2 vs. L2’, 7.34) (’G6 vs. L6’, 4.02)
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Table 17: Error analysis of words and deceptive words for union and intersection

0 1 2 3

Token type Words Deceptive Words Words Deceptive Words
Set operation Union Union Intersection Intersection
Accuracy 99.5 97.5 98.62 68.69
Accuracy Non Empty 99.5 97.5 1.0 0.0
Pct Nullset Correct 0.0 0.0 97.62 68.69
Pct Nullset Wrong 0.0 0.0 1.38 31.31
Pct With Made Up Vals 3.94 6.06 0.12 1.31
N Comparisons 1600 1600 1600 1600
N Correct 1592 1560 1578 1099
N Wrong 8 40 22 501
Empty Set Equal Count 0 0 1562 1099
Empty Set Mismatch Count 0 0 22 501
Made Up Vals Sum 63 97 2 21
Did Not Follow Instruction 0 0 0 0
Top1 Mistake (’G4 vs. L20’, 12.5) (’G8 vs. L9’, 82.5) (’G0 vs. L1’, 95.45) (’G0 vs. L1’, 59.88)
Top2 Mistake (’G4 vs. L4’, 12.5) (’G8 vs. L8’, 7.5) (’G0 vs. L2’, 4.55) (’G0 vs. L2’, 35.13)
Top3 Mistake (’G8 vs. L14’, 12.5) (’G4 vs. L3’, 2.5) (’G0 vs. L0’, 0.0) (’G0 vs. L3’, 3.99)
Top1 Correct (’G4 vs. L4’, 50.13) (’G4 vs. L4’, 50.45) (’G0 vs. L0’, 98.99) (’G0 vs. L0’, 100.0)
Top2 Correct (’G8 vs. L8’, 48.87) (’G8 vs. L8’, 46.73) (’G1 vs. L1’, 1.01) (’G0 vs. L1’, 0.0)
Top3 Correct (’G7 vs. L7’, 1.01) (’G7 vs. L7’, 2.05) (’G0 vs. L1’, 0.0) (’G0 vs. L2’, 0.0)

Table 18: Error analysis of words and deceptive words for difference and symmetric difference

0 1 2 3

Token type Words Deceptive Words Words Deceptive Words
Set operation Difference Difference Symmetric difference Symmetric difference
Accuracy 99.69 89.69 98.38 81.94
Accuracy Non Empty 99.69 89.69 98.38 81.94
Pct Nullset Correct 0.0 0.0 0.0 0.0
Pct Nullset Wrong 0.0 0.0 0.0 0.0
Pct With Made Up Vals 0.06 2.0 0.12 3.81
N Comparisons 1600 1600 1600 1600
N Correct 1595 1435 1574 1311
N Wrong 5 165 26 289
Empty Set Equal Count 0 0 0 0
Empty Set Mismatch Count 0 0 0 0
Made Up Vals Sum 1 32 2 61
Did Not Follow Instruction 0 0 0 0
Top1 Mistake (’G2 vs. L1’, 40.0) (’G4 vs. L3’, 67.27) (’G8 vs. L7’, 53.85) (’G8 vs. L7’, 39.79)
Top2 Mistake (’G4 vs. L4’, 20.0) (’G2 vs. L1’, 17.58) (’G4 vs. L3’, 26.92) (’G8 vs. L6’, 22.15)
Top3 Mistake (’G4 vs. L7’, 20.0) (’G4 vs. L4’, 7.88) (’G4 vs. L2’, 11.54) (’G4 vs. L3’, 10.03)
Top1 Correct (’G2 vs. L2’, 50.03) (’G2 vs. L2’, 53.66) (’G4 vs. L4’, 50.19) (’G4 vs. L4’, 56.37)
Top2 Correct (’G4 vs. L4’, 48.97) (’G4 vs. L4’, 45.23) (’G8 vs. L8’, 48.79) (’G8 vs. L8’, 40.66)
Top3 Correct (’G3 vs. L3’, 1.0) (’G3 vs. L3’, 1.11) (’G6 vs. L6’, 1.02) (’G7 vs. L7’, 1.98)
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Table 19: Examples of sets of deceptive words

Operation Type union
Set A {burlap, gunny}
Set B {splurge, pillory}
Ground Truth {splurge, burlap, gunny, pillory}
LLM {splurge, burlap, gunny, pillory}
Correct? True

Operation Type union
Set A {missionary, starer, schoolmaster, ogler}
Set B {spy, schoolmaam, bystander,Bahai}
Ground Truth {schoolmaam, starer, bystander,missionary, ogler, spy, schoolmaster, Bahai}
LLM {starer, bystander, am,missionary, ogler, spy, schoolma, schoolmaster, Bahai}
Correct? False

Operation Type intersection
Set A {warrant, consideration, forgiveness, indorse}
Set B {exculpation, defend, benefaction, underwrite}
Ground Truth {}
LLM {}
Correct? True

Operation Type intersection
Set A {appearing, nan, grandpa, turnout}
Set B {presence, gramps, appearance, granny}
Ground Truth {}
LLM {appearance}
Correct? False

Operation Type difference
Set A {blarney, palaver, bluff, putoff}
Set B {hypocrisy, unction, pretext, smarm}
Ground Truth {blarney, palaver, bluff, putoff}
LLM {blarney, palaver, bluff, putoff}
Correct? True

Operation Type difference
Set A {ganja, kenaf}
Set B {abaca,marijuana}
Ground Truth {ganja, kenaf}
LLM {kenaf}
Correct? False

Operation Type symmetric difference
Set A {quadruplet, churchwarden}
Set B {sexton, twin}
Ground Truth {quadruplet, sexton, churchwarden, twin}
LLM {quadruplet, sexton, churchwarden, twin}
Correct? True

Operation Type symmetric difference
Set A {catamaran, cachalot, narwal, sharpie}
Set B {dolphin, catboat, trimaran, devilfish}
Ground Truth {catamaran, narwal, dolphin, catboat, sharpie, trimaran, cachalot, devilfish}
LLM {narwal, dolphin, catboat, sharpie, trimaran, cachalot, devilfish}
Correct? False
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