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Abstract

In this paper, we investigate the feature encoding process in a prototypical energy-
based generative model, the Restricted Boltzmann Machine (RBM). We start with
an analytical investigation using simplified architectures and data structures, and
end with numerical analysis of real trainings on real datasets. Our study tracks the
evolution of the model’s weight matrix through its singular value decomposition,
revealing a series of phase transitions associated to a progressive learning of the
principal modes of the empirical probability distribution. The model first learns
the center of mass of the modes and then progressively resolve all modes through
a cascade of phase transitions. We first describe this process analytically in a
controlled setup that allows us to study analytically the training dynamics. We then
validate our theoretical results by training the Binary-Binary RBM on real datasets.
By using datasets of increasing dimension, we show that learning indeed leads
to sharp phase transitions in the high-dimensional limit. Moreover, we propose
and test a mean-field finite-size scaling hypothesis. This shows that the first phase
transition is in the same universality class of the one we studied analytically,
and which is reminiscent of the mean-field paramagnetic-to-ferromagnetic phase
transition.

1 Introduction

In recent years, we have witnessed impressive improvements of unsupervised models capable of
generating more and more convincing artificial samples [1, 2, 3]. Although energy-based models [4]
and variational approaches [5] have been in use for decades, the emergence of generative adversarial
networks [6], followed by diffusion models [7], has significantly improved the quality of outputs.
Generative models are designed to learn the empirical distribution of datasets in a high-dimensional
space, where the dataset is represented as a Dirac-delta pointwise distribution. While different types
of difficulties are encounter when training these models, there is a general lack of understanding of
how the learning mechanism is driven by the considered dataset. This article explores the dynamics
of learning in neural networks, focusing on pattern formation. Understanding how this process
shapes the learned probability distribution is complex. Previous studies [8, 9] on the Restricted
Boltzmann Machine (RBM) [10] showed that the singular vectors of the weight matrix initially
evolve to align with the principal directions of the dataset, with similar results in a 3-layer Deep
Boltzmann Machine [11]. Additionally, an analysis using data from the 1D Ising model explained
weight formation in an RBM with a single hidden node as a reaction-diffusion process [12]. The
main contribution of this work is to demonstrate that the RBM undergoes a series of second-order
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phase transitions during learning, each corresponding to the acquisition of new data features. This is
shown theoretically with a simplified model and on correlated patterns; and confirmed numerically
with real datasets, revealing a progressive segmentation of the learned probability distribution into
distinct parts and exhibiting second order phase transitions.

2 Related work

The learning behavior of neural networks has been explored in various settings. Early work on
deep linear neural networks demonstrated that even simple models exhibit complex behaviors
during training, such as exponential growth in model parameters [13, 14]. Using singular value
decomposition (SVD) of the weight matrix, researchers revealed a hierarchical learning structure
with rapid transitions to lower error solutions. Linear regression dynamics later showed a connection
between the SVD of the dataset and the double-descent phenomenon [15]. Similar dynamics were
found in Gaussian-Gaussian RBMs [9], where learning mechanisms led to rapid transitions for
the modes of the model’s weight matrix. In this context, the variance of the overall distribution is
adjusted to that of the principal direction of the dataset, while the singular vectors of the weight
matrix are aligned to that of the dataset. Unlike linear models, non-linear neural-networks, supervised
or unsupervised ones, can not exhibit partition of the input’s space. Yet, linear model in general can
not provide a multimodal partition of the input space, should it be in supervised or unsupervised
context, at difference with non-linear ones.

It was then shown that the most common binary-binary RBMs exhibit very similar patterns at
the beginning of learning, transitioning from a paramagnetic to a condensation phase in which
the learned distribution splits into a multimodal distribution whose modes are linked to the SVD
of the weight matrix [8]. The description of this process motivated the use of RBMs to perform
unsupervised hierarchical clustering of data [16, 17]. The succession of phase transitions had been
previously observed in the process of training a Gaussian mixture [18, 19, 20], and in the analysis of
teacher-student models using statistical mechanics [21, 22]. The latter cases are easier to understand
analytically due to the simplicity of the Gaussian mixture. Nevertheless, the learned features are
somewhat simpler, as they are mainly represented by the means and variances of the individual
clusters. Recently, sequences of phase transitions have been used to explain the mechanism with
which diffusion model are hierarchically shaping the mode of the reverse diffusion process [23, 24, 25]
and due to a spontaneous broken symmetry [26] after a linear phase converging toward a central
fixed-point. The common observation is that the learning of a distribution is, in many cases, obtained
by a succession of creation of modes performed through a second order process where the variance
in one direction first grow before splitting into two parts, and then the mechanism is repeated. This
procedure in particular demonstrate a hierarchical splitting, where the system refined at finer and
finer scale of features as it adjust its parameters on a given dataset.

3 Definition of the model

An RBM is a Markov random field with pairwise interactions on a bipartite graph consisting of
two layers of variables: visible nodes (v = {vi, i = 1, . . . , Nv}) representing the data, and hidden
nodes (h = {hj , j = 1, . . . , Nh}) representing latent features that create dependencies between
visible units. Typically, both visible and hidden nodes are binary ({0, 1}), though they can also be
Gaussian [27] or other real-valued distributions, such as truncated Gaussian hidden units [28]. For
our analytical computations, we use a symmetric representation ({±1}) for both visible and hidden
nodes to avoid handling biases. However, in numerical simulations, we revert to the standard ({0, 1})
representation. The energy function is defined as follows:

E[v,h;W , b, c] = −∑ia viWiaha −
∑

i bivi −
∑

a caha, (1)

with W the weight matrix and b, c the visible and hidden biases, respectively. The Boltzmann distri-
bution is then given by p[v,h|W , b, c] = Z−1 exp(−E[v,h;W , b, c]) with Z =

∑
{v,h} e

−E[v,h]

being the partition function of the system. RBMs are usually trained using gradient ascent of the log
likelihood (LL) function of the training dataset D = {v(1), · · · ,v(M)}, the LL is then defined as

L(W , b, c|D) = M−1
M∑

m=1

ln p(v = v(m)|W , b, c) = M−1
M∑

m=1

ln
∑

{h}
e−E[v(m),h;W ,b,c] − lnZ
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The computation of the gradient is straightforward and made two terms: the first accounting for the
interaction between the RBM’s response and the training set, also called postive term, and same
for the second, but using the samples drawn by the machine itself, also called negative term. The
expression of the LL gradient w.r.t. all the parameters is given by

∂L
∂wia

= ⟨viha⟩D − ⟨viha⟩H, ∂L
∂bi

= ⟨vi⟩D − ⟨vi⟩H and ∂L
∂ca

= ⟨ha⟩D − ⟨ha⟩H, (2)

where ⟨f(v,h)⟩D = M−1
∑

m

∑
{h} f(v

(m),h)p(h|v(m)) denotes an average over the dataset, and
⟨f(v,h)⟩H, the average over the Boltzmann distribution p[v,h;W ,a, c]. Most of the challenges
in training RBMs stem from the intractable negative term, which has a computational complexity
of ∼ O(2min(Nh,Nv)) and lacks efficient approximations. Typically, Monte Carlo Markov Chain
(MCMC) methods are used to estimate this term, but their mixing time is uncontrollable during
practical learning, leading to potentially out-of-equilibrium training [29].

This work focuses on the initial phase of learning and the emergence of modes in the learned
distribution from the gradient dynamics given by Eq. (2). In the following section, we first analytically
characterize the early dynamics in a simple setting, showing how it undergoes multiple second-order
phase transitions. We then numerically investigate these effects on real datasets.

4 Theory of learning dynamics for simplified high-dimensional models of data

We develop the theoretical analysis by focusing on simplified high-dimensional probability distribu-
tions that concentrate around different regions, or lumps, in the space of visible variables. Our aim is
to analyze how the RBM learns the positions of these lumps, which represent, in a simplified setting,
the features present in the data. In order to simplify the analysis, we will consider the Binary-Gaussian
RBM (BG-RBM) defined below, yet the same results can be derived for the Binary-Binary RBM
(BB-RBM) as shown in the SI B.

