
Shuffling Gradient-Based Methods for
Nonconvex-Concave Minimax Optimization

Quoc Tran-Dinh
Department of Statistics and Operations Research

The University of North Carolina at Chapel Hill

quoctd@email.unc.edu

Trang H. Tran
School of OR and Information Engineering

Cornell University, Ithaca, NY

htt27@cornell.edu

Lam M. Nguyen
IBM Research, Thomas J. Watson Research Center

Yorktown Heights, NY

LamNguyen.MLTD@ibm.com

Abstract

This paper aims at developing novel shuffling gradient-based methods for tackling
two classes of minimax problems: nonconvex-linear and nonconvex-strongly con-
cave settings. The first algorithm addresses the nonconvex-linear minimax model
and achieves the state-of-the-art oracle complexity typically observed in nonconvex
optimization. It also employs a new shuffling estimator for the “hyper-gradient”,
departing from standard shuffling techniques in optimization. The second method
consists of two variants: semi-shuffling and full-shuffling schemes. These variants
tackle the nonconvex-strongly concave minimax setting. We establish their oracle
complexity bounds under standard assumptions, which, to our best knowledge, are
the best-known for this specific setting. Numerical examples demonstrate the per-
formance of our algorithms and compare them with two other methods. Our results
show that the new methods achieve comparable performance with SGD, supporting
the potential of incorporating shuffling strategies into minimax algorithms.

1 Introduction
Minimax problems arise in various applications across generative machine learning, game theory,
robust optimization, online learning, and reinforcement learning (e.g., [1, 2, 3, 5, 12, 13, 17, 19, 21,
25, 35, 40]). These models often involve stochastic settings or large finite-sum objective functions.
To tackle these problems, existing methods frequently adapt stochastic gradient descent (SGD)
principles to develop algorithms for solving the underlying minimax problems [4, 13]. For instance,
in generative adversarial networks (GANs), early algorithms employed stochastic gradient descent-
ascent methods where two routines, each using an SGD loop, ran iteratively [13]. However, practical
implementations of SGD often incorporate shuffling strategies, as seen in popular deep learning
libraries like TensorFlow and PyTorch. This has motivated recent research on developing shuffling
techniques specifically for optimization algorithms [4, 5, 8, 16, 26, 32, 38]. Our work builds upon
this trend by developing shuffling methods for two specific classes of minimax problems.

Problem statement. In this paper, we study the following minimax optimization problem:

min
w2Rp

max
u2Rq

n
L(w, u) := f(w) +H(w, u)� h(u) ⌘ f(w) + 1

n

nX

i=1

Hi(w, u)� h(u)
o
, (1)

38th Conference on Neural Information Processing Systems (NeurIPS 2024).

where f : Rp ! R[{+1} is a proper, closed, and convex function, Hi : Rp ⇥Rq ! R are smooth
for all i 2 [n] := {1, 2, · · · , n}, and h : Rq ! R [{+1} is also a proper, closed, and convex
function. In this paper, we will focus on two classes of problems in (1), overlapped to each other.

(NL) Hi is nonconvex in w and linear in u as Hi(w, u) := hFi(w),Kui for a given function
Fi : Rp ! Rm and a matrix K 2 Rq⇥m for all i 2 [n] and (w, u) 2 dom (L).

(NC) Hi is nonconvex in w and Hi(w, ·)�h(·) is strongly concave in u for all (w, u) 2 dom (L).
Although (NC) looks more general than (NL), both cases can be overlapped, but one is not a special
case of the other. Under these two settings, our approach will rely on a bilevel optimization approach,
where the lower-level problem is to solve maxu L(w, u), while the upper-level one is minw L(w, u).
Challenges. The setting (NL) is a special case of stochastic nonconvex-concave minimax problems
because the objective term H(w, u) := hF (w),Kui is linear in u. It is equivalent to the compositional
model (CO) described below. However, if h is only merely convex and not strongly convex (e.g., the
indicator of a standard simplex), then �0 in (CO) becomes nonsmooth regardless of F ’s properties.
This presents our first challenge. A natural approach to address this issue, as discussed in Section 2,
is to smooth �0. The second challenge arises from the composition between the outer function h⇤

and the finite sum F (·) in (CO). Unlike standard finite-sum optimization, this composition prevents
any direct use of existing techniques, requiring a novel approach for algorithmic development and
analysis. The third challenge involves unbiased estimators for gradients or “hyper-gradients” in
minimax problems. Most existing methods rely on unbiased estimators for objective gradients, with
limited work exploring biased estimators. While biased estimators can be used, they require variance
reduction properties (see, e.g., [10]). The setting (NC) faces the same second and third challenges
as the setting (NL). Additionally, when reformulating it as a minimization problem using a bilevel
optimization approach (3), constructing a shuffling estimator for the “hyper-gradient” r�0 becomes
unclear. This requires solving the lower-level maximization problem (2). Therefore, it remains an
open question whether shuffling gradient-type methods can be extended to this bilevel optimization
approach to address (1). In this paper, we address the following research question:

Can we efficiently develop shuffling gradient methods to solve (1) for both (NL) and (NC) settings?

Our attempt to tackle this question leads to a novel way of constructing shuffling estimators for the
hyper-gradient r�0 or its smoothed counterpart. This allows us to develop two shuffling gradient-
based algorithms with rigorous theoretical guarantees on oracle complexity, matching state-of-the-art
complexity results in shuffling-type algorithms for nonconvex optimization.

Related work. Shuffling optimization algorithms have gained significant attention in optimization
and machine communities, demonstrating advantages over standard SGDs, see, e.g., [4, 5, 8, 16, 26,
32, 38]. Nevertheless, applying these techniques to minimax problems like (1) remains challenging,
with limited existing literature (e.g., [3, 8, 11]). Das et al. in [8] explored a specific case of (1)
without nonsmooth terms f and h, assuming strong monotonicity and L-Lipschitz continuity of the
gradient rH := [rwH,�ruH] of the joint objective H. Their algorithm simplifies to a shuffling
variant of fixed-point iteration or a gradient descent-ascent scheme, not applicable to our settings.
Cho and Yun in [3] built upon [8] by relaxing the strong monotonicity to Polyak-Łojasiewicz (PŁ)
conditions. This work is perhaps the most closely related one to our algorithm, Algorithm 2, for the
(NC) setting. Note that the method in [3] exploits Nash’s equilibrium perspective with a simultaneous
update, which is different from our alternative update. Moreover, [3] only considers the noncomposite
case with f = 0 and h = 0. Though we only focus on a nonconvex-strongly-concave setting (NC),
our results here can be extended to the PŁ condition as in [3]. Very recently, Konstantinos et al.
in [11] introduced shuffling extragradient methods for variational inequalities, which encompass
convex-concave minimax problems as a special case. However, this also falls outside the scope of
our work due to the nonconvexity of (1) in w. Again, all the existing works in [3, 8, 11] utilize a
Nash’s equilibrium perspective, while ours leverages a bilevel optimization technique. Besides, in
contrast to our sampling-without-replacement approach, stochastic and randomized methods (i.e.
using i.i.d. sampling strategies) have been extensively studied for minimax problems, see, e.g.,
[9, 14, 15, 18, 22, 23, 31, 37, 42]. A comprehensive comparison can be found, e.g., in [3].

