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Abstract

Chain-of-Thought (CoT) reasoning has emerged as a promising approach for
enhancing the performance of large language models (LLMs) on complex reasoning
tasks. Recently, a series of studies attempt to explain the mechanisms underlying
CoT, aiming to deepen the understanding of its efficacy. Nevertheless, the existing
research faces two major challenges: (1) a lack of quantitative metrics to assess
CoT capabilities and (2) a dearth of guidance on optimizing CoT performance.
Motivated by this, in this work, we introduce a novel reasoning boundary framework
(RBF) to address these challenges. To solve the lack of quantification, we first define
a reasoning boundary (RB) to quantify the upper-bound of CoT and establish a
combination law for RB, enabling a practical quantitative approach applicable to
various real-world CoT tasks. To address the lack of optimization, we propose three
categories of RBs. We further optimize these categories with combination laws
focused on RB promotion and reasoning path optimization for CoT improvement.
Through extensive experiments on 27 models and 5 tasks, the study validates the
existence and rationality of the proposed framework. Furthermore, it explains the
effectiveness of 10 CoT strategies and guides optimization from two perspectives.
We hope this work can provide a comprehensive understanding of the boundaries
and optimization strategies for reasoning in LLMs. Our code and data are available
at https://github.com/LightChen233/reasoning-boundary.

1 Introduction

In recent years, Large Language Models (LLMs) have demonstrated increasing capabilities and
applications across various tasks [Zhao et al., 2023, Chang et al., 2023, Pan et al., 2023, Qin
et al., 2024a]. Notably, advanced LLMs, such as GPT [Brown et al., 2020, OpenAI, 2022, 2023],
PaLM [Anil et al., 2023] and LlaMa [Touvron et al., 2023a,b, Meta, 2024] series have demonstrated
emergent capabilities, particularly like Chain-of-Thought (CoT) [Nye et al., 2022, Wei et al., 2022].
This methodology enables models to verbalize step-by-step reasoning, thereby enhancing prediction
accuracy by basing decisions on the logical rationale [Wei et al., 2022, Kojima et al., 2022, Hu et al.,
2024, Qin et al., 2023, Zhuang et al., 2023, Chen et al., 2024a].

Recently, some research in the literature has begun to investigate the mechanism of CoT to enhance
the understanding of its operational nature. To this end, Madaan et al. [2023] and Wang et al. [2023a]
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first give a qualitative boundary conclusion through a large number of experiments on the natural
language planning capability: The CoT is limited by the reasoning logic in the context demonstrations.
Bi et al. [2024] investigate these boundaries on the code planning capability, by training LLMs on
CoT samples of varying difficulties. It demonstrates LLMs are unable to learn or effectively manage
tasks that exceed a certain complexity upper-bound. To delve deeper into potential constraints of
CoT, Feng et al. [2024] develop a theoretical framework on the single-step calculation capability,
suggesting that there is an upper-bound of model performance dependent on the length of input in
single-step reasoning processes. Although existing research has made some progress, where the
boundaries of CoT lie and how these boundaries affect the performance of CoT are still unresolved
questions. Specifically, the existing work still faces two major challenges:

• Lacking quantification metrics for CoT: Current research primarily relies on qualitative
assessments of CoT performance, which leads to the absence of quantitative metrics. It hinders
the ability to objectively compare different CoT approaches and establish a definitive upper-bound
for CoT capabilities.

• Lacking optimization guidance for CoT: While current research prioritizes understanding
the mechanisms underlying CoT reasoning, there is a dearth of guidance on optimizing CoT
performance. This gap hinders the transformation of CoT research into actionable strategies for
enhancing model capabilities.

Motivated by this, in this work, we introduce a reasoning boundary framework (RBF) to thoroughly
examine and optimize the boundaries of current LLMs. Specifically, to address the quantification
challenge, we propose a new concept, named reasoning boundary (RB) to quantify the upper-bound
on task-specific reasoning complexity within a model. Furthermore, to explore more practical
scenarios, we present the combination law of RBs to generalize the RB for quantification in more real
and complex scenarios. To address the CoT optimization challenge, we propose and analyze three
reasoning boundary intervals, guiding optimization through improved RB and optimized reasoning
paths based on the combination law, which achieves state-of-the-art performance in our proposed
benchmark. We extensively validate the efficacy of our framework across 27 models and 5 tasks:
arithmetic computing, mathematical reasoning, multi-hop question answering, and multilingual
mathematical reasoning.

Our main contributions are as follows:

• To the best of our knowledge, this is the first work to propose a reasoning boundary framework
(RBF) to quantify the upper-bound of CoT. Furthermore, we establish the combination law of RB
as the weighted harmonic mean of fundamental RBs to address practical CoT tasks.

• To solve the lack of CoT optimization, we define three categories of RBs. Based on the
combination law and the nature of these RBs, we effectively improve the existing CoT strategies
by RB promotion and reasoning path optimization.

• We validate the existence and rationality of our framework on 27 models and 5 CoT tasks. Fur-
thermore, we explain the optimal performance from two optimization perspectives in numerous
CoT strategies. We consider both optimal perspectives and propose a minimum acceptable
reasoning path (MARP) prompting to achieve state-of-the-art performance.

2 Quantification Methodology
2.1 Reasoning Boundary
In order to quantify the capacity for complex reasoning in LLMs, we introduce an upper-bound
concept termed reasoning boundary (RB), which formally defines the degree of ease that an LLM can
handle within a specific reasoning process. In simpler terms, as shown in Figure 1 (a), RB reflects the
limit beyond which a model’s accuracy significantly degrades. Mathematically, RB is defined for a
model m and a task t as the maximum of problem difficulty d at which the model’s accuracy reaches
a predefined threshold K1:

BAcc=K1
(t|m) = sup

d
{d|Acc(t|d,m) ≤ K1}, (1)

where Acc(t|d,m) represents the accuracy of the model’s accuracy on task t with difficulty d.
Difficulty can be measured by factors like the number of reasoning steps or computational complexity.
For brevity, we denote RB as B(t|m) in subsequent sections.
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Figure 1: Overview of the introduced concepts.

Conclusion: The reasoning boundary for a model is defined by its ability to achieve a specific
accuracy for a given task difficulty.

2.2 Combination Law of Reasoning Boundary

In practical scenarios, models often require the integration of multiple capabilities to address a single
task effectively. To quantify how a large language model can be boosted by the cooperation of
multiple capabilities through the CoT mechanism, we introduce the “Combination Law of RB”, giving
a concrete formula of the upper-bound of the CoT. The law estimates the unified reasoning boundary
BAcc=K1

(t1, t2, . . . , tn|m) for n tasks within a model m, which is formulated as:

BAcc=K1
(t1, t2, . . . , tn|m) ≈ 1∑n

i=1
Ni

BAcc=K1
(ti|m)−bi

, (2)

where BAcc=K1
(ti|m) denotes the reasoning boundary of model m for task ti. Ni, and bi are scaling

factors, which are only affected by the related task. As shown in Figure 1 (b), Equation (2) provides a
mathematical formula to estimate the combined RBs from the independent ones, enabling deeper
insights into model behavior for intricate tasks. See Appendix A for detailed mathematical analysis.

Furthermore, the combination law for reasoning boundary demonstrates favorable theoretical prop-
erties, with broad applicability across diverse scenarios and flexibility in accommodating various
boundary segmentation methods. For detailed practical application, please refer to Appendix B.

