
Appendix488

We provide additional information for our paper, HYDRA-FL: Hybrid Knowledge Distillation for489

Robust and Accurate Federated Learning, in the following order:490

• Limitations and Future Work (Appendix A)491

• Terminology/Techniques (Appendix B492

• Adversarial Settings (Appendix C)493

• Experimental Setup (Appendix D)494

• Additional Results (Appendix E495

A Limitations and Future Work496

Federated Learning can have very diverse setups, especially FL in an adversarial setting. We can have497

many setup combinations as we can choose between different aggregation rules, attacks, defenses,498

datasets, data modalities, data distribution types, data heterogeneity levels, number of clients, etc.499

Therefore, evaluating against all combinations of these settings is well beyond the scope of one paper.500

Hence, for this paper, we chose only a few combinations of FL settings and tried our best to show that501

the problem we identified using two representative FL techniques will also exist in similar techniques.502

Similarly, we laid out our solution as a general framework to achieve good performance under high503

heterogeneity and model poisoning simultaneously. To show generalizability, we tailored it to our two504

representative techniques, but it would be interesting to see how our solution adapts to and performs505

with other FL techniques in future works. Also, we have only used unimodal, i.e., image datasets for506

our evaluations. This was done to stay consistent with the implementations of the techniques chosen507

for our case study, FedNTD and MOON. However, the language modality is becoming popular508

now, and multimodal models such as CLIP [38] are being widely used as they achieve superior509

performance by combining both image and language modalities. We hope to incorporate language510

and multimodal models in our future works.511

B Terminology/Techniques512

B.1 FedNTD513

FedNTD [20] is a KD-based technique that tackles the problem of data heterogeneity in FL. They514

first demonstrate that Data Heterogeneity causes local models to forget out-distribution knowledge,515

i.e., the data samples not part of the client’s local data. Therefore, to preserve the out-distribution516

knowledge, they introduce not-true distillation, which basically modifies the loss function for the517

client model’s local objective. FedNTD’s loss function is given by:518

L = LCE(yc, y) +
�

b
LKL(ỹc, ỹs) (11)

Here y is the target label, yc is the client model’s output, ỹs and ỹc are the client model’s and the519

server model’s not-true logits, respectively.520

B.2 MOON521

MOON [25] also aims to solve the problem of data heterogeneity in FL. They do so by reducing522

the distance between the representation learned by the local model with that of the global model.523

MOON’s loss function is given by:524

L = LCE(yc, y) +
µ

b
Lcon(zc, zs) (12)

Here y is the target label, yc is the client’s output, zc is the representation from the client’s final layer,525

zs is the representation from the server’s final layer, and ys is the server model’s output.526
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B.3 Shallow Layer and Shallow Distillation527

Shallow layer. in a neural network refers to one of the early layers close to the input, as opposed to528

deeper layers that are closer to the output. In the context of a deep learning model, shallow layers529

generally capture low-level features, such as edges in images or simple patterns in data, while deeper530

layers capture more complex, abstract representations.531

Shallow distillation. is a technique used in KD where the knowledge transfer happens at a shallow532

layer of the neural network rather than at the final output layer. In traditional KD, the student model533

tries to mimic the teacher model’s output at the final layer. In shallow distillation, an additional534

distillation loss is applied at one of the shallow layers of the student model. This helps the student535

model learn intermediate representations from the teacher, providing a more comprehensive learning536

experience. By aligning these intermediate representations, the student model gains a more robust537

understanding of the data, leading to better generalization.538

Robustness against poisoning. Shallow layers are less affected by adversarial attacks that target the539

final output of the model. Applying distillation at a shallow layer reduces the impact of a poisoned540

global model because the knowledge transferred is more fundamental and less influenced by the541

adversarial manipulations that typically affect the deeper layers.542

C Adversarial Settings543

Here we present the details of the adversarial settings of our experiments. We explain our threat544

model, which attacks we are using and why we are using them, and the defense we are using.545

C.1 Threat Model546

Goal: Our untargeted poisoning adversary controls m out of N clients to manipulate the global547

model to misclassify all the inputs it can during testing. Unless stated otherwise, we assume 20%548

malicious clients. Most defense works assume high percentages of malicious clients to demonstrate549

that their defenses work even in highly adversarial settings. Hence, although unreasonable in practical550

FL settings [40], we follow prior defense works and use 20% malicious clients.551

Knowledge: Following most of the defense works, we assume that the adversary knows the robust552

AGR that the server uses. As assumed by most works, the adversary knows the server’s AGR. To553

test the efficacy of our technique with a strong adversary, we consider the case where the adversary554

has access to not only the malicious clients’ data but also the benign clients’ data. This enables us to555

determine the upper bound of the efficacy of our technique.556

Capabilities: Our adversary is strong enough to directly manipulate model updates of the malicious557

clients it controls. While poisoning attacks come in various types and flavors, we restrict ourselves558

to only model poisoning attacks. This is because model poisoning attacks are much stronger. It has559

been shown in [40] that model poisoning attacks are much stronger because they directly perturb the560

local model parameters. In contrast, data poisoning attacks perturb the data, subsequently perturbing561

the local and global models upon aggregation. Poisoning attacks can also be classified based on their562

error specificity. If the goal is to misclassify certain classes only, then it is a targeted attack and is563

often achieved by inserting a backdoor in the model that activates only for certain inputs. On the564

other hand, an untargeted attack indiscriminately lowers the accuracy for all inputs.565

C.2 Attacks we use in our evaluation566

We use two model poisoning attacks for our evaluations. By testing which attack worked well, we567

chose the Stat-Opt attack for MOON and the Dyn-Opt attack for FedNTD. Below, we briefly explain568

how they work:569

• Stat-Opt [11]: gives an untargeted model poisoning framework and tailors it to specific570

defenes such as TrMean [47], Median [47], and Krum [6]. The adversary first calculates the571

mean of the benign updates, rb, and finds the static malicious direction w = �sign(rb).572

