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Abstract

While deep learning has revolutionized computer-aided drug discovery, the AI
community has predominantly focused on model innovation and placed less em-
phasis on establishing best benchmarking practices. We posit that without a sound
model evaluation framework, the AI community’s efforts cannot reach their full
potential, thereby slowing the progress and transfer of innovation into real-world
drug discovery. Thus, in this paper, we seek to establish a new gold standard
for small molecule drug discovery benchmarking, WelQrate. Specifically, our
contributions are threefold: WelQrate dataset collection - we introduce a meticu-
lously curated collection of 9 datasets spanning 5 therapeutic target classes. Our
hierarchical curation pipelines, designed by drug discovery experts, go beyond
the primary high-throughput screen by leveraging additional confirmatory and
counter screens along with rigorous domain-driven preprocessing, such as Pan-
Assay Interference Compounds (PAINS) filtering, to ensure the high-quality data
in the datasets; WelQrate Evaluation Framework - we propose a standardized
model evaluation framework considering high-quality datasets, featurization, 3D
conformation generation, evaluation metrics, and data splits, which provides a
reliable benchmarking for drug discovery experts conducting real-world virtual
screening; Benchmarking - we evaluate model performance through various re-
search questions using the WelQrate dataset collection, exploring the effects of
different models, dataset quality, featurization methods, and data splitting strategies
on the results. In summary, we recommend adopting our proposed WelQrate as
the gold standard in small molecule drug discovery benchmarking. The WelQrate
dataset collection, along with the curation codes, and experimental scripts are all
publicly available at WelQrate.org.

1 Introduction

Deep learning has revolutionized the field of drug discovery, providing advanced computational
tools to predict the activity of small molecules against therapeutic targets. However, the focus of
the AI community has primarily been on developing novel models, often putting less emphasis on
establishing robust and standardized benchmarking practices. Ultimately, this disparity can impede
the practical application of AI innovations in drug discovery [1].

∗
Equal contribution. Correspondence to yunchao.liu@vanderbilt.edu. 1Computer Science Dept.,

Vanderbilt University (VU), 2Neural Science Dept., Amherst College, 3Chemistry Dept., VU, 4Computer
Science Dept., University of Oregon, 5Data Science Institute, VU, 6MD Anderson Cancer Center, 7Electrical
and Computer Engineering Dept„ VU, 8Psychology Dept., VU, 9Institute of Chemical Biology, VU, 10Center
for Structural Biology, VU, 11Pharmacology Dept., VU, 12Institute for Drug Discovery, Leipzig University
(LU), 13Computer Science Dept., LU, 14Chemistry Dept., LU.

38th Conference on Neural Information Processing Systems (NeurIPS 2024) Track on Datasets and Benchmarks.

www.WelQrate.org
yunchao.liu@vanderbilt.edu


Typically, High-Throughput Screening (HTS) methods are prevalent for identifying promising
compounds, but they are costly, time-consuming, and limited in their ability to explore the chemical
space [2, 3]. Thus, computer-aided drug discovery seeks to train models on HTS data to offer a
more efficient and scalable computational effort to predict the activity of compounds based on their
structure, which is known as virtual screening. However, in spite of the importance on ensuring
high-quality data for training these models, currently only a few datasets for virtual screening exist,
such as MoleculeNet and Therapeutics Data Commons (TDC), but these datasets often suffer from
issues like inconsistent chemical representations, undefined stereochemistry, and noisy experimental
data. These flaws necessitate a more rigorous approach to dataset curation.

To address these challenges, we propose a new standard, WelQrate, for benchmarking small molecule
drug discovery, the contributions of which are threefold as follow:

• WelQrate Dataset Collection: The WelQrate dataset collection are curated with stringent quality
control measures including hierarchical curation, various filters and domain expert verification.
The final dataset collection covers a diverse range of important theurapeutic target classes.

• WelQrate Evaluation Framework: The WelQrate evaluation framework incorporates critical
aspects including high-quality datasets, featurization, 3D conformation generation, evaluation
metrics, and data splits to provide a reliable basis for model comparison.