4.1 Learning two features through a phase transition

We consider the following simplified setting: we will be using vi = ±1 visible nodes, Gaussian
hidden nodes and put the biases to zero b = 0 and c = 0. As a model of data, we consider a Mattis
model with a preferred direction ξ for the ground state, following the distribution

pMattis(v) =
1

ZMattis
exp


 β

2Nv

(
Nv∑

i=1

ξivi

)2

 ,

where β = 1/T is the inverse temperature and ξi = ±1 represents a pattern encoded in the model as
a Mattis state [30, 31]. In a Mattis model, ξ represents a preferred direction of the model for large
values of β, and in this simple case (with only one pattern) there is no need to specify its distribution
as long as its elements are ±11. The Mattis model presents a high-temperature phase with a single
mode centred over zero magnetization m = N−1

v

∑
i ξi⟨vi⟩ = 0 for β < βc (where ⟨.⟩ is the average

w.r.t. the Boltzmann distribution) while in the low-temperature regime, β > βc, the model exhibits a
phase transition between two symmetric modes m = ±m0(β) (βc = 1). Henceforth, we shall focus
on the regime β > βc where the data distribution is concentrated on two lumps. From the analytical
point of view, we can compute all interesting quantities in the thermodynamic limit Nv → ∞. In
order to keep the computation simple, we will characterize here the dynamics of the system when
performing the learning using a BG-RBM [27] with one single hidden node. In our setting we assume
that the distribution of the hidden node is centered in zero (i.e. there is no hidden bias) and that the
variance is σ2

h = 1/Nv (we discuss the reason for the scaling in SI A). The distribution is then

pBG(h,v) =
1

ZBG
exp

(∑

i

vihwi −
h2Nv

2

)
, pBG(v) =

1

Z
exp

[
(
∑

i viwi)
2

2Nv

]
.

Using this model for the learning, the time evolution of the weights is given by the gradient. With BG-
RBM we have that ⟨vih⟩H = N−1

v

∑
j wj⟨vivj⟩H where the last average is taken over a distribution

pBG(v). We can now easily compute the positive and negative term of the gradient w.r.t. the weight

1The special case in which all elements ξi = 1 is the well-known Curie-Weiss model in ferromagnetism.
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matrix. For the positive term we obtain that ⟨vivj⟩D = ξiξjm
2 where m = tanh (βm). The negative

term can also be computed in the thermodynamic limit ⟨vivj⟩RBM = tanh(h∗wi) tanh(h
∗wj) with

h∗ = 1
N

∑
k wk tanh(h

∗wk). If we take the limit of a very small learning rate, we can convert the
parameter update rule using the gradient into a time differential equation for the parameters of the
RBM, where t is the learning time:

dwi

dt
= ϵ

[
1
Nv

ξi
∑

k ξkwkm
2 − h∗ tanh(h∗wi)

]
, (3)

with ϵ the learning rate 2. We can analyze two distinct regimes for the dynamics. First, assuming that
the weights are small at the beginning of the learning, we get that h∗ = 0. We can then solve the
Eq. (3) in this regime obtaining the evolution of the weights toward the direction ξ by projecting the
differential equation on this preferred direction. Defining Uξ = N−1/2

∑
i ξiwi, we obtain

dUξ

dt = m2Uξ, thus Uξ = U0
ξ e

m2t.

This illustrates that the weights are growing in the direction of ξ while the projection on any orthogonal
direction stays constant. As the weights grow larger, the solution for h∗ will depart from zero. Then
the correlation between the RBM visible variables starts to grow

⟨vivj⟩RBM ≈ 1

Z

∫
dhh2wiwj exp

(
−Nvh

2

2 +
∑

k
h2w2

k

2

)
= wiwj

1

Nv(1−
∑

k w2
k/Nv)

,

which means that the susceptibility χ =
∑

i,j ξjξi⟨vivj⟩RBM, that is, the response of the system
w.r.t. an external perturbation, diverges when N−1

v

∑
k w

2
k ∼ 1, thus exhibiting a second order phase

transition during the learning. Interestingly, χ diverges as a a power law with a (critical) exponent
γ = 1 (where N−1

v

∑
k w

2
k plays here then the role of the inverse temperature in the standard physical

models) thus corresponding to the mean-field universality class [32]. Finally, we can study the regime
where the weights are not small. In that case, we can first observe that the evolution of the directions
orthogonal to ξ cancel when the weights W align totally with the ξ at the end of the training. Finally,
taking wi = ξiw, the gradient projected along ξ at stationarity imposes

wm2 = h∗ tanh(h∗w) and thus w =
√

β and h∗ =
√
βm.

We confirm the main results of this section numerically in Fig. 1, showing they hold accurately even
for moderate values of Nv. The sum of the weights grows exponentially, following the magnetization
squared (considering the learning rate), and the weights align with the direction ξ, while the norm of
the weight vector converges towards

√
β. Additional analysis details and extended computations for

the binary-binary RBM case, which is slightly more involved, are provided in the SI.

4.2 Learning multiple features though a cascade of phase transitions

We consider now the case in which the data are characterized by more than two features. For
concreteness, we focus on the case in which the data is drawn from the probability distribu-
tion of the Hopfield model [31] with two patterns ξ1 and ξ2, using the Hamiltonian HH [v] =

− β
2Nv

∑2
a=1

(∑Nv

i=1 ξ
a
i vi

)2
. The generalization to a larger (but finite) number of patterns is straight-

forward. Following [33] we consider the case in which the patterns are correlated and defined as:
ξ1 = η1 + η2 and ξ2 = η1 − η2; η1 is a vector whose first Nv

1+κ
2 components are equal to ±1

with equal probability, and the remaining ones are zero (0 < κ < 1). Whereas η2 is a vector whose
last Nv

1−κ
2 components are equal to ±1 with equal probability, and the remaining ones are zero.

When T < 1− κ this model is in a symmetry broken phase in which the measure is supported by
four different lumps centred in ±ξ1 and ±ξ2. Analogously to what was done previously, we now
consider a BG-RBM with a number of hidden nodes equal to the number of patterns where again
both hidden nodes are centred in zero and have variance σ2

h = 1/Nv. The Hamiltonian is then given
by H[v,h] = −∑ia vihawia +

∑
a h

2
aNv/2, which corresponds to a Hopfield model [31] with

patterns w1 and w2. The analysis presented in the previous section can be generalized to this case
(see SI for more details) and one finds the dynamical equations for the evolution of the patterns:

dwa
i

dt
=

1

Nv

∑

j

⟨vivj⟩Dwa
j − 1

Nv

∑

j

⟨vivj⟩RBMwa
j (4)

2In the rest of the derivation, we will remove it since it can be absorb in a redefinition of the time.
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Figure 1: Learning behavior of the BG-RBM with one hidden node, using data from the Mattis
model at different inverse temperatures, system sizes and learning rates β,Nv, ϵ. The argument of
the exponential curves is set to m2ϵNv, where ϵ is the learning rate. Inset: (top) behavior of the
susceptibility χ (bottom) magnetization h∗ of the learning RBM. The vertical line marks the point at
which the susceptibility diverges, indicating the onset of spontaneous magnetization. Right: Learning
curves for RBMs learning two correlated patterns. The dashed curves represent the weights of the
two hidden nodes projected onto ξ1 + ξ2, while the dashed-dotted curves are projected onto ξ1 − ξ2.
Inset: Exponential growth during the two phases: top shows growth in the direction ξ1 + ξ2 at a rate
r2(1+κ)/2, and bottom shows growth in the direction ξ1 − ξ2 at a rate p2(1−κ)/2. The arguments
of the exponentials are not adjusted.