Contribution. Our main contribution can be summarized as follows.

(a) For setting (NL), we suggest to reformulate (1) into a compositional minimization and exploit
a smoothing technique to treat this reformulation. We propose a new way of constructing
shuffling estimators for the “hyper-gradient” r�� (cf. (10)) and establish their properties.

2

(b) We propose a novel shuffling gradient-based algorithm (cf. Algorithm 1) to approximate
an ✏-KKT point of (1) for the setting (NL). Our method requires O(n✏�3) evaluations of
Fi and rFi under the strong convexity of h, and O(n✏�7/2) evaluations of Fi and rFi

without the strong convexity of h, for a desired accuracy ✏ > 0.
(c) For setting (NC), we develop two variants of the shuffling gradient method: semi-shuffling

and full-shuffling schemes (cf. Algorithm 2). The semi-shuffling variant combines both
gradient ascent and shuffling gradient methods to construct a new algorithm, which requires
O(n✏�3) evaluations of both rwHi and ruHi. The full-shuffling scheme allows to perform
both shuffling schemes on the maximization and the minimization alternatively, requiring
either O(n✏�3) or O(n✏�4) evaluations of ruHi depending on our assumptions, while
maintaining O(n✏�3) evaluations of rwHi for a given desired accuracy ✏ > 0.

If a random shuffling strategy is used in our algorithms, then the oracle complexity in all the cases
presented above is improved by a factor of

p
n. Our settings (NL) and (NC) of (1) are different

from existing works [3, 8, 11], as we work with general nonconvexity in w, and linearity or [strong]
concavity in u, and both f and h are possibly nonsmooth. Our algorithms are not reduced or similar
to existing shuffling methods for optimization, but we use shuffling strategies to form estimators for
the hyper-gradient r�0 in (5). The oracle complexity in both settings (NL) and (NC) is similar to
the ones in nonconvex optimization and in a special case of (1) from [3] (up to a constant factor).

Paper outline. The rest of this paper is organized as follows. Section 2 presents our bilevel
optimization approach to (1) and recalls necessary preliminary results. Section 3 develops our
shuffling algorithm to solve the setting (NL) of (1) and establishes its convergence. Section 4 proposes
new shuffling methods to solve the setting (NC) and investigates their convergence. Section 5 presents
numerical experiments, while technical proofs and supporting results are deferred to Supp. Docs.

Notations. For a function f , we use dom (f) to denote its effective domain, and rf for its gradient
or Jacobian. If f is convex, then rf denotes a subgradient, @f is its subdifferential, and prox

f
is

its proximal operator. We use Ft to denote �(w0, w1, · · · , wt), a �-algebra generated by random
vectors w0, w1, · · · , wt, Et[·] = E[·|Ft] is a conditional expectation, and E[·] is the full expectation.
As usual, O(·) denotes Big-O notation in the theory of algorithm complexity.

2 Bilevel Optimization Approach and Preliminary Results
Our approach relies on a bilevel optimization technique [9] in contrast to Nash’s game viewpoint
[24], which treats the maximization as a lower level and the minimization as an upper level problem.

2.1 Bilevel optimization approach
The minimax model (1) is split into a lower-level (i.e. a follower) maximization problem of the form:

�0(w) := max
u2Rq

�
H(w, u)� h(u) ⌘ 1

n

P
n

i=1 Hi(w, u)� h(u)

,

u⇤
0(w) := argmax

u2Rq

�
H(w, u)� h(u) ⌘ 1

n

P
n

i=1 Hi(w, u)� h(u)

.

(2)

For �0 defined by (2), then the upper-level (i.e. the leader) minimization problem can be written as

 ?

0 := min
w2Rp

n
 0(w) := �0(w) + f(w)

o
. (3)

Clearly, this approach is sequential, and only works if �0 is well-defined, i.e. (2) is globally solvable.
Hence, the concavity of H(w, ·)�h(·) w.r.t. to u is crucial for this approach as stated below. However,
this assumption can be relaxed to a global solvability of (2) combined with a PŁ condition as in [3].
Assumption 1 (Basic). Problems (1) and (3) satisfy the following assumptions for all i 2 [n]:

(a) ?

0 := infw 0(w) > �1.
(b) Hi is differentiable w.r.t. (w, u) 2 dom (L) and Hi(w, ·) is concave in u for any w.
(c) Both f : Rp ! R [{+1} and h : Rq ! R [{+1} are proper, closed, and convex.

This assumption remains preliminary. To develop our algorithms, we will need more conditions on
Hi and possibly on f and h, which will be stated later. In addition, we can work with a sublevel set

L 0(w0) := {w 2 dom (0) : 0(w) 0(w0)} (4)

3

of 0 for a given initial point w0 from our methods. If u⇤
0(w) is uniquely well-defined for given

w 2 L 0(w0), then by the well-known Danskin’s theorem, �0 is differential at w and its gradient is

r�0(w) = rwH(w, u⇤
0(w)) =

1
n

P
n

i=1 rwHi(w, u⇤
0(w)). (5)

We adopt the term “hyper-gradient” from bilevel optimization to name r�0 in this paper.

2.2 Technical assumptions and properties of �0 for nonconvex-linear setting (NL)
(a) Compositional minimization formulation. If Hi(w, u) := hFi(w),Kui as in setting (NL), then
(1) is equivalently reformulated into the following nonconvex compositional minimization problem:

min
w2Rp

n
 0(w) := f(w) + �0(w) = f(w) + h⇤

⇣
1
n

nX

i=1

KTFi(w)
⌘o

, (CO)

where h⇤(v) := sup
u
{hv, ui � h(u)}, the Fenchel conjugate of h, and �0(w) = h⇤(KTF (w)). If

h is not strongly convex, then h⇤ is convex but possibly nonsmooth.

(b) Technical assumptions. To develop our algorithms, we also need the following assumptions.
Assumption 2. h is µh-strongly convex with µh � 0, and dom(h) is bounded by Mh < +1.
Assumption 3 (For Fi). For setting (NL) with Hi(w, u) := hFi(w),Kui (i 2 [n]), assume that

(a) Fi is continuously differentiable, and its Jacobian rFi is LFi
-Lipschitz continuous.

(b) Fi is also MFi
-Lipschitz continuous or equivalently, its Jacobian rFi is MFi

-bounded.
(c) There exists a positive constant �J 2 (0,+1) such that

1
n

P
n

i=1 krFi(w)�rF (w)k2 �2
J
, 8w 2 dom (F) . (6)

Assumption 2 allows µh = 0 that also covers the non-strong convexity of h. Assumption 3 is rather
standard to develop gradient-based methods for solving (1). Under Assumption 3, the finite-sum F is
also MF -Lipschitz continuous and the Jacobian rF of F is also LF -Lipschitz continuous with

MF := max{MFi
: i 2 [n]} and LF := max{LFi

: i 2 [n]}. (7)
Condition (6) can be relaxed to the form 1

n

P
n

i=1 krFi(w)�rF (w)k2 �2
J
+⇥Jkr�0(w)k2 for

some ⇥J � 0, where r�0 is a [sub]gradient of �0 or �� (its smoothed approximation). Moreover,
under Assumption 3, if µh > 0, then rh⇤ is Lh⇤-Lipschitz continuous with Lh⇤ := 1

µh

. Thus it is
possible (see [9]) to prove that �0 is differentiable, and r�0 is also L�0 -Lipschitz continuous with
L�0 := MhkKkLF + M

2
F
kKk2

µh

as a consequence of Lemma 4 when � # 0+ in Supp. Doc. A.