• Benchmarking: Examining model performance across several research questions using the
WelQrate dataset collection, investigating how different models, dataset quality, featurization,
and data split impact results.

Our work is driven by the need to ensure that AI models are evaluated on realistic and high-quality
datasets, facilitating the translation of AI innovations into practical drug discovery solutions. The
WelQrate dataset collection, along with detailed curation procedures and experiment scripts, is
publicly available and maintained at WelQrate.org. We advocate for the adoption of our standardized
evaluation practices and well-curated datasets to set a new gold standard in small molecule drug
discovery, to ensure more reliable and realistic evaluations.

2 Related Work

The two most related efforts to establish benchmarks in small molecule drug discovery are:

MoleculeNet [4] is a collection of datasets for tasks essential to drug discovery and material design.
However, MoleculeNet’s datasets often contain errors such as invalid chemical structures, inconsistent
chemical representations, undefined stereochemistry, and poorly defined endpoints [5] and further
discussed in the supplement Sec. 1.1.

Therapeutics Data Commons (TDC) [6] offers a wide range of datasets related to various therapeu-
tic modalities and stages of the drug discovery process. Despite its contributions, TDC faces similar
issues as MoleculeNet, including data quality concerns that affect the robustness of benchmarking
outcomes, which are further discussed in the supplement Sec. 1.1.

To address the limitations of existing benchmarks, we introduce WelQrate, a standardized model
evaluation framework considers critical aspects like dataset quality, featurization, 3D conformation
generation, evaluation metrics and data split, providing a reliable benchmarking platform for real-
world virtual screening. Besides, we introduce WelQrate dataset collection, a meticulously curated set
of 9 datasets spanning 5 therapeutic target classes. Designed by drug discovery experts, WelQrate’s
hierarchical curation pipeline includes primary, confirmatory and counter screens, along with rigorous
domain-driven preprocessing such as PAINS filtering.

3 WelQrate Dataset Collection

WelQrate dataset collection is developed to be of high quality for AI development in three aspects: 1)
realistic data setting; 2) clean and reliable data labels; and 3) standardized data formats, split schemes,
featurization to facilitate a common ground for benchmarking. Details of each aspect are as follows:

First, a real-world HTS campaign not only includes a large number of compounds but also has a low
hit rate, often estimated to be less than 1% [7]. To represent this reality, WelQrate dataset collection
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contains datasets with compound numbers ranging from ∼66K to ∼300K and features realistically
highly imbalanced activity labels to reflect the low hit rate (seen in Tab. 1). Additionally, WelQrate
dataset collection covers a wide range of important therapeutic target classes. For example, G-protein
Coupled Receptor (GPCR) is targeted by approximately 40% of marketed drugs [8].

Fig. 1: An overview of the
data curation pipeline.

Secondly, WelQrate dataset collection employs a rigorous curation
pipeline to ensure high data quality [9]. The initial primary HTS has
a high false positive rate. Therefore, in a real-world HTS campaign, a
series of follow-up screens are carried out to ensure the correctness and
relevance of the data. PubChem [10], a publicly accessible database
of chemical molecules and their activities against biological assays,
stores a vast number of these bioassays (experimental procedures).
For our curation process, we meticulously reviewed the descriptions
of the bioassays stored in PubChem to understand their relationships
and experimental details. Hierarchical curation and various filters are
utilized to ensure the final data is of high quality. See Sec. 3.2 for
details on the curation process.

Thirdly, WelQrate dataset collection provides two standard data for-
mats and three additional data formats. Two standard formats are
Simplified Molecular-Input Line-Entry System (SMILES) [11], and
International Chemical Identifier (InChI) [12]. SMILES is widely
used in the AI community and encodes the structure of a compound as a text sequence. Specifically,
WelQrate dataset collection provides isomeric SMILES that contains stereochemistry information.
Despite SMILES’ popularity, InChI is provided as an alternative for two reasons. First, a single
molecule can have multiple valid SMILES representations, which may vary between different plat-
forms. This lack of uniqueness in representation can lead to inconsistencies. InChI, on the contrary, is
generated by the InChI software to ensure uniqueness. Second, InChI can express more information
than the simpler SMILES [12]. The information in InChI is organized into five layers, and we use the
standard InChI, which has a prefix of “1S/".

