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Abstract

Data heterogeneity among Federated Learning (FL) users poses a significant chal-
lenge, resulting in reduced global model performance. The community has de-
signed various techniques to tackle this issue, among which Knowledge Distil-
lation (KD)-based techniques are common. While these techniques effectively
improve performance under high heterogeneity, they inadvertently cause higher
accuracy degradation under model poisoning attacks (known as attack ampli-
fication). This paper presents a case study to reveal this critical vulnerability
in KD-based FL systems. We show why KD causes this issue through empir-
ical evidence and use it as motivation to design a hybrid distillation technique.
We introduce a novel algorithm, Hybrid Knowledge Distillation for Robust and
Accurate FL (HYDRA-FL), which reduces the impact of attacks in attack sce-
narios by offloading some of the KD loss to a shallow layer via an auxiliary
classifier. We model HYDRA-FL as a generic framework and adapt it to two
KD-based FL algorithms, FedNTD and MOON. Using these two as case studies,
we demonstrate that our technique outperforms baselines in attack settings while
maintaining comparable performance in benign settings. Our code is available at
https://github.com/momin-ahmad-khan/HYDRA-FL.

1 Introduction

Federated Learning (FL) [33] is an emerging machine learning paradigm enabling multiple users’
collaborative model training without data sharing. Each user, termed a client, only shares their local
model with a server, which aggregates all local models into a single global model and redistributes
it to the clients. Due to its decentralized, privacy-preserving, and highly-scalable nature, FL has
been adopted by Google’s Gboard [2] for next-word prediction, Apple’s Siri [1] for automatic speech
recognition, and WeBank [44] for credit risk prediction.

Despite its benefits, FL faces challenges with data heterogeneity [29, 52, 14, 25]. FL performs well
when client data is independent and identically distributed (IID) and achieves similar convergence
as a single model trained on all the clients’ data but struggles when clients have diverse data (non-
IID). In this case, the client’s local data is not a good representation of the overall data distribution
(unlike an ideal IID case), causing local models to drift away from each other. This drift results
in a global model with significant accuracy degradation compared to the IID scenario. Numerous
solutions [26, 21, 23, 54, 24, 47, 16, 28] address data heterogeneity, including Knowledge Distillation
(KD) [12] to reduce the drift between local models.
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Figure 1: Overview of attack amplification through knowledge distillation. a) In the benign setting,
KD reduces drift and brings benign local models closer to the benign global model. b) In the malicious
setting, KD unknowingly reduces drift between benign local models and the poisoned global model.

Besides data heterogeneity, FL also faces the issue of Byzantine robustness [15], where untrusted
clients can inject poisoned models into the aggregator by altering client data (data poisoning [36])
or client models (model poisoning [11, 4, 34, 46, 5, 3, 42]). Research by [41] shows that model
poisoning attacks are more potent as they directly manipulate local models. To counteract poisoning
in FL, various defenses have been developed [6, 48, 51, 7, 27, 9, 8].

In this work, we identify a critical vulnerability in KD-based FL techniques under model poisoning
attacks. The adversarial settings, i.e., threat model, attacks and defense, are explained in §C. These
techniques unknowingly align benign client models with a poisoned server model (Figure 1). We
study two such classes of KD-based solutions: FedNTD [21], which reduces the loss between not-true
logits of the server and client models, and MOON [26], which reduces the contrastive loss between
the representation vector of the server and client models. While these techniques improve global
model accuracy in benign settings compared to FedAvg [33] (standard FL aggregator), they reduce
performance below FedAvg under attack, a phenomenon we term attack amplification, especially
noticeable at higher heterogeneity levels.

Motivated by our findings, we propose a Hybrid Knowledge Distillation for Robust and Accurate FL
(HYDRA-FL) framework for KD-based techniques that restricts attack amplification under poisoning
attacks while retaining performance in the benign setting. Unlike traditional KD methods that apply
KD-loss only at the final layer, HYDRA-FL introduces KD-loss at a shallow layer via an auxiliary
classifier and reduces the KD-loss impact at the final layer. This approach draws inspiration from
Self-Distillation (SD) [50] and Skeptical Students (SS) [19], but with a distinct focus on enhancing
robustness against heterogeneity and model poisoning attacks in FL.

SD improves model accuracy by self-distillation, while SS distills from "nasty teachers" [31] to
shallow layers. In contrast, our approach uses auxiliary classifiers to enhance FL client robustness
against heterogeneity and model poisoning attacks. We design a generic loss function adaptable to
specific KD-based algorithms. Our evaluation show that HYDRA-FL significantly boosts accuracy
over FedNTD and MOON in attack settings while maintaining performance in benign settings.

Contributions. This work addresses the critical issue of attack amplification in KD-based FL
techniques to counter data heterogeneity. In doing so we make the following contributions:

1. Proving KD amplifies model poisoning: our motivational case study (§3) on two KD-based
techniques, FedNTD and MOON, shows that KD improves accuracy in benign settings but
helps the malicious clients propagate poisoning through the KD-loss in adversarial settings.
We empirically and theoretically show that this attack amplification issue is inherent to any
technique aligning client outputs/representations with the server.

2. Designing HYDRA-FL: using our observations as a guideline, we design HYDRA-FL (§4)
to prevent attack amplification while retaining performance in the benign setting. HYDRA-FL
is formulated as a general loss function that can be adapted to any FL algorithm so that it can
be used as its local model training objective.

3. Implementation and Evaluation: we adapt HYDRA-FL to the FedNTD and MOON algo-
rithms and modify their local training objectives (§5). Our detailed qualitative and quantitative
analysis (§6) shows that HYDRA-FL not only achieves higher accuracy in attack settings but
also maintains accuracy in the benign settings.
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2 Background and Related Work

2.1 Federated Learning (FL)

In FL [15, 33], a service provider, called server, trains a global model, θg, on private data from
multiple collaborating clients, without directly collecting their data. The server selects n out of N
clients in every FL round and shares the most recent global model (θtg) with them, where t is the
round number. Then, a client k uses local data Dk to compute an update∇t

k and shares it with the
server. The server aggregates these updates using some aggregation rule, like FedAvg [33] algorithm.