(c) Smoothing technique for lower-level maximization problem (2). If h is only merely convex (i.e.
µh = 0), then (2) may not be uniquely solvable, leading to the possible non-differentiability of �0.
Let us define the following convex function:

�0(v) := max
u2Rq

{hv,Kui � h(u)} = h⇤(KT v). (8)

Then, �0 in (2) or (CO) can be written as �0(w) = �0(F (w)) = �0
�
1
n

P
n

i=1 Fi(w)
�
. Our goal is

to smooth �0 if h is not strongly convex, leading to
8
<

:
��(v) := max

u

{hv,Kui � h(u)� �b(u)} ,

u⇤
�
(v) := argmax

u

{hv,Kui � h(u)� �b(u)} ,
(9)

where � > 0 is a given smoothness parameter and b : Rq ! R is a proper, closed, and 1-strongly
convex function such that dom(h) ✓ dom(b). We also denote Db := sup{krb(u)k : u 2 dom (h)}.
In particular, if we choose b(u) := 1

2ku� ūk2 for a fixed ū, then u⇤
�
(v) = prox

h/�
(ū�KT v).

Using �� , problem (CO) can be approximated by its smoothed formulation:

min
w2Rp

n
 �(w) := f(w) + ��(w) = f(w) + ��(F (w)) ⌘ f(w) + ��

⇣
1
n

P
n

i=1 Fi(w)
⌘o

. (10)

To develop our method, one key step is to approximate the hyper-gradient of �� in (10), where

r��(w) = rF (w)Tr��(F (w)) = 1
n

P
n

i=1 rFi(w)Tr��(F (w)). (11)

Then, r�� is L��
-Lipschitz continuous with L��

:= MhkKkLF + M
2
F
kKk2

µh+�
(see Lemma 4).

4

2.3 Technical assumptions and properties of �0 for the nonconvex-strongly-concave setting
To develop our shuffling gradient-based algorithms for solving (1) under the nonconvex-strongly-
concave setting (NC), we impose the following assumptions.
Assumption 4 (For Hi). Hi for all i 2 [n] in (1) satisfies the following conditions:

(a) For any given w such that (w, u) 2 dom (H), Hi(w, ·) is µH -strongly concave w.r.t. u.
(b) rHi is (Lw, Lu)-Lipschitz continuous, i.e. for all (w, u), (ŵ, û) 2 dom (H):

krHi(w, u)�rHi(ŵ, û)k2 L2
w
kw � ŵk2 + L2

u
ku� ûk2. (12)

(c) There exist two constants ⇥w � 0 and �w � 0 such that for (w, u) 2 dom (H), we have

1
n

P
n

i=1 krwHi(w, u)�rwH(w, u)k2 ⇥wkrwH(w, u)k2 + �2
w
. (13)

There exist two constants ⇥u � 0 and �u � 0 such that for all (w, u) 2 dom (H), we have

1
n

P
n

i=1 kruHi(w, u)�ruH(w, u)k2 ⇥ukruH(w, u)k2 + �2
u
. (14)

Assumption 4(a) makes sure that our lower-level maximization of (1) is well-defined. Assumption 4(b)
and (c) are standard in shuffling gradient-type methods as often seen in nonconvex optimization [9].
Lemma 1 (Smoothness of �0). Under Assumptions 2 and 4, u⇤

0(·) in (2) is -Lipschitz continuous
with := Lu

µH+µh

. Moreover, r�0 in (5) is L�0 -Lipschitz continuous with L�0 := (1 +)Lw.

2.4 Approximate KKT points and approximate stationary points
(a) Exact and approximate KKT points and stationary points. A pair (w?, u?) 2 dom (L) is called
a KKT (Karush-Kuhn-Tucker) point of (1) if

0 2 rwH(w?, u?) + @f(w?) and 0 2 �ruH(w?, u?) + @h(u?). (15)

Given a tolerance ✏ > 0, our goal is to find an ✏-approximate KKT point (bw, bu) of (1) defined as

rw 2 rwH(bw, bu) + @f(bw), ru 2 �ruH(bw, bu) + @h(bu), and E
⇥
k[rw, ru]k2

⇤
 ✏2. (16)

A vector w? 2 dom (0) is said to be a stationary point of (3) if

0 2 r�0(w
?) + @f(w?). (17)

Since f is possibly nonsmooth, we can define a stationary point of (3) via a gradient mapping as:

G⌘(w) := ⌘�1
�
w � prox

⌘f
(w � ⌘r�0(w))

�
, (18)

where ⌘ > 0 is given. It is well-known that G⌘(w?) = 0 iff w? is a stationary point of (3). Again,
since we cannot exactly compute w?, we expect to find an ✏-stationary point bwT of (3) such that
E
⇥
kG⌘(bwT)k2

⇤
 ✏2 for a given tolerance ✏ > 0.

(b) Constructing an approximate stationary point and KKT point from algorithms. Our algorithms
below generate a sequence { ewt}Tt�0 such that 1

T+1

P
T

t=0 E
⇥
kG⌘(ewt)k2

⇤
 ✏2. Hence, we construct

an ✏-stationary point bwT using one of the following two options:

bwT := ewt⇤ , where

(
t⇤ := argmin{kG⌘(ewt)k : 0 t T}, (Option 1) or

t⇤ is uniformly randomly chosen from {0, 1, · · · , T} (Option 2).
(19)

Clearly, we have E
⇥
kG⌘(bwT)k2

⇤
 1

T+1

P
T

t=0 E
⇥
kG⌘(ewt)k2

⇤
 ✏2. We need the following result.

Lemma 2. (a) If (w?, u?) is a KKT point of (1), then w? is a stationary point of (3). Conversely, if
w? is a stationary point of (3), then (w?, u⇤

0(w
?)) is a KKT point of (1).

(b) If bwT is an ✏-stationary point of (3) and r�0 is L�0-Lipschitz continuous, then (wT , uT) is an
✏̂-KKT point of (1), where wT := prox

⌘f
(bwT �⌘r�0(bwT)), uT := u⇤

0(wT), and ✏̂ := (1+L�0⌘)✏.

(c) If bwT is an ✏-stationary point of (10), then (wT , uT) is an ✏̂-KKT point of (1), where wT :=
prox

⌘f
(bwT � ⌘r��(bwT)), uT := u⇤

�
(F (wT)), and ✏̂ := max{(1 + L��

⌘)✏, �Db}.

Lemma 2 allows us to construct an ✏̂-approximate KKT point (wT , uT) of (1) from an ✏-stationary
point bwT of either (3) or its smoothed problem (10), where ✏̂ = O(max{✏, �}).