As shown in the SI C, ⟨vivj⟩D = r2η1i η
1
j + p2η2i η

2
j where r, p are a function of β (and β−1 =

T < 1 − κ, r > p). Note that this factorization of the correlation matrix is precisely its spectral
eigendecomposition, which means that η1 and η2 are nothing but the principal directions of the
standard principal component analysis (PCA). At the beginning of the training dynamics the RBM is
in its high-temperature disordered phase, hence the second term of the RHS of Eq. (4) is zero. The
weights w1 and w2 have therefore an exponential growth in the directions η1 and η2, whereas the
other components do not evolve. If the initial condition for the weights is very small, as we assume
for simplicity, one can then write:

wa(t) = za√
Nv( 1+κ

2 )
er

2( 1+κ
2 )tη1 + z̃a√

Nv( 1−κ
2 )

ep
2( 1−κ

2 )tη2 a = 1, 2 ,

where we have neglected the small remaining components; za and z̃a are the projections of the initial
condition along the directions η1 and η2. Since r > p, on the timescale (logNv)/

(
r2(1 + κ)

)
the

component of the was along η1 becomes of order one whereas the one over η2 is still negligible. In
this regime, the RBM is just like the one we consider in the previous section with a single pattern:
the system will align with a single pattern that is given in that case by η1 ∝ ξ1 + ξ2, and it has a
phase transition at the time tI :

e
2r2[ 1+κ

2 ]tI
Nv

(
(z1)2 + (z̃1)2

)
= 1 ,

At tI , the RBM learns that the data can be splitted in two groups centred in ±η1, but it does not
have yet learned that each one of these two groups consist in two lumps centred in ξ1 and ξ2 (and
respectively −ξ1 and −ξ2). The training dynamics after tI can also be analyzed: the components of
the weight vectors along η1 evolve and settle on timescales of order one to a value which is dependent
on the initial condition (see the eq. in the SI). In the meanwhile, the components along η2 keep
growing; at a timescale (logNv)/(p

2(1−k)) (quite larger than tI in the limit Nv → ∞) they become
of order one. In order to analyze easily this regime, let’s consider first the simple case in which the
initial condition on the weights is such that w1(0) · η2 = −w2(0) · η2 and w1(0) · η1 = w2(0) · η1.
In this case, one can write w1 = A(t)η1 +B(t)η2 and w2 = A(t)η1 −B(t)η2. The corresponding
RBM is a Hopfield model with log likelihood:

∑

a

(
∑

i viw
a
i )

2

2Nv
= 2A(t)2

(
∑

i viη
1
i )

2

2Nv
+ 2B(t)2

(
∑

i viη
2
i )

2

2Nv

At tI , when
(
1+κ
2

)
A(tI)

2 = 1, one has the first transition in which the RBM measure breaks
in two lumps pointing in the direction ±η1, as we explained above. In this regime B(t) is still
negligible but keeps increasing with an exponential rate. Using the results of [33], one finds that
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Figure 2: Human genome dataset. Progressive coding of the main directions of the dataset when
training an RBM with the human genome dataset [34]. In A, we show the dataset projected along
the first two principal components of the dataset ηα with α = 1, 2, and mPCA

α = ηα · x(d)/
√
Nv,

with x(d) referring to the different entries in the dataset, i.e. an human individual. Points are colored
according to the individual continental origin. In B, we show the evolution of the singular values wα

of the RBM weight matrix W as a function of the number of training epochs, and in C, we show
the scalar product of the corresponding singular vectors uα with the corresponding PCA component
ηα. In D, we show the magnetization of the samples generated by the model at different epochs,
projected along the first two eigenvectors of W , which shows that the specialization of the model
occurs through the progressive encoding of the main modes of the data in W .

when 1−κ
2 B(tII)

2 = 1, a second phase transition takes place. This defines a time tII at which the
probability measure of the RBM breaks from two lumps to four lumps, each one centred around one
of the four directions ±ξ1,±ξ2. We have considered a special initial condition, but the phenomenon
we found is general. In fact, for any initial condition one can show that the dynamical equations
have an instability on the timescale tII , which generically induces the second symmetry breaking
transition. On Fig. 1, right panel, we illustrate the exponential growth as described by the theory,
toward the two directions. In the SI 4.2, we show how these phase transitions are in very good
agreement with previous work [9, 8] and how the phase space is split during training time. At the end
of the training, the patterns are given by w1 = ξ1 and w2 = ξ2 modulo a rotation in the subspace
spanned by ξ1,2, since the likelihood is invariant by rotations in this subspace. In fact, we often
found that the patterns are not perfectly aligned because we are not forcing the weights to be binary.
This analysis can naturally extend to more than two patterns, typically resulting in a cascade of
phase transitions. In this process, the RBM progressively learns the data features, starting from a
coarse-grained version (just the center of mass) and gradually refining until all patterns are learned.
The analysis done on the BG-RBM can of course be repeated on the BB-RBM (as is done for the
case with one mode in the SI B). The main difference at that level between the two models is that in
order to have a retrieval phase, the BB-RBM needs to encode the patterns on an extensive number
of hidden nodes (proportional to Nv), while the BG-RBM needs only as many patterns as hidden
nodes. Both models can match perfectly the dataset in the limit Nv → ∞, but we might encounter
discrepancies for finite size. However, when dealing with real datasets, by construction, the BG-RBM
can not reproduce higher-order correlations and therefore is less interesting than the BB case.

5 Numerical Analysis

In the previous sections, we examined the learning process in simplified setups, in order to be able to
develop an analytical treatment. In particular, we have shown analytically in a simple setting how the

6



weight matrix is shaped by the patterns present in the dataset and how the learning process dynamics
is triggered by the PCA components (the η1 and η2 in the previous example) and not by the learning
of the encoded patterns (ξ1 and ξ2). Moreover, we have shown that each time the RBMs learn a
new direction, the susceptibility of the system diverges with a precise power law everytime the RBM
learns a new direction, which is also associated with the development of new modes in the probability
measure. In this section we will also show that the insights gained from this simplified analysis are
also applicable to understanding the learning process of a Binary-Binary RBM (BB-RBM) with many
hidden nodes trained with real data sets. The details about the training procedure are given in SI E.1.
For this purpose, we will consider 3 real data sets: (i) The Human Genome Dataset (HGD), (ii)
MNIST and (iii) CelebA, see details in the SI D. To show the occurrence of bonafide phase transitions,
it is important to show the effect of increasing the system size (which transforms cross-overs in sharp
transitions in the large Nv limit). We will therefore resize these data sets in different dimensions by
adjusting their resolution, i.e. by changing Nv while maintaining comparable statistical properties.
Detailed information about the scaling process can be found in the SI D.

In real training processes, the machine is expected to gradually learn different patterns ξα, from the
data, as described in the previous sections. However, the identification of these patterns and their
relationship to the statistical properties of the dataset remains unclear. Previous research [9, 8, 35]
has shown that RBM training begins with the stepwise encoding of the most significant principal
components of the dataset, {ηα}, which are the eigenvectors of the sample covariance matrix with
the highest eigenvalues, on the SVD decomposition of its weight matrix Wia =

∑
α wαu

α
i ū

α
a , where

uα ∈ RNv and ūα ∈ RNh denote the left and right singular vectors corresponding to the singular
value wα. These vectors form orthonormal bases in RNv and RNh respectively, where the index α
ranges from 1 to min(Nv, Nh) and the singular values wα are arranged in descending order. At the
beginning of the learning process, the left singular vectors, uα, gradually align α-to-α to ηα. This
is consistent with the analytical results in our simple setting in the previous sections. In analogy to
the mean-field magnetic models proposed in the previous section, the role of decreasing temperature
is played by the increasing magnitude of the singular value w2

α, associated with each mode α, and
should lead to a series of phase transitions where the RBM measure splits into increasingly more and
more modes. We show in Fig. 2 that these phenomena are at play by focusing on the evolution of the
SVD of the RBM weight matrix when trained with the HGD dataset.

