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Abstract

This paper aims at developing novel shuffling gradient-based methods for tackling
two classes of minimax problems: nonconvex-linear and nonconvex-strongly con-
cave settings. The first algorithm addresses the nonconvex-linear minimax model
and achieves the state-of-the-art oracle complexity typically observed in nonconvex
optimization. It also employs a new shuffling estimator for the “hyper-gradient”,
departing from standard shuffling techniques in optimization. The second method
consists of two variants: semi-shuffling and full-shuffling schemes. These variants
tackle the nonconvex-strongly concave minimax setting. We establish their oracle
complexity bounds under standard assumptions, which, to our best knowledge, are
the best-known for this specific setting. Numerical examples demonstrate the per-
formance of our algorithms and compare them with two other methods. Our results
show that the new methods achieve comparable performance with SGD, supporting
the potential of incorporating shuffling strategies into minimax algorithms.

1 Introduction
Minimax problems arise in various applications across generative machine learning, game theory,
robust optimization, online learning, and reinforcement learning (e.g., [1, 2, 3, 5, 12, 13, 17, 19, 21,
25, 35, 40]). These models often involve stochastic settings or large finite-sum objective functions.
To tackle these problems, existing methods frequently adapt stochastic gradient descent (SGD)
principles to develop algorithms for solving the underlying minimax problems [4, 13]. For instance,
in generative adversarial networks (GANs), early algorithms employed stochastic gradient descent-
ascent methods where two routines, each using an SGD loop, ran iteratively [13]. However, practical
implementations of SGD often incorporate shuffling strategies, as seen in popular deep learning
libraries like TensorFlow and PyTorch. This has motivated recent research on developing shuffling
techniques specifically for optimization algorithms [4, 5, 8, 16, 26, 32, 38]. Our work builds upon
this trend by developing shuffling methods for two specific classes of minimax problems.

Problem statement. In this paper, we study the following minimax optimization problem:

min
w2Rp

max
u2Rq

n
L(w, u) := f(w) +H(w, u)� h(u) ⌘ f(w) + 1

n

nX

i=1

Hi(w, u)� h(u)
o
, (1)
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where f : Rp ! R[ {+1} is a proper, closed, and convex function, Hi : Rp ⇥Rq ! R are smooth
for all i 2 [n] := {1, 2, · · · , n}, and h : Rq ! R [ {+1} is also a proper, closed, and convex
function. In this paper, we will focus on two classes of problems in (1), overlapped to each other.

(NL) Hi is nonconvex in w and linear in u as Hi(w, u) := hFi(w),Kui for a given function
Fi : Rp ! Rm and a matrix K 2 Rq⇥m for all i 2 [n] and (w, u) 2 dom (L).

(NC) Hi is nonconvex in w and Hi(w, ·)�h(·) is strongly concave in u for all (w, u) 2 dom (L).
Although (NC) looks more general than (NL), both cases can be overlapped, but one is not a special
case of the other. Under these two settings, our approach will rely on a bilevel optimization approach,
where the lower-level problem is to solve maxu L(w, u), while the upper-level one is minw L(w, u).
Challenges. The setting (NL) is a special case of stochastic nonconvex-concave minimax problems
because the objective term H(w, u) := hF (w),Kui is linear in u. It is equivalent to the compositional
model (CO) described below. However, if h is only merely convex and not strongly convex (e.g., the
indicator of a standard simplex), then �0 in (CO) becomes nonsmooth regardless of F ’s properties.
This presents our first challenge. A natural approach to address this issue, as discussed in Section 2,
is to smooth �0. The second challenge arises from the composition between the outer function h⇤

and the finite sum F (·) in (CO). Unlike standard finite-sum optimization, this composition prevents
any direct use of existing techniques, requiring a novel approach for algorithmic development and
analysis. The third challenge involves unbiased estimators for gradients or “hyper-gradients” in
minimax problems. Most existing methods rely on unbiased estimators for objective gradients, with
limited work exploring biased estimators. While biased estimators can be used, they require variance
reduction properties (see, e.g., [10]). The setting (NC) faces the same second and third challenges
as the setting (NL). Additionally, when reformulating it as a minimization problem using a bilevel
optimization approach (3), constructing a shuffling estimator for the “hyper-gradient” r�0 becomes
unclear. This requires solving the lower-level maximization problem (2). Therefore, it remains an
open question whether shuffling gradient-type methods can be extended to this bilevel optimization
approach to address (1). In this paper, we address the following research question:

Can we efficiently develop shuffling gradient methods to solve (1) for both (NL) and (NC) settings?

Our attempt to tackle this question leads to a novel way of constructing shuffling estimators for the
hyper-gradient r�0 or its smoothed counterpart. This allows us to develop two shuffling gradient-
based algorithms with rigorous theoretical guarantees on oracle complexity, matching state-of-the-art
complexity results in shuffling-type algorithms for nonconvex optimization.