In FedAvg, a client k fine-tunes θtg on their local data using stochastic gradient descent (SGD) for a
fixed number of local epochs E, resulting in an updated local model θtk. The client then computes
their update as the difference∇t

k = θtk− θtg and shares∇t
k with the server. Next, the server computes

an aggregate of client updates, fagg using mean, i.e.,

∇t
agg = fmean(∇t

{k∈[n]}). (1)

The server then updates the global model of the (t+ 1)th round using SGD and server learning η as:

θt+1
g ← θtg + η∇t

agg (2)

2.1.1 Data Heterogeneity in FL

Data heterogeneity is a well-explored problem [29, 52, 14, 25] in FL. Each client in FL generates
its data, leading to local data distributions that vary across clients and do not accurately represent
the global data distribution. By extension, a global model learned by aggregating local models
using FedAvg may not be the best representation of all the client’s local data. Studies have shown
that this data heterogeneity degrades performance and have proposed various methods to address
this issue [26, 21, 23, 54, 24, 47, 16, 28]. This degradation is more prominent in the presence of
poisoning attacks. Research on poisoning attacks in FL has demonstrated that such attacks become
more successful under high heterogeneity [11, 42]. This increased risk is because the malicious
clients can more easily hide between drifted benign client models, making it difficult for the server
to differentiate between heterogeneous benign clients and malicious ones. [17] highlights that
overlooking this heterogeneity is a critical oversight in FL defense evaluations. Unlike MOON [26]
and FedNTD [21], the two baseline techniques used in this paper which address data heterogeneity
only in no-attack settings, HYDRAFL operates in both no-attack and attack settings, achieving
robustness and accuracy under high heterogeneity.

2.1.2 Poisoning in FL

FL is vulnerable to poisoning attacks [6, 4, 5, 3, 34, 11, 32, 46, 36, 42], where malicious clients aim
to compromise the training process by degrading the global model’s performance. These attacks
come in various forms: In data poisoning [3], malicious clients poison their local data to introduce a
backdoor in the local model. This backdoor then propagates to the global model upon aggregation.
In model poisoning [11, 4, 34, 46, 5, 3, 42], malicious clients perturb their local models so that,
when aggregated, the global model is poisoned. Poisoning attacks can be further classified based on
their targets: If the performance degradation is on specific inputs, the attack is termed as targeted
poisoning [5, 3], and if it is on all inputs, then it is termed as untargeted poisoning [11, 4, 34, 32, 46].
We explain the attacks used in this paper in §C.2. Our paper shows how KD-based data-heterogeneity
mitigation techniques amplify poisoning attacks and that our approach HYDRAFL addresses both
data heterogeneity and poisoning.

2.2 Knowledge Distillation (KD)

Knowledge Distillation (KD) [12] transfers knowledge from a large, complex model (teacher) to
a smaller, more computationally efficient model (student). This process involves distilling the
teacher’s rich and intricate information into the student by aligning their predictions. Formally,
if the teacher and student models produce the output probabilities yit and yis respectively for the
ith input (xi, yi), KD aims to match these probabilities by applying the Kullback-Leibler (KL)
divergence between them. The KL-divergence between their softened probabilities is given by:
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KL(softmax(yit/τ)||softmax(yis/τ), where τ is the temperature parameter that softens the proba-
bilities. The overall KD loss function combines this KL-divergence with the usual loss function such
as cross-entropy (CE) loss with β (balances the importance of the KL-divergence and CE loss) as:

L = (1− β) · LCE(y
i
s, y

i) + β · LKL(softmax(yis/τ)||softmax(yit/τ)) (3)

KD in FL is becoming essential as it addresses critical challenges such as non-IID data distributions,
enhances model performance, accelerates convergence, reduces communication overhead, and im-
proves robustness by making the global model learn from an ensemble of local models [10, 23, 30, 53].
In FL, data is often non-IID across clients, leading to significant discrepancies in local models. KD
mitigates these discrepancies by aligning the local models with the global model, ensuring that
the global model captures a more generalized representation of the data. The general approach is
to reduce the local model drift by improving the aggregation through distillation using unlabeled
auxiliary data. However, the auxiliary data may not always be available, and methods have also been
developed to enable KD without such data [49, 54].

3 Attack Amplification through Knowledge Distillation

Hypothesis. KD-based techniques in FL improve accuracy in non-adversarial settings but result
in more significant accuracy degradation under model poisoning attacks compared to the baseline
techniques such as FedAvg.

Motivational case study. In this case study, we compare FedAvg against two distinct KD-based
solutions addressing the local model drift from non-IID. MOON [26] uses model-contrastive learning
to align local and global model representations, while FedNTD [21] uses KL-divergence to align
not-true logits of client models with those of the server. FedNTD penalizes prediction divergence
measured through distillation loss, improving knowledge transfer and stability, while MOON pe-
nalizes representation divergence measured through contrastive loss, enhancing robustness and
generalization. This comparison will help us understand the trade-offs of using KD in FL, especially
under adversarial conditions. Throughout this paper, benign conditions mean that no attacks are
present, while adversarial conditions mean that model poisoning attacks are present. We implement
the same settings and hyperparameters for FedAvg as for MOON and FedNTD to ensure a fair
comparison, so FedAvg results may vary between these techniques. This is not an inconsistency. We
do not directly compare FedNTD to MOON unless stated otherwise, as the original FedNTD work
already did so. Our goal is to test how adversarial settings affect these two fundamentally different
techniques similarly, demonstrating that attack amplification is inherent to KD and not specific to a
particular technique.
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Figure 2: Impact of increasing KL-divergence loss for Fed-
NTD and contrastive loss for MOON on accuracy.

Adversarial conditions. We simulate
untargeted model poisoning attacks
using techniques from [42, 11]. To
observe their effects on accuracy in
both benign and adversarial settings,
we vary key hyperparameters — LD-
divergence loss coefficient β for Fed-
NTD and contrastive loss coefficient
µ for MOON. The baseline for com-
parison is FedAvg with β = 0 and
µ = 0. To ensure high heterogeneity
in both settings, the Dirichlet distribu-
tion [35] parameter α is fixed at 0.1.