In panel A we show the first two principal components of the dataset, which highlights its strong
multimodal structure, as several distant clusters appear (in this case, they are related to the continental
origin of the individuals at hand). In Fig. 2–B we show the sharp and sudden increases of the singular
values wα, as expected from our theoretical analysis, and in Fig. 2–C the evolution of the scalar
product between uα and ηα as a function of the number of training epochs. Different colors indicate
different values of α. As expected, the modes are progressively expressed during training, and the
first two singular vectors match the two principal directions of the dataset for a while. This last figure
also shows us that the alignment with the PCA is only temporary (a limitation of current theoretical
approaches), as the machine finds better patterns to encode the data as training progresses.

The progressive splitting of the RBM measure during the training dynamics is shown in Fig. 2–D, for
which we use Ns = 1000 independent samples generated with the model trained up to a different
number of epochs (the colors refer to the same epochs highlighted with vertical lines in Figs. 2–B
and C). For visualization, we show the samples projected onto the right singular vectors of W , the
magnetizations mα = v · uα/

√
Nv with α = 1, 2. At the beginning of training, the data points are

essentially Gaussian distributed, and the growth of w1 over 4 is related to the splitting of the data
into two different clusters on the m1 axis, and the emergence of w2 is related to a second splitting on
the m2 axis. At this stage of training, the projections along all subsequent directions are Gaussian
distributed as they are the result of a sum of random numbers (fixed by the random initialization of
the weight matrix). This progressive splitting is crucial to express the diversity of the dataset shown
in Fig. 2–A, and can be successfully used to extract relational trees to cluster data points, as recently
shown in Ref. [16]. The details about the numerical analysis are given in E.2.

At the beginning of training, when only a singular value has been expressed, and thus W ≈
wuū⊤, the transition of the feature encoding process is analogous to the phase transition from the
paramagnetic to the ferromagnetic phase in the Mattis model mentioned above with pattern u. The
detailed justification can be found in SI F. Our analysis allows us to define an effective temperature,
linked to the eigenmode of W as β = w2/16. Now, since the critical temperature of the Mattis model
is βc = 1, we can show that the BB-RBM will condensate when the first eigenmode of the model
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Figure 3: Traning with the MNIST dataset. In A we show the evolution of the singular values
of the RBM’s coupling matrix W as a function of the training time. In B we show the evolution
of the susceptibilities associated with the magnetizations along the right singular vectors of W ,
mα = ⟨uα · v⟩ /Nv. In both figures, we consider the standard Nv = 282 MNIST dataset, different
colors refer to different modes. In C we show the susceptibility associated with the overlaps q and q̄
between visible and hidden variables. In D we show the susceptibility of the first mode as a function
of the first singular value w1 obtained with trainings on MNIST data scaled to different system sizes
above and below L = 28. The numerical curves are compared with the theoretical expectation using
the Mattis model in Eq. (6) using w1,c = 4.45. The same data are shown in E, scaled using the
mean-field finite-size scaling ansatz of Eq. (7). In F, we show the first 10 modes’ susceptibilities χmα

as a function of their corresponding singular value wα and compare them with the theoretical curve
in D. In G, we show the MCMC relaxation time of the machines trained with different Nv datasets as
a function of w1, together with the theoretical expectation for local moves in dashed lines.

reaches wc = 4, see SI F. In a real training, we also have visible b and hidden bias c which could
easily change the model towards a random field Mattis model, which leads us to expect a slightly
higher critical point but a very similar ferromagnetic phase transition, and in particular, it should not
change the transition’s mean-field universality class.

To show that there is a cascade of transitions and that what was found for the HGD also holds for
other datasets, we now train the RBM with the MNIST dataset. In Fig. 3–A we plot the evolution of
the singular values wα along the training, which clearly show the progressive encoding of patterns.
The progressive splitting of the RBM measure into clusters and the presence of a phase transition can
be monitored by measuring the variance of the distribution of the visible magnetizations mα along
the α-th mode or the analogous hidden magnetizations m̄α = h · ūα/

√
Nh obtained using the hidden

units. The variance of the magnetization multiplied by the number of variables used to compute it and
β, is related to the magnetic susceptibility via the fluctuation dissipation theorem, which means that

χm = Nv

(〈
m2
〉
− ⟨m⟩2

)
= T d ⟨m⟩ /dh, (5)

here ⟨·⟩ refers to the equilibrium measure with respect to RBM’s Gibbs measure p(v,h), in practice
estimated as the average over Ns independent MCMC runs. It is well known that the magnetic
susceptibility should diverge in the vicinity of a second order phase transition and that such growth in
only limited by the overall system size N =

√
NvNh in finite systems. These phenomena indeed

takes place also in the RBM. We show in Fig. 3–B the evolution of the χms obtained using the
magnetizations obtained along the different modes α of W . As anticipated, the susceptibility χm1
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Figure 4: Training with the CELEBA and HGD datasets: In A, we plot the hidden susceptibility for
different system sizes in the CELEBA dataset, with dashed lines indicating the expected divergence
at w1,c = 4. In B, we show the mean-field FFS associated with the first transition using mean-field
exponents. In C and D, we present the visible susceptibility for the first phase transition in the
HGD dataset, using w1,c = 5.25 for scaling. In E, typical hysteresis in the low-temperature phase is
illustrated for CELEBA (128×128), similar to the mean-field Ising model in external fields.

associated to the magnetization m1 along the first mode, sharply grows as w1 approaches 4, but it is
more remarkable that this behavior is not only restricted to the first mode, but it is also reproduced by
the subsequent modes in a step-wise process. According to the mapping between the low-rank RBM
and the Mattis (or equivalently, the Curie-Weiss) model, we should expect that our χm, at least for
the first mode α = 1 should behave as

χm ∼ 4

βc − β
=

4

w2
c − w2

, (6)

when approaching the critical point, which is equivalent to stating that the critical exponent is γ = 1.
Here, the factor 4 in the numerator is related to the fact that the susceptibility obtained with {0, 1}
variables is 4 times the standard one obtained with Ising spins, and that β = w2/16. In Fig. 3–D, we
show the susceptibility associated with the first mode as a function of w1 using RBMs trained with
MNIST data rescaled to different dimensions. As mentioned earlier, the growth of the susceptibility
is limited by the system size Nv. However, if we look at increasingly larger sizes, we can observe the
growth over several decades. This shows that at the transition we observe the Mattis/Curie-Weiss
behavior of Eq. 6, as shown in the black dashed line, where the only adjustable parameter was the
critical point w1,c = 4.45 (i.e. there is no adjustable pre-factor).

One of the crucial tests to ensure that a finite-size transition is a bona fide phase transition is to study
its behavior by changing the number of degrees of freedom. One of the standard tools to do this is
to make use of the so-called finite-size scaling (FSS) ansatz, motivated by renormalization group
arguments [36, 37, 38]. Mean-field models follow a modified FSS ansatz which was first studied
in [39]. In particular, the FSS ansatz for the susceptibility is

χN
m(β) = N

γ
νdu ϕ

(
N

1
νdu |β − βc|

)
, (7)

with ϕ(·) a size-independent scaling function, N =
√
NvNh is the effective size of our model and

γ = 1, ν = 1/2 and du = 4 as expected in the mean-field universality class. We test this ansatz in
Fig. 3–E showing that it does succeed to scale the finite-size data in the critical region, especially in
the largest system sizes, which confirms both the mean-field universality class and the prevalence of
the transition in the thermodynamic limit. In Fig. 4-A and B, and Fig. 4-C and D, we show that the
indicators of a phase transitions–growth of the susceptibility and its mean-field finite size scaling–also
holds for CelebA and HGD datasets. Finally, a final piece of evidence of the existence of a phase
transition is presented in Fig. 4-E, where we show that after the continuous transition has taken place,
one can induce a discontinuous transition and hysteresis effects by applying a field in the direction of
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the learned pattern, in full agreement with what observed for standard phase transitions, the details of
the analysis can be found in SI E.2.2, and further theoretical insights into the relationship between
hysteresis and discontinuous transitions can be found in G.