The three additional formats are Structure Data File (SDF), 2D Graph, and 3D Graph. The 2D Graph
defines edges based on bond connectivity, while the 3D Graph defines edges based on 3D Euclidean
distance and includes a node attribute containing coordinate information. These additional formats
are provided to facilitate fair benchmarking (See Sec. 4.1). Nevertheless, users still have the flexibility
to generate their own formats as needed from the standard formats. Moreover, WelQrate dataset
collection offers different split schemes, ensuring that it provides a comprehensive and standardized
foundation for model evaluation and benchmarking. More discussion is found in Sec. 4.

3.1 Related Bioassays Identification and Data Retrieval

We elect to follow [13, 9] for bioassay identification, which have the following characteristics.

• Data Relevance: Selected targets are of therapeutic importance. Retrieved bioassays are relevant
to the therapeutic target.

• Data Quality & Reliance: The experiment details described on PubChem are manually inspected
by domain experts to ensure there are validation screens and established protocols and controls.

• Data Consistency: Selected bioassays are of the same unit of measurements (e.g. IC50) from
the same experimental organization for a certain therapeutic target.

We then use the PubChem programmatic service1 to retrieve all bioassays using their PubChem
BioAssays Identifier (AID). The queried AID returns data containing PubChem Compound Identifiers
(CIDs) for the small molecule compounds tested. Although PubChem claims that “For each BioAssay
record, bioactivity data together with chemical structures (in isomeric SMILES format) are available
for download”2, some bioassays include non-isomeric SMILES (e.g., CID 124293). Therefore we
use the PubChem Identifier Exchange Service 2 to retrieve isomeric SMILES from CID We also
retrieve InChI with CID using the same method.

1https://pubchem.ncbi.nlm.nih.gov/docs/bioassays. Accessed in May 2024
2https://pubchem.ncbi.nlm.nih.gov/docs/identifier-exchange-service. Accessed May 2024
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Tab. 1: Statistics of our 9 datasets in WelQrate dataset collection, which has coverage
of various important drug targets, challenging but realistic low active percentages.

Target
Class

BioAssay ID
(AID) Target Compound

Type
Number of

Compounds
Number

of Actives
Percent
Active

Unique
BM Scaffolds

G Protein-Coupled
Receptor (GPCR)

435008∗ Orexin 1 Receptor Antagonist 307,660 176 0.057% 86,108

1798 M1 Muscarinic
Receptor

Allosteric
Agonist 60,706 164 0.270% 30,079

435034 M1 Muscarinic
Receptor

Allosteric
Antagonist 60,359 78 0.129% 39,909

Ion Channel

1843 Potassium Ion
Channel Kir2.1 Inhibitor 288,277 155 0.054% 82,140C

2258 KCNQ2
Potassium Channel Potentiator 289,068 247 0.085% 82,247

463087 Cav3 T-type
Calcium Channel Inhibitor 95,650 652 0.682% 40,066

Transporter 488997∗ Choline
Transporter Inhibitor 288,564 236 0.082% 82,343

Kinase 2689∗ Serine Threonine
Kinase 33 Inhibitor 304,475 120 0.039% 85,314

Enzyme 485290 Tyrosyl-DNA
Phosphodiesterase Inhibitor 281,146 586 0.208% 80,984

* Indicates additional experimental measurements are available for those datasets. See Sec. 4.1 for details.

3.2 Data Processing

The retrieved compound data then undergoes the following processing steps.

• Duplicate Removal. Although the PubChem CID is theoretically a unique identifier for each
compound, we found instances where the same compound had different CIDs (e.g., CID 130564
and CID 5311083). Therefore, we triple-check for duplicates using CID, isomeric SMILES, and
InChI, respectively.