Related work. Shuffling optimization algorithms have gained significant attention in optimization
and machine communities, demonstrating advantages over standard SGDs, see, e.g., [4, 5, 8, 16, 26,
32, 38]. Nevertheless, applying these techniques to minimax problems like (1) remains challenging,
with limited existing literature (e.g., [3, 8, 11]). Das et al. in [8] explored a specific case of (1)
without nonsmooth terms f and h, assuming strong monotonicity and L-Lipschitz continuity of the
gradient rH := [rwH,�ruH] of the joint objective H. Their algorithm simplifies to a shuffling
variant of fixed-point iteration or a gradient descent-ascent scheme, not applicable to our settings.
Cho and Yun in [3] built upon [8] by relaxing the strong monotonicity to Polyak-Łojasiewicz (PŁ)
conditions. This work is perhaps the most closely related one to our algorithm, Algorithm 2, for the
(NC) setting. Note that the method in [3] exploits Nash’s equilibrium perspective with a simultaneous
update, which is different from our alternative update. Moreover, [3] only considers the noncomposite
case with f = 0 and h = 0. Though we only focus on a nonconvex-strongly-concave setting (NC),
our results here can be extended to the PŁ condition as in [3]. Very recently, Konstantinos et al.
in [11] introduced shuffling extragradient methods for variational inequalities, which encompass
convex-concave minimax problems as a special case. However, this also falls outside the scope of
our work due to the nonconvexity of (1) in w. Again, all the existing works in [3, 8, 11] utilize a
Nash’s equilibrium perspective, while ours leverages a bilevel optimization technique. Besides, in
contrast to our sampling-without-replacement approach, stochastic and randomized methods (i.e.
using i.i.d. sampling strategies) have been extensively studied for minimax problems, see, e.g.,
[9, 14, 15, 18, 22, 23, 31, 37, 42]. A comprehensive comparison can be found, e.g., in [3].

Contribution. Our main contribution can be summarized as follows.

(a) For setting (NL), we suggest to reformulate (1) into a compositional minimization and exploit
a smoothing technique to treat this reformulation. We propose a new way of constructing
shuffling estimators for the “hyper-gradient” r�� (cf. (10)) and establish their properties.
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(b) We propose a novel shuffling gradient-based algorithm (cf. Algorithm 1) to approximate
an ✏-KKT point of (1) for the setting (NL). Our method requires O(n✏�3) evaluations of
Fi and rFi under the strong convexity of h, and O(n✏�7/2) evaluations of Fi and rFi

without the strong convexity of h, for a desired accuracy ✏ > 0.
(c) For setting (NC), we develop two variants of the shuffling gradient method: semi-shuffling

and full-shuffling schemes (cf. Algorithm 2). The semi-shuffling variant combines both
gradient ascent and shuffling gradient methods to construct a new algorithm, which requires
O(n✏�3) evaluations of both rwHi and ruHi. The full-shuffling scheme allows to perform
both shuffling schemes on the maximization and the minimization alternatively, requiring
either O(n✏�3) or O(n✏�4) evaluations of ruHi depending on our assumptions, while
maintaining O(n✏�3) evaluations of rwHi for a given desired accuracy ✏ > 0.

If a random shuffling strategy is used in our algorithms, then the oracle complexity in all the cases
presented above is improved by a factor of

p
n. Our settings (NL) and (NC) of (1) are different

from existing works [3, 8, 11], as we work with general nonconvexity in w, and linearity or [strong]
concavity in u, and both f and h are possibly nonsmooth. Our algorithms are not reduced or similar
to existing shuffling methods for optimization, but we use shuffling strategies to form estimators for
the hyper-gradient r�0 in (5). The oracle complexity in both settings (NL) and (NC) is similar to
the ones in nonconvex optimization and in a special case of (1) from [3] (up to a constant factor).

Paper outline. The rest of this paper is organized as follows. Section 2 presents our bilevel
optimization approach to (1) and recalls necessary preliminary results. Section 3 develops our
shuffling algorithm to solve the setting (NL) of (1) and establishes its convergence. Section 4 proposes
new shuffling methods to solve the setting (NC) and investigates their convergence. Section 5 presents
numerical experiments, while technical proofs and supporting results are deferred to Supp. Docs.

Notations. For a function f , we use dom (f) to denote its effective domain, and rf for its gradient
or Jacobian. If f is convex, then rf denotes a subgradient, @f is its subdifferential, and prox

f
is

its proximal operator. We use Ft to denote �(w0, w1, · · · , wt), a �-algebra generated by random
vectors w0, w1, · · · , wt, Et[·] = E[·|Ft] is a conditional expectation, and E[·] is the full expectation.
As usual, O(·) denotes Big-O notation in the theory of algorithm complexity.

2 Bilevel Optimization Approach and Preliminary Results
Our approach relies on a bilevel optimization technique [9] in contrast to Nash’s game viewpoint
[24], which treats the maximization as a lower level and the minimization as an upper level problem.

2.1 Bilevel optimization approach
The minimax model (1) is split into a lower-level (i.e. a follower) maximization problem of the form:

�0(w) := max
u2Rq

�
H(w, u)� h(u) ⌘ 1

n

P
n

i=1 Hi(w, u)� h(u)
 
,

u⇤
0(w) := argmax

u2Rq

�
H(w, u)� h(u) ⌘ 1

n

P
n

i=1 Hi(w, u)� h(u)
 
.

(2)

For �0 defined by (2), then the upper-level (i.e. the leader) minimization problem can be written as

 ?

0 := min
w2Rp

n
 0(w) := �0(w) + f(w)

o
. (3)

Clearly, this approach is sequential, and only works if �0 is well-defined, i.e. (2) is globally solvable.
Hence, the concavity of H(w, ·)�h(·) w.r.t. to u is crucial for this approach as stated below. However,
this assumption can be relaxed to a global solvability of (2) combined with a PŁ condition as in [3].
Assumption 1 (Basic). Problems (1) and (3) satisfy the following assumptions for all i 2 [n]:

(a)  ?

0 := infw  0(w) > �1.
(b) Hi is differentiable w.r.t. (w, u) 2 dom (L) and Hi(w, ·) is concave in u for any w.
(c) Both f : Rp ! R [ {+1} and h : Rq ! R [ {+1} are proper, closed, and convex.