Conclusion: The combination law of reasoning boundary satisfies the weighted harmonic
average of each basic reasoning boundary.

2.3 Categories of Reasoning Boundary

Furthermore, in order to guide the optimization of CoT and more convenient expression, as shown in
Figure 1 (c), we define the following three categories of RBs based on their empirical accuracy:

Completely Feasible Reasoning Boundary: We define that the part with an accuracy greater
than 90% is a completely feasible reasoning boundary (CFRB = BAcc≥90%(t1, t2, . . . , tn|m)), which
means that LLMs can effectively grasp the performance of this part.

Completely Infeasible Reasoning Boundary: We believe that the part with an accuracy less than
10% is a completely infeasible reasoning boundary (CIRB = BAcc≤10%(t1, t2, . . . , tn|m)), which
means that the model can never effectively grasp the performance of this part.

Partially Feasible Reasoning Boundary: We define the RB in the rest part except CFRB and CIRB as
a partially feasible reasoning boundary (PFRB = B10%<Acc<90%(t1, t2, . . . , tn|m)), which requires
the model to repeat thinking or more clear information to solve the problem.
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Figure 2: Existence Verification for Reasoning Boundary. Figures (b, c) present evaluations performed
on BigGSM, where the reasoning paths are manually analyzed to identify the specific steps at which
errors occur, without considering whether the final conclusions are correct.

We analyze the nature of these three categories of RB in detail (in Section 4.3), and further utilize
the combination law to optimize these three reasoning boundaries (in Section 5), so as to provide
effective suggestions and guidance to support future CoT optimization.

3 Experimental Setup
Benchmark Settings To assess the reasoning boundaries of LLMs, we require a dataset rich in RB.
This necessitates tasks with evenly distributed complexities and reasoning steps that challenge the
models’ upper-bounds. To meet these requirements, we introduce BIGGSM, a new dataset offering
greater calculation complexity and longer reasoning chains. The detailed construction process for
BIGGSM is provided in Appendix C.

Model Settings Except for model expansion experiments, all experiments are conducted on GPT-
3.5-Turbo. Following the setting of Wei et al. [2022], in our CoT experiment, all multi-step reasoning
tasks utilize three manually constructed demonstrations. In addition, for all the experiments, top-p is
selected from {0.95, 1}. Temperature is selected from [0, 1] and serves as the main error variable.

4 Empirical Analysis of Reasoning Boundary

4.1 Existence Verification for Reasoning Boundary

In this study, we investigate the hypothesis that an LLM exhibits varying levels of reasoning boundary
across various tasks. To this end, we will verify whether the model has widespread reasoning
boundary in various tasks in the following three tasks:

Basic Arithmetic Calculation First, to investigate the existence of RB, we first examine basic
arithmetic operations (including addition, subtraction, multiplication, and division). As illustrated in
Figure 2 (a), the results reveal significant performance variations across three distinct regions. For
multiplication, accuracy surpasses 90% for results up to 2.2e5. Conversely, accuracy falls below 10%
for products exceeding 2e6. Similar presences of varying RBs are observed for other operations,
which verifies the existence of reasoning boundary in basic arithmetic calculation tasks. Further
results and implementation details are provided in Appendix D.

Nature Language Planning We further investigate RB in natural language planning tasks for
mathematical reasoning. We prompt the model to generate plans and assess their accuracy through
manual evaluation. There is a strong correlation between the number of reasoning steps and LLMs’
performance in Figure 2 (b). When the model meets the question with fewer than 2 reasoning steps,
accuracy surpasses 90%. Conversely, when reasoning steps exceed 4, accuracy falls below 10%. This
finding suggests that there are also three different RB categories in natural language planning tasks.

Code Planning For further extensive exploration, we further prompt LLMs by PAL [Gao et al.,
2023] to generate code-format plans and evaluate them by manual annotation. As shown in Figure 2
(c), the code planning task is similar to natural language planning, which is also an obvious division
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Figure 3: Combination law verification of RB on different tasks. More verification results on other
tasks are shown in Figure 12.

and different categories of RBs. Notably, since code planning utilizes code for clearer logic and
reduced expression complexity, its planning accuracy surpasses that of natural language planning.

4.2 Combination Law Verification on Different Tasks

Combination Law in Complex Arithmetic Calculation Building on the proof of Equation (13),
we hypothesize that the combination law for RB in the complex arithmetic calculation is the harmonic
average of the arithmetic calculation RB and calculation planning RB. To verify this, we designed
an experiment focusing on formulas containing addition, subtraction, and multiplication, like “(1 +
2) ∗ 3− 4”. Since addition and subtraction complexities are assumed to be around 1e15 (as shown in
Figure 13), the arithmetic calculation RB primarily depends on the multiplication RB and calculation
planning RB. Therefore, as shown in Figure 3 (a), there are two obvious RB lines, namely BAcc=90%

and BAcc=10%, which are completely consistent with the combination law of these basic RB based
on the Equation (2). Besides, these two lines also clearly divide the RBs into three categories.

Combination Law in Mathematical Reasoning Inspired by Tan [2023b], Xiao and Liu [2024],
we posit that the natural language mathematical CoT task is determined by two sub-tasks: step
planning task and step calculation task for global logic planning and local mathematical calculation.
Furthermore, each model output step requires a single basic operation, resulting in a step calculation
boundary close to the maximum number of multiplications, denoted by B(c) ≈ B(m). Formally,
with step planning RB denoted by (B(p)) and the step calculation RB by (B(c)), then the combined
RB satisfies the following law:

BCoT(c, p) =
1

N1

(B(c)−b1)
+ N2

(B(p)−b2)

. (3)

As illustrated in Figure 3 (b), the actual performance distribution of RB (including BAcc=90%
and BAcc=10%) in natural language mathematical reasoning task fully aligns with the proposed
combination law in Equation (3). Additionally, there are also obviously three RBs in Figure 3 (b).

Combination Law in Multi-hop Reasoning Beyond the realm of mathematics, we further extend
our exploration of the combination law to the field of multi-hop question answering. Specifically,
we validate our law on HotpotQA [Yang et al., 2018], where we define the reasoning boundary as
the combination of global hop-planning RB and local knowledge entity reasoning RB. As shown
in Figure 3 (c), BAcc=90% and BAcc=10% also satisfy the weighted harmonic mean of these two
sub-reasoning boundaries. It is also proved that, in addition to math-related tasks, multi-hop question
answering also satisfies our proposed combined law and also exhibits three distinct RBs. We will
describe in detail how to calculate the combination law on multi-hop reasoning in Appendix E.

4.3 Nature Analysis for different Reasoning Boundary
According to the definition of different RBs, we have divided the problem into three parts for LLMs.
In this section, we will verify whether the defined RB adheres to the intrinsic nature of the model
itself. We will discuss the natures of these RBs in detail:

CFRB means complete mastery of the model even without demonstration. According to the
definition, we assume that a question within CFRB implies a comprehensive understanding of the
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CIRB are special value points obtained by calculation methods similar to 25000× 1000. In fact, no
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associated issue for a certain LLM. To verify this, following Zhang et al. [2022] and Wei et al. [2022],
we formulate a mathematical request and generate chain-of-thought rationale and answer through
zero-shot prompting without any demonstration. As shown in Figure 4 (a), it still achieves 29.2%
improvement in CFRB on generating the correct rationale compared to other RBs. This also proves
that the model can indeed master tasks well on the questions in CFRB.