Findings. In Figures 2(a) and 2(b), we present three key results: benign accuracy (blue), post-
attack accuracy (orange), and the accuracy drop (green). We make the following observations from
increasing β and µ are as follows: (1) the global model accuracy improves in benign settings; (2)
post-attack accuracy decreases; and (3) accuracy drop increases. Our analysis shows a significant
trade-off: the very mechanisms that improve performance in benign conditions (increasing β and µ)
also make the models more vulnerable to adversarial attacks.

What causes attack amplification? The fundamental nature of KD-based FL methods aims to align
local models with the global model. In benign scenarios, these methods significantly outperform
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FedAvg [26, 21]. However, in the presence of model poisoning attacks, this model alignment process
inadvertently forces local models to align its representation/predictions to the poisoned global model,
amplifying the attack’s impact. This is illustrated in Figure 1, where clients unknowingly distill
knowledge from a poisioned server model.

Formally: Consider a set of n clients c1, c2, . . . , cn with m being malicious. Using an aggregation
rule such as FedAvg, the server aggregates updates from both benign (∇i∈[m+1,n]) and malicious
(∇m

i∈[m]) clients:
∇g = fagr(∇m

i∈[m] ∪∇i∈[m+1,n]) (4)

When m = 0, the server model∇b
g is benign. For m ̸= 0, the server model∇′

g is poisoned, deviating
from the ideal unpoisoned global model due to the nature of these attacks [42, 11, 41]. Aligning local
models with a poisoned global model reduces gradient diversity, making local models more similar
to the poisoned global model [21] through KL-divergence or contrastive loss. We rewrite Equation 3
to formalize the loss function for an FL client, using KD, where the client is the student with output
ŷc, and the server is the teacher with output ys:

L = LCE(ŷc, y) + βLKL(ŷc, ys) (5)
Note that for the sake of derivation here, we are using ŷc, which represents the generic client model
output. In the case of FedNTD, it can be replaced by ỹc that represents the not-true logits of the client
model, and in the case of MOON, it can be replaced by zc that represents the client model’s high
dimensional representation.

In benign scenarios, this loss function (L = F(β)) decreases monotonically with β because KD
brings local models closer to an unpoisoned global model. Conversely, in adversarial scenarios, it
increases with β because KD brings local models to the poisoned global model. We can write the
relation of this loss function with β as:

L(β) is
{

monotonically decreasing, m = 0

monotonically increasing, m ̸= 0
(6)

Then, the derivative of the loss function is:

dL
dβ

=

{
< 0, m = 0

> 0, m ̸= 0
(7)

Our derivation shows that while the distillation process decreases loss in the absence of malicious
clients, it increases loss in their presence, thereby leading to reduced global model accuracy. This
formal analysis highlights the need for a solution that mitigates the accuracy degradation under
adversarial conditions while retaining the benefits of KD under benign conditions.

Impact of Heterogeneity.
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Figure 3: Impact of the heterogeneity parameter, α in benign and
adversarial settings. We use the Dirichlet distribution where a
higher α means lower heterogeneity.

Now, we explore the effect of het-
erogeneity on the performance
of FedNTD, MOON, and Fe-
dAvg in both benign and adver-
sarial conditions to gain deeper
insights into the role of hetero-
geneity in the KD performance
gain vs. vulnerability tradeoff.
As shown in Figure 3(a), several
interesting observations emerge.
First, both FedNTD and FedAvg
achieve higher accuracy at lower
heterogeneity levels (indicated
by higher α). In benign settings,
FedNTD consistently outperforms FedAvg. However, the trend reverses in adversarial settings:
FedAvg achieves higher accuracy than FedNTD, except at α = 0.5. A similar pattern is observed
with MOON in Figure 3(b), where FedAvg outperforms MOON across all heterogeneity levels in
adversarial settings. In the benign setting, as expected, MOON slightly outperforms FedAvg at high
heterogeneity. This comparison highlights again how the alignment mechanisms in FedNTD and
MOON with higher heterogeneity exacerbate the vulnerability of KD methods to attacks.
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4 HYDRA-FL: Hybrid Knowledge Distillation for Robust and Accurate FL
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Figure 4: HYDRA-FL framework: we refine client model training by reducing the final layer’s
KD-loss and incorporating shallow KD-loss at an earlier shallow layer via an auxiliary classifier.

4.1 Generic Formulation

In this section, we propose Hybrid Knowledge Distillation for Robust and Accurate FL (HYDRA-FL),
a technique to mitigate the attack amplification caused by KD in FL. We take a hybrid distillation
approach, applying KD-loss at both the final and a shallow layer of the client model (Figure 4).
This method incorporates shallow distillation, which applies KD-loss at an intermediate layer and
helps reduce the impact of poisoning by preventing over-reliance on final layer alignment. Shallow
distillation previously used to handle nasty teachers trained adversarially [19], to reduce the impact of
poisoning. In summary, shallow layers capture basic features, and shallow distillation ensures these
features are robustly learned, protecting the model from adversarial influences that could corrupt
deeper layers and final outputs. We first formulate the generic loss function of an FL client using KD
in HYDRA-FL as:

L = LCE(yc, y) +
β

b
LKD(yc, ys) + γLKD(yaux, ys) (8)

This loss function has three key components:
1. Cross-entropy loss (LCE(yc, y)) is the loss between the client’s prediction yc and the target

y, drives the client model to learn from its own data, ensuring it captures in-distribution
knowledge such as features and patterns specific to its data.

2. Diminished KD loss (βbLKD(yc, ys)) is the loss between the client’s output/representation
yc and the server’s output/representation ys

1. It is a strategic reduction of the KD loss to
ensure that the local model benefits from the global model’s knowledge while remaining
robust against adversarial attacks. This approach helps balance the trade-offs between learning
efficiency and model integrity. In practice, this is achieved by introducing a diminishing factor
b to the KD loss at the client model’s output layer to diminish the poisoning effect. The KD
loss coefficient β is divided by b, effectively reducing its weight in the total loss calculation,
thus reducing its influence on the local model’s training. This diminishing factor is essential,
as shown later in §6.3 and Figure 7, where reducing the β yields better results.