This assumption remains preliminary. To develop our algorithms, we will need more conditions on
Hi and possibly on f and h, which will be stated later. In addition, we can work with a sublevel set

L 0(w0) := {w 2 dom ( 0) :  0(w)   0(w0)} (4)
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of  0 for a given initial point w0 from our methods. If u⇤
0(w) is uniquely well-defined for given

w 2 L 0(w0), then by the well-known Danskin’s theorem, �0 is differential at w and its gradient is

r�0(w) = rwH(w, u⇤
0(w)) =

1
n

P
n

i=1 rwHi(w, u⇤
0(w)). (5)

We adopt the term “hyper-gradient” from bilevel optimization to name r�0 in this paper.

2.2 Technical assumptions and properties of �0 for nonconvex-linear setting (NL)
(a) Compositional minimization formulation. If Hi(w, u) := hFi(w),Kui as in setting (NL), then
(1) is equivalently reformulated into the following nonconvex compositional minimization problem:

min
w2Rp

n
 0(w) := f(w) + �0(w) = f(w) + h⇤

⇣
1
n

nX

i=1

KTFi(w)
⌘o

, (CO)

where h⇤(v) := sup
u
{hv, ui � h(u)}, the Fenchel conjugate of h, and �0(w) = h⇤(KTF (w)). If

h is not strongly convex, then h⇤ is convex but possibly nonsmooth.

(b) Technical assumptions. To develop our algorithms, we also need the following assumptions.
Assumption 2. h is µh-strongly convex with µh � 0, and dom(h) is bounded by Mh < +1.
Assumption 3 (For Fi). For setting (NL) with Hi(w, u) := hFi(w),Kui (i 2 [n]), assume that

(a) Fi is continuously differentiable, and its Jacobian rFi is LFi
-Lipschitz continuous.

(b) Fi is also MFi
-Lipschitz continuous or equivalently, its Jacobian rFi is MFi

-bounded.
(c) There exists a positive constant �J 2 (0,+1) such that

1
n

P
n

i=1 krFi(w)�rF (w)k2  �2
J
, 8w 2 dom (F ) . (6)

Assumption 2 allows µh = 0 that also covers the non-strong convexity of h. Assumption 3 is rather
standard to develop gradient-based methods for solving (1). Under Assumption 3, the finite-sum F is
also MF -Lipschitz continuous and the Jacobian rF of F is also LF -Lipschitz continuous with

MF := max{MFi
: i 2 [n]} and LF := max{LFi

: i 2 [n]}. (7)
Condition (6) can be relaxed to the form 1

n

P
n

i=1 krFi(w)�rF (w)k2  �2
J
+⇥Jkr�0(w)k2 for

some ⇥J � 0, where r�0 is a [sub]gradient of �0 or �� (its smoothed approximation). Moreover,
under Assumption 3, if µh > 0, then rh⇤ is Lh⇤-Lipschitz continuous with Lh⇤ := 1

µh

. Thus it is
possible (see [9]) to prove that �0 is differentiable, and r�0 is also L�0 -Lipschitz continuous with
L�0 := MhkKkLF + M

2
F
kKk2

µh

as a consequence of Lemma 4 when � # 0+ in Supp. Doc. A.

(c) Smoothing technique for lower-level maximization problem (2). If h is only merely convex (i.e.
µh = 0), then (2) may not be uniquely solvable, leading to the possible non-differentiability of �0.
Let us define the following convex function:

�0(v) := max
u2Rq

{hv,Kui � h(u)} = h⇤(KT v). (8)

Then, �0 in (2) or (CO) can be written as �0(w) = �0(F (w)) = �0
�
1
n

P
n

i=1 Fi(w)
�
. Our goal is

to smooth �0 if h is not strongly convex, leading to
8
<

:
��(v) := max

u

{hv,Kui � h(u)� �b(u)} ,

u⇤
�
(v) := argmax

u

{hv,Kui � h(u)� �b(u)} ,
(9)

where � > 0 is a given smoothness parameter and b : Rq ! R is a proper, closed, and 1-strongly
convex function such that dom(h) ✓ dom(b). We also denote Db := sup{krb(u)k : u 2 dom (h)}.
In particular, if we choose b(u) := 1

2ku� ūk2 for a fixed ū, then u⇤
�
(v) = prox

h/�
(ū�KT v).

Using �� , problem (CO) can be approximated by its smoothed formulation:

min
w2Rp

n
 �(w) := f(w) + ��(w) = f(w) + ��(F (w)) ⌘ f(w) + ��

⇣
1
n

P
n

i=1 Fi(w)
⌘o

. (10)

To develop our method, one key step is to approximate the hyper-gradient of �� in (10), where

r��(w) = rF (w)Tr��(F (w)) = 1
n

P
n

i=1 rFi(w)Tr��(F (w)). (11)

Then, r�� is L��
-Lipschitz continuous with L��

:= MhkKkLF + M
2
F
kKk2

µh+�
(see Lemma 4).
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2.3 Technical assumptions and properties of �0 for the nonconvex-strongly-concave setting
To develop our shuffling gradient-based algorithms for solving (1) under the nonconvex-strongly-
concave setting (NC), we impose the following assumptions.
Assumption 4 (For Hi). Hi for all i 2 [n] in (1) satisfies the following conditions:

(a) For any given w such that (w, u) 2 dom (H), Hi(w, ·) is µH -strongly concave w.r.t. u.
(b) rHi is (Lw, Lu)-Lipschitz continuous, i.e. for all (w, u), (ŵ, û) 2 dom (H):

krHi(w, u)�rHi(ŵ, û)k2  L2
w
kw � ŵk2 + L2

u
ku� ûk2. (12)