• Hierarchical Curation. In a typical HTS campaign, there are many bioassays, which fall into
three categories. The primary screen is the initial screen for compound activity against a certain
target, reducing the available compound library to a smaller set for further validation of activity.
The activity threshold is typically set loosely to reduce the number of false negatives, resulting
in a high false positive rate at this stage [9]. A confirmatory screen is a follow-up assay that
validates the putative actives identified in the primary screen. A counter screen is set up to
exclude compounds that show activity for an unwanted target, as a potential drug compound
should have specificity for its intended target to reduce the chance of off-target toxicity.
In our curation process, each bioassay undergoes manual inspection of the PubChem description
to determine the relationships between assays and their experimental details. This manual
inspection ensures that the bioassays are accurately linked in a step-by-step manner, forming a
hierarchical structure of curation. Hierarchical curation involves organizing bioassays in levels,
starting from primary screens, followed by confirmatory screens, and finally counter screens.
This method reduces the false positive rate in the datasets by systematically validating and
filtering the compounds through multiple layers of screening. A simple hierarchical curation
example is shown in Fig. 2. All curation hierarchies can be found in the supplement Sec. 1.2.

• Parser Filter. We pass the molecules through RDKit [14] and inspect for any parsing errors.
• Inorganic Substance Filter. PubChem may contain inorganic substances, often present as

counter ions resulting from the synthesis process rather than being part of the active component.
• Handling of Mixtures. The data from PubChem may include mixtures of multiple substances.

We adapt the rules in [15] for handling mixtures: If the mixture is a duplicate of the same
molecule, only one will be kept. If the molecular weight difference in the mixture is less than or
equal to five, the mixture is discarded since it is hard to decide which molecules to keep. The
remaining mixtures go through an inorganic filter and a druglikeness filter (Lipinski’s Rule of
Five is used as the druglikeness filter [16]) to retain only organic, druglike molecules.

• Neutralization. Data from PubChem may contain charged molecules, so we neutralize them
using neutralize-by-atom algorithm [17].

• Aromatization. The original data contains the kekulized form of molecules (i.e., alternating
double and single bonds in the aromatic system). Technically, the bonds should have equal
properties; therefore, we convert the kekulized bonds into aromatic bonds.
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• PAINS Filter. Pan-Assay Interference Compounds (PAINS) [18] tend to react non-specifically
with numerous biological targets rather than specifically affecting one desired target and therefore
need to be filtered out. There are three layers of promiscuity, optical interference, and other
interference patterns. Details can be found in supplement Sec. 1.3.

• Druglikeness Filter. Druglikeness is assessed based on Lipinski’s Rule of Five [16].
• Expert Verification. Although our pipeline is automated, flagged molecules with errors are still

inspected to ensure the quality of our dataset. For instance, CID 409301 was excluded only after
confirming the inconsistency between its InChI (indicating no covalent bonds) and SMILES
(showing the presence of a covalent bond) representations.

3.3 Additional Data Format Generation

Fig. 2: An example of the hierarchical
curation with AID 1798. Initially 63,676
compounds go through a primary screen
(AID 626). The found 1,665 actives fur-
ther go through a confirmatory screen
(AID 1488) to verify their activities, and
those showing activity in a counter screen
(AID 1741) are excluded from the final
active set.

Additional data formats are provided for fair benchmark-
ing. However, researchers are encouraged to generate
their own SDF, 2D, and 3D Graphs, or any file formats
they need from the standard formats. More discussion
can be found in Sec. 4.1 and details are in supplement
Sec. 1.4.

Corina [19, 20, 21] v5.0 is used to generate the SDF
with a low energy 3D conformation. We note that a few
molecules (123.4 on average per dataset) are filtered out
by Corina during the generation of the 3D conforma-
tion, but none of these are active molecules, ensuring
that datasets retain enough active signals. Graphs are de-
signed using PyTorch Geometric [22], with atoms defined
as nodes and 28-dimensional pre-defined node features
(see supplement Sec. 1.4). The 2D Graph uses bond con-
nectivity as edges and includes pre-defined edge attributes
(see supplement Sec. 1.4). The 3D Graph defines edge
existence if two nodes are within a certain 3D Euclidean
distance. Following prior work [23], we use 6 angstroms
as the distance cutoff to minimize the impact of molecular
flexibility. Additionally, the 3D Graph contains pos as a
node attribute to encode 3D coordinates.