3. Shallow distillation loss (γLKD(yaux, ys)) is applied at a shallow layer of the local model,
enhancing robustness without heavily relying on final layer alignment. This loss, between the
auxiliary classifier’s output/representation yaux at the client model’s shallow layer and the
server’s output/representation ys, is scaled by γ to control the amount of distillation. This
reduces the impact of poisoning on the client model. Simply reducing the KD-loss in FedNTD
or MOON improves post-attack accuracy but reduces benign setting accuracy, as shown in
Figure 2. Shallow distillation loss helps maintain the balance between accuracy in benign
settings and lowering the impact of poisoning on the client model in adversarial settings.

Differences with previous works.The key difference between our work and [19] lies in our approach
to shallow distillation. [19] aims to distill from models that are designed to be undistillable, a.k.a

1yc and ys in generic LKD loss can be either outputs or representations, because the method can involve
either type of comparison (e.g., MOON uses representation-based loss while FedNTD has output-based loss.)
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nasty teachers [31]. While both use hybrid shallow distillation, [19] completely removes the KD-loss
from the model’s output layer and uses self-distillation to compensate for performance loss due to
shallow distillation. In contrast, we retain a scaled-down KD-loss at the output layer. We found that
completely removing the KD-loss at the output layer may cause a more negative impact than keeping
it in a reduced form. Additionally, the untargeted poisoning is different from the poisoning in the
"nasty teacher" paper [31]. The "nasty teacher" performs near-perfect under normal conditions unless
a malicious model distills from it. In untargeted FL poisoning, the global model is poisoned and
performs poorly regardless of its use for distillation.

In HYDRA-FL, we use both final layer and shallow layer distillation to enhance robustness. Final
layer distillation aligns client outputs with server outputs for consistent predictions, whereas the
shallow layer distillation aligns intermediate representations to improve robustness against attacks.
This dual approach reduces vulnerability to poisoning attacks, enhances learning by leveraging
knowledge transfer from multiple layers, and maintains high accuracy in benign settings while being
resilient under attack conditions.

4.2 Adapting HYDRA-FL to State-of-Art Techniques

In this section, we will adapt our generic HYDRA-FL to two state-of-the-art KD techniques for FL.

FedNTD with shallow distillation and auxiliary classifiers. We modify the FedNTD base model
by introducing auxiliary classifiers. The base model includes two convolutional layers, a linear layer,
and a classification layer. Auxiliary classifiers, each consisting of a linear layer (hidden dimension
512) followed by a classification layer, are added after each convolutional layer. We update the loss
function to include a shallow-distillation term, representing the KL-divergence loss between the
not-true logits of an auxiliary classifier and the global model. The final loss function is a weighted
sum of the standard cross-entropy loss, KL-divergence loss between the not-true logits of the global
model and the client model, and the KL-divergence loss between the not-true logits of the global
model and the auxiliary classifier. The revised loss function in Equation 8 for FedNTD is:

L = LCE(yc, y) +
β

b
LKL(ỹc, ỹs) + γLKL(ỹaux, ỹs) (9)

Here y is the target label, yc is the client model’s output, ỹs, ỹc, and ỹaux are the client model’s,
server model’s, and auxiliary classifier’s not-true logits respectively.

MOON with shallow distillation and auxiliary classifiers. MOON base model has two convolution
layers, two linear layers, and an output classification layer. We insert auxiliary classifiers after each
convolution layer. Each auxiliary classifier has two linear layers, with a hidden dimension of 256 and
an output dimension of 10. We adapt Equation 8 to MOON to compute the contrastive loss at the
hidden representation layer of the auxiliary classifier as:

L = LCE(yc, y) +
µ

b
Lcon(zc, zs) + γLcon(zaux, zs) (10)

Here y is the target label, yc is the client’s output, zc is the representation from the client’s final
layer, zs is the representation from the server’s final layer, zaux is the representation from the client’s
auxiliary classifier, and ys is the server model’s output. For simplicity, we do not write the previous
round’s representation in the loss function here.

5 Experimental Results

5.1 Experimental Settings

Datasets and Models: We conduct our experiments over three popular datasets: MNIST, CIFAR10,
and CIFAR100. To ensure a fair comparison with previous works, MOON and FedNTD, we utilized
the same models and hyperparameters they used. Specifically, we incorporated our algorithm as a
simple modification into their publicly available codes [22, 38] (more details on experimental and
adversarial setups in Appendices D & C).
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Table 1: Test accuracy for three techniques on three datasets. In the no-attack setting, (↑ ↓) shows
comparison to FedAvg. In the attack setting, we use bold if our technique outperforms FedNTD.

Dataset MNIST CIFAR10 CIFAR100
α = 0.05 α = 0.1 α = 0.5

Techniques no attack attack no attack attack no attack attack no attack attack no attack attack
Fedavg 92.12 74.48 44.69 31.27 54.67 35.67 70.57 48.27 26.17 12.92

FedNTD 93.03↑ 58.09 46.94↑ 21.72 56.95↑ 32.61 71.79↑ 52.51 29.1↑ 13.92
HYDRA-FL(Ours) 92.69↑ 76.67 46.92↑ 25.15 57.12↑ 34.25 71.22↑ 52.57 28.9↑ 14.33

Table 2: Test accuracy for three techniques on three datasets. In the no-attack setting, (↑ ↓) shows
comparison to FedAvg. In the attack setting, we use bold if our technique outperforms MOON.

Dataset MNIST CIFAR10 CIFAR100
α = 0.1 α = 0.5 α = 5

Methods no attack attack no attack attack no attack attack no attack attack no attack attack
Fedavg 88.02 77.55 57.76 40.9 63.14 60.2 71.19 68.38 28.36 24.21
MOON 91.13↑ 72.32 58.8↑ 39.9 63.34↑ 57.17 70.95↓ 67 29.34↑ 23.81

HYDRA-FL(Ours) 92.04↑ 76.65 60.1↑ 43.6 63.32↑ 59.93 70.55↓ 68.4 29.48↑ 25.18

5.2 Shallow Not-True Distillation

Our hybrid shallow not-true distillation technique significantly improves post-attack accuracy over
the baseline FedNTD. As shown in Table 1, we achieve higher post-attack accuracy across all
heterogeneity levels. By retaining a diminished NTD loss at the output layer, we maintain similar
accuracy to FedNTD in no-attack scenarios and, in some cases, even achieve slightly higher accuracy.
We also compare no-attack and post-attack accuracies for FedAvg, the foundational algorithm for
many FL aggregation methods.