(c) There exist two constants ⇥w � 0 and �w � 0 such that for (w, u) 2 dom (H), we have

1
n

P
n

i=1 krwHi(w, u)�rwH(w, u)k2  ⇥wkrwH(w, u)k2 + �2
w
. (13)

There exist two constants ⇥u � 0 and �u � 0 such that for all (w, u) 2 dom (H), we have

1
n

P
n

i=1 kruHi(w, u)�ruH(w, u)k2  ⇥ukruH(w, u)k2 + �2
u
. (14)

Assumption 4(a) makes sure that our lower-level maximization of (1) is well-defined. Assumption 4(b)
and (c) are standard in shuffling gradient-type methods as often seen in nonconvex optimization [9].
Lemma 1 (Smoothness of �0). Under Assumptions 2 and 4, u⇤

0(·) in (2) is -Lipschitz continuous
with  := Lu

µH+µh

. Moreover, r�0 in (5) is L�0 -Lipschitz continuous with L�0 := (1 + )Lw.

2.4 Approximate KKT points and approximate stationary points
(a) Exact and approximate KKT points and stationary points. A pair (w?, u?) 2 dom (L) is called
a KKT (Karush-Kuhn-Tucker) point of (1) if

0 2 rwH(w?, u?) + @f(w?) and 0 2 �ruH(w?, u?) + @h(u?). (15)

Given a tolerance ✏ > 0, our goal is to find an ✏-approximate KKT point ( bw, bu) of (1) defined as

rw 2 rwH( bw, bu) + @f( bw), ru 2 �ruH( bw, bu) + @h(bu), and E
⇥
k[rw, ru]k2

⇤
 ✏2. (16)

A vector w? 2 dom ( 0) is said to be a stationary point of (3) if

0 2 r�0(w
?) + @f(w?). (17)

Since f is possibly nonsmooth, we can define a stationary point of (3) via a gradient mapping as:

G⌘(w) := ⌘�1
�
w � prox

⌘f
(w � ⌘r�0(w))

�
, (18)

where ⌘ > 0 is given. It is well-known that G⌘(w?) = 0 iff w? is a stationary point of (3). Again,
since we cannot exactly compute w?, we expect to find an ✏-stationary point bwT of (3) such that
E
⇥
kG⌘( bwT )k2

⇤
 ✏2 for a given tolerance ✏ > 0.

(b) Constructing an approximate stationary point and KKT point from algorithms. Our algorithms
below generate a sequence { ewt}Tt�0 such that 1

T+1

P
T

t=0 E
⇥
kG⌘( ewt)k2

⇤
 ✏2. Hence, we construct

an ✏-stationary point bwT using one of the following two options:

bwT := ewt⇤ , where

(
t⇤ := argmin{kG⌘( ewt)k : 0  t  T}, (Option 1) or

t⇤ is uniformly randomly chosen from {0, 1, · · · , T} (Option 2).
(19)

Clearly, we have E
⇥
kG⌘( bwT )k2

⇤
 1

T+1

P
T

t=0 E
⇥
kG⌘( ewt)k2

⇤
 ✏2. We need the following result.

Lemma 2. (a) If (w?, u?) is a KKT point of (1), then w? is a stationary point of (3). Conversely, if
w? is a stationary point of (3), then (w?, u⇤

0(w
?)) is a KKT point of (1).

(b) If bwT is an ✏-stationary point of (3) and r�0 is L�0-Lipschitz continuous, then (wT , uT ) is an
✏̂-KKT point of (1), where wT := prox

⌘f
( bwT �⌘r�0( bwT )), uT := u⇤

0(wT ), and ✏̂ := (1+L�0⌘)✏.

(c) If bwT is an ✏-stationary point of (10), then (wT , uT ) is an ✏̂-KKT point of (1), where wT :=
prox

⌘f
( bwT � ⌘r��( bwT )), uT := u⇤

�
(F (wT )), and ✏̂ := max{(1 + L��

⌘)✏, �Db}.

Lemma 2 allows us to construct an ✏̂-approximate KKT point (wT , uT ) of (1) from an ✏-stationary
point bwT of either (3) or its smoothed problem (10), where ✏̂ = O(max{✏, �}).
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2.5 Technical condition to handle the possible nonsmooth term f

To handle the nonsmooth term f of (1) in our algorithms we require one more condition as in [5].
Assumption 5. Let �� be defined by (10), which reduces to �0 given by (2) as � # 0+, and G⌘ be
defined by (18). Assume that there exist two constants ⇤0 � 1 and ⇤1 � 0 such that:

kr��(w)k2  ⇤0kG⌘(w)k2 + ⇤1, 8w 2 dom (�0) . (20)

If f = 0, then G⌘(w) ⌘ r��(w), and Assumption 5 automatically holds with ⇤0 = 1 and ⇤1 = 0.
If f 6= 0, then it is crucial to have ⇤0 � 1 in (20). Let us consider two examples to see why?

(i) If f is Mf -Lipschitz continuous (e.g., `1-norm), then (20) also holds with ⇤0 := 1+ ⌫ > 1
and ⇤1 := 1+⌫

⌫
Mf for a given ⌫ > 0.

(ii ) If f = �W , the indicator of a nonempty, closed, convex, and bounded set W , then
Assumption 5 also holds by the same reason as in Example (i) (see Supp. Doc. A).

3 Shuffling Gradient Method for Nonconvex-Linear Minimax Problems
We first propose a new construction using shuffling techniques to approximate the true gradient r��

in (11) for any � � 0. Next, we propose our algorithm and analyze its convergence.