All the discussion so far has been mainly concerned with the first phase transition, when the RBM
learns the first mode. But we have discussed in Fig. 3–B that an entire sequence of step-wise phase
transitions occurred in the rest of the W -matrix modes. In Fig. 3–F we show each of these mode
susceptibilities χmα as a function of their corresponding singular value. They show extremely similar
divergent behavior with respect to the mode α = 1, with an apparent slight variation of the critical
point for each mode, although all appear to remain close to the predicted wα ∼ 4, suggesting that
the subsequent transitions may be of similar mean-field nature. Exceeding second-order phase
transitions has a very strong impact on the overall quality of the training, in particular on the quality
of the log-likelihood gradient estimated by MCMC dynamics. Indeed, second-order transitions
are associated with a well-known arresting effect, known as critical slowing-down behavior, by
which the thermalization times diverge with the correlation length ξz ∝ |β − βc|−νz , where z is
the dynamical critical exponent, which is 2 for local and non-conserved order parameter moves in
mean-field, making the thermalization of large systems extremely difficult in practice. We show
that our exponential relaxation times diverge exactly as predicted in Fig. 3–G. This has a significant
impact on the quality of models trained with maximum likelihood approaches, as these methods
rely on MCMC to estimate gradients. It is therefore expected that MCMC mixing times increase
sharply each time a mode is coded, which can be prohibitive for clustered and high-dimensional
datasets. Recent studies have shown that pre-training a low-rank RBM using other methods (and thus
bypassing the initial phase transitions) can be very effective in improving the models in clustered
datasets [40]. However, we emphasize that the cascade of phase transitions described in this paper
occurs regardless of the training scheme or whether the Markov chains reach equilibrium. This is
discussed further in SI H.

Extensions and limitations– All these results can be studied in detail for RBMs thanks to the fact
that we can analytically deal with the Hamiltonian. However, our results can be extended to the case
of Deep Boltzmann Machines, where previous works have also computed the phase diagram, which
are also based on the SVD decomposition of the weighing matrices [11], but also in diffusion models
where phase transitions linked to the learning has also been described [24, 26]. It therefore stands to
reason that similar phenomena occur with even more complex models such as Convolutional EBM,
but where it is not clear how the parameters of the model can be decomposed. A first test would be to
see what the projection of the generated data would look like in the different phases of learning.

6 Conclusions

In this paper, we first characterized the learning mechanism of RBMs using a simplified setting with a
dataset provided by a simple teacher model. We used two examples: one with two symmetric clusters
and another with four correlated clusters. Our results show that the learning dynamics identify modes
by exponential growth in the directions of the clusters dominated by the variances of these clusters.
The theory predicts the timing of the first phase transitions and agrees well with [8]. Numerically, we
have confirmed the existence of a cascade of phase transitions associated with the growing modes
wα and accompanied by divergent susceptibility. Finite-size scaling suggests that these transitions
are critical and fall into the class of mean-field universality. This set of phase transitions likely goes
beyond RBMs and offers insights into learning mechanisms, particularly for generative models. These
transitions have significant implications for both training and understanding the learned features.
During training, each transition is associated with a divergent MCMC relaxation time, which requires
careful handling to properly train the model. In addition, the hysteresis phenomenon ensures that
the learning trajectory involves second-order phase transitions, which are beneficial for tracking
the emergence of modes in the learned distribution. However, changing parameters (such as the
local bias) could lead to first-order transitions that are detrimental to sampling and could explain
the ineffectiveness of parallel tempering in the presence of temperature changes. In practice, our
analysis shows that the principal directions of the weight matrix contain valuable information for
understanding the learned model.
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A Binary-Gauss RBM

We add some technical details to the derivation of the dynamical process. We first recall the definition
of general BG-RBM first. BG-RBMs consist of a bipartite model where the visible nodes v are
binary (in our case ±1) and the hidden nodes are Gaussians. The Hamiltonian follows the same
expression as the BB-RBM, Eq. 1. The hidden nodes are Gaussian random variables centred in zero
with variance σ2

h. In our analysis where we use only one or few hidden nodes, it is important that the
variance scales as the inverse of the system’s size σ2

h = 1/Nv in order for the Hamiltonian of the
system to be an extensive property (proportional to Nv). This scaling is crucial for the analysis: if
the energy term scales as the system’s size, then it is possible to have two distinct phases: for small
weight magnitude, the system is disordered (it does not polarize in any particular direction) while for
large values of w the system will polarize toward one of the direction encoded in the weight matrix.
A more detailed description can be found in [30, 41].

Now, recall that we consider the Mattis model, biased toward a pattern ξ for generating the dataset

pMattis(v) =
1

ZMattis
exp


 β

2Nv

(
Nv∑

i=1

ξivi

)2



where β is the inverse temperature β = 1/T and ξi = ±1 represents a potential pattern direction. The
Mattis model presents a high-temperature phase with a single model centred over zero magnetization
m = N−1

Nv

∑
i vi = 0 for β < βc while in the low-temperature regime, β > βc, the model exhibits a

phase transition between two symmetric modes m = ±m0(β). From the analytical point of view, we
can compute all interesting quantities in the thermodynamics limit Nv → ∞. The RBM’s distribution
is given by

pRBM (h,v) =
1

ZRBM
exp

(∑

i

vihwi −
h2Nv

2

)

pRBM (v) =
1

Z
exp

(
(
∑

i viwi)
2

2Nv

)

Using this model for the learning, the time evolution of the weights is given by the gradient. With
BG-RBM we have that

⟨vih⟩ =
∑

{v}

∫
dhvihp(v, h) =

∑

{v}

∫
dhvihp(h|v)p(v) (8)

=
1

Nv

∑

{v}
vi
∑

j

vjp(v)wj =
1

Nv

∑

j

wj⟨vivj⟩p (9)

where the last average is taken over a distribution p(v). We can now easily compute the positive and
negative term of the gradient w.r.t. the weight matrix. For the positive term, assuming that β > 1, we
obtain that

⟨vivj⟩D =
1

ZMattis

∫
dm
∑

{v}
vivj exp

(
−βNv

m2

2
+mβ

∑

k

ξkvk

)

=
1

ZMattis

∫
dm tanh(βξim) tanh(βξjm) exp

(
−βNv

m2

2
+
∑

k

log 2 cosh(βξkm)

)

Evaluating the saddle point of the argument of the exponential (which is the same as the one for the
partition function) we have that

⟨vivj⟩D = ξiξjm
2 where m = tanh (βm)
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The negative term can also be computed in the thermodynamic limit

⟨vivj⟩RBM =
1

ZRBM

∫
dh
∑

v

vivj exp

(∑

k

vkhwk − h2Nv

2

)

=

∫
dh

1

ZRBM
tanh(hwi) tanh(hwj) exp

(∑

k

log [2 cosh(hwk)]−
h2Nv

2

)

= tanh(h∗wi) tanh(h
∗wj) with h∗ =

1

Nv

∑

k

wk tanh(h
∗wk)

where the last line is obtain by taking the saddle point of the integral over h, (h∗ corresponding to the
extremum). We can now express the gradient as

dwi

dt
=

1

Nv
ξi
∑

k

ξkwkm
2 − 1

Nv

∑

k

wk tanh(h
∗wk) tanh(h

∗wi)

=
1

Nv
ξi
∑

k

ξkwkm
2 − h∗ tanh(h∗wi)

Assuming first that the weights are small we get that h∗ = 0. We can solve the gradient’s equations
in this regime. In such case, the only solution for the saddle point equation of the RBM is given by
h∗ = 0 and we can see that the solution of the evolution of the weight is global toward the direction
ξ by projecting the differential equation on the preferred direction. Defining Uξ = N

−1/2
v

∑
i ξiwi,

we obtain
dUξ

dt
= m2Uξ thus Uξ = U0

ξ e
m2t.