5.3 Shallow MOON
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Figure 5: HYDRA-FL vs. MOON and FedAvg when auxiliary
classifiers are placed at different shallow layers.

Our shallow-distillation design
effectively prevents attack ampli-
fication in MOON while main-
taining nearly the same no-attack
accuracy. Table 2 shows that
we achieve higher post-attack ac-
curacy across all heterogeneity
levels. Our technique also out-
performs FedAvg, except in a
few scenarios. Techniques like
MOON are designed to enhance accuracy under high heterogeneity (α = 0.1). HYDRA-FL achieves
a no-attack [attack] accuracy of 60.1%[43.6%], surpassing both MOON (58.8%[39.9%]) and FedAvg
(57.76%[40.9%]), thereby demonstrating efficacy in high heterogeneity.

6 Analysis

In this section, we provide an in-depth analysis of HYDRA-FL. We begin with a theoretical justifica-
tion behind the efficacy of HYDRA-FL. Then we perform a qualitative analysis using t-distributed
stochastic neighbor embedding (t-SNE [43]) plots to visualize the representations of the models.
Finally, we explore the impact of different design choices through ablation studies, focusing on the
choice of the shallow layer for auxiliary classifiers and the distillation coefficients.

6.1 Theoretical Justification

Here we provide the theoretical justification for the working of HYDRA-FL. The generic loss function
of an FL client using KD is:

L = LCE(ŷc, y) + βLKD(yc, ys) (11)

In Section 3, we showed that in the presence of malicious clients, dL
dβ > 0, i.e., KD causes the

loss to increase. In Section 4, we formulated the generic loss function of an FL client using KD in
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HYDRA-FL as:
L′ = LCE(yc, y) +

β

b
LKD(yc, ys) + γLKD(yaux, ys) (12)

We use L′ for HYDRA-FL loss and L for basic KD loss. Comparing them, since β
b < β L, it follows

that β
bLKD(yc, ys) < βLKD(yc, ys). The entire model is θ, and the part up til the auxiliary layer θ′.

The impact of shallow distillation loss is only on θ′ and not the rest of the model θ − θ′. Therefore,
with appropriate b and γ, dL′

dβ < dL
dβ . This is shown in Figure 7, where we select b = [1, 4] (so β

effectively becomes 1 and 1
4 , respectively) and γ = 2 to show the effectiveness of our technique and

the impact of the variation of these hyperparameters.

6.2 Qualitative Analysis

We show the t-SNE plots of the representations (Figure 6) generated by the client model for FedAvg,
MOON, and HYDRA-FL for both attack and no-attack scenarios. The t-SNE plots show the classes
as clusters. In the MOON attack scenario, the deviation from the no-attack scenario is much higher
than the deviation between HYDRA-FL with and without attack, as evident from the spread of the
class clusters, especially along the x-axis.
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Figure 6: T-SNE visualizations of CIFAR10 on local model’s hidden representations (α = 0.5) on
FedAvg, MOON, and HYDRA-FL (ours). The attack vs. no-attack plot shows the deviation of
the attack clusters from the no-attack clusters. Visually we can see MOON-attack has the greatest
deviation, particularly along the x-axis, compared to FedAvg and HYDRA-FL.

6.3 Ablation Study

Impact of choice of the shallow layer. Figure 5 illustrates the impact of the choice of the layer at
which we insert our auxiliary classifier. We represent these choices by HYDRAFL-S1 and HYDRAFL-
S2, where the auxiliary classifier is inserted after the first and second convolutional layers, respectively.
We compare them in both attack and no-attack settings with simple MOON and FedAvg. In Fig-
ure 5(a), both HYDRAFL-S1 and HYDRAFL-S2 outperform other techniques at low heterogeneity
in the absence of an attack but slightly underperform in low heterogeneity when β = 5. Figure 5(b)
shows that both HYDRAFL-S1 and HYDRAFL-S2 achieve higher post-attack accuracy at all het-
erogeneity levels, with HYDRAFL-S2 giving a slightly higher accuracy than HYDRAFL-S1. The
benefit from the contrastive loss reduces as we go shallower, so an optimal balance is necessary.

Impact of distillation coefficients. We examine the impact of distillation coefficients on the
performance of FedNTD and HYDRA-FL. Figure 7 shows the post-attack accuracies with two
different values of the diminishing factor b = 1, 4, resulting in output-layer NTD-loss coefficients of
β = 1 and β = 0.25. Diminishing the coefficient β leads to improved performance, with a significant
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Table 3: MNIST test accuracy with 0.05 heterogeneity for MOON

Methods no attack attack
FedAvg 69.2 59.36
MOON 73.57 55.32

HYDRAFL shallow layer1 76 57.4
HYDRAFL shallow layer2 75.15 57.71

increase in post-attack accuracy for β = 0.25 at high heterogeneity (α = 0.05, 0.1). As demonstrated
in §3, β contributes to attack amplification in FedNTD. Reducing it while performing distillation
at the auxiliary classifier yields the best performance. For example, at α = 0.05, HYDRA-FL
achieves 25.15% accuracy at β = 1, but a much higher accuracy of 28.81% at β = 0.25. Similar
improvements are observed at other heterogeneity levels.

6.4 Additional Results on MNIST at Very High Heterogeneity
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Figure 7: Comparison of performance of
FedNTD-S with different values of β

To demonstrate robustness and generalizability, we con-
ducted more experiments now on MNIST at a much lower
heterogeneity of 0.05. Table 3 shows attack amplification
and the effectiveness of our solution. MOON’s accuracy
drops from 73.57% (no-attack) to 55.32% (attack), show-
ing attack amplification compared to FedAvg. HYDRAFL
achieves higher accuracy than both FedAvg and MOON
in the no-attack setting and higher accuracy than MOON
in the attack setting, reducing attack amplification.