3.1 The shuffling gradient estimators for r��

Challenges. To evaluate r��(w) in (11), we need to evaluate both rF (w) and F (w) at each w.
However, in SGD or shuffling gradient methods, we want to approximate both quantities at each
iteration. Note that this gradient can be written in a finite-sum 1

n

P
n

i=1 rFi(w)Tr��(F (w)) (see
(11)), but every summand requires r��(F (w)), which involves the full evaluation of F .

Our estimators. Let F⇡(t)(i)(w
(t)
i�1) and rF⇡̂(t)(i)(w

(t)
i�1) be the function value and the Jacobian

component evaluated at w(t)
i�1 respectively for i 2 [n], where ⇡(t) = (⇡(t)(1),⇡(t)(2), · · · ,⇡(t)(n))

and ⇡̂(t) = (⇡̂(t)(1), ⇡̂(t)(2), · · · , ⇡̂(t)(n)) are two permutations of [n] := {1, 2, · · · , n}. We want
to use these quantities to approximate the function value F (w(t)

0 ) and its Jacobian rF (w(t)
0 ) of F at

w(t)
0 , respectively, where w(t)

0 the iterate vector at the beginning of each epoch t.

For function value F (w(t)
0 ), we suggest the following approximation at each inner iteration i 2 [n]:

Option 1: F (t)
i

:= 1
n

hP
i

j=1 F⇡(t)(j)(w
(t)
j�1) +

P
n

j=i+1 F⇡(t)(j)(w
(t)
0 )

i
. (21)

Alternative to (21), for all i 2 [n], we can simply choose another option:

Option 2: F (t)
i

:= 1
n

P
n

j=1 Fj(w
(t)
0 ) = 1

n

P
n

j=1 F⇡(t)(j)(w
(t)
0 ). (22)

For Jacobian rF (w(t)
0 ), we suggest to use the following standard shuffling estimator for all i 2 [n]:

rF (t)
i

:= rF⇡̂(t)(i)(w
(t)
i�1). (23)

For F (t)
i

from (21) (or (22)) and for rF (t)
i

from (23), we form an approximation of r��(w
(t)
0 ) as

er��(w
(t)
i�1) := (rF (t)

i
)Tr��(F (t)

i
) ⌘ (rF (t)

i
)TKu⇤

�
(F (t)

i
). (24)

Discussion. The estimator F (t)
i

for F requires n � i more function evaluations F⇡(t)(j)(w
(t)
0 ) at

each epoch t. The first option (21) for F uses 2n function evaluations Fi, while the second one in
(22) only needs n function evaluations at each epoch t � 0. However, (21) uses the most updated
information up to the inner iteration i compared to (22), which is expected to perform better. The
Jacobian estimator rF (t)

i
is standard and only uses one sample or a mini-batch at each iteration i.

3.2 The shuffling gradient-type algorithm for nonconvex-linear setting (NL)
We propose Algorithm 1, a shuffling gradient-type method, to approximate a stationary point of (10).

Discussion. First, the cost per epoch of Algorithm 1 consists of either 2n or n function evaluations
Fi, and n Jacobian evaluations rFi. Compare to standard shuffling gradient-type methods, e.g., in
[8], Algorithm 1 has either n more evaluations of Fi or the same cost. Second, when implementing
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Algorithm 1 (Shuffling Proximal Gradient-Based Algorithm for Solving (10))

1: Initialization: Choose an initial point ew0 2 dom (�0) and a smoothness parameter � > 0.
2: for t = 1, 2, · · · , T do
3: Set w(t)

0 := ewt�1;
4: Generate two permutations ⇡(t) and ⇡̂(t) of [n] (identically or randomly and independently)
5: for i = 1, · · · , n do
6: Evaluate F (t)

i
by either (21) or (22) using ⇡(t), and rF (t)

i
by (23) using ⇡̂(t).

7: Solve (9) to get u⇤
�
(F (t)

i
) and form er��(w

(t)
i�1) := (rF (t)

i
)TKu⇤

�
(F (t)

i
).

8: Update w(t)
i

:= w(t)
i�1 �

⌘t

n

er��(w
(t)
i�1);

9: end for
10: Compute ewt := prox

⌘tf
(w(t)

n );
11: end for

Algorithm 1, we do not need to evaluate the full Jacobian rF (t)
i

, but rather the product of matrix
(rF (t)

i
)T and vector r��(F

(t)
i

) as er��(w
(t)
i�1) := (rF (t)

i
)Tr��(F

(t)
i

). Evaluating this matrix-
vector multiplication is much more efficient than evaluating the full Jacobian rF (t)

i
and r��(F

(t)
i

)

individually. Third, thanks to Assumption 5, the proximal step ewt := prox
⌘tf

(w(t)
n ) is only required

at the end of each epoch t. This significantly reduces the computational cost if prox
⌘tf

is expensive.

3.3 Convergence Analysis of Algorithm 1 for Nonconvex-Linear Setting (NL)
Now, we are ready to state the convergence result of Algorithm 1 in a short version: Theorem 1. The
full version of this theorem is Theorem 6, which can be found in Supp. Doc. B.
Theorem 1. Suppose that Assumptions 1, 2, 3, and 5 holds for the setting (NL) of (1) and ✏ > 0 is a
sufficiently small tolerance. Let { ewt} be generated by Algorithm 1 after T = O(✏�3) epochs using
arbitrarily permutations ⇡(t) and ⇡̂(t) and a learning rate ⌘t = ⌘ := O(✏) (see Theorem 6 in Supp.
Doc. B for the exact formulas of T and ⌘). Then, we have 1

T+1

P
T

t=0 kG⌘t
( ewt)k2  ✏2.