4 WelQrate-Evaluation Framework

Currently, researchers in the field use varying methods for featurization, 3D conformation generation,
and train/validation/test splitting. Moreover, existing datasets may not accurately reflect real-world
drug discovery scenarios and often contain experimental artifacts, leading to noisy data. To ensure
fair model comparison, we propose a standardized benchmarking protocol.

4.1 High-Quality Datasets for Fair Benchmarking

As detailed above, WelQrate dataset collection offers not only high-quality data from rigorous curation,
but also additional data formats to facilitate standardized benchmarking. These additional formats
include pre-defined atom and bond feature sets and pre-generated 3D conformations, establishing a
common ground for fair model comparison. For those focused on model design, the standardized
featurization we provide supports a consistent basis for evaluation. Nevertheless, we emphasize
the importance of featurization for advancing the field and we strongly encourage researchers to
innovate and benchmark novel features generated from the standard data formats. Similarly, while 3D
conformations are provided, researchers are welcome to generate their own if relevant to their work.

The WelQrate dataset collection contains compounds labeled as active or inactive; however, some
datasets also include additional experimental measurements that quantify activity values, available
only for active molecules due to bioassay cost constraints. Researchers with drug discovery expertise
could design a regression task to leverage this extra information. Further details on these datasets and
a discussion are provided in the supplement Sec. 1.5.
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Future updates to the WelQrate dataset collection, such as new targets, will be versioned and
maintained at WelQrate.org, and we request that researchers report the version number used to ensure
reproducibility.

4.2 Evaluation Metrics with Realistic Consideration

In the real-world drug discovery campaign, only the top-predicted molecules will be purchased or
synthesized and those predicted to be inactive are of less concern [9]. A traditional evaluation metric
for classification such as Receiver-Operating-Characteristic Area Under the Curve (AUC) is not ideal
in this case, as it evaluates the model’s overall performance for both actives and inactives Instead, we
use four metrics that specifically focus on gauging the model’s ability to correctly rank the active
molecules in a high position in the list. A brief introduction of each metrics is shown below. More
details of metrics can be found in the supplement Sec. 1.6.

• logAUC[0.001,0.1] measures logarithmic area under the receiver-operating-characteristic curve at
false positive rates between [0.001, 0.1] [24, 25]. A perfect classifier gets a logAUC[0.001,0.1] of
1, and a random classifier gets a value of around 0.0215.

• BEDROC ranges from 0 to 1, where a score closer to 1 indicates better performance in recog-
nizing active compounds early in the list [26].

• EF100 measures how well a screening method can increase the proportion of active compounds in
a selection set, compared to a random selection set [27]. Here we select the top 100 compounds
as the selection set.

• DCG100 aims to penalize a true active molecule appearing lower in the selection set by logarith-
mically reducing the relevance value proportional to the predicted rank of the compound within
the top 100 predictions [28].

Researchers are also encouraged to incorporate additional metrics with realistic drug discovery
considerations to strengthen model evaluation further.

4.3 Data Splitting for Robust Evaluations

Fig. 3: Illustration of the
adapted cross-valiation.

We propose two standard dataset split methods for benchmarking:
random and scaffold. Given that dataset splits significantly impact
model performance, we recommend nested cross-validation as the
ideal standard for random splits if resources allow, as it ensures
robust evaluation. However, recognizing computational constraints,
we also suggest an alternative approach that balances the rigor
of nested cross-validation with the efficiency of a single test set,
allowing all data points to serve as test sets at different stages to
maximize robustness and minimize bias.

Traditional cross-validation often tests only a subset of data while tuning hyperparameters on the
rest, leading to partial test coverage. Although nested cross-validation provides thorough testing, it
requires substantial resources due to repeated model training across data splits. To set a practical
standard for large-scale benchmarks, we propose a modified approach where all data is eventually
tested, but we simplify the process by selecting only a single split at the inner level (the fold with the
validation set immediately precedes the test set, Fig. 3). This strategy maintains a comprehensive test
set while limiting the model count to five, enhancing computational efficiency without compromising
robustness. See supplement Sec.2.2 for detailed discussion.