PFRB means moderate confidence in its solution and needs consensus building process. To
gauge the level of performance and confidence, we draw parallels to human decision-making, where
moderate confidence often necessitates multiple times of consensus building. Inspired by this, we
investigate it on Self-Consistency [Wang et al., 2022], which integrates results from various
reasoning answers to reach a conclusive answer. Figure 4 (b) demonstrates that as the integration of
reasoning paths increases, the accuracy improves significantly within PFRB compared with other RBs.
This suggests that within PFRB, the LLM exhibits moderate confidence in solving problems, which
needs multiple consensus building.

CIRB exhibits poor reasoning performance even with consensus building. As illustrated in
Figure 4 (a), questions in CIRB display extremely low accuracy (around 9.5%). And the model shows
consistently poor performance and no improvement on Self-consistency in this boundary in
Figure 4. It signifies that the model exhibits poor reasoning performance.

LLM has self-awareness of its own RBs. In parallel, a natural question arises: Is the model capable
of discerning its inherent RBs? To investigate this, we employ the Synthetic-CoT [Shao et al.,
2023] to prompt LLM to generate CoT data. As depicted in Figure 4 (c), the results demonstrated
that there are over 65% of generated samples within CFRB, which achieves a much higher percentage
and performance than other RBs. This suggests that LLMs possess an intrinsic understanding of their
RBs and constraints to generate the task they grasp, indicative of a potential for self-assessment.

Takeaways: (1) Reasoning boundary (RB) and the combination law of RB are both widespread
across a series of tasks. (2) Different categories of RB can reflect the corresponding performance,
and the model can also have a self-understanding of its own RB.

5 RB-based CoT Optimization

5.1 How can we improve CoT by optimizing RB?

Based on our framework, the reasoning boundary limits the performance of the model. The simplest
approach to improve CoT is to optimize the step calculation RB B(c) to promote the value of
RB. Specifically, Tool-Usage [Paranjape et al., 2023] and Program-of-Thought (PoT) [Chen et al.,
2024b] have shown significant success in CoT optimization. We explain the rationale behind their
effectiveness, why PoT consistently outperforms direct Tool Usage [Yao et al., 2023, Chen et al.,
2023], and take them as examples to demonstrate how to improve CoT by promoting RB.
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Model BIGGSM

Acc. (↑) Input Token (↓) Output Token (↓)

CoT 57.00 ±0.93 780.43 96.76 ±3.22

RB-Optimized Methods

Tool Usage 71.64 ±0.66 688.43 129.53 ±3.82

PoT 78.25 ±1.09 657.43 78.25 ±1.09

Reasoning-Path-Optimized Methods

Least-to-most 58.25 ±3.28 679.59 176.09 ±15.22

Complex-CoT 59.78 ±0.60 1111.43 131.82 ±1.91

CoT+MARP 64.37 ±2.24 614.43 95.12 ±0.77

PoT+MARP 80.55 ±2.40 576.43 76.34 ±2.84

Table 1: Main experimental results on GPT-3.5-Turbo.
Results on different benchmarks are shown in Table 2.
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Tool Usage can boost the value of RB for an LLM. When the model uses tools [Paranjape et al.,
2023], we can simply think that the model can perform calculations with infinite precision, so that the
RB of mathematical calculations tends to infinity, viz B(c) → +∞. It is obvious that the combined
RB of the model can be calculated as:

BTool(c, p) = lim
B(c)→+∞

1
N1

(B(c)−b1)
+ N2

(B(p)−b2)

=
B(p)− b2

N2
. (4)

Easy to get, BTool(c, p) > BCoT(c, p), this shows that Tool Usage can improve the boundary of
reasoning. This explains why Tool Usage can have better performance than vanilla CoT (as shown in
Table 1). Furthermore, as shown in Figure 5, the distribution of theoretical RB and the actual one
almost perfectly coincide. This also demonstrates the reliability and applicability of our theory.

Program-of-Thought can further enhance the value of LLM’s RB. Equation (4) reveals that an
LLM’s RB hinges entirely on its planning capability. Since natural language can be verbose, it hinders
the planning capability of LLM [Gao et al., 2023, Hu et al., 2023, Puerto et al., 2024, Chen et al.,
2024b]. PoT [Chen et al., 2023] offers a clearer representation of logic using code, allowing for clearer
planning (as shown in Figure 2 (b, c)). This leads to finer-grained planning reasoning B∗(p) > B(p).
Then the PoT reasoning boundary BPoT(c, p) > BTool(c, p), aligning with the observed performance
gains of PoT over Tool Usage (see Table 1). Furthermore, Figure 5 visually demonstrates that PoT’s
theoretical and practical reasoning boundaries consistently outperform Tool Usage. This reinforces
the theoretical advantage of PoT and its empirical effectiveness.

5.2 How can we improve CoT based on a certain RB?

Enhancing RB is crucial for optimizing CoT, but requires changes to the model or its reasoning
architecture to be effective. Therefore, we need to consider how to optimize the reasoning path so
that the difficulty satisfies the RB (d∗ = BAcc=K1

) instead of the original RB (d = BAcc=K2
), where

K2 < K1. According to Equation (3), B is affected by both arithmetical RB and planning RB. Given
B, we consider optimizing reasoning ability from the following two strategies as examples 2:

Complex CoT (CCoT): By increasing the boundary of planning to reduce the pressure of single-step
calculation, reduce the arithmetical RB, and then get smaller d; However, it introduces more planning
steps, which adds the planning pressure. As shown in Figure 6, the model performance first increases
and then decreases with the increasing number of CCoT steps.

Least-to-Most (LtM): By dividing multiple sub-questions to reduce the pressure of local planning
within a sub-question, reduce the boundary of local planning, and then get smaller d. However,
even though it can release local planning pressure (as demonstrated in Figure 7), this approach
simultaneously intensifies global planning pressure by generating an excessive number of sub-
questions (as depicted in Figure 15).

Limitation: (1) CCoT needs to keep balance in the number of reasoning steps and calculation
pressure. (2) Although the pressure of local planning has been reduced, LtM has not effectively
reduced the pressure of global planning, nor the pressure of optimization calculations.

2See detailed analysis for these two strategies in Appendix F.
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Minimum acceptable reasoning paths prompting can further achieve better CoT within a spe-
cific RB. To address the aforementioned two issues, we proposed Minimum Acceptable Reasoning
Paths (MARP). Our first objective is to alleviate the computational burden of the model. We achieve
this by introducing instructions that set an upper limit on its single-step computational capacity,
thereby optimizing the boundary of its computational reasoning. Secondly, we aim to enhance the
model’s acceptability. Within the calculation and planning boundary, we increase the amount of
computation performed in each step in demonstrations as much as possible while simultaneously
reducing the number of global planning steps, which effectively mitigates planning pressure. As
shown in Table 1, MARP demonstrably improves model performance and effectively reduces the
token consumption. By maximizing operations per step, MARP leads to a more streamlined and
efficient problem-solving process. Detailed descriptions of this strategy are shown in Appendix G.3.

Takeaways: (1) Tool-Usage and PoT can be utilized to optimize CoT by the calculation and
planning reasoning boundary optimization. (2) MARP can well lessen planning and calcula-
tion pressure by problem optimization in certain RB (3) Users can effectively optimize CoT
performance by optimizing the reasoning boundary and the problem.