5

2.5 Technical condition to handle the possible nonsmooth term f

To handle the nonsmooth term f of (1) in our algorithms we require one more condition as in [5].
Assumption 5. Let �� be defined by (10), which reduces to �0 given by (2) as � # 0+, and G⌘ be
defined by (18). Assume that there exist two constants ⇤0 � 1 and ⇤1 � 0 such that:

kr��(w)k2 ⇤0kG⌘(w)k2 + ⇤1, 8w 2 dom (�0) . (20)

If f = 0, then G⌘(w) ⌘ r��(w), and Assumption 5 automatically holds with ⇤0 = 1 and ⇤1 = 0.
If f 6= 0, then it is crucial to have ⇤0 � 1 in (20). Let us consider two examples to see why?

(i) If f is Mf -Lipschitz continuous (e.g., `1-norm), then (20) also holds with ⇤0 := 1+ ⌫ > 1
and ⇤1 := 1+⌫

⌫
Mf for a given ⌫ > 0.

(ii) If f = �W , the indicator of a nonempty, closed, convex, and bounded set W , then
Assumption 5 also holds by the same reason as in Example (i) (see Supp. Doc. A).

3 Shuffling Gradient Method for Nonconvex-Linear Minimax Problems
We first propose a new construction using shuffling techniques to approximate the true gradient r��

in (11) for any � � 0. Next, we propose our algorithm and analyze its convergence.

3.1 The shuffling gradient estimators for r��

Challenges. To evaluate r��(w) in (11), we need to evaluate both rF (w) and F (w) at each w.
However, in SGD or shuffling gradient methods, we want to approximate both quantities at each
iteration. Note that this gradient can be written in a finite-sum 1

n

P
n

i=1 rFi(w)Tr��(F (w)) (see
(11)), but every summand requires r��(F (w)), which involves the full evaluation of F .

Our estimators. Let F⇡(t)(i)(w
(t)
i�1) and rF⇡̂(t)(i)(w

(t)
i�1) be the function value and the Jacobian

component evaluated at w(t)
i�1 respectively for i 2 [n], where ⇡(t) = (⇡(t)(1),⇡(t)(2), · · · ,⇡(t)(n))

and ⇡̂(t) = (⇡̂(t)(1), ⇡̂(t)(2), · · · , ⇡̂(t)(n)) are two permutations of [n] := {1, 2, · · · , n}. We want
to use these quantities to approximate the function value F (w(t)

0) and its Jacobian rF (w(t)
0) of F at

w(t)
0 , respectively, where w(t)

0 the iterate vector at the beginning of each epoch t.

For function value F (w(t)
0), we suggest the following approximation at each inner iteration i 2 [n]:

Option 1: F (t)
i

:= 1
n

hP
i

j=1 F⇡(t)(j)(w
(t)
j�1) +

P
n

j=i+1 F⇡(t)(j)(w
(t)
0)

i
. (21)

Alternative to (21), for all i 2 [n], we can simply choose another option:

Option 2: F (t)
i

:= 1
n

P
n

j=1 Fj(w
(t)
0) = 1

n

P
n

j=1 F⇡(t)(j)(w
(t)
0). (22)

For Jacobian rF (w(t)
0), we suggest to use the following standard shuffling estimator for all i 2 [n]:

rF (t)
i

:= rF⇡̂(t)(i)(w
(t)
i�1). (23)

For F (t)
i

from (21) (or (22)) and for rF (t)
i

from (23), we form an approximation of r��(w
(t)
0) as

er��(w
(t)
i�1) := (rF (t)

i
)Tr��(F (t)

i
) ⌘ (rF (t)

i
)TKu⇤

�
(F (t)

i
). (24)

Discussion. The estimator F (t)
i

for F requires n � i more function evaluations F⇡(t)(j)(w
(t)
0) at

each epoch t. The first option (21) for F uses 2n function evaluations Fi, while the second one in
(22) only needs n function evaluations at each epoch t � 0. However, (21) uses the most updated
information up to the inner iteration i compared to (22), which is expected to perform better. The
Jacobian estimator rF (t)

i
is standard and only uses one sample or a mini-batch at each iteration i.

3.2 The shuffling gradient-type algorithm for nonconvex-linear setting (NL)
We propose Algorithm 1, a shuffling gradient-type method, to approximate a stationary point of (10).

Discussion. First, the cost per epoch of Algorithm 1 consists of either 2n or n function evaluations
Fi, and n Jacobian evaluations rFi. Compare to standard shuffling gradient-type methods, e.g., in
[8], Algorithm 1 has either n more evaluations of Fi or the same cost. Second, when implementing

6

Algorithm 1 (Shuffling Proximal Gradient-Based Algorithm for Solving (10))

1: Initialization: Choose an initial point ew0 2 dom (�0) and a smoothness parameter � > 0.
2: for t = 1, 2, · · · , T do
3: Set w(t)

0 := ewt�1;
4: Generate two permutations ⇡(t) and ⇡̂(t) of [n] (identically or randomly and independently)
5: for i = 1, · · · , n do
6: Evaluate F (t)

i
by either (21) or (22) using ⇡(t), and rF (t)

i
by (23) using ⇡̂(t).

7: Solve (9) to get u⇤
�
(F (t)

i
) and form er��(w

(t)
i�1) := (rF (t)

i
)TKu⇤

�
(F (t)

i
).

8: Update w(t)
i

:= w(t)
i�1 �

⌘t

n

er��(w
(t)
i�1);

9: end for
10: Compute ewt := prox

⌘tf
(w(t)

n);
11: end for

Algorithm 1, we do not need to evaluate the full Jacobian rF (t)
i

, but rather the product of matrix
(rF (t)

i
)T and vector r��(F

(t)
i

) as er��(w
(t)
i�1) := (rF (t)

i
)Tr��(F

(t)
i

). Evaluating this matrix-
vector multiplication is much more efficient than evaluating the full Jacobian rF (t)

i
and r��(F

(t)
i

)

individually. Third, thanks to Assumption 5, the proximal step ewt := prox
⌘tf

(w(t)
n) is only required

at the end of each epoch t. This significantly reduces the computational cost if prox
⌘tf

is expensive.

3.3 Convergence Analysis of Algorithm 1 for Nonconvex-Linear Setting (NL)
Now, we are ready to state the convergence result of Algorithm 1 in a short version: Theorem 1. The
full version of this theorem is Theorem 6, which can be found in Supp. Doc. B.
Theorem 1. Suppose that Assumptions 1, 2, 3, and 5 holds for the setting (NL) of (1) and ✏ > 0 is a
sufficiently small tolerance. Let { ewt} be generated by Algorithm 1 after T = O(✏�3) epochs using
arbitrarily permutations ⇡(t) and ⇡̂(t) and a learning rate ⌘t = ⌘ := O(✏) (see Theorem 6 in Supp.
Doc. B for the exact formulas of T and ⌘). Then, we have 1

T+1

P
T

t=0 kG⌘t
(ewt)k2 ✏2.