For scaffold splits, we propose a standard that supports scaffold hopping, a core task in drug discovery
to create structurally novel compounds by modifying core structures, enhancing patentability, synthe-
sis routes, and compound properties [29]. We recommend using Bemis-Murcko (BM) scaffolds [30]
and a 3:1:1 training:validation ratio as a standardized benchmark, assigning any scaffold bin with
more than 10% of the total molecules to the training set to ensure scaffold diversity across splits.
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Fig. 4: Categorical performance comparison among different models (RQ1) trained respectively with
WelQrate and Control Dataset (RQ2) (Note that individual model performances are shown in Fig. 6).
Values are averages over performance across different datasets. Error bars denote standard error
across multiple experimental runs and AIDs. For simplicity, WelQrate refers to WelQrate dataset
collection in the legend.

5 Benchmarking

In this section, random split introduced in Sec. 4.3 is used for all experiments except for RQ4, in
which scaffold split is used. All hyperparameters and training details are in the supplement Sec. 3.2
and Sec. 3.3.

5.1 RQ1: How Do Different Models And Data Representation Affect Performance?

We evaluated the performance of different molecular representation learning models on the WelQrate
dataset collection, encompassing three primary categories:

• Sequence-Based: SMILES2Vec [31], TextCNN [32].
• 2D Graph-Based: Graph Convolutional Neural Network (GCN) [33], Graph Isomorphism

Network (GIN) [34], Graph Attention Network (GAT) [35].
• 3D Graph-Based: SchNet [36], DimeNet++ [37], SphereNet [38].

Additionally, we included two baseline models to contrast traditional descriptor-based approaches
with modern deep learning techniques.

• Naive Baseline: Atomic-level Pooling averages the atomic features as molecular representations.
• Domain Baseline: Molecular-level Descriptor, specifically, the BioChemical Library (BCL) [39]

is utilized to extract a domain-driven descriptor set, such as signed 2D and 3D autorcorrela-
tions [23] (with details in the supplement Sec. 3.1).

The orange bars in Fig. 4 illustrate the performance of these models across four realistic metrics. Our
first observation is a trend of increasing model performance with greater model complexity (i.e., from
left to right) across all metrics for the three primary categories and the Naive Baseline. However, an
exception is that the Domain Baseline performs the best except for DCG100 while only utilizing a
basic Multi-Layer Perceptron (MLP) due to the high-quality molecular-descriptors from BCL. The
outperformance of the Domain Baseline model under this benchmarking signifies the further potential
of fostering collaboration between the machine learning community and domain experts.

5.2 RQ2: How Does Dataset Quality Impact Model Evaluation?

To examine the impact of dataset quality on model evaluation, we created a control dataset that
includes only data directly from primary screens, bypassing the rigorous processing steps described
in Section 3.2. This control dataset allows us to assess the significance of our curation pipeline.
To ensure a fair comparison, we maintained identical test sets between the control and WelQrate
dataset collection and only vary the training and validation sets used to train the models and tune the
hyperparameters.

In Fig. 4 we present the performance of models trained on the control (blue) and WelQrate (orange).
The first observation is that for the Naive Baseline and Sequence-Based methods there is a significant
decrease in performance across all four metrics when trained on the control dataset. However, the 2D
and 3D Graph-Based models trained on the control dataset actually outperform in logAUC[0.001,0.1]
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and BEDROC, but perform worse for EF100 and DCG100. We hypothesize this is due to the range of
top selected candidates these metrics use for evaluation and suggest future work to dive deeper to
better understand these differences. As for the Domain Baseline, the models trained on WelQrate
dataset collection better in terms of all metrics. Overall, these findings align with data-centric
AI [40, 41], highlighting the importance of dataset quality in training the model, but also the need for
comprehensive evaluation metrics, as we observe the trends can vary across metrics showcasing the
limitations of only leveraging a single metric.