6 Expansion Verification & Exploration
RB can be extended to various models. To extend our mechanism’s applicability, we verify
the mechanism on 25 diverse models (details in Table 3). As shown in Figure 8 (a), we observe a
positive correlation between reasoning boundary and model accuracy on mathematical benchmarks.
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benchmarks. See Appendix H for more empirical details.
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Figure 10: Different boundaries on MGSM.

Moreover, the models that use mathematical data such as MathInstruct for SFT, often have interesting
outliers that are different from the general LLMs’ area, but they also satisfy a positive correlation with
our RBs (as shown in Figure 8 (b)), which helps determine if the model underwent mathematically
targeted training.

However, as shown in Figure 8 (c), we find some interesting phenomena. For example, the main
difference between the current open-source model and the closed-source model is still CFRB. Except
for the closed source model, the CFRB of all models is 0. It shows the potential and the direction of
the model optimization. Furthermore, a scaling law of RB can also emerge (as shown in Figure 9):
reasoning boundary increased with model parameter count and data quality.

RB can be extended to more tasks. To assess the RB in more tasks, we evaluate them on a
multilingual mathematical reasoning task. Inspired by Qin et al. [2024b], we hypothesize that
multilingual RB, assessed through direct answer accuracy across different languages, mathematical
computation RB, represented by the maximum product result, and reasoning planning RB, indicated
by the planning steps, are orthogonal dimensions of performance. We propose that these RBs can be
effectively combined using a weighted harmonic mean. As illustrated in Figure 10 confirms that the
combined RB maintains the expected three different RBs. Detailed implementation description is
shown in Appendix I.

7 Related Work

In this section, we review recent literature related to Chain-of-Thought (CoT) prompting, focusing on
theoretical and empirical investigations. Madaan et al. [2023], Wang et al. [2023a], Saparov and He
[2023], He-Yueya et al. [2023], Zhang et al. [2024], Wang et al. [2024] and Prystawski et al. [2024]
qualitatively show that the LLMs learn the reasoning chain based on the demonstrations in the context.
Besides, Lampinen et al. [2022] and Tan [2023a] find a causal link between generated intermediate
steps and the final answers during a series of qualitative experiments. Wang et al. [2023c], Hanna et al.
[2024] and Dutta et al. [2024] study neural substructure within the LLMs, embodying CoT reasoning
from a white-box mechanism perspective, demonstrating that LLMs deploy multiple parallel answer
generation paths internally.

Recently, a large amount of work has demonstrated the upper-bounds and limitations of LLM in
various CoT tasks [Qin et al., 2023, Imani et al., 2023, Huang et al., 2024, Sprague et al., 2024]. Bi
et al. [2024] investigate these bounds on planning capability in code generation by training LLM
on CoT samples of varying difficulties. Their findings suggest that LLMs have a limited capacity
to learn or manage tasks exceeding a certain complexity threshold. Further understanding of the
CoT upper-bound, Merrill and Sabharwal [2023], Li et al. [2023] and Feng et al. [2024] analyze
single-step arithmetic capability, which suggests an upper bound on model performance related to
input length in single-step reasoning processes.

Despite advancements in CoT explanation for LLMs, significant challenges remain, including the
absence of quantifiable metrics for CoT’s upper-bounds and the deficiency in optimization guidelines.
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Figure 11: Combination law verification of reasoning boundaries on GPT-series models.

To tackle this, we propose a reasoning boundaries framework (RBF) to systematically quantify
and optimize various CoT approaches. This framework offers a transferable and user-friendly
methodology to enhance model performance from a mechanistic perspective. We anticipate that it
will furnish systematic insights for ongoing research and inform future developments in the field.

8 Discussion
Discussion on the Boundaries Improvements Furthermore, in order to better understand the best
existing LLMs, we utilize RBF to test the current most advanced GPT-series models. As shown in
Figure 11, all reasoning boundaries improve a lot compared to the last version which also achieves
performance enhancement. Notably, the CFRB increases slightly compared with the improvement of
CIRB between GPT-3.5 and GPT-4o. But o1 significantly improves the CFRB. Furthermore, as shown
in Figure 14 in Appendix, o1 shows extremely significant improvements on CFRB, which is almost
three times of other models. We attribute it to the fact that the advanced Reinforce-Learning and
Inference Scaling strategies play a key role in improving this part of the ability compared with the
normal improvements in CFRB, which might trigger more in-depth research.

Broader impacts. Our framework is the first work to quantify the reasoning upper-bound of LLMs.
This enables the explanation for a huge part of the valid CoT framework. We hope that our work can
provide new insights and more systematic guidance for future interpretability analysis of CoT. For
social impact, this work may have a certain impact on the controllable and explainable AGI.

Limitations & Future. Due to the cost and time constraints, this work does not discuss the
complex relationships such as causal conditions among the basic RBs. In addition, evaluating the
robustness and applicability of CoT reasoning boundaries-related techniques in dynamic scenarios
will be crucial for future research.

9 Conclusion
This study introduces a novel reasoning boundaries framework (RBF) to quantify and optimize the
limitations of LLMs in CoT tasks. Specifically, we propose the concept of reasoning boundaries
(RBs) and the combination law of RBs in more complex scenarios for quantitative metrics. We
further introduce three categories of RB for CoT optimizations. The framework is validated through
extensive experiments across 27 models and 5 tasks. Furthermore, we improve the CoT in both RB
and question optimization perspectives to achieve state-of-the-art performance in BIGGSM. We
hope that this framework paves the way for further research on understanding and enhancing LLMs’
reasoning capabilities.
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Appendix

A Mathematical Analysis & Proof

A.1 Definitions & Assumptions

In order to further quantify and analyze the combination law of RB, we will define the concept of
difficulties for different tasks:

Definition 1 The difficulty of solving a certain problem during model reasoning is an independent
constant.

That is, the difficulty D(t1, t2) satisfies:

D(t1, t2|m) = D(t1|m) +D(t2|m) = K1 +K2, (5)

where, K1,K2 denotes the relevant constants. Therefore, the combined difficulty formally satisfies:

D(t1, t2, . . . , tn|m) = D(t1, t2, . . . , ti−1, ti+1, . . . , tn|m) +D(ti|m) =
∑
i

D(ti|m) (6)

Definition 2 The RB is defined as the reciprocal of the difficulty of solving the problem. The greater
the difficulty of solving the problem, the lower the RB and the smaller the feasible area.

Therefore, the combination law of RB satisfies:

B(t1, t2, . . . , tn|m) ∝ 1

D(t1, t2, . . . , tn|m)
(7)

Definition 3 If all basic RBs are infinite, it means that all the difficulties approach to the zero and
the model is omnipotent. Therefore, the combined RB is also infinite.

Formally, the combination law satisfies that:

B(+∞,+∞, . . . ,+∞|m) = +∞ (8)

Assumption 4 The combination law function is continuously differentiable everywhere.

Assumption 5 All basic reasoning boundary for combined reasoning boundary are mutually inde-
pendent.

A.2 The Proof of Combination Law

Based on the above definitions and assumptions, we need to prove that the combination law is a
combined RB and is the weighted harmonic average of two basic RBs.