Alternatively, if { ewt} is generated by Algorithm 1 after T := O(n�1/2✏�3) epochs using two random
and independent permutations ⇡(t) and ⇡̂(t) and a learning rate ⌘t = ⌘ := O(n1/2✏) (see Theorem 6
in Supp. Doc. B for the exact formulas). Then, we have 1

T+1

P
T

t=0 E[kG⌘t
(ewt)k2] ✏2.

Our first goal is to approximate a stationary point w? of (CO) as E[kG⌘(bw)k2] ✏2, while Algorithm 1
only provides an ✏-stationary of (10). For a proper choice of �, it is also an ✏-stationary point of (3).
Corollary 1. Let bwT defined by (19) be generated from { ewt} of Algorithm 1. Under the conditions
of Theorem 1 and any permutations ⇡(t) and ⇡̂(t), the following statements hold.

(a) If h is µh-strongly convex with µh > 0, then we can set � = 0, and Algorithm 1 requires
O(n✏�3) evaluations of Fi and rFi to achieve an ✏-stationary bwT of (3).

(b) If h is only convex (i.e. µh = 0), then we can set � := O(✏), and Algorithm 1 needs
O(n✏�7/2) evaluations of Fi and rFi to achieve an ✏-stationary bwT of (3).

If, in addition, ⇡(t) and ⇡̂(t) are sampled uniformly at random without replacement and independently,
and ⇤1 = O(n�1), then the numbers of evaluations of Fi and rFi are reduced by a factor of

p
n.

4 Shuffling Method for Nonconvex-Strongly Concave Minimax Problems
In this section, we develop shuffling gradient-based methods to solve (1) under the nonconvex-
strongly concave setting (NC). Since this setting does not cover the nonconvex-linear setting (NL) in
Section 3 as a special case, we need to treat it separately using different ideas and proof techniques.

4.1 The construction of algorithm
Unlike the linear case with Hi(w, u) = hFi(w),Kui in Section 3, we cannot generally compute the
solution u⇤

0(ewt�1) in (2) exactly for a given ewt�1. We can only approximate u⇤
0(ewt�1) by some eut.

This leads to another level of inexactness in an approximate “hyper-gradient” er�0(w
(t)
i�1) defined by

er�0(w
(t)
i�1) := rwH⇡̂(t)(i)(w

(t)
i�1, eut). (25)

7

There are different options to approximate u⇤
0(ewt�1). We propose two options below, but other

choices are possible, including accelerated gradient ascent methods and stochastic algorithms [6, 20].

(a1) Gradient ascent scheme for the lower-level problem. We apply a standard gradient ascent
scheme to update eut: Starting from s = 0 with u(t)

0 := eut�1, at each epoch s = 1, · · · , S, we update

bu(t)
s := prox

⌘̂th

�
bu(t)
s�1 +

⌘̂t

n

P
n

i=1 ruHi(ewt�1, bu(t)
s�1)

�
, (26)

for a given learning rate ⌘̂t > 0. Then, we finally output eut := bu(t)
S

to approximate u⇤
0(ewt�1).

To make our method more flexible, we allow to perform either only one iteration (i.e. S = 1) or
multiple iterations (i.e. S > 1) of (26). Each iteration s requires n evaluations of ruHi.

(a2) Shuffling gradient ascent scheme for the lower-level problem. We can also construct eut by
a shuffling gradient ascent scheme. Again, we allow to run either only one epoch (i.e. S = 1) or
multiple epochs (i.e. S > 1) of the shuffling algorithm to update eut, leading to the following scheme:
Starting from s := 1 with bu(t)

0 := eut�1, at each epoch s = 1, 2, · · · , S, having bu(t)
s�1, we generate a

permutation ⇡(s,t) of [n] and run a shuffling gradient ascent scheme as
8
>>>>><

>>>>>:

u(s,t)
0 := bu(t)

s�1,

For i = 1, 2, · · · , n, update

u(s,t)
i

:= u(s,t)
i�1 + ⌘̂t

n
ruH⇡(s,t)(i)(ewt�1, u

(s,t)
i�1),

bu(t)
s := prox

⌘̂th
(u(s,t)

n).

(27)

At the end of the S-th epoch, we output eut := bu(t)
S

as an approximation to u⇤
0(ewt�1). Here, we use

the same learning rate ⌘̂t for all epochs s 2 [S]. Each epoch s requires n evaluations of ruHi.

(b) Shuffling gradient descent scheme for the upper-level minimization problem. Having eut

from either (26) or (27), we run a shuffling gradient descent epoch to update ewt from ewt�1 as
8
>>>>><

>>>>>:

w(t)
0 := ewt�1,

For i = 1, 2, · · · , n, update

w(t)
i

:= w(t)
i�1 �

⌘t

n

er�0(w
(t)
i�1) ⌘ w(t)

i�1 �
⌘t

n
rwH⇡̂(t)(i)(w

(t)
i�1, eut),

ewt := prox
⌘tf

(w(t)
n).

(28)

These two steps (26) (or (27)) in u and (28) in w are implemented alternatively for t = 1, · · · , T .

(c) The full algorithm. Combining both steps (26) (or (27)) and (28), we can present an alternating
shuffling proximal gradient algorithm for solving (1) as in Algorithm 2.

Algorithm 2 (Alternating Shuffling Proximal Gradient Algorithm for Solving (1) under setting (NC))

1: Initialization: Choose an initial point (ew0, eu0) 2 dom (L).
2: for t = 1, 2, · · · , T do
3: Compute eut using either (26) or (27).
4: Set w(t)

0 := ewt�1 and generate a permutation ⇡̂(t) of [n].
5: for i = 1, · · · , n do
6: Evaluate er�0(w

(t)
i�1) := rwH⇡̂(t)(i)(w

(t)
i�1, eut).

7: Update w(t)
i

:= w(t)
i�1 �

⌘t

n

er�0(w
(t)
i�1).

8: end for
9: Compute ewt := prox

⌘tf
(w(t)

n).
10: end for

Discussion. Algorithm 2 has a similar form as Algorithm 1, where u⇤
0(ewt�1) is approximated by eut.

In Algorithm 1, u⇤
0(ewt�1) is approximated by u⇤

�
(F (t)

i
). Moreover, Algorithm 1 solves the smoothed

problem (10) of (3), while Algorithm 2 directly solves (3). Depending on the choice of method to
approximate u⇤

0(ewt�1), we obtain different variants of Algorithm 2. We have proposed two variants:

8

• Semi-shuffling variant: We use (26) for computing eut to approximate u⇤
0(ewt�1).

• Full-shuffling variant: We use (27) for computing eut to approximate u⇤
0(ewt�1).

Note that Algorithm 2 works in an alternative manner, where it approximates u⇤
0(ewt�1) up to a certain

accuracy before updating ewt. This alternating update is very natural and has been widely applied to
solve minimax optimization as well as bilevel optimization problems, see, e.g., [1, 9, 13].

4.2 Convergence analysis
Now, we state the convergence of both variants of Algorithm 2: semi-shuffling and full-shuffling
variants. The full proof of the following theorems can be found in Supp. Doc. C.

(a) Convergence of the semi-shuffling variant. Our first result is as follows.
Theorem 2. Suppose that Assumptions 1, 2, 4, and 5 hold for (1), and G⌘ is defined by (18).