Alternatively, if { ewt} is generated by Algorithm 1 after T := O(n�1/2✏�3) epochs using two random
and independent permutations ⇡(t) and ⇡̂(t) and a learning rate ⌘t = ⌘ := O(n1/2✏) (see Theorem 6
in Supp. Doc. B for the exact formulas). Then, we have 1

T+1

P
T

t=0 E[kG⌘t
( ewt)k2]  ✏2.

Our first goal is to approximate a stationary point w? of (CO) as E[kG⌘( bw)k2]  ✏2, while Algorithm 1
only provides an ✏-stationary of (10). For a proper choice of �, it is also an ✏-stationary point of (3).
Corollary 1. Let bwT defined by (19) be generated from { ewt} of Algorithm 1. Under the conditions
of Theorem 1 and any permutations ⇡(t) and ⇡̂(t), the following statements hold.

(a) If h is µh-strongly convex with µh > 0, then we can set � = 0, and Algorithm 1 requires
O(n✏�3) evaluations of Fi and rFi to achieve an ✏-stationary bwT of (3).

(b) If h is only convex (i.e. µh = 0), then we can set � := O(✏), and Algorithm 1 needs
O(n✏�7/2) evaluations of Fi and rFi to achieve an ✏-stationary bwT of (3).

If, in addition, ⇡(t) and ⇡̂(t) are sampled uniformly at random without replacement and independently,
and ⇤1 = O(n�1), then the numbers of evaluations of Fi and rFi are reduced by a factor of

p
n.

4 Shuffling Method for Nonconvex-Strongly Concave Minimax Problems
In this section, we develop shuffling gradient-based methods to solve (1) under the nonconvex-
strongly concave setting (NC). Since this setting does not cover the nonconvex-linear setting (NL) in
Section 3 as a special case, we need to treat it separately using different ideas and proof techniques.

4.1 The construction of algorithm
Unlike the linear case with Hi(w, u) = hFi(w),Kui in Section 3, we cannot generally compute the
solution u⇤

0( ewt�1) in (2) exactly for a given ewt�1. We can only approximate u⇤
0( ewt�1) by some eut.

This leads to another level of inexactness in an approximate “hyper-gradient” er�0(w
(t)
i�1) defined by

er�0(w
(t)
i�1) := rwH⇡̂(t)(i)(w

(t)
i�1, eut). (25)
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There are different options to approximate u⇤
0( ewt�1). We propose two options below, but other

choices are possible, including accelerated gradient ascent methods and stochastic algorithms [6, 20].

(a1) Gradient ascent scheme for the lower-level problem. We apply a standard gradient ascent
scheme to update eut: Starting from s = 0 with u(t)

0 := eut�1, at each epoch s = 1, · · · , S, we update

bu(t)
s := prox

⌘̂th

�
bu(t)
s�1 +

⌘̂t

n

P
n

i=1 ruHi( ewt�1, bu(t)
s�1)

�
, (26)

for a given learning rate ⌘̂t > 0. Then, we finally output eut := bu(t)
S

to approximate u⇤
0( ewt�1).

To make our method more flexible, we allow to perform either only one iteration (i.e. S = 1) or
multiple iterations (i.e. S > 1) of (26). Each iteration s requires n evaluations of ruHi.

(a2) Shuffling gradient ascent scheme for the lower-level problem. We can also construct eut by
a shuffling gradient ascent scheme. Again, we allow to run either only one epoch (i.e. S = 1) or
multiple epochs (i.e. S > 1) of the shuffling algorithm to update eut, leading to the following scheme:
Starting from s := 1 with bu(t)

0 := eut�1, at each epoch s = 1, 2, · · · , S, having bu(t)
s�1, we generate a

permutation ⇡(s,t) of [n] and run a shuffling gradient ascent scheme as
8
>>>>><

>>>>>:

u(s,t)
0 := bu(t)

s�1,

For i = 1, 2, · · · , n, update

u(s,t)
i

:= u(s,t)
i�1 + ⌘̂t

n
ruH⇡(s,t)(i)( ewt�1, u

(s,t)
i�1 ),

bu(t)
s := prox

⌘̂th
(u(s,t)

n ).

(27)

At the end of the S-th epoch, we output eut := bu(t)
S

as an approximation to u⇤
0( ewt�1). Here, we use

the same learning rate ⌘̂t for all epochs s 2 [S]. Each epoch s requires n evaluations of ruHi.

(b) Shuffling gradient descent scheme for the upper-level minimization problem. Having eut

from either (26) or (27), we run a shuffling gradient descent epoch to update ewt from ewt�1 as
8
>>>>><

>>>>>:

w(t)
0 := ewt�1,

For i = 1, 2, · · · , n, update

w(t)
i

:= w(t)
i�1 �

⌘t

n

er�0(w
(t)
i�1) ⌘ w(t)

i�1 �
⌘t

n
rwH⇡̂(t)(i)(w

(t)
i�1, eut),

ewt := prox
⌘tf

(w(t)
n ).

(28)

These two steps (26) (or (27)) in u and (28) in w are implemented alternatively for t = 1, · · · , T .

(c) The full algorithm. Combining both steps (26) (or (27)) and (28), we can present an alternating
shuffling proximal gradient algorithm for solving (1) as in Algorithm 2.

Algorithm 2 (Alternating Shuffling Proximal Gradient Algorithm for Solving (1) under setting (NC))

1: Initialization: Choose an initial point ( ew0, eu0) 2 dom (L).
2: for t = 1, 2, · · · , T do
3: Compute eut using either (26) or (27).
4: Set w(t)

0 := ewt�1 and generate a permutation ⇡̂(t) of [n].
5: for i = 1, · · · , n do
6: Evaluate er�0(w

(t)
i�1) := rwH⇡̂(t)(i)(w

(t)
i�1, eut).