6.5 Thoughts on Data Poisoning

While data poisoning in the context of knowledge distil-
lation (KD) requires a dedicated study, we believe our
solution is broadly applicable as it prevents the flow of poison through the entire model and dilutes
its effect. Consider a simple example: label flipping, a basic data poisoning attack where some labels
in the training dataset are flipped (e.g., changing a bird image’s label to ’airplane’ in CIFAR-10).
Suppose the server model (teacher) is poisoned with this flipped dataset. During the distillation
process, since we are using HYDRAFL, this poisoned distillation information would be diluted at
the final layer. Instead, it will flow through an auxiliary classifier into the early layers of the model,
thereby reducing the impact of the data poisoning attack via label flipping.

7 Conclusion

In this paper, we first identified a critical issue in KD-based FL techniques that aim to tackle
data heterogeneity: in the presence of model poisoning attacks, these techniques help the attacker
amplify its effect, leading to reduced global model performance. We presented empirical evidence
and theoretical reasoning to back this claim. This motivated us to propose HYDRA-FL: a hybrid
knowledge distillation technique for robust and accurate FL technique that aims to tackle both data
heterogeneity and model poisoning, two of the biggest problems in FL. Through extensive evaluation
across three datasets and comparing with baseline techniques, FedNTD and MOON, we showed that
HYDRA-FL achieves superior results.
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Appendix
We provide additional information for our paper, HYDRA-FL: Hybrid Knowledge Distillation for
Robust and Accurate Federated Learning, in the following order:

• Limitations and Future Work (Appendix A)
• Terminology/Techniques (Appendix B
• Adversarial Settings (Appendix C)
• Experimental Setup (Appendix D)
• Additional Results (Appendix E
• Comparison with Standard KD (Appendix F)
• Adaptability to Any KD Algorithm (Appendix G)
• Other Related Works (Appendix H)

A Limitations and Future Work

Federated Learning can have very diverse setups, especially FL in an adversarial setting. We can have
many setup combinations as we can choose between different aggregation rules, attacks, defenses,
datasets, data modalities, data distribution types, data heterogeneity levels, number of clients, etc.
Therefore, evaluating against all combinations of these settings is well beyond the scope of one paper.
Hence, for this paper, we chose only a few combinations of FL settings and tried our best to show that
the problem we identified using two representative FL techniques will also exist in similar techniques.
Similarly, we laid out our solution as a general framework to achieve good performance under high
heterogeneity and model poisoning simultaneously. To show generalizability, we tailored it to our two
representative techniques, but it would be interesting to see how our solution adapts to and performs
with other FL techniques in future works. Also, we have only used unimodal, i.e., image datasets for
our evaluations. This was done to stay consistent with the implementations of the techniques chosen
for our case study, FedNTD and MOON. However, the language modality is becoming popular
now, and multimodal models such as CLIP [39] are being widely used as they achieve superior
performance by combining both image and language modalities. We hope to incorporate language
and multimodal models in our future works.

B Terminology/Techniques

B.1 FedNTD

FedNTD [21] is a KD-based technique that tackles the problem of data heterogeneity in FL. They
first demonstrate that Data Heterogeneity causes local models to forget out-distribution knowledge,
i.e., the data samples not part of the client’s local data. Therefore, to preserve the out-distribution
knowledge, they introduce not-true distillation, which basically modifies the loss function for the
client model’s local objective. FedNTD’s loss function is given by:

L = LCE(yc, y) +
β

b
LKL(ỹc, ỹs) (13)

Here y is the target label, yc is the client model’s output, ỹs and ỹc are the client model’s and the
server model’s not-true logits, respectively.

B.2 MOON

MOON [26] also aims to solve the problem of data heterogeneity in FL. They do so by reducing
the distance between the representation learned by the local model with that of the global model.
MOON’s loss function is given by:

L = LCE(yc, y) +
µ

b
Lcon(zc, zs) (14)

Here y is the target label, yc is the client’s output, zc is the representation from the client’s final layer,
zs is the representation from the server’s final layer, and ys is the server model’s output.
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B.3 Shallow Layer and Shallow Distillation

Shallow layer. in a neural network refers to one of the early layers close to the input, as opposed to
deeper layers that are closer to the output. In the context of a deep learning model, shallow layers
generally capture low-level features, such as edges in images or simple patterns in data, while deeper
layers capture more complex, abstract representations.

Shallow distillation. is a technique used in KD where the knowledge transfer happens at a shallow
layer of the neural network rather than at the final output layer. In traditional KD, the student model
tries to mimic the teacher model’s output at the final layer. In shallow distillation, an additional
distillation loss is applied at one of the shallow layers of the student model. This helps the student
model learn intermediate representations from the teacher, providing a more comprehensive learning
experience. By aligning these intermediate representations, the student model gains a more robust
understanding of the data, leading to better generalization.

Robustness against poisoning. Shallow layers are less affected by adversarial attacks that target the
final output of the model. Applying distillation at a shallow layer reduces the impact of a poisoned
global model because the knowledge transferred is more fundamental and less influenced by the
adversarial manipulations that typically affect the deeper layers.

C Adversarial Settings

Here we present the details of the adversarial settings of our experiments. We explain our threat
model, which attacks we are using and why we are using them, and the defense we are using.

C.1 Threat Model

Goal: Our untargeted poisoning adversary controls m out of N clients to manipulate the global
model to misclassify all the inputs it can during testing. Unless stated otherwise, we assume 20%
malicious clients. Most defense works assume high percentages of malicious clients to demonstrate
that their defenses work even in highly adversarial settings. Hence, although unreasonable in practical
FL settings [41], we follow prior defense works and use 20% malicious clients.

Knowledge: Following most of the defense works, we assume that the adversary knows the robust
AGR that the server uses. As assumed by most works, the adversary knows the server’s AGR. To
test the efficacy of our technique with a strong adversary, we consider the case where the adversary
has access to not only the malicious clients’ data but also the benign clients’ data. This enables us to
determine the upper bound of the efficacy of our technique.