This shows that the weights are growing in the direction of ξ while the projection on any orthogonal
direction ϕα stays constant:

ϕα · dw
dt

=
m2

Nv
(ϕα · ξ)(w · ξ) = 0 since ϕα · ξ = 0

When the weights grow larger, the solution for h∗ will depart from zero. The correlation of the
learning RBM then starts to grow

⟨vivj⟩RBM ≈ 1

Z

∫
dhh2wiwj exp

(
−Nvh

2

2
+
∑

k

h2w2
k

2

)
= wiwj

1

Nv (1−
∑

k w
2
k/Nv)

χ =
∑

i,j

ξjξi⟨vivj⟩RBM ≈
(∑

i

ξiwi

)2
1

Nv (1−
∑

i w
2
i /Nv)

and diverges when N−1
v

∑
i w

2
i ∼ 1, therefore exhibiting a second order phase transition during the

learning. Finally, we can study the regime where the weights are not small. In that case, we can first
observe that the evolution of the directions orthogonal to ξ, ϕα are given by

∑

i

ϕα
i

dwi

dt
=

m2

Nv

∑

i

ϕα
i ξi
∑

k

ξkwk −
∑

i

ϕα
i h

∗ tanh(h∗wi) = −
∑

i

ϕα
i h

∗ tanh(h∗wi)

which will cancel if the weight W aligns totally with the ξ. Finally, taking wi = ξiw, the gradient
projected along ξ at stationarity imposes

wm2 = h∗ tanh(h∗w) and thus w =
√

β and h∗ =
√

βm

B Binary-Binary RBM

The RBM sharing both discrete binary variables on the visible and hidden nodes is by far the most
commonly used. In particular, using binary nodes in the hidden layer instead of the Gaussian
distribution allows the model to potentially fit any order correlations of the dataset. In this section, we
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review how the learning dynamics translate to this case, using for simplicity binary {±1} variables.
In order to obtain an interesting behavior in this phase of the learning, it is important to consider a
particular parametrization of the RBM. We consider that all hidden nodes share the same weight.
This is important to be able to have a recall phase transition in the model. We therefore have the
following Hamiltonian

H = − 1

Nh

∑

i

viwi

∑

a

ha (10)

where Nh = αNv is the number of hidden nodes ha of the system and the vector W correspond to
the weight shared across all the hidden nodes. In this model, we can now compute the positive and
negative of the gradient. The first one is given by

1

Nh
⟨vi
∑

a

ha⟩D =
1

ZMattis

∑

v

∫
dmvi exp


−βm2Nv

2
+mβ

∑

j

ξjvj


 1

Nh

∑

a

tanh


N−1

h

∑

j

wjvj




=
1

ZMattis

∑

v

∫
dmdτvi exp


−βm2Nv

2
+mβ

∑

j

ξjvj


 δ(τ −N−1

h

∑

j

wjvj) tanh(τ)

=
1

ZMattis

∑

v

∫
dτdτ̄dmvi exp


−βm2Nv

2
+mβ

∑

j

ξjvj


 tanh(τ)eiτ τ̄−iN−1

h τ̄
∑

j wjvj

=
1

ZMattis

∫
dmdτdτ̄e−βm2Nv/2+iτ τ̄ tanh(ξimβ − iN−1

h τ̄wi) tanh(τ)

× exp


∑

j

log cosh
[
ξjβm− iN−1

h τ̄wj

]



finding the saddle point of the argument in the exponential, we obtain

1

Nh
⟨vi
∑

a

ha⟩D = ξi tanh(βm) tanh


 m

Nh

∑

j

ξjwj


 = ξim tanh


 m

Nh

∑

j

ξjwj




The same type of computation can be done for the negative term, we found that
1

Nh
⟨vi
∑

a

ha⟩RBM = ξiτ tanh (wiτ)

τ = tanh


 1

Nh

∑

j

wj tanh (wjτ)




Again, in the small coupling regime (or at the beginning of the learning), when N−1
h

∑
j w

2
j ≪ 1, we

have that τ = 0. In such case, the gradient over the weight matrix is given by

dwi

dt
= ξim tanh


 m

Nh

∑

j

ξjwj




following the same approach as in the main text, we project the weights on the unit vector u1 =
ξ/

√
Nv, Uξ = u1W , which gives

dUξ

dt
=
√

Nvm tanh

(
m
√
Nv

Nh
Uξ

)

We can integrate this equation, obtaining the solution

sinh

(
m√
Nvα

Uξ(t)

)
= sinh

(
m√
Nvα

Uξ(0)

)
exp

(
m2t

α

)

Uξ(t) = Uξ(0) exp

(
m2t

α

)
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Figure 5: Left: learning behavior of the Binary-Binary RBM, using data from the Mattis model.
The different curves correspond to systems of size Nv = 900 at inverse temperature β = 1.4 with
learning rate ϵ = 0.03, 0.04, 0.05 and Nh = 400, 700, 1000 respectively. The argument of the
exponential curves are not adjusted but set to m2ϵ/α. Right: we illustrate the RBM’s dynamics in
the binary-binary case with β = 1.4 and Nv = 900, Nh = 400. First the eigenvector uα=1 aligns
itself with the pattern ξ. Then, the eigenvalue wα=1 grows exponentially until reaching saturation
and when it crosses the value 1, the system develops a spontaneous magnetization.

where the second line is obtained in the very large Nv limit. Again we have an exponential growth in
the first steps of the learning. At the end of the learning, the weights again align in the direction of ξ.
This can be checked by the fact that the positive term of always orthogonal to any vector orthogonal
to ξ, and thus the simplest option for the gradient projected in those direction is to be orthogonal to ξ.
Taking W = u1w, we obtain

m tanh (mw/α) = τ tanh(wτ)

τ = tanh(w tanh(wτ)/α)

The solution can be found numerically by solving the fixed point equation on τ , and measuring the
magnetization of the dataset. In Fig.5 we illustrate our results in the same dataset as in the section 4.1,
taking the Mattis model with Nv = 900, β = 1.4, varying the learning rate and the number of hidden
nodes.

C Learning with correlated patterns

In this part we detail how the learning goes when considering a pair of correlated patterns. As
described in 4.2, the pairs of patterns are defined as

ξ1 = η1 + η2 and ξ2 = η1 − η2

where η1 is a vector whose first Nv
1+κ
2 components are equal to ±1 with equal probability and the

remaining ones are zero. The other vector η2 has its last Nv
1−κ
2 components equal to ±1 with equal

probability and the rest are 0; we also have that κ ∈ [0, 1]. When κ = 1, both patterns ξ1,2 are equal,
while otherwise different but correlated. In particular Eη1,η2 [ξ1ξ2] = Nvκ. Following the results
of [33], it is possible to compute the saddle point equations for the magnetization. The general form
is given by

m1 =
1

Nv

∑

i

ξ1i tanh
(
βm1ξ

1
i + βm2ξ

2
i

)

m2 =
1

Nv

∑

i

ξ2i tanh
(
βm1ξ

1
i + βm2ξ

2
i

)

This system has been solved in [33] and exhibits the following properties. When T > 1 + κ, the
system is in the paramagnetic regime and m1 = m2 = 0. When the temperature is lowered and lies
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in 1− κ < T < 1 + κ, the solution is given by the pair retrieval m1 = m2 = m = 1+κ
2 tanh(2βm).

Finally, when T < 1− κ, the system condensates on the following solution

m1 =
1 + κ

2
tanh (β(m1 +m2)) +

1− κ

2
tanh (β(m1 −m2))

m2 =
1 + κ

2
tanh (β(m1 +m2))−

1− κ

2
tanh (β(m1 −m2))

where basically the system either condensates toward one of the pattern ξ1,2, while the other magneti-
zation has some non-zero value due to the correlation.