Let {(ewt, eut)} be generated by Algorithm 2 using the gradient ascent scheme (26) with ⌘ := O(✏)

explicitly given in Theorem 8 of Supp. Doc. C, ⌘̂ 2 (0, 2
Lu+µh

], S := O
�
1
⌘̂

�
µh+

4LuµH

Lu+µH

��1�
= O(1),

and T := O(✏�3) explicitly given in Theorem 8. Then, we have 1
T+1

P
T

t=0 kG⌘(ewt)k2 ✏2.

Consequently, Algorithm 2 requires O(n✏�3) evaluations of both rwHi and ruHi to achieve an
✏-stationary point bwT of (3) computed by (19).

Note that Theorem 2 holds for both S > 1 and S = 1 (i.e. we perform only one iteration of (26)).

(b) Convergence of the full-shuffling variant – The case S > 1 with multiple epochs. We state our
results for two separated cases: only Hi is µH -strongly convex, and only h is µh-strongly convex.
Theorem 3 (Strong convexity of Hi). Suppose that Assumptions 1, 2, 4, and 5 hold, and Hi is
µH -strongly concave with µH > 0 for i 2 [n], but h is only merely convex.

Let {(ewt, eut)} be generated by Algorithm 2 using S epochs of the shuffling routine (27) and fixed
learning rates ⌘t = ⌘ := O(✏) as given in Theorem 8 of Supp. Doc. C for a given ✏ > 0,
⌘̂t := ⌘̂ = O(✏), S :=

⌅ ln(7/2)
µH ⌘̂

⇧
, and T := O(✏�3). Then, we have 1

T+1

P
T

t=0 kG⌘(ewt)k2 ✏2.

Consequently, Algorithm 2 requires O(n✏�3) evaluations of rwHi and O(n✏�4) evaluations of
ruHi to achieve an ✏-stationary point bwT of (3) computed by (19).
Theorem 4 (Strong convexity of h). Suppose that Assumptions 1, 2, 4, and 5 hold for (1), and h is
µh-strongly convex with µh > 0, but Hi is only merely concave for all i 2 [n]. Then, under the same
settings as in Theorem 3, but with S :=

⌅ ln(7/2)
µh⌘̂

⇧
, the conclusions of Theorem 3 still hold.

(c) Convergence of the full-shuffling variant – The case S = 1 with one epoch. Both Theorems 3
and 4 require O(n✏�4) evaluations of ruHi. To improve this complexity, we need two additional
assumptions but can perform only one epoch of (27), i.e. S = 1.

Assumption 6. Let Ĝ⌘(u) := ⌘�1(u � prox
⌘h
(u + ⌘ruH(w, u))) be the gradient mapping of

 (w, ·) := �H(w, ·) + h(·). Assume that there exist ⇤̂0 � 1 and ⇤̂1 � 0 such that

kruH(w, u)k2 ⇤̂0kĜ⌘(u)k2 + ⇤̂1, 8(w, u) 2 dom (L) . (29)

Clearly, if h = 0, then Ĝ⌘(u) = �ruH(w, u) and (20) automatically holds for ⇤̂0 = 1 and ⇤̂1 = 0.
Assumption 6 is similar to Assumption 5, and it is required to handle the prox operator of h in (27).
Assumption 7. For f in (1), there exists Lf � 0 such that

f(y) f(x) + hf 0(x), y � xi+ Lf

2 ky � xk2, 8x, y 2 dom (f) , f 0(x) 2 @f(x). (30)

Clearly, if f is Lf -smooth, then (30) holds. If f is also convex, then (30) implies that f is Lf -smooth.

Under these additional assumptions, we have the following result.
Theorem 5. Suppose that Assumptions 1, 2, 4, 5, 6, and 7 hold and G⌘ is defined by (18).

Let {(ewt, eut)} be generated by Algorithm 2 using one epoch (S = 1) of the shuffling routine (27),
and fixed learning rates ⌘t = ⌘ := O(✏) as in Theorem 9 of Supp. Doc. C for a given ✏ > 0, ⌘̂t :=
⌘̂ = 302⌘, and T := O(✏�3), where := Lu

µH+µh

. Then, we have 1
T+1

P
T

t=0 kG⌘(ewt)k2 ✏2.

9

Consequently, Algorithm 2 requires O(n✏�3) evaluations of both rwHi and of ruHi to achieve an
✏-stationary point bwT of (3) computed by (19).

Similar to Algorithm 1, if ⇡(s,t) and ⇡̂(t) are generated randomly and independently, ⇤1 = O(1/n),
and ⇤̂1 = O(1/n), then our complexity stated above can be improved by a factor of

p
n. Nevertheless,

we omit this analysis. Finally, we can combine each Theorem 2, 3, 4 or 5 and Lemma 2 to construct
an ✏̂-KKT point of (1). Theorem 5 has a better complexity than Theorems 3 and 4, but requires
stronger assumptions. Algorithm 2 is also different from the one in [3] both in terms of algorithmic
form and the underlying problem to be solved, while achieving the same oracle complexity.

5 Numerical Experiments
We perform some experiments to illustrate Algorithm 1 and compare it with two existing and related
algorithms. Further details and additional experiments can be found in Supp. Doc. D.

We consider the following regularized stochastic minimax problem studied, e.g., in [9, 33]:

min
w2Rp

n
max

1jm

�
1
n

P
n

i=1 Fi,j(w)

+ �

2 kwk
2
o
, (31)

where Fi,j : Rp ⇥ ⌦! R+ can be viewed as the loss of the j-th model for data point i 2 [n]. If we
define �0(v) := max1jm{vj} and f(w) := �

2 kwk
2, then (31) can be reformulated into (3). Since

vj � 0, we have �0(v) := max1jm{vj} = kvk1 = maxkuk11hv, ui, which is nonsmooth.
Thus we can smooth �0 as ��(v) := maxkuk11{hv, ui � (�/2)kuk2} using b(u) := 1

2kuk
2.

Here, we apply our problem (31) to solve a model selection problem in binary classification with
nonnegative nonconvex losses, see, e.g., [41]. Each function Fi,j belongs to 4 different nonconvex
losses (m = 4): Fi,1(w, ⇠) := 1 � tanh(bihai, wi), Fi,2(w, ⇠) := log(1 + exp(�bihai, wi)) �
log(1 + exp(�bihai, wi � 1)), Fi,3(w, ⇠) := (1 � 1/(exp(�bihai, wi) + 1))2, and Fi,4(w, ⇠) :=
log(1 + exp(�bihai, wi)) (see [41] for more details), where (ai, bi) represents data samples.

We implement 4 algorithms: our SGM with 2 options, SGD from [10], and Prox-Linear from [11].
We test these algorithms on two datasets from LIBSVM [6]. We set � := 10�4 and update the
smooothing parameter �t as �t := 1

2(t+1)1/3
. The learning rate ⌘ for all algorithms is finely tuned

from {100, 50, 10, 5, 1, 0.5, 0.1, 0.05, 0.01, 0.001, 0.0001}, and the results are shown in Figure 1 for
w8a and rcv1 datasets using kb = 32 blocks. The details of this experiment is given in Supp. Doc. D.