Capabilities: Our adversary is strong enough to directly manipulate model updates of the malicious
clients it controls. While poisoning attacks come in various types and flavors, we restrict ourselves
to only model poisoning attacks. This is because model poisoning attacks are much stronger. It has
been shown in [41] that model poisoning attacks are much stronger because they directly perturb the
local model parameters. In contrast, data poisoning attacks perturb the data, subsequently perturbing
the local and global models upon aggregation. Poisoning attacks can also be classified based on their
error specificity. If the goal is to misclassify certain classes only, then it is a targeted attack and is
often achieved by inserting a backdoor in the model that activates only for certain inputs. On the
other hand, an untargeted attack indiscriminately lowers the accuracy for all inputs.

C.2 Attacks we use in our evaluation

We use two model poisoning attacks for our evaluations. By testing which attack worked well, we
chose the Stat-Opt attack for MOON and the Dyn-Opt attack for FedNTD. Below, we briefly explain
how they work:

• Stat-Opt [11]: gives an untargeted model poisoning framework and tailors it to specific
defenes such as TrMean [48], Median [48], and Krum [6]. The adversary first calculates the
mean of the benign updates, ∇b, and finds the static malicious direction w = −sign(∇b).
It directs the benign average along the calculated direction and scales it with γ to obtain the
final poisoned update, −γw.
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• Dyn-Opt [42]: also gives an untargeted model poisoning framework and tailors it to specific
defenses, similar to Stat-Opt but differs in the dynamic and data-dependent nature of
the perturbation. The attack first computes the mean of benign updates, ∇b, and a data-
dependent direction, w. The final poisoned update is calculated as ∇‘ = ∇b + γw, where
the attack finds the largest γ that can bypass the AGR. They compare their attack with
Stat-Opt and show that the dataset-tailored w and optimization-based scaling factor γ make
their attack much stronger.

C.3 Defense we use in our evaluation

We use the Trimmed Mean defense in our evaluations. Trimmed Mean [48, 45] is a foundational
defense used in advanced AGRs [7, 51, 42]. The server receives model updates from each client, sorts
each input dimension j, discards the m largest and smallest values (where m indicates malicious
clients), and averages the rest.

D Experimental Setup

Models: For MOON, we use a base encoder with two 5× 5 convolutional layers, each followed by
a 2× 2 max pooling layer and two fully connected layers with ReLU activation. The base encoder is
followed by a projection head with an output dimension of 256. For FedNTD, we use a model (similar
to the one in [33]) having two convolutional layers followed by a linear layer and a classification
layer. For FedNTD, we test with different values and settle upon a diminishing factor b = 1 and γ=2.
For MOON, we set β = 0 and set γ = 1. We used PyTorch [37] for our implementation on an 8GB
NVIDIA RTX 3060 Ti GPU. Each run of FedNTD and MOON took about 2-3 hours on our machine.

FL Settings: For FedNTD, we use 100 clients with a sampling ratio of 0.1, i.e., 10 clients are
selected every round. We use momentum SGD with an initial learning rate of 0.1, weight decay of
1× e−5, batch size of 50, and momentum of 0.9. Each run consists of 200 rounds with 5 local epochs.
For MOON, we use 10 clients with a sampling ratio of 1. We use SGD with an initial learning rate
of 0.01, weight decay of 1× e−5, batch size of 64, and momentum of 0.9. Each run consists of 30
rounds with 10 local epochs, sufficient for convergence.

Data Partitioning: We use the widely used Dirichlet [35] distribution to generate the non-IID
partitioning of data between clients. Dirichlet distribution works by sampling pk ∼ DirN (α) and
assigns pk,j proportion of samples of class k to client j. A lower value of α corresponds to a higher
level of heterogeneity since it means that most of the samples of a certain class belong to one client.
Conversely, at a higher value of α, the class samples are more evenly distributed between the clients.
Also, a characteristic of the Dirichlet distribution is that both local dataset size and local per-class
distribution vary across clients.

Datasets: The three datasets we use in our experiments are:

• MNIST [20]: MNIST is a 10-class digit image classification dataset, which contains 70,000
grayscale images of size 28 × 28. We divide all data among FL clients (100 for FedNTD
and 10 for MOON) using the Dirichlet [40] distribution.

• CIFAR10 [18]: CIFAR10 is a 10-class classification task with 60,000 total RGB images,
each of size 32 × 32. Each class has 6000 training images and 1000 testing images. We
divide all the data among 100 clients using the Dirichlet distribution, a popular synthetic
strategy to generate FL datasets.

• CIFAR100 [18]: CIFAR100 is similar to CIFAR10, except that it is a 100-class classifica-
tion task where each class has 600 images of size 32× 32. There are 500 training images
and 100 test images per class. Like other datasets, we also partition this dataset using the
Dirichlet distribution.

E Additional Results

In this section, we present some of the additional results we have obtained.
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Table 4: FedNTD

Dataset MNIST CIFAR10 CIFAR1000.05 0.1 0.3 0.5
Techniques no attack attack no attack attack no attack attack no attack attack no attack attack no attack attack

Fedavg 92.12 74.48 44.69 31.27 54.67 35.67 66.34 42.53 70.57 48.27 26.17 12.92
MOON 93.03 58.09 46.94 21.72 56.95 32.61 68 46.72 71.79 52.51 29.1 13.92

Ours 92.69 76.67 46.92 25.15 57.12 34.25 68.1 47.03 71.22 52.57 28.9 14.33

E.1 FedNTD

For visual symmetry, we did not include the full table in §5, but we had also run our FedNTD
experiments at α = 0.3. We show the full FedNTD results in Table 4. Here, we can see that at
at α = 0.3 too, we achieve superior results FedAvg and FedNTD in both benign and adversarial
conditions.

E.2 MOON

We also ran ablation with MNIST for different shallow layers and diminishing coefficients. We show
the results in Table 5, where we can see that at a lower effective µ (µb ), i.e., higher diminishing factor,
we achieve the best results. A lower µ does give us better no-attack accuracy, but we lose a lot in the
attack scenario.