5.3 RQ3: How Significant Is Featurization in Model Evaluation?

To investigate the impact of featurization on model evaluation, we created a dataset with commonly
used one-hot encoding for atom types and compared it with the pre-generated features in the WelQrate
dataset collection. For simplicity, this experiment is carried out with a small dataset AID 1798.
Specifically, in this experiment, we excluded the Domain Baseline as it inherently cannot be converted
to using one-hot atomic encodings, since it uses molecular-level descriptors. Sequence-based models
were also excluded because they do not utilize atomic features.

Fig. 5: Comparison of model performance using one-hot
encoding and pre-defined features in WelQrate dataset collec-
tion (RQ3). Error bars denote standard error across multiple
experimental runs.

Fig. 5 illustrates the comparison of
model performance using one-hot en-
coding and predefined features. Al-
though we only show one metric for
space considerations, other metrics
exhibit the same trend (and in the
supplementary materials). The re-
sults indicate that models using one-
hot encoding generally underperform
compared to those utilizing prede-
fined features. One strong excep-
tion to this is the Naive Baseline
model where is remains quite stable.
Overall, these results along with the
strong performance of Domain Base-
line (in RQ1) underscore the impor-
tance of advanced featurization tech-
niques (i.e., data-centric AI [40, 42])
to enhance overall model performance.

We advocate for the research community to develop better featurization methods. However, it is
imperative to recognize that innovative model architectures should be benchmarked using the same
featurization (when possible) to ensure fair and accurate comparisons.

5.4 RQ4: How Do Different Models Perform Under Scaffold Splitting?

Fig. 6 shows that all models exhibit decreased performance under the scaffold split scenario, which
aligns with our expectations. Additionally, another interesting finding is that while we observe
a positive correlation between model complexity and performance earlier (i.e., Fig. 4), here the
benefits of more advanced 2D and 3D Graph-Based deep learning models tend to disappear in the
scaffold split scenario compared to random split; we hypothesize this could be related to an overfitting
issue in these complex models. In fact, predicting the activity of molecules with unseen scaffolds
represents a distribution-shift problem and is inherently more challenging for all models. Notably, the
Domain Baseline model, without sophisticated architecture but with domain expert crafted descriptors,
remains robust across all metrics, underscoring the critical importance of domain knowledge and
featurization for scaffold hopping.

These observations highlight the necessity of developing models that can effectively handle the
distribution shift associated with scaffold hopping. Future research should focus on enhancing the
robustness of models to scaffold diversity and improving featurization techniques to better capture
the underlying chemical properties crucial for accurate activity prediction.
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Fig. 6: Comparison of model performance under random and scaffold split (RQ4). Error bars denote
standard error across multiple experimental runs and AIDs.

6 Limitations and Future Directions

Despite the advancements presented in this study, several limitations and future directions remain.
First, given that the WelQrate dataset collection reflects real-world drug discovery scenarios having
a low percentage of active compounds, this yields highly imbalanced datasets that pose challenges
for off-the-shelf deep learning approaches. Thus, we encourage future research dedicated to class-
imbalanced learning on graphs [43]. Additionally, the poor performance of models under scaffold
splitting underscores the need for robust models capable of handling distribution shifts. Expanding
the evaluation framework to include metrics such as ADMET (Absorption, Distribution, Metabolism,
and Excretion) properties [44] could provide a more comprehensive assessment of model efficacy.
Moreover, The current WelQrate version recommends using a standard 3D conformation, assuming
the molecule is at its lowest energy state, generated by Corina. However, many methods, such as
ETKDG used in RDKit [14], can be used to generate conformations. Future versions of WelQrate
could expand beyond standard conformation to likely binding conformations. Future work could also
explore using the datasets for generative tasks and incorporating domain knowledge to design better
models and featurization techniques. Addressing these limitations will further advance AI-driven
drug discovery, leading to more reliable and effective therapeutic solutions.