Proof. Following Equation (7), we can get the D(x1, x2, . . . , xn|m) as:

D(x1, x2, . . . , xn|m) =

n∑
i=1

D(0, . . . , xi, . . . , 0|m). (9)

According to the Taylor expansion formula, we expand this formula at xi → ki, we can get:

D(x1, x2, . . . , xn|m) =

n∑
i=1

+∞∑
j=1

Nij(xi − ki)
j (10)

=
n∑

i=1

Ni1(xi − ki) +O(xi) (11)

≈
n∑

i=1

Ni1(xi − ki), (12)
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where Ni1 = ∂D(x1,x2,...,xn|m)
∂xi

. We set ti = 1
xi

+ bi and 1
B(t1,t2,...,tn|m) ∝ D(x1, x2, . . . , xn|m).

Then the original formula is expressed as:

B(t1, t2, . . . , tn|m) ≈ N0∑n
i=1

Ni1

ti−bi
− ki

+ k0 =
1∑n

i=1
N

′
i1

ti−bi
− k

′
i

+ k0, (13)

where ti represents the specific task measurement value, and N0 and k0 denote the linear parameters.
Given the minimal change in the derivative within the observable range, N

′

i1 = Ni1

N0
is treated as

a constant Ni in this task for simplicity. Experimental results show that, if sub-RBs are separated
independently, k

′

i =
ki

N0
and k0 is typically 0. Since ti cannot be directly quantified, we use basic

form of B(ti|m) as its quantized substitute, thus simplifying the combination law as:

B(t1, t2, . . . , tn|m) ≈ 1∑n
i=1

Ni

B(ti|m)−bi

. (14)

A.3 Calculation of RB in Practical Process
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Figure 1: Comparison of different reasoning granularities of GPT3.5 (right) and GPT4o (left).

Figure 2: Extended verification of Combination 
Law on Medical Knowledge Probing tasks.
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Figure 12: Extended verification of
combination law on Medical Knowl-
edge Probing [Cheng et al., 2024]
tasks.

To determine the constants, we first fit parameters to a model
using a development dataset (or 20% of the test dataset if the
development dataset is not available). This fitting process
yields the corresponding constants. For a given task and
prompt strategy, these constants remain fixed. Additionally,
once the combination law constants are established, differ-
ent reasoning boundaries are determined through a binary
search on performance in a standard setting (3-shot CoT).
For instance, we use binary search to identify a reasoning
boundary that ensures the accuracy of all problems below
that boundary approaches 90%, achieving BAcc=90%. For
one model, one task, and one prompt type, the reasoning
boundary remains fixed. Zero-shot and few-shot settings
share the same set of reasoning boundaries.

B The Application Tutorial of Reasoning Boundary

From a practical standpoint, our mechanism framework exhibits universal adaptability, making it
suitable for application in a wide range of scenarios. When confronted with a new problem context,
the framework enables a systematic approach to problem-solving. A key feature of the framework is
its reliance on the weighted harmonic mean, which imparts advantageous mathematical properties
to its structure. Specifically, the framework operates effectively if the reasoning process can be
segmented into relatively independent boundaries. This segmentation allows the framework to be
fully leveraged in addressing diverse problems.

Reasoning Boundary Application. In the case of a vertical domain problem based on CoT
reasoning, the process can be divided into two key boundary levels: task planning and domain-
specific reasoning. These can be modeled as follows:

B =
1

1
Bp

+ 1
Bv

+ k1
, (15)

where: Bp represents the task planning boundary, Bv represents the vertical domain boundary, and k1
is a constant reflecting the degree of boundary independence.

Reasoning Boundary Definition & Segmentation. Neglecting any of these boundaries only results
in an increase in k, but keeping the overall efficiency of the framework. If the reasoning boundary is
well-defined and independent, the value of k approaches zero, showcasing the effectiveness of our
mechanism framework.

Further Reasoning Boundary Segmentation. Further refinement of the vertical domain boundary,
Bv, into Bv1 and Bv2 is straightforward. No additional complexity is introduced, as the following
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relationship holds:

Bv =
1

1
Bv1

+ 1
Bv2

+ k2
. (16)

Thus, the overall boundary equation can be extended to:

B =
1

1
Bp

+ 1
Bv1

+ 1
Bv2

+ k1 + k2
. (17)

This formulation allows for flexible and systematic boundary division at multiple levels, enhancing
the framework’s practical utility across various problem domains.

Challenging Reasoning Boundary Measurement. In addition, we propose an alternative method
to measure the reasoning boundaries. This approach allows the model to provide direct answers
without relying on CoT reasoning steps. By doing so, the model’s reasoning process for a specific
task depends solely on a single reasoning boundary, which can be represented as follows:

B =
1

1
B1

+ k1
. (18)

For instance, in the MGSM task, assessing multilingual reasoning boundary is particularly challenging.
To address this, we directly evaluate the model’s performance using a direct prompting strategy
without CoT outputs and use this performance to define the multilingual reasoning boundary, which in
turn helps determine the corresponding normalization constant. Subsequently, we apply multilingual
CoT reasoning to the MGSM task to calculate the combined boundary using the framework’s
combination law. This approach provides a more generalized solution and may be more adaptable to
specific needs.

C Details of Dataset

C.1 Dataset Construction

To adequately assess the reasoning boundary of LLMs, it is essential to develop a dataset that
encompasses a range of complexities and reasoning boundaries. To address these challenges, we
propose a novel approach to constructing a mathematical reasoning dataset using manual synthesis
and annotation which finally leads to the BIGGSM benchmark. Specifically, our proposed method
involves the manual synthesis and annotation of a mathematical reasoning dataset. The construction
process includes the following steps:

Step 1: Domain Template Generation Initially, we employ a prompt-driven LLM (GPT-4) to
generate complex scenarios necessitating multi-step calculations. This process also yields initial
example templates. Specifically, the prompt given to the large model is as follows:

Generate a scenario-related template involving multiple mathematical steps to solve a real-
world problem. Ensure the scenario requires the application of different mathematical concepts.
Please use "[VAR]" as a variable to mark the template of the question.

Step 2: Natural Language Template Creation Recognizing that LLMs can produce errors
and logical inconsistencies, we refine these initial templates to improve their accuracy and add
mathematical calculations. To facilitate the generation of extended sequences, we decompose the
templates into smaller, loopable segments that incrementally meet the multi-step reasoning demands.

Step 3: Domain Template Augmentation To address the limited diversity in individual samples
and provide a broader evaluation of LLMs’ mathematical abilities, we use an LLM (GPT-4) to
generate at least three alternative augmented templates for each original template and step. The
generation prompt we use is as follows:

Create three alternative versions of the following template that introduce different complexities
or variables, ensuring each version demands an equivalent level of reasoning.
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Figure 13: Existence verification for reasoning boundaries on basic arithmetic calculation tasks,
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Step 4: Numeric Filling Once all templates are prepared, we aim to test the upper-bound of the
LLMs’ computational reasoning boundary by introducing numerical values ranging from 1 to 1e5 in
multiplication tasks. This step is designed to thoroughly assess the models’ performance across a
spectrum of numerical challenges.

Step 5: Manual Annotation To ensure the quality and logical coherence of our synthetic samples,
we manually review them to correct any errors introduced during the automated generation process.
Finally, we hired three experts to mark whether the samples in the data set were correct. Only for
those samples where more than two experts agreed did we retain the corresponding samples. The
Cohen’s kappa value marked by the experts was 0.97, which indicates the perfect agreement.