7: Update w(t)
i

:= w(t)
i�1 �

⌘t

n

er�0(w
(t)
i�1).

8: end for
9: Compute ewt := prox

⌘tf
(w(t)

n ).
10: end for

Discussion. Algorithm 2 has a similar form as Algorithm 1, where u⇤
0( ewt�1) is approximated by eut.

In Algorithm 1, u⇤
0( ewt�1) is approximated by u⇤

�
(F (t)

i
). Moreover, Algorithm 1 solves the smoothed

problem (10) of (3), while Algorithm 2 directly solves (3). Depending on the choice of method to
approximate u⇤

0( ewt�1), we obtain different variants of Algorithm 2. We have proposed two variants:
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• Semi-shuffling variant: We use (26) for computing eut to approximate u⇤
0( ewt�1).

• Full-shuffling variant: We use (27) for computing eut to approximate u⇤
0( ewt�1).

Note that Algorithm 2 works in an alternative manner, where it approximates u⇤
0( ewt�1) up to a certain

accuracy before updating ewt. This alternating update is very natural and has been widely applied to
solve minimax optimization as well as bilevel optimization problems, see, e.g., [1, 9, 13].

4.2 Convergence analysis
Now, we state the convergence of both variants of Algorithm 2: semi-shuffling and full-shuffling
variants. The full proof of the following theorems can be found in Supp. Doc. C.

(a) Convergence of the semi-shuffling variant. Our first result is as follows.
Theorem 2. Suppose that Assumptions 1, 2, 4, and 5 hold for (1), and G⌘ is defined by (18).

Let {( ewt, eut)} be generated by Algorithm 2 using the gradient ascent scheme (26) with ⌘ := O(✏)

explicitly given in Theorem 8 of Supp. Doc. C, ⌘̂ 2 (0, 2
Lu+µh

], S := O
�
1
⌘̂

�
µh+

4LuµH

Lu+µH

��1�
= O(1),

and T := O(✏�3) explicitly given in Theorem 8. Then, we have 1
T+1

P
T

t=0 kG⌘( ewt)k2  ✏2.

Consequently, Algorithm 2 requires O(n✏�3) evaluations of both rwHi and ruHi to achieve an
✏-stationary point bwT of (3) computed by (19).

Note that Theorem 2 holds for both S > 1 and S = 1 (i.e. we perform only one iteration of (26)).

(b) Convergence of the full-shuffling variant – The case S > 1 with multiple epochs. We state our
results for two separated cases: only Hi is µH -strongly convex, and only h is µh-strongly convex.
Theorem 3 (Strong convexity of Hi). Suppose that Assumptions 1, 2, 4, and 5 hold, and Hi is
µH -strongly concave with µH > 0 for i 2 [n], but h is only merely convex.

Let {( ewt, eut)} be generated by Algorithm 2 using S epochs of the shuffling routine (27) and fixed
learning rates ⌘t = ⌘ := O(✏) as given in Theorem 8 of Supp. Doc. C for a given ✏ > 0,
⌘̂t := ⌘̂ = O(✏), S :=

⌅ ln(7/2)
µH ⌘̂

⇧
, and T := O(✏�3). Then, we have 1

T+1

P
T

t=0 kG⌘( ewt)k2  ✏2.

Consequently, Algorithm 2 requires O(n✏�3) evaluations of rwHi and O(n✏�4) evaluations of
ruHi to achieve an ✏-stationary point bwT of (3) computed by (19).
Theorem 4 (Strong convexity of h). Suppose that Assumptions 1, 2, 4, and 5 hold for (1), and h is
µh-strongly convex with µh > 0, but Hi is only merely concave for all i 2 [n]. Then, under the same
settings as in Theorem 3, but with S :=

⌅ ln(7/2)
µh⌘̂

⇧
, the conclusions of Theorem 3 still hold.

(c) Convergence of the full-shuffling variant – The case S = 1 with one epoch. Both Theorems 3
and 4 require O(n✏�4) evaluations of ruHi. To improve this complexity, we need two additional
assumptions but can perform only one epoch of (27), i.e. S = 1.

Assumption 6. Let Ĝ⌘(u) := ⌘�1(u � prox
⌘h
(u + ⌘ruH(w, u))) be the gradient mapping of

 (w, ·) := �H(w, ·) + h(·). Assume that there exist ⇤̂0 � 1 and ⇤̂1 � 0 such that

kruH(w, u)k2  ⇤̂0kĜ⌘(u)k2 + ⇤̂1, 8(w, u) 2 dom (L) . (29)

Clearly, if h = 0, then Ĝ⌘(u) = �ruH(w, u) and (20) automatically holds for ⇤̂0 = 1 and ⇤̂1 = 0.
Assumption 6 is similar to Assumption 5, and it is required to handle the prox operator of h in (27).
Assumption 7. For f in (1), there exists Lf � 0 such that

f(y)  f(x) + hf 0(x), y � xi+ Lf

2 ky � xk2, 8x, y 2 dom (f) , f 0(x) 2 @f(x). (30)

Clearly, if f is Lf -smooth, then (30) holds. If f is also convex, then (30) implies that f is Lf -smooth.

Under these additional assumptions, we have the following result.
Theorem 5. Suppose that Assumptions 1, 2, 4, 5, 6, and 7 hold and G⌘ is defined by (18).