Method µ no-attack attack
HYDRA-FL s1 1 94.41 68.68
HYDRA-FL s2 1 91.78 68.13
HYDRA-FL s1 0.3 92.03 72.35
HYDRA-FL s2 0.3 92.92 73.55
HYDRA-FL s1 0.1 92.04 76.65
HYDRA-FL s2 0.1 93.93 72.54

Table 5: Comparison of HYDRA-FL for MOON with different distillation coefficients.

F Comparison With Standard KD

Dissimilarities: We elaborate on the dissimilarities first since they relate to the practicality of the
attack amplification phenomenon. The threat model differs when we compare standard KD to KD in
FL. In standard KD, there is only one student and one teacher. An attacker might poison the teacher
with a backdoor trigger that causes misclassification on specific input samples. In the FL case, the
teacher (server) model itself is not directly attacked. Instead, some of the client models are attacked,
which indirectly poisons the global model because it is obtained by aggregating all the client models.
Therefore, in the FL case, the attacker is poisoning some of the student models, which in turn poison
the server model upon aggregation, and then propagates the poison to the non-malicious/benign
clients when they use KD in their local training step.

Similarities: We believe that our mitigation technique, originally designed for FL, can also be
effectively applied in non-FL settings. The premise of our technique, HYDRA-FL, is to reduce the
distillation at the final layer and relegate some of it to a lower layer, thereby reducing the impact
of distillation. To illustrate, imagine the poisoned distillation loss at the final layer as noise being
injected into the model. By adjusting the distillation process (Section 4.1), this noise is relegated
to lower layers through an auxiliary classifier, thereby mitigating the impact of such attacks. This
dilution of adversarial effects can enhance robustness in both FL and non-FL settings. This is an
interesting comment by the reviewer. It can be a potential future direction to rigorously experiment to
find similarities and dissimilarities between KD in non-FL and FL settings.

G Adaptability to any KD Algorithm

Here we explain how HYDRA-FL can be applied to any KD algorithm in general. KD-based FL
techniques align local and server models to reduce deviation caused by data heterogeneity. As
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stated in Section 3, MOON uses model-contrastive learning for alignment, while FedNTD uses
KL-divergence. Thus, any such KD based FL algorithm performs alignment (like tuning an engine).
Its equation is:

L = LCE(yc, y) + ϕLalignment(yc, ys) (15)
Here, Lalignment represents the alignment technique. ϕ represents the strength of this alignment.

In this generic setting, HYDRAFL would be a modification of the above equation. We will diminish
ϕ with ’b’. We add a new loss term that performs this alignment at a shallow layer with an auxiliary
classifier. HYDRAFL’s equation becomes:

L = LCE(yc, y) +
ϕ

b
Lalignment(yc, ys) + ηLalignment(yaux, ys) (16)

H Other Related Works

H.1 Tao et al. [30]

Tao et al. [30] was primarily designed to address model heterogeneity in addition to data heterogeneity.
Hence, they came up with model fusion on the server side using knowledge distillation with auxiliary
data. Briefly, this fusion step involves initializing a student server model by aggregating the client
models of different heterogeneous groups and then using an auxiliary dataset with each group to distill
information into the server model. Our focus is on uncovering issues arising from data heterogeneity,
which makes it difficult for fusion models to determine whether attack amplification is caused by
data or model heterogeneity. However, exploring how model heterogeneity impacts attack success is
an intriguing direction for future research.

H.2 Junyuan et al. [13]

Similarities:

Junyuan et al. [13] is also a mitigation technique against poisoned teachers. They also try to find out
if poison is passed from the teacher to the student through the distillation process. To prevent this
passing of poison, they have designed an anti-backdoor technique. Their technique also works by
suppressing the poison and mitigating the performance degradation caused by bad supervision. They
name these two stages of their defense mechanism as Shuffling Vaccine (SV) and Self-Retrospection
(SR).

Dissimilarities:

However, there are two key differences.

Their technique targets backdoor attacks where a trigger causes performance degradation for a
specific subset of samples. They use a "shuffling vaccine" to detect suspicious samples by shuffling
channels. In contrast, we reduce the impact of poison by scaling down the distillation loss at
the final layer using a diminishing factor. We address model poisoning, which is much stronger
than backdoors since it aims to indiscriminately lower the accuracy of all samples. Therefore, our
intuition is that their technique might not work against untargeted model poisoning as it is explicitly
designed for backdoors. To mitigate performance degradation from a backdoored teacher, they use
self-retrospection by synthesizing potential backdoor knowledge learned and confronting it during
training. Conversely, we mitigate this by directing the distillation loss through an auxiliary classifier
and scaling down the loss at the final classification layer.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: Yes, we have ensured that the main claims in the abstract and introduction
accurately reflect the paper’s contributions and scope.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes] .
Justification: Yes, we have discussed the limitations and future work in Appendix A.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [NA] .

19



Justification: There is no theoretical result in this paper that requires a full set of assumptions
and correct proof.

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental Result Reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: Yes, we have fully disclosed the information needed to reproduce the main
experimental results of the paper. They are written in Section 5 and Appendix D.

Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes] .

Justification: The code is available at https://github.com/momin-ahmad-khan/
HYDRA-FL.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes] .

Justification: We specify the training and test details in Appendix D.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [No] .

Justification: We did not have enough compute resources to completely re-run all the experi-
ments for different seeds and report error bars for different runs. We ran our experiments on
different validation sets to verify that our technique generalizes well and is not overfitting
over one particular data distribution.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.
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• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes] .
Justification: We present these details in Appendix D.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes] .
Justification: Yes, to the best of our knowledge, our paper conforms to the NeurIPS Code of
Ethics in every aspect.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [NA] .
Justification: Or work does not have such a societal impact that requires discussion in the
paper.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
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• If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

• Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA] .

Justification: To the best of our knowledge, our paper poses no such risks. We use publicly
available code and data for our work.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes] .

Justification: We have cited all three datasets; MNIST [20], CIFAR10 [18], and CI-
FAR100 [18]. Their licenses are not mentioned on paperswithcode.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
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• For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

• If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [Yes] .
Justification: The code is available at https://github.com/momin-ahmad-khan/
HYDRA-FL.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA] .
Justification: Our paper does not involve any crowdsourcing experiments nor research with
human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA] .
Justification: Our paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.
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• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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