C.2 Dataset Analysis

Our dataset comprises 610 test samples, which is extensive when compared to the GSM8K dataset. It
features a broader range of procedural steps, varying from 1 to 16 steps. Additionally, our dataset
encompasses a wider spectrum of computational efforts, ranging from 6 to 3e5.
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D The Implementation Details of Basic Arithmetic Calculation

D.1 Data Construction

This section outlines the process used to construct datasets for examining the existence of reasoning
boundaries (RB) in basic arithmetic calculations. Initially, we identify the operations for investigation,
namely addition, subtraction, multiplication, and division. We then determine the range of integer
operands (x and y), starting from 1 to 1e10, subsequently extending to 1e20. A random number
generator is employed to produce independent and unbiased pairs of x and y within the specified
range. For each pair, we compute the expected correct outcome of the chosen operation using standard
arithmetic procedures. In addition, in order to ensure that decimals do not affect the computational
complexity, we restrict our analysis to integer operands and outcomes to control for complexity and
randomly generate numerical values of x and y.

D.2 Prompt Construction

The prompt configuration in our study involves inputting the structured data into a computational
model to analyze the arithmetic accuracy. The following prompting is used for LLMs’ input:

Please calculate the formula given below:
x op y=

where op denotes the arithmetic operation (selected from addition, subtraction, multiplication,
division). And x and y values are generated from Section D.1. The final experimental results are
shown in Figure 13.

E The Implementation Details of Multi-hop Reasoning

We propose that the natural language multi-hop CoT task comprises two sub-tasks: multi-hop
planning and knowledge step reasoning for multi-hop question answering. To address the challenge
of measuring knowledge difficulty, we utilize a NER model3 to identify the number of knowledge
entities in each hop, thus marking the knowledge step reasoning RB in the single-step task. Formally,
let B(h) represent the RB of multi-hop planning and B(e) denote the RB of knowledge step reasoning.
The combined RB satisfies the following combination law:

BCoT(e, h) =
1

N1

(B(e)−b1)
+ N2

(B(h)−b2)

. (19)

F Analysis for Complex-CoT and Least-to-Most within Reasoning Path Optimization
Perspective

Complex CoT Prompting can achieve better CoT within a specific RB by simplifying the
calculation reasoning step. We believe that Complex CoT optimizes the performance of the model
by allowing the model to reach its computational limit as much as possible in single-step reasoning.
Therefore, the combined RB for Complex-CoT can be expressed as:

BComplex(p, c) = lim
B(c)→BAcc=100%(c)

1
N1

(B(c)−b1)
+ N2

(B′(p)−b2)

(20)

Assuming the premises of RB remain unchanged (BComplex(p, c) = BCoT(p, c)), it can obviously yield
the solution B′(p) > B(p). Therefore, the model can accept more steps of reasoning boundary, that
is, if the planning difficulty dp is less than reasoning capability B′(p), the accuracy is higher. In
order to analyze this problem, we adopted a meta-analysis method. We count the performance of
the work of Jin et al. [2024], Fu et al. [2023] using Complex CoT. The relationship between the
performance label and the number of steps is shown in Figure 6 (left). For most multi-step reasoning
tasks, generally speaking, within a certain range, as the number of steps increases, the computational
pressure of the model is relieved and the performance is improved, which is consistent with the theory
and exploration of Feng et al. [2024], Wang et al. [2023b], Valmeekam et al. [2023].

3https://huggingface.co/dslim/bert-base-NER
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Figure 15: Analysis of output results for Least-to-Most Prompting.

However, We can also clearly recognize the flaws of Complex CoT. Once the difficulty of planning
dp (that is, the number of planning steps) is greater than B′(p), it exceeds the capabilities of the
model and the performance will decline. We can observe that for single-step calculation reasoning,
as shown in Figure 6 (right), the performance of using Complex CoT will gradually decrease. The
rest of mathematical reasoning will also decrease when the number of steps is greater than a certain
threshold. This phenomenon can also be explained by our combination law. While the amount of
calculation is reduced, the number of reasoning steps is also increasing. If the acceptable number of
reasoning steps is exceeded, the reasoning boundary is exceeded, and the model performance will
decline, which demonstrates that it is necessary to keep a balance between the number of reasoning
steps and computational pressure (see Appendix G for detailed meta-analysis process).

Limitation: Need to keep balance in the number of reasoning steps and calculation pressure.

Least-to-Most Prompting can achieve better CoT within a specific RB by simplifying the
planning reasoning paths. Least-to-most prompting structures problem-solving hierarchically, by
breaking questions into smaller sub-questions and further solving them one-by-one. Accordingly, the
Least-to-most RB can be divided into three sub-RBs, namely, the problem decomposition RB B(d),
the problem planning RB B(p), and the single-step calculation RB B(c). Therefore, the combined
RB for least-to-most can be expressed as:

BLtM(d, p, c) =
1

N1

(B′(c)−b1)
+ N2

(B(p)−b2)
+ N3

(B(d)−b3)

. (21)

Ideally, if the problem decomposition ability of the model is excellent (B(d) → +∞), it can
decompose the problem into sub-problems that can be solved in one step every time B(c) → 1,
therefore the least-to-most RB can be expressed as:

B̂LtM(d, p, c) = lim
B(c)→1,B(d)→+∞

BLtM(d, p, c) =
B′(c)− b2

N1(B′(c)− b2)−N2
, (22)

Assuming the premises of RB remain unchanged (B̂LtM(d, p, c) = BCoT(p, c)), it can obviously yield
the solution B′(c) > B(c). On the contrary, the model can accept larger difficulty d, which also shows
that using least-to-most prompting can effectively increase the maximum of acceptable calculation
RB under a given RB (as shown in Figure 7), thereby improving model performance. As shown in
Table 1, we find that LLM can be optimized by Least-to-most from vanilla CoT.

However, the performance improvement of the model is not significant, which we attribute to the
fact that the current model cannot push its performance to the ideal limit. As shown in Figure 15 (a),
the reasoning boundary of the model cannot make each reasoning step completely tend to 1, which
also leads to the difference in reasoning performance in Figure 15 (b). In the meantime, the model’s
ability to divide problems is also limited. What’s more, as shown in Figure 15 (c), in around 90% of
cases, the model will only divide less than 6 problems, which also limits the performance.

Limitation: Although the pressure of local planning has been reduced, it has not actually
effectively reduced the pressure of global planning, nor the pressure of optimization calculations.
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Figure 16: The effectiveness on average step length in demonstrations for CoT performance.

G The Meta-Analysis for Complex-CoT Prompting

In order to discuss the advantages and limitations of Complex-CoT, we conduct two detailed meta-
analyses through two distinct perspectives. The first one assesses the influence of the reasoning
steps demonstrated in In-Context Learning (ICL) across various tasks, while the second evaluates the
effects of employing a fixed number of reasoning steps in ICL on questions with different reasoning
steps. These meta-analyses aim to compare the efficacy of these methods against prior studies
systematically. Specifically, we conducted a systematic search for relevant studies addressing the
same problem tackled by Jin et al. [2024], Fu et al. [2023], Shum et al. [2023], Sun et al. [2023],
and Jiang et al. [2023b]. We ensured that retrieved studies were pertinent, focusing on studies that
addressed the same problem and used similar evaluation metrics.