We can use the thermodynamics properties of this model to study how the learning of the RBM
should behave in the regime T < 1− κ. In order to use this model as generating the dataset, we need
to compute the correlations ⟨sisj⟩. The model presents four fixed points, all equally probable:

(m1,m2) = (m+,m−) and its symmetric case (m1,m2) = (−m+,−m−)

(m1,m2) = (m−,m+) and its symmetric case (m1,m2) = (−m−,−m+)

where m+ > m− > 0. Therefore, writing r = tanh(β(m+ +m−)) and p = tanh(β(m+ −m−))
we have that

⟨vivj⟩data =
1

4


 ∑

(m1,m2)

[
(η1i + η2i ) tanh(β(m1 +m2))

] [
(η1j + η2j ) tanh(β(m1 +m2))

]



= η1i η
1
j r

2 + η2i η
2
j p

2

because the cross terms η1i η
2
j are canceled when changing (m1 = m+,m2 = m−) to (m1 =

m−,m2 = m+). At this point, it is possible to write the gradient at the linear order and project it
toward both direction η1 and η2. Denoting Ua

η1 = η1 ·wa and Ua
η2 = η2 ·wa, we get

dUa
η1

dt
= r2

1 + κ

2
Ua
η1

dUa
η2

dt
= p2

1− κ

2
Ua
η2

Using this form, we end up with the following solution of the weight matrix

wa
i (t) = wa

i (0) +
η1iU

a
η1(0)

(1 + κ)/2

[
exp

(
r2

1 + κ

2
t

)
− 1

]
+

η2iU
a
η2(0)

(1− κ)/2

[
exp

(
p2

1− κ

2
t

)
− 1

]
(11)

We therefore understand the following. At the beginning of the learning, since r > p, what is learned
first is the mode toward the direction η1 ∝ ξ1 + ξ2, in a timescale that is given by time t ∼ 1/r2.
At a different timescale, the part that is aligned with η2 will grow as well as discussed in the main
text. Following the dynamics of the weights, as in eq. 11, we can infer the moment where the phase
transition occurs. When considering an Hopfield like model, we know that the transition happens
when

β

2Nv

(∑

i

viξi

)2

∼ 1

2Nv

(∑

i

viξi

)2

that is, the critical temperature is βc = 1. Following the dynamics of the weights of eq. 11, and
neglecting the terms that are not aligned with η1 we can write

1

2Nv

(∑

i

viξi

)2

∼
(

Ua
η1(0)

(1 + κ)/2

)2 [
exp

(
r2

1 + κ

2
t

)
− 1

]2
1

2Nv

(∑

i

viη
1
i

)2

βη1(t) =

(
Ua
η1(0)

(1 + κ)/2

)2 [
exp

(
r2

1 + κ

2
t

)
− 1

]2

where we can identify a sort of dynamical temperature associated to the pattern η1. Now, we need to
be careful since by definition, the pattern η1 is made of random ±1 components on its (1 + κ)/2
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Figure 6: Left: the empirical dynamics of the eigenvalues of the weight matrix, here denotes w̃α in
blue. In green, the predicted dynamics as in eq. 11, adjusting only the initial conditions Ua

η1(0) and
Ua
η2(0). We see that the curves cross the line y = 1 at the same moments tI and tII . Right: the free

energy in the plane (h1, h2), the order parameters of the model. For different value of the weights
during learning, we reconstruct the free energy of the system. We clearly see how the RBM first
creates two minima, in the direction of η1, and then, split again to obtain the four fixed points.

elements and zero elsewhere. This rescales the critical temperature by a factor (1 + κ)/2. Therefore
we need to look when

1 + κ

2
βη1(tI) ∼ 1

and the same kind of argument can be used for the second transition with this time

βη2(t) =

(
Ua
η2(0)

(1− κ)/2

)2 [
exp

(
p2

1− κ

2
t

)
− 1

]2

1− κ

2
βη2(tII) ∼ 1

We show in Fig. 6, left panel how the times tI and tII compare with the moment where the eigenvalues
wα of the weight matrix cross the value one, which correspond to the phase transition following a
statistical mechanics approach [8]. We observe that both indicators are crossing the line y = 1 at the
same moment. In Fig. 6, right panel, we plot the behavior of the free energy (in the plane (h1, h2)).
We see that at the moment of the transition, the free energy opens in the direction corresponding to
the transition. Projecting the dataset (black dots) in the same direction as h1 (resp. h2), we can see
how the system correctly positioned the minima once fully trained.

D The datasets and the rescaling

In this work, we illustrated our results on three datasets:

1. The Human Genome Dataset (HGD) [34] containing binary vectors, each representing a
selection of 805 genes from a human individual, where 1s or 0s indicate the presence or
absence of gene mutations relative to a reference sequence.

2. The MNIST dataset [42], containing 28 × 28 pixel black and white images of digitized
handwritten digits.

3. The CelebA [43] dataset, in black-and-white, with 128×128 pixel images of celebrities
faces.

The datasets MNIST and CELEBA, were either downscaled or upscaled in order to create dataset
of various sizes. In practice, the function resize from the python library skimage was used either to
increase or decrease the image size. The dataset HGD is geometrically a one-dimensional structure.
In order to reduce its size, we took the convolution of each sample with a kernel of size s = 3. The
output is one if the sum of the three input values (that are discrete variables in {0, 1}) of the kernel
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dataset Nv Nh ϵ Nms

MNIST 14× 14 250 0.005 500
MNIST 19× 19 500 0.005 500
MNIST 28× 28 1000 0.005 500
MNIST 39× 39 2000 0.005 500
MNIST 56× 56 4000 0.001 500
CelebA 45× 45 125 4 · 10−5 500
CelebA 64× 64 250 4 · 10−5 500
CelebA 90× 90 500 4 · 10−5 500
CelebA 128× 128 1000 4 · 10−5 500
HGD 201 25 0.002 4500
HGD 402 50 0.002 4500
HGD 805 100 0.002 4500

Table 1: Hyperparameters of the RBMs analyzed in the main-text.

is above the threshold 2 and zero otherwise. A stride of 2 has been chosen such that the resulting
samples has its size reduced by a factor two.

E Details on the training and the numerical analysis

E.1 Training

All RBMs analyzed in the main text were trained with the Persistent Contrastive Divergence (PCD)
method [44] and k=100 MCMC sampling steps per parameter update, to approximate the negative
term of the log-likelihood gradient in Eq. (2). In this scheme, the last configurations reached in the
MCMC process to compute the previous update are used as initialization of the new chains used
to compute the subsequent update. This scheme tends to favor the equilibrium regime [29]. The
results with other training schemes is discussed in section H. Moreover, as usual, we keep Nchains

independent parallel Markov chains. For simplicity, Nchains is chosen to match the minibatch size
used to estimate the positive term of the gradient. The code to reproduce the experiments is freely
available in https://github.com/AurelienDecelle/TorchRBM. The hyperparameters used for each
training (no. of visible and hidden units Nv and Nh, respectively, learning rate ϵ or minibatch size
Nms) are given in Table 1.

E.2 Numerical analysis

E.2.1 Susceptibility

Part of the analysis in section 5 of the main text is based on sampling the equilibrium configurations
of models trained at different epochs to extract the moments of the distribution of magnetizations mα,
i.e. the projection of the samples along the different α-th singular vectors of W . For this purpose, we
automatically selected 103 models uniformly in logarithmic scale in training time and annealed the
Ns = 1000 independent samples from the least trained model to the most trained model, following
the hot-to-cold thermal analogy, i.e. we perform Nmesfr alternate Gibbs sampling MCMC steps on
each set of model parameters and use the last achieved configurations as a starting point to initialize
the run on the next set of model parameters. The less trained model is initialized randomly. In parallel,
we also consider the reverse scheme, where we consider a heating annealing. We start with the most
trained machine, where all visible units are initialized to 1 (to force all initial configurations to be in a
single cluster), and move backwards it in training time. We systematically checked that both analyses
gave the same results for Nmesfr = 1000 in the region of interest (the critical region) in Fig. 3 and 4.