Figure 1: The performance of 4 algorithms for solving (31) on two datasets after 200 epochs.

As shown in Figure 1, the two variants of our SGM have a comparable performance with SGD and
Prox-Linear, providing supportive evidence for using shuffling strategies in minimax algorithms.

6 Conclusions
This work explores a bilevel optimization approach to address two prevalent classes of nonconvex-
concave minimax problems. These problems find numerous applications in practice, including robust
learning and generative AIs. Motivated by the widespread use of shuffling strategies in implementing
gradient-based methods within the machine learning community, we develop novel shuffling-based
algorithms for solving these problems under standard assumptions. The first algorithm uses a non-
standard shuffling strategy and achieves the state-of-the-art oracle complexity typically observed in
nonconvex optimization. The second algorithm is also new, flexible, and offers a promising possibility
for further exploration. Our results are expected to provide theoretical justification for incorporating
shuffling strategies into minimax optimization algorithms, especially in nonconvex settings.

10

Acknowledgments and Disclosure of Funding

This work was partly supported by the National Science Foundation (NSF): NSF-RTG grant No. NSF
DMS-2134107 and the Office of Naval Research (ONR), grant No. N00014-23-1-2588.

References
[1] M. Arjovsky, S. Chintala, and L. Bottou. Wasserstein generative adversarial networks. In

International Conference on Machine Learning, pages 214–223, 2017.

[2] M. G. Azar, I. Osband, and R. Munos. Minimax regret bounds for reinforcement learning. In
International Conference on Machine Learning, pages 263–272. PMLR, 2017.

[3] A. Ben-Tal, L. El Ghaoui, and A. Nemirovski. Robust optimization. Princeton University Press,
2009.

[4] A. Beznosikov, E. Gorbunov, H. Berard, and N. Loizou. Stochastic gradient descent-ascent:
Unified theory and new efficient methods. In International Conference on Artificial Intelligence
and Statistics, pages 172–235. PMLR, 2023.

[5] K. Bhatia and K. Sridharan. Online learning with dynamics: A minimax perspective. Advances
in Neural Information Processing Systems, 33:15020–15030, 2020.

[6] C.-C. Chang and C.-J. Lin. LIBSVM: A library for Support Vector Machines. ACM Transactions
on Intelligent Systems and Technology, 2:27:1–27:27, 2011.

[7] H. Cho and C. Yun. SGDA with shuffling: faster convergence for nonconvex-PŁ minimax
optimization. The 11th International Conference on Learning Representations, pp. 1–10, 2022.

[8] A. Das, B. Schölkopf, and M. Muehlebach. Sampling without replacement leads to faster
rates in finite-sum minimax optimization. Advances in Neural Information Processing Systems,
35:6749–6762, 2022.

[9] S. Dempe. Foundations of Bilevel Programming. Springer Science & Business Media, 2002.

[10] D. Driggs, J. Liang, and C.-B. Schönlieb. On biased stochastic gradient estimation. Journal of
Machine Learning Research, vol. 23, no. 24, pp. 1–43, 2022.

[11] K. Emmanouilidis, R. Vidal, and N. Loizou. Stochastic extragradient with random reshuffling:
Improved convergence for variational inequalities. In International Conference on Artificial
Intelligence and Statistics, pages 3682–3690. PMLR, 2024.

[12] G. Gidel, H. Berard, G. Vignoud, P. Vincent, and S. Lacoste-Julien. A variational inequal-
ity perspective on generative adversarial networks. International Conference on Learning
Representations, pp. 1–10, 2019.

[13] I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair, A. Courville, and
Y. Bengio. Generative adversarial nets. In Advances in neural information processing systems,
pages 2672–2680, 2014.

[14] E. Gorbunov, H. Berard, G. Gidel, and N. Loizou. Stochastic extragradient: General analysis
and improved rates. In International Conference on Artificial Intelligence and Statistics, pages
7865–7901. PMLR, 2022.

[15] E. Y. Hamedani, A. Jalilzadeh, N. S. Aybat, and U. V. Shanbhag. Iteration complexity of
randomized primal-dual methods for convex-concave saddle point problems. arXiv preprint
arXiv:1806.04118, 2018.

[16] J. Z. HaoChen and S. Sra. Random shuffling beats SGD after finite epochs. International
Conference on Machine Learning, pp. 2624–2633, 2019.

[17] E. Ho, A. Rajagopalan, A. Skvortsov, S. Arulampalam, and M. Piraveenan. Game theory in
defence applications: A review. Sensors, 22(3):1032, 2022.

11

[18] Y. Hsieh, F. Iutzeler, J. Malick, and P. Mertikopoulos. Explore aggressively, update conserva-
tively: Stochastic extragradient methods with variable stepsize scaling. Advances in Neural
Information Processing Systems, 33:16223–16234, 2020.

[19] Abdul Jabbar, Xi Li, and Bourahla Omar. A survey on generative adversarial networks: Variants,
applications, and training. ACM Computing Surveys (CSUR), 54(8):1–49, 2021.

[20] G. Lan. First-order and Stochastic Optimization Methods for Machine Learning. Springer,
2020.

[21] F. Lin, X. Fang, and Z. Gao. Distributionally robust optimization: A review on theory and
applications. Numerical Algebra, Control & Optimization, 12(1):159, 2022.

[22] N. Loizou, H. Berard, G. Gidel, I. Mitliagkas, and S. Lacoste-Julien. Stochastic gradient
descent-ascent and consensus optimization for smooth games: Convergence analysis under
expected co-coercivity. Advances in Neural Information Processing Systems, 34:19095–19108,
2021.

[23] L. Luo, H. Ye, and T. Zhang. Stochastic recursive gradient descent ascent for stochastic
nonconvex-strongly-concave minimax problems. Advances in Neural Information Processing
Systems, vol. 33, pp. 20566–20577, 2020.

[24] Z. Luo, J. Pang, and D. Ralph. Mathematical Programs with Equilibrium Constraints. Cam-
bridge University Press, Cambridge, 1996.

[25] A. Madry, A. Makelov, L. Schmidt, D. Tsipras, and A. Vladu. Towards deep learning models
resistant to adversarial attacks. In International Conference on Learning Representations, 2018.

[26] Q. Meng, W. Chen, Y. Wang, Z.-M. Ma, and T.-Y. Liu. Convergence analysis of distributed
stochastic gradient descent with shuffling. Neurocomputing, 337:46–57, 2019.

[27] K. Mishchenko, A. Khaled, and P. Richtárik. Random reshuffling: Simple analysis with vast
improvements. Advances in Neural Information Processing Systems, 33:17309–17320, 2020.

[28] K. Mishchenko, A. Khaled, and P. Richtárik. Proximal and federated random reshuffling. In
International Conference on Machine Learning, pages 15718–15749. PMLR, 2022.

[29] Y. Nesterov. Introductory lectures on convex optimization: A basic course, volume 87 of Applied
Optimization. Kluwer Academic Publishers, 2004.

[30] L. M. Nguyen, Q. Tran-Dinh, D. T. Phan, P. H. Nguyen, and M. van Dijk. A unified convergence
analysis for shuffling-type gradient methods. Journal of Machine Learning Research, 22(207):1–
44, 2021.