G.1 The effectiveness of step length in demonstrations

From each selected study, including Jin et al. [2024] and Fu et al. [2023], we evaluate the performance
using Complex CoT. The relationship between performance and the number of Complex CoT’s steps
is shown in Figure 16. For most multi-step reasoning tasks, as the number of steps increases within a
certain range, the computational load decreases, and performance improves.

However, as described in Appendix F, the flaws of Complex CoT are apparent. When the difficulty
of planning (dp), defined as the number of planning steps, exceeds B′(p), the model’s capabilities are
surpassed, leading to a performance decline. This is evident in single-step calculation reasoning, as
shown in Figure 16 (c, e), where performance using Complex CoT gradually decreases. Similarly,
for other mathematical reasoning tasks, performance decreases when the number of steps exceeds a
certain threshold. This phenomenon aligns with our combination law: while reducing the amount
of calculation, the number of reasoning steps increases. Exceeding the acceptable number of
reasoning steps surpasses the reasoning boundary, causing a decline in model performance. Therefore,
maintaining a balance between the number of reasoning steps and computational pressure is crucial.
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Figure 17: The effectiveness of step length in golden samples with a fixed step length in demonstra-
tions for CoT performance.

G.2 The effectiveness on step length in golden samples

Furthermore, to gain a nuanced understanding of the impact of Complex CoT when the number
of steps exceeds the golden step number, we conduct further meta-analysis from Fu et al. [2023],
Shum et al. [2023], Sun et al. [2023], Jiang et al. [2023b]. Specifically, as illustrated in Figure 17
(a, b), our analysis reveals that for problems of low complexity and with smaller golden step
numbers, Complex CoT tends to underperform compared to Vanilla CoT. Notably, it is only when the
reasoning steps exceed two that Complex CoT outperforms Vanilla CoT. This suggests that Complex
CoT effectively optimizes single-step computations and enhances model performance for complex
problems. However, it increases the cognitive load for simple problems, resulting in a performance
decline.

Interestingly, this phenomenon is also observed with the simpler Vanilla CoT, as shown in Figure 17
(c). The model achieves significant performance gains only when the number of reasoning steps
aligns with the target output steps. If the complexity of the planned steps exceeds the necessary
reasoning boundary, or if there is no effective optimization for reasoning boundary, the performance
deteriorates.

G.3 The Implementation Details of Minimum Acceptable Reasoning Paths

To address the two aforementioned limitations, we propose Minimum Acceptable Reasoning Paths
(MARP). Firstly, to reduce the model’s computational load, we introduce instructions that limit its
single-step computing power, thereby optimizing its reasoning boundary. Secondly, to enhance the
model’s acceptability, we increase the computation amount per step within this boundary and reduce
the number of global planning steps, thus alleviating planning pressure.

To control variables effectively, we make only the simplest modifications to the prompt to achieve the
desired CoT optimization.

Minimum Reasoning Path Prompting To alleviate the cognitive load associated with planning,
it is essential to have the model respond to the question as succinctly as possible. This approach
ensures that the focus remains on providing a short, clear and direct reasoning path. The following
prompt is designed to achieve this objective:

You need to perform multi-step reasoning, with each step carrying out as many basic operations
as possible.

Acceptable Reasoning Prompting To effectively utilize the model, it is crucial to define the
upper-bound of reasoning boundary. This ensures that the complexity of the reasoning process is
manageable and within acceptable bounds. The specific prompt to achieve this is as follows:
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[Minimum Reasoning Path Prompting]
You need to perform multi-step reasoning, with each step carrying out as many basic operations as 

possible.

[Acceptable Reasoning Prompting]
Remember, you can only complete tasks that contain up to 5 basic operations per step, and 

multiplication operations must be less than 1.5e5. The upper limit of the multiplication operations 

decreases as the number of operations per step increases.

[EXAMPLE]

Question: Leo's assignment was divided into three parts. He finished the first part of his 

assignment in 25 minutes. It took him twice as long to finish the second part. If he was able to 

finish his assignment in 2 hours, how many minutes did Leo finish the third part of the assignment?

Answer: Leo finished the first and second parts of the assignment in 25 + 25*2 = 

<<25+25*2=75>>75 minutes.

Therefore, it took Leo 60 x 2 - 75 = <<60*2-75=45>>45 minutes to finish the third part of the 

assignment.

#### 45

…

[REQUEST]

Question: [Question]

Figure 18: Minimum acceptable reasoning path prompting for natural language chain-of-thought. All
examples given in the context transform from Wei et al. [2022].

Model Acc. (↑) Input Token (↓) Output Token (↓)

HotpotQA [Yang et al., 2018]

CoT 289.50 67.27 26.50
CoT+MARP 309.51 68.39 28.73

Medical Probing [Cheng et al., 2024]

CoT 636.11 249.78 48.9
CoT-MRP 476.11 86.52 69.41

StrategyQA [Geva et al., 2021]

CoT 1046.28 225.35 63.90
CoT+MARP 649.28 167.40 74.09

Table 2: Extended experimental results on GPT-3.5-Turbo.

Remember, you can only complete tasks that contain up to 5 basic operations per step, and
multiplication operations must be less than 1.5e5. The upper limit of the multiplication
operations decreases as the number of operations per step increases.

This prompt is designed to set clear boundaries for the model’s operations, thereby optimizing its
performance and accuracy.

Furthermore, it is necessary to enhance the demonstration within the corresponding in-context
learning framework to meet the specific needs of our Model-Agnostic Reasoning Protocol (MARP).
This involves refining the examples and instructions provided to ensure they align perfectly with the
MARP requirements. Figures 18 and Figure 19 illustrate our MARP prompt, showcasing how to
structure the demonstrations to facilitate effective learning and reasoning in natural language CoT and
program-of-thought setting. By adhering to these guidelines, we can ensure that the model operates
efficiently and produces reliable results.

In summary, setting precise boundaries for reasoning boundary and optimizing in-context learning
demonstrations are essential steps in enhancing the model’s performance. By following the specified
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[Minimum Reasoning Path Prompting]
You need to perform multi-step reasoning, with each step carrying out as many basic operations as 

possible.

[Acceptable Reasoning Prompting]
Remember, you can only complete tasks that contain up to 5 basic operations per step, and 

multiplication operations must be less than 1.5e5. The upper limit of the multiplication operations 

decreases as the number of operations per step increases.

[EXAMPLE]

Question: Leo's assignment was divided into three parts. He finished the first part of his 

assignment in 25 minutes. It took him twice as long to finish the second part. If he was able to 

finish his assignment in 2 hours, how many minutes did Leo finish the third part of the assignment?

Answer: Leo finished the first and second parts of the assignment in 25 + 25*2 = 

<<25+25*2=75>>75 minutes.

Therefore, it took Leo 60 x 2 - 75 = <<60*2-75=45>>45 minutes to finish the third part of the 

assignment.

#### 45

…

[REQUEST]

Question: [Question]

Figure 19: Minimum acceptable reasoning path prompting for program-of-thought. All examples
given in the context transform from Wei et al. [2022].

prompt and refining the MARP examples, we can achieve a high level of accuracy and efficiency in
the model’s reasoning processes.