7 Conclusion

In this study, we introduced WelQrate, a new gold standard for benchmarking in small molecule drug
discovery. Our contributions include rigorous data curation, a standardized evaluation framework, and
extensive benchmarking of existing deep learning architectures. Through expert-designed curation
pipelines, WelQrate dataset collection addresses prevalent issues, such as inconsistent chemical
representations and noisy experimental data, ensuring high-quality labeling of active molecules
crucial for reliable model training and evaluation. Our proposed evaluation framework encompasses
critical aspects such as featurization, 3D structure generation, relevant evaluation metrics, etc.,
providing a reliable basis for model comparison and facilitating accurate and realistic evaluations
in virtual screening tasks. Benchmarking experiments with WelQrate demonstrates how model
performance is influenced by key factors such as model type, dataset quality, featurization, and data
split schemes. By examining these aspects, we highlight the importance of each in achieving robust
and reliable model evaluation, offering insights that can guide future developments in model selection
and benchmarking standards in drug discovery.

The WelQrate dataset collection, along with detailed curation procedures and experiment scripts,
is publicly available and maintained at WelQrate.org. We recommend broader adoption of these
practices to set a new benchmark standard, ensuring more consistent and meaningful advancements
in the field of drug discovery.
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Checklist

1. For all authors...

(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s
contributions and scope? [Yes] The abstract talks about three contributions and they
are detailed in three sections 3-5. Our work is about datasets and evaluation, which fits
into the benchmark and dataset track.

(b) Did you describe the limitations of your work? [Yes] We discuss some limitations
throughout the paper, but also have a dedicated section (i.e., Section 6) for limitations
and future work.

(c) Did you discuss any potential negative societal impacts of your work? [N/A] This
is towards a new evaluation framework for deep learning for small molecule drug
discovery. To our best knowledge, there is no negative societal impacts of this work.

(d) Have you read the ethics review guidelines and ensured that your paper conforms to
them? [Yes] We acknowledge having read the ethics review guidelines and ensuring
our paper conforms to these guidelines.

2. If you are including theoretical results...

(a) Did you state the full set of assumptions of all theoretical results? [N/A] This is towards
a new evaluation framework for deep learning for small molecule drug discovery and
does not provide any theoretical results.

(b) Did you include complete proofs of all theoretical results? [N/A] This is towards a new
evaluation framework for deep learning for small molecule drug discovery that does
not include any proofs.

3. If you ran experiments (e.g. for benchmarks)...

(a) Did you include the code, data, and instructions needed to reproduce the main experi-
mental results (either in the supplemental material or as a URL)? [Yes] It is listed in
the abstract and in WelQrate.org.

(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they
were chosen)? [Yes] All of these can be found in the supplement.

(c) Did you report error bars (e.g., with respect to the random seed after running experi-
ments multiple times)? [Yes] All our figures have error bars or box and whisker plots
going beyond reporting just mean/median performance.

(d) Did you include the total amount of compute and the type of resources used (e.g.,
type of GPUs, internal cluster, or cloud provider)? [Yes] These can be found in the
supplement.

4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...

(a) If your work uses existing assets, did you cite the creators? [Yes] We cite various
toolkit that are used to extract features and process our data, e.g., Rdkit in the Sec. 3.2

(b) Did you mention the license of the assets? [Yes] We list them in the supplement.
(c) Did you include any new assets either in the supplemental material or as a URL? [Yes]

Our datasets, curation codes and experimental codes can be found at WelQrate.org,
which is stated in the abstract.

(d) Did you discuss whether and how consent was obtained from people whose data you’re
using/curating? [Yes] We obtain the data from Pubchem, detailed in 3.1.

(e) Did you discuss whether the data you are using/curating contains personally identifiable
information or offensive content? [N/A] This is towards a new evaluation framework
for deep learning for small molecule drug discovery. There is no personally identifiable
information or offensive content.

5. If you used crowdsourcing or conducted research with human subjects...

(a) Did you include the full text of instructions given to participants and screenshots, if
applicable? [N/A] There is no crowdsourcing or human subjects involved.

(b) Did you describe any potential participant risks, with links to Institutional Review
Board (IRB) approvals, if applicable? [N/A] There is no crowdsourcing or human
subjects involved.

14



(c) Did you include the estimated hourly wage paid to participants and the total amount
spent on participant compensation? [N/A] There is no crowdsourcing or human subjects
involved.
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