In addition to the sampling procedure, we computed the SWD of the matrix W at each new parameter
set and projected each visible configuration v along each of the left singular vectors uα, to obtain
mα = (uα · v)/√Nv, and each hidden configuration h along the right singular ūα vector, to obtain
m̄α = (ūα · v)/√Nv. The distribution moments are later estimated using the sample mean and
variance of these Ns measures.
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E.2.2 Hysteresis loop

To investigate the hysteresis behavior between different lumps at or above the phase transition, we
first select the training epochs in which the first singular values of W , w1, take the values 4, 4.4 and
5. Note that for MNIST w1,c is approximately 4. With the model parameters at each of these three
selected number of updates, we perform Ns independent MCMC runs with the tilted Hamiltonian
from Eq. (G). In these runs, the external field h is gradually varied to trace a loop: starting from h = 0,
we slowly increase it to hmax, then decrease it to −hmax and finally bring it back to h = 0. Again,
the last configurations reached at a certain h are used as initialization for the next one. In practice, we
have chosen hmax/N

0.75
v , the increment in the field as δh = 2× hmax/Nloop and Nloop = 50. We

can modulate the speed of the loop by performing a different number of MCMC steps k at each value
of h. As shown in the figure, we consider k = 10, 100, 1000 and 104. The results shown in the main
text were obtained using the RBM trained with the original CELEBA dataset (i.e. Nv = 128× 128),
but the results obtained with other sizes and datasets are completely analogous.

F Link between the low-rank RBM and Mattis model

Let us consider a low-rank Ising-Ising RBM in which the W matrix has a single non-zero singular
value ω, with left and right singular vectors u and ū, and visible and hidden Ising variables (let’s call
these variables W , s and τ to distinguish them from the binary 0, 1 version, which would be W and
v and h). In this case, the energy function of the RBM (if we ignore the biases for now) is

E(v,h) = −ω(u · v)(ū · h),
which leads to a marginal energy on the visible

E(s) = −
∑

a

log cosh
[√

Nvwū
2
am
]
≈ −1

2
Nvω

2m2 +O(m4), (12)

where we have defined m = u · v/√Nv as the magnetization of the spins along the direction
u and have exploited the fact that

∑
a ū

2
a = 1 because it is a unit vector. One can obtain an

analogous expression for the marginal energy on the hidden units, formulated in terms of the hidden
magnetization m̄ = ū · τ/√Nh. These energy functions, for small m or m̄, are formally equal
to those of the Mattis model for β = ω2, which means that our RBM should manifest a critical
phase transition at βc = T−1

c = ω2
c = 1, with mean-field critical exponents. Standard RBMs are

not formulated as Ising ±1 variables, but in the form of binary {0, 1} variables where we have the
equivalence 4W = W between the couplings matrices. This results in a critical point at wc = 4 and
an effective inverse temperature β = w2/16.

G Hysteresis in discontinuous transitions

The hysteresis phenomenon shown in Fig. 4-E is a classical measure in statistical physics and is
a unique signature developed and observed in statistical physics to reveal that a high-dimensional
probability measure had a phase transition where it splits into two distinct lumps. The procedure is
to tilt the probability measure by introducing a contribution in the energy function that favors one
lump over the other. In the present case, we use the learned preferred direction associated with the
first phase transition u, which is also the direction in which the probability measure splits, and we
add a magnetic field to break the symmetry between the two modes created by the learning process.
Therefore, we tilt the measure by adding

Htilted = HRBM − h
∑

i

uivi.

The tilted Hamiltonian favors one of the two lumps depending on the value of the local bias h.
When the measure is actually concentrated on two distinct lumps, one of them leads to a sudden
discontinuous transition (“first-order transition” in physics). In our case, the lumps are associated with
the learned patterns and this additional contribution consists of the scalar product between the visible
variables and the times of the learned patterns (the field that controls the strength of the tilting). In
the presence of a first-order phase transition, one usually finds the phenomenon of hysteresis, i.e. the
transition from one clump to another can be delayed due to metastability, leading to the characteristic

21



Figure 7: We reproduce Figs. 3A,B and C but for RBMs trained with CD-10 (left) and Rdm-10
(right).

hysteresis loops that we show in Fig. 4-E (see e.g. [45, 46] for a rigorous treatment and [47] for a
physical treatment). This figure thus provides direct evidence for the decomposition of the measure
into distinct lumps corresponding to the learned patterns, and that this decomposition occurs at
the second-order phase transition that occurs during learning. The details about the numerical
implementation are given in Section E.2.2.

H Results with other training schemes

All the machines analyzed in the main text were trained using the PCD-100 scheme, which involves
initializing the chains with the PCD method and performing 100 MCMC steps per parameter update.
This approach ensures that we obtain models in good equilibrium, avoiding the non-monotonic behav-
ior in sample quality typical of out-of-equilibrium regimes [29]. However, it is more computationally
expensive than standard methods, where only k = 1− 10 steps are used, or alternative initialization
strategies like Contrastive Divergence (CD) [48], where chains are initialized using the minibatch
samples at each update, or the fully out-of-equilibrium regime (Rdm), where chains are always
initialized randomly [29, 49].

In this appendix, we analyze RBMs trained with CD-10 and Rdm-10 strategies on the MNIST
dataset. While the time evolution differs -often degrading susceptibility along learning directions—
the overall picture of the cascade of phase transitions remains unchanged. We show the equivalent to
Figs. 3A,B,C with these two new trainings in Fig. 7.
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NeurIPS Paper Checklist

The checklist is designed to encourage best practices for responsible machine learning research,
addressing issues of reproducibility, transparency, research ethics, and societal impact. Do not remove
the checklist: The papers not including the checklist will be desk rejected. The checklist should
follow the references and precede the (optional) supplemental material. The checklist does NOT
count towards the page limit.

Please read the checklist guidelines carefully for information on how to answer these questions. For
each question in the checklist:

• You should answer [Yes] , [No] , or [NA] .

• [NA] means either that the question is Not Applicable for that particular paper or the
relevant information is Not Available.

• Please provide a short (1–2 sentence) justification right after your answer (even for NA).

The checklist answers are an integral part of your paper submission. They are visible to the
reviewers, area chairs, senior area chairs, and ethics reviewers. You will be asked to also include it
(after eventual revisions) with the final version of your paper, and its final version will be published
with the paper.

The reviewers of your paper will be asked to use the checklist as one of the factors in their evaluation.
While "[Yes] " is generally preferable to "[No] ", it is perfectly acceptable to answer "[No] " provided a
proper justification is given (e.g., "error bars are not reported because it would be too computationally
expensive" or "we were unable to find the license for the dataset we used"). In general, answering
"[No] " or "[NA] " is not grounds for rejection. While the questions are phrased in a binary way, we
acknowledge that the true answer is often more nuanced, so please just use your best judgment and
write a justification to elaborate. All supporting evidence can appear either in the main paper or the
supplemental material, provided in appendix. If you answer [Yes] to a question, in the justification
please point to the section(s) where related material for the question can be found.

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: .

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: .

Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
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• The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [NA]
Justification: The theoretical analysis relies on theoretical physics development. In such
context, the full set of assumptions is not state clearly, but the results is expected to be
correct within the range of application. As such no theorem or lemma is provided.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: The method used here is quite standard (RBM training in a simple case), all
the rest is clearly specified.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.
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• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification:

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
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Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification:

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [No]

Justification: The experiment perform are sufficiently precise within the claim of the paper
so they do not need further error bars.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [NA]

Justification: the experiments do not need particular resources and can be trained on personal
laptop.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
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• The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: .

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader Impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]

Justification: .

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: .

Guidelines:

• The answer NA means that the paper poses no such risks.
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• Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: .

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]

Justification: .

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: .
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Guidelines:
• The answer NA means that the paper does not involve crowdsourcing nor research with

human subjects.
• Including this information in the supplemental material is fine, but if the main contribu-

tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: .
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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