[31] B. Palaniappan and F. Bach. Stochastic variance reduction methods for saddle-point problems.
In Advances in Neural Information Processing Systems, pages 1416–1424, 2016.

[32] I. Safran and O. Shamir. How good is SGD with random shuffling? Conference on Learning
Theory, pp. 3250–3284, 2020.

[33] A. Shapiro and A. Kleywegt. Minimax analysis of stochastic problems. Optim. Methods Softw.,
17(3):523–542, 2002.

[34] Q. Tran-Dinh, D. Liu, and L. M. Nguyen. Hybrid variance-reduced SGD algorithms for
nonconvex-concave minimax problems. The 34th Conference on Neural Information Processing
Systems (NeurIPs 2020), 2020.

[35] J. Wang, T. Zhang, S. Liu, P.-Y. Chen, J. Xu, M. Fardad, and B. Li. Adversarial attack generation
empowered by min-max optimization. Advances in Neural Information Processing Systems,
34:16020–16033, 2021.

[36] M. Wang, E. Fang, and L. Liu. Stochastic compositional gradient descent: algorithms for
minimizing compositions of expected-value functions. Math. Program., 161(1-2):419–449,
2017.

12

[37] J. Yang, N. Kiyavash, and N. He. Global convergence and variance-reduced optimization for a
class of nonconvex-nonconcave minimax problems. arXiv preprint arXiv:2002.09621, 2020.

[38] B. Ying, K. Yuan, and A. H. Sayed. Convergence of variance-reduced stochastic learning under
random reshuffling. arXiv preprint arXiv:1708.01383, 2(3):6, 2017.

[39] J. Zhang and L. Xiao. Stochastic variance-reduced prox-linear algorithms for nonconvex
composite optimization. Mathematical Programming, pp. 1–43, 2022.

[40] K. Zhang, Z. Yang, and T. Başar. Multi-agent reinforcement learning: A selective overview
of theories and algorithms. Handbook of reinforcement learning and control, pages 321–384,
2021.

[41] L. Zhao, M. Mammadov, and J. Yearwood. From convex to nonconvex: a loss function
analysis for binary classification. In IEEE International Conference on Data Mining Workshops
(ICDMW), pages 1281–1288. IEEE, 2010.

[42] R. Zhao. Optimal stochastic algorithms for convex-concave saddle-point problems. arXiv
preprint arXiv:1903.01687, 2019.

13

NeurIPS Paper Checklist
1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: Our claims made in the abstract reflects our contribution stated in the intro-
duction, see the “Contribution" paragraph in the introduction section. Our contribution
consists of two algorithms, Algorithm 1 and Algorithm 2, and their theoretical convergence
guarantees stated in the subsequent theorems.
Guidelines:
• The answer NA means that the abstract and introduction do not include the claims

made in the paper.
• The abstract and/or introduction should clearly state the claims made, including the

contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: This paper has limitation as it only focuses on two classes of minimax problems
defined in (1). Yes, we only consider two classes of minimax problems: nonconvex-linear
(NL) and convex-strongly concave (NC), covered by our assumption, Assumptions 1 to 5.
Guidelines:
• The answer NA means that the paper has no limitation while the answer No means that

the paper has limitations, but those are not discussed in the paper.
• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs

1

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [Yes]
Justification: We state all required assumptions in Assumptions 1 to 5. Our theoretical
results stated in each theorem also refers to these assumptions when required. Our full
proofs are given in Supp. Docs. due to space limit, and we believe that our technical proofs
are correct.
Guidelines:
• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: We provide the details of our experiments, including mathematical models,
the detailed implementation of algorithms, the choice of parameters, and datasets. We also
upload the code with examples to run and verify.
Guidelines:
• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

2

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [Yes]
Justification: Our data is available online from LIBSVM. The code is implemented in
Python. The code for all experiments is also provided with instruction.
Guidelines:
• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: Supp. Doc. D provides all the details of our experiments, including how to
select parameters, and how to report our results.
Guidelines:
• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [NA]
Justification: The paper does not have such a result to report.
Guidelines:

3

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: Our experiments were run on a MacBook Pro. 2.8GHz Quad-Core Intel Core
I7, 16Gb Memory specified at the beginning of Supp. Doc. D.
Guidelines:
• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: Our data is publicly available online from LIBSVM.
Guidelines:
• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [NA]

4

https://neurips.cc/public/EthicsGuidelines

Justification: We do not yet know if our paper has an immediate broader impact. However,
since our problems and our algorithms are sufficiently general, we hope they will create
broader impacts.
Guidelines:
• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: We do not have our own real data or specific model that has a high risk for
misuse.
Guidelines:
• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [NA]
Justification: Our code is open-source and will be made available online under a standard
public license.
Guidelines:
• The answer NA means that the paper does not use existing assets.

5

• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: It does not have new asset.
Guidelines:
• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: It does not relate to crowdsourcing experiments and research with human
subjects.
Guidelines:
• The answer NA means that the paper does not involve crowdsourcing nor research with

human subjects.
• Including this information in the supplemental material is fine, but if the main contribu-

tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: It does not require any approval.

6

paperswithcode.com/datasets

Guidelines:
• The answer NA means that the paper does not involve crowdsourcing nor research with

human subjects.
• Depending on the country in which research is conducted, IRB approval (or equivalent)

may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

7

	Introduction
	Bilevel Optimization Approach and Preliminary Results
	Bilevel optimization approach
	Technical assumptions and properties of 0 for nonconvex-linear setting (NL)
	Technical assumptions and properties of 0 for the nonconvex-strongly-concave setting
	Approximate KKT points and approximate stationary points
	Technical condition to handle the possible nonsmooth term f

	Shuffling Gradient Method for Nonconvex-Linear Minimax Problems
	The shuffling gradient estimators for
	The shuffling gradient-type algorithm for nonconvex-linear setting (NL)
	Convergence Analysis of Algorithm 1 for Nonconvex-Linear Setting (NL)

	Shuffling Method for Nonconvex-Strongly Concave Minimax Problems
	The construction of algorithm
	Convergence analysis

	Numerical Experiments
	Conclusions
	Technical Results and Proofs
	Convergence Analysis of Algorithm 1 – The NL Setting
	Properties of shuffling estimators
	One-iteration analysis of Algorithm 1: Key lemmas
	The proof of Theorem 6 and Corollary 1 for Algorithm 1

	Convergence Analysis of Algorithm 2 – The NC Setting
	One-epoch analysis: Key lemmas
	Convergence of the semi-shuffling variant of Algorithm 2
	Convergence of the full-shuffling variant of Algorithm 2 – The case S > 1
	Convergence of the full-shuffling variant of Algorithm 2 – The case S=1
	Potential function and a technical lemma
	A key bound for the shuffling gradient descent scheme (28)
	Key bounds for the shuffling gradient ascent scheme (27)
	Convergence analysis of the full-shuffling variant of Algorithm 2 – The case S=1

	Details and Additional Results of Numerical Experiments
	Details of Numerical Experiments in Section 5
	Additional Experiments