Let {( ewt, eut)} be generated by Algorithm 2 using one epoch (S = 1) of the shuffling routine (27),
and fixed learning rates ⌘t = ⌘ := O(✏) as in Theorem 9 of Supp. Doc. C for a given ✏ > 0, ⌘̂t :=
⌘̂ = 302⌘, and T := O(✏�3), where  := Lu

µH+µh

. Then, we have 1
T+1

P
T

t=0 kG⌘( ewt)k2  ✏2.
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Consequently, Algorithm 2 requires O(n✏�3) evaluations of both rwHi and of ruHi to achieve an
✏-stationary point bwT of (3) computed by (19).

Similar to Algorithm 1, if ⇡(s,t) and ⇡̂(t) are generated randomly and independently, ⇤1 = O(1/n),
and ⇤̂1 = O(1/n), then our complexity stated above can be improved by a factor of

p
n. Nevertheless,

we omit this analysis. Finally, we can combine each Theorem 2, 3, 4 or 5 and Lemma 2 to construct
an ✏̂-KKT point of (1). Theorem 5 has a better complexity than Theorems 3 and 4, but requires
stronger assumptions. Algorithm 2 is also different from the one in [3] both in terms of algorithmic
form and the underlying problem to be solved, while achieving the same oracle complexity.

5 Numerical Experiments
We perform some experiments to illustrate Algorithm 1 and compare it with two existing and related
algorithms. Further details and additional experiments can be found in Supp. Doc. D.

We consider the following regularized stochastic minimax problem studied, e.g., in [9, 33]:

min
w2Rp

n
max

1jm

�
1
n

P
n

i=1 Fi,j(w)
 
+ �

2 kwk
2
o
, (31)

where Fi,j : Rp ⇥ ⌦! R+ can be viewed as the loss of the j-th model for data point i 2 [n]. If we
define �0(v) := max1jm{vj} and f(w) := �

2 kwk
2, then (31) can be reformulated into (3). Since

vj � 0, we have �0(v) := max1jm{vj} = kvk1 = maxkuk11hv, ui, which is nonsmooth.
Thus we can smooth �0 as ��(v) := maxkuk11{hv, ui � (�/2)kuk2} using b(u) := 1

2kuk
2.

Here, we apply our problem (31) to solve a model selection problem in binary classification with
nonnegative nonconvex losses, see, e.g., [41]. Each function Fi,j belongs to 4 different nonconvex
losses (m = 4): Fi,1(w, ⇠) := 1 � tanh(bihai, wi), Fi,2(w, ⇠) := log(1 + exp(�bihai, wi)) �
log(1 + exp(�bihai, wi � 1)), Fi,3(w, ⇠) := (1 � 1/(exp(�bihai, wi) + 1))2, and Fi,4(w, ⇠) :=
log(1 + exp(�bihai, wi)) (see [41] for more details), where (ai, bi) represents data samples.

We implement 4 algorithms: our SGM with 2 options, SGD from [10], and Prox-Linear from [11].
We test these algorithms on two datasets from LIBSVM [6]. We set � := 10�4 and update the
smooothing parameter �t as �t := 1

2(t+1)1/3
. The learning rate ⌘ for all algorithms is finely tuned

from {100, 50, 10, 5, 1, 0.5, 0.1, 0.05, 0.01, 0.001, 0.0001}, and the results are shown in Figure 1 for
w8a and rcv1 datasets using kb = 32 blocks. The details of this experiment is given in Supp. Doc. D.

Figure 1: The performance of 4 algorithms for solving (31) on two datasets after 200 epochs.

As shown in Figure 1, the two variants of our SGM have a comparable performance with SGD and
Prox-Linear, providing supportive evidence for using shuffling strategies in minimax algorithms.

6 Conclusions
This work explores a bilevel optimization approach to address two prevalent classes of nonconvex-
concave minimax problems. These problems find numerous applications in practice, including robust
learning and generative AIs. Motivated by the widespread use of shuffling strategies in implementing
gradient-based methods within the machine learning community, we develop novel shuffling-based
algorithms for solving these problems under standard assumptions. The first algorithm uses a non-
standard shuffling strategy and achieves the state-of-the-art oracle complexity typically observed in
nonconvex optimization. The second algorithm is also new, flexible, and offers a promising possibility
for further exploration. Our results are expected to provide theoretical justification for incorporating
shuffling strategies into minimax optimization algorithms, especially in nonconvex settings.
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information about the statistical significance of the experiments?
Answer: [NA]
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• The answer NA means that the paper does not include experiments.
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• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).
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they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: Our experiments were run on a MacBook Pro. 2.8GHz Quad-Core Intel Core
I7, 16Gb Memory specified at the beginning of Supp. Doc. D.
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• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
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Answer: [Yes]
Justification: Our data is publicly available online from LIBSVM.
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• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
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eration due to laws or regulations in their jurisdiction).
10. Broader Impacts
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Justification: We do not yet know if our paper has an immediate broader impact. However,
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to point out that an improvement in the quality of generative models could be used to
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feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: We do not have our own real data or specific model that has a high risk for
misuse.
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• Released models that have a high risk for misuse or dual-use should be released with
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that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.
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Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [NA]
Justification: Our code is open-source and will be made available online under a standard
public license.
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• The answer NA means that the paper does not use existing assets.
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• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
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13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: It does not have new asset.
Guidelines:
• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their
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limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
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14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: It does not relate to crowdsourcing experiments and research with human
subjects.
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• The answer NA means that the paper does not involve crowdsourcing nor research with
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• Including this information in the supplemental material is fine, but if the main contribu-
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Justification: It does not require any approval.
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Guidelines:
• The answer NA means that the paper does not involve crowdsourcing nor research with

human subjects.
• Depending on the country in which research is conducted, IRB approval (or equivalent)

may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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