H The Implementation Details in various LLMs

We employ 25 commonly used models to evaluate the extensibility of our framework to a broader
range of models. The specific models are listed in Table 3. For each model, we utilize the chat/instruct
version whenever available to maximize their ability to follow instructions. Additionally, we deploy
all models on the vLLM [Kwon et al., 2023] framework to ensure a fair comparison. Except for
model OpenMath-series [Toshniwal et al., 2024] which does not conform to the vLLM format, all
other models are deployed on vLLM for testing. All experiments on open-source models were
conducted on two A100 80G. Following the setting of Wei et al. [2022], in our CoT experiment, all
multi-step reasoning tasks are with three manually constructed demonstrations. In addition, for all
the experiments, our top-p is selected from {0.95, 1}, and temperature is selected from [0, 1].

In addition, the only difference in the prompt is that we use different dialogue delimiters to make it
conform to the format of the LLM instruction fine-tuning, thereby avoiding the bias caused by the
gap between training and inference.

I The Implementation of Combination Law in MGSM

Inspired by Qin et al. [2023] and Huang et al. [2023], we propose that the multilingual mathematical
CoT task comprises three sub-tasks: step planning, step calculation, and multi-modal expression. We
evaluate the model’s mathematical expression ability in different languages based on its zero-shot
direct performance on MGSM, as reported by Qin et al. [2023]. For relevant parameter calculations,
please see the “Challenging Reasoning Boundary Measurement” part of Appendix B. Formally, let
step planning RB be denoted by B(p), step calculation RB by B(c), and multilingual expression RB
by B(l). The combined RB satisfies the following law:

BCoT(c, p, l) =
1

N1

(B(c)−b1)
+ N2

(B(p)−b2)
+ N3

(B(l)−b3)

. (23)
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Model Base Model Parameters (B)

Open-source General LLM

LLaMA [Touvron et al., 2023a] - 7, 13, 33, 65
LLaMA-2 [Touvron et al., 2023b] - 7, 13, 70
LLaMA-3 [Meta, 2024] - 8, 70
Code-LLaMA [Roziere et al., 2023] LLaMA-2 [Touvron et al., 2023b] 7, 13, 34, 70
Mistral [Jiang et al., 2023a] - 7

Close-source General LLM

Gemini-1.0-Pro [Team et al., 2023] - -
GPT3.5-Turbo [OpenAI, 2022] - -
Claude-3-Haiku [Anthropic, 2024] - -
Claude-3-Sonnet [Anthropic, 2024] - -
Claude-3-Opus [Anthropic, 2024] - -
GPT4 [OpenAI, 2023] - -

Open-source Math LLM

MAmmoTH [Yue et al., 2023] LLaMA-2 [Touvron et al., 2023b] 7,13
MAmmoTH [Yue et al., 2023] Mistral [Jiang et al., 2023a] 7
OpenMATH-Instruct [Toshniwal et al., 2024] LLaMA-2 [Touvron et al., 2023b] 70
OpenMATH-Instruct [Toshniwal et al., 2024] Mistral [Jiang et al., 2023a] 7

Table 3: Model list. In order to ensure a certain ability to follow instructions, we use the Instruct
version of the model as much as possible (if available).

As shown in Figure 10, the performance distribution of RB (including BAcc=90% and BAcc=10%) in the
multilingual mathematical reasoning task aligns with the proposed combination law in Equation (23).
Moreover, three distinct RBs are evident in Figure 10.

J Ethical Considerations

Data Access. Our data is adapted from GSM8K [Cobbe et al., 2021] and supplemented with
manually created samples. GSM8K is an open-source dataset available for academic research.

Dataset Collection Process. We began with an introductory task interview using 50 example
questions, compensating participants $20 each to familiarize themselves with the task. During the
annotation process, annotators were paid $15 per hour, totaling approximately 60 hours of work.

The Rest of Data Annotation Process. For the remaining data annotation, we hired a graduate
student with CET-6 proficiency in Chinese and English and strong mathematical knowledge. The
student was compensated $15 per hour, which is above the local average salary. The instructions for
annotation are as follows:

You need to annotate the generated number of steps, maximum computation amount, correctness
of the generation steps, correctness of the calculations, and correctness of the model output:

• Number of generated steps: This refers to how many reasoning steps the model generated.
• Maximum computation amount: This indicates the largest product of operations in the

model’s reasoning steps.
• Correctness of generation steps: This assesses the accuracy of the model’s planning. If

all steps and operators are planned correctly, and the operand values are logically correct,
it is considered correct, regardless of calculation accuracy.

• Correctness of calculations: This considers only whether the calculations are correct,
ignoring planning factors.

• Correctness of the output: This checks whether the model’s final answer is correct.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: As shown in lines 5-18 of the Abstract and 59-69 of the Introduction, we
present our main claims and outline the paper’s contributions and scope.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We have discussed the limitations of our work in Section 8.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [NA]
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Justification: Our work is not strictly a purely theoretical work, we provide more of an
empirical formula. In addition, we analyze the source of our empirical formula in Appendix F
and provide the corresponding assumption and proof.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: As shown in Appendix C to Appendix I, we have provided detailed descriptions
and analyses of the experimental setups for all our investigations.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [No]

Justification: We will release our code in the official version of the subsequent paper to
provide reproduction and provide more help to the future community.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: As shown in Section C to Section H, we have provided detailed descriptions
and analyses of the experimental setups for all our investigations.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: We report error bars in Table 1 and Figure 4, and explain the error variables
in Section 3. However, error bars are not reported for all tasks because it would be too
expensive for human annotation and computational resource consumption.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.
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• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: As shown in Section 3 and Appendix H, we provide detailed model compute
resources under different settings.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: We are convinced that we comply with NeurIPS Code of Ethics.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader Impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: We have discussed the broader impacts of our work in Section 8. In addition,
since our work is more like providing an empirical formula and has no additional social
harmfulness, we do not discuss this part.

Guidelines:
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• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: The paper poses no such risks.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [NA]
Justification: The paper does not use existing assets.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
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• If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]

Justification: The paper does not release new assets.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [Yes]

Justification: As shown in Section J, We describe and analyze the details and ethical
considerations of our crowdsourcing in detail.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [No]

Justification: Since our region and institution are not required to provide IRB approval, we
do not describe this section. We are convinced that our work complies with the NeurIPS
Code of Ethics and the guidelines.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.
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• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

33


	Introduction
	Quantification Methodology
	Reasoning Boundary
	Combination Law of Reasoning Boundary
	Categories of Reasoning Boundary

	Experimental Setup
	Empirical Analysis of Reasoning Boundary
	Existence Verification for Reasoning Boundary
	Combination Law Verification on Different Tasks
	Nature Analysis for different Reasoning Boundary

	RB-based CoT Optimization
	How can we improve CoT by optimizing RB?
	How can we improve CoT based on a certain RB?

	Expansion Verification & Exploration
	Related Work
	Discussion
	Conclusion
	Mathematical Analysis & Proof
	Definitions & Assumptions
	The Proof of Combination Law
	Calculation of RB in Practical Process

	The Application Tutorial of Reasoning Boundary
	Details of Dataset
	Dataset Construction
	Dataset Analysis

	The Implementation Details of Basic Arithmetic Calculation
	Data Construction
	Prompt Construction

	The Implementation Details of Multi-hop Reasoning
	Analysis for Complex-CoT and Least-to-Most within Reasoning Path Optimization Perspective
	The Meta-Analysis for Complex-CoT Prompting
	The effectiveness of step length in demonstrations
	The effectiveness on step length in golden samples
	The Implementation Details of Minimum Acceptable Reasoning Paths

	The Implementation Details in various LLMs
	The Implementation of Combination Law in MGSM
	Ethical Considerations