It directs the benign average along the calculated direction and scales it with � to obtain the573

final poisoned update, ��w.574

14



• Dyn-Opt [41]: also gives an untargeted model poisoning framework and tailors it to specific575

defenses, similar to Stat-Opt but differs in the dynamic and data-dependent nature of576

the perturbation. The attack first computes the mean of benign updates, rb, and a data-577

dependent direction, w. The final poisoned update is calculated as r‘ = rb + �w, where578

the attack finds the largest � that can bypass the AGR. They compare their attack with579

Stat-Opt and show that the dataset-tailored w and optimization-based scaling factor � make580

their attack much stronger.581

C.3 Defense we use in our evaluation582

We use the Trimmed Mean defense in our evaluations. Trimmed Mean [47, 44] is a foundational583

defense used in advanced AGRs [7, 50, 41]. The server receives model updates from each client, sorts584

each input dimension j, discards the m largest and smallest values (where m indicates malicious585

clients), and averages the rest.586

D Experimental Setup587

Models: For MOON, we use a base encoder with two 5⇥ 5 convolutional layers, each followed by588

a 2⇥ 2 max pooling layer and two fully connected layers with ReLU activation. The base encoder is589

followed by a projection head with an output dimension of 256. For FedNTD, we use a model (similar590

to the one in [32]) having two convolutional layers followed by a linear layer and a classification591

layer. For FedNTD, we test with different values and settle upon a diminishing factor b = 1 and �=2.592

For MOON, we set � = 0 and set � = 1. We used PyTorch [36] for our implementation on an 8GB593

NVIDIA RTX 3060 Ti GPU. Each run of FedNTD and MOON took about 2-3 hours on our machine.594

FL Settings: For FedNTD, we use 100 clients with a sampling ratio of 0.1, i.e., 10 clients are595

selected every round. We use momentum SGD with an initial learning rate of 0.1, weight decay of596

1⇥ e�5, batch size of 50, and momentum of 0.9. Each run consists of 200 rounds with 5 local epochs.597

For MOON, we use 10 clients with a sampling ratio of 1. We use SGD with an initial learning rate598

of 0.01, weight decay of 1⇥ e�5, batch size of 64, and momentum of 0.9. Each run consists of 30599

rounds with 10 local epochs, sufficient for convergence.600

Data Partitioning: We use the widely used Dirichlet [34] distribution to generate the non-IID601

partitioning of data between clients. Dirichlet distribution works by sampling pk ⇠ DirN (↵) and602

assigns pk,j proportion of samples of class k to client j. A lower value of ↵ corresponds to a higher603

level of heterogeneity since it means that most of the samples of a certain class belong to one client.604

Conversely, at a higher value of ↵, the class samples are more evenly distributed between the clients.605

Also, a characteristic of the Dirichlet distribution is that both local dataset size and local per-class606

distribution vary across clients.607

Datasets: The three datasets we use in our experiments are:608

• MNIST [19]: MNIST is a 10-class digit image classification dataset, which contains 70,000609

grayscale images of size 28 ⇥ 28. We divide all data among FL clients (100 for FedNTD610

and 10 for MOON) using the Dirichlet [39] distribution.611

• CIFAR10 [17]: CIFAR10 is a 10-class classification task with 60,000 total RGB images,612

each of size 32 ⇥ 32. Each class has 6000 training images and 1000 testing images. We613

divide all the data among 100 clients using the Dirichlet distribution, a popular synthetic614

strategy to generate FL datasets.615

• CIFAR100 [17]: CIFAR100 is similar to CIFAR10, except that it is a 100-class classifica-616

tion task where each class has 600 images of size 32⇥ 32. There are 500 training images617

and 100 test images per class. Like other datasets, we also partition this dataset using the618

Dirichlet distribution.619

E Additional Results620

In this section, we present some of the additional results we have obtained.621
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Table 3: FedNTD

Dataset MNIST CIFAR10 CIFAR1000.05 0.1 0.3 0.5
Techniques no attack attack no attack attack no attack attack no attack attack no attack attack no attack attack

Fedavg 92.12 74.48 44.69 31.27 54.67 35.67 66.34 42.53 70.57 48.27 26.17 12.92
MOON 93.03 58.09 46.94 21.72 56.95 32.61 68 46.72 71.79 52.51 29.1 13.92

Ours 92.69 76.67 46.92 25.15 57.12 34.25 68.1 47.03 71.22 52.57 28.9 14.33

E.1 FedNTD622

For visual symmetry, we did not include the full table in §5, but we had also run our FedNTD623

experiments at ↵ = 0.3. We show the full FedNTD results in Table 3. Here, we can see that at624

at ↵ = 0.3 too, we achieve superior results FedAvg and FedNTD in both benign and adversarial625

conditions.626

E.2 MOON627

We also ran ablation with MNIST for different shallow layers and diminishing coefficients. We show628

the results in Table 4, where we can see that at a lower µ, i.e., higher diminishing factor, we achieve629

the best results. A lower µ does give us better no-attack accuracy, but we lose a lot in the attack630

scenario.631

Method µ no-attack attack
HYDRA-FL s1 1 94.41 68.68
HYDRA-FL s2 1 91.78 68.13
HYDRA-FL s1 0.3 92.03 72.35
HYDRA-FL s2 0.3 92.92 73.55
HYDRA-FL s1 0.1 92.04 76.65
HYDRA-FL s2 0.1 93.93 72.54

Table 4: Comparison of HYDRA-FL for MOON with different distillation coefficients.
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