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Abstract

Text-to-image models have shown surprising performance in high-quality image
generation, while also raising intensified concerns about the unauthorized usage
of personal dataset in training and personalized fine-tuning. Recent approaches,
embedding watermarks, introducing perturbations, and inserting backdoors into
datasets, rely on adding minor information vulnerable to adversarial training, limit-
ing their ability to detect unauthorized data usage. In this paper, we introduce a
novel implicit Zero-Watermarking scheme that first utilizes the disentangled style
domain to detect unauthorized dataset usage in text-to-image models. Specifically,
our approach generates the watermark from the disentangled style domain, enabling
self-generalization and mutual exclusivity within the style domain anchored by
protected units. The domain achieves the maximum concealed offset of probability
distribution through both the injection of identifier z and dynamic contrastive
learning, facilitating the structured delineation of dataset copyright boundaries for
multiple sources of styles and contents. Additionally, we introduce the concept of
watermark distribution to establish a verification mechanism for copyright owner-
ship of hybrid or partial infringements, addressing deficiencies in the traditional
mechanism of dataset copyright ownership for AI mimicry. Notably, our method
achieves one-sample verification for copyright ownership in AI mimic generations.
The code is available at: https://github.com/Hlufies/ZWatermarking

1 Introduction

Recent advancements in text-to-image generation technologies [1, 2, 3] have revolutionized art
creation by enabling users to replicate the unique styles of artists and art images through simple
prompts. Simultaneously, text-to-image personalization technologies [4, 5, 6, 7] make it easy to
fine-tune generative models with minimal online personal portfolios, which may not be authorized.
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However, a question arises: are individual styles and contents entitled to copyright protection? Re-
cent studies [8, 9, 10, 11] indicate significant visual and stylistic similarities between AI-generations
and unauthorized datasets. For example, an AI-generated image of "a vast grassland in the style of
Van Gogh’s Starry Night" inherently associates with Van Gogh’s artistic domain, even without direct
replication of the original artwork. Therefore, a new paradigm is needed to emphasize ownership of
styles and content for dataset copyright protection.

Several methods have been proposed for personal dataset copyright protection, including Glaze [12],
DIAGNOSIS [13], and Luo et al. [14]. Glaze safeguards personal datasets by introducing calculated
perturbations to prevent AI style mimicry during fine-tuning, but Bochuan et al. [15] demonstrate
these perturbations are vulnerable to adversarial purification. Furthermore, Glaze’s approach inher-
ently restricts legitimate training uses. Besides, DIAGNOSIS, which constructs backdoors based
on diffusion model memorization, is an approach to copyright protection. However, integrating
backdoors into the datasets may introduce new harmful security risks [16]. Meanwhile, Luo et al. use
digital watermarking to detect unauthorized usage, but it lacks robustness, as shown in [17].

To address the above problems, we introduce an implicit Zero-Watermarking scheme that focuses on
the distinct style and creative essence ingrained within datasets, rather than merely the digital carriers
(e.g., digital images). Inspired by recent studies in disentangled representation learning [18, 19, 20,
21, 22] and IP customization [23, 24, 25], we consider that image generation is conceptualized as a
regularized entanglement of styles and contents, within the mutually exclusive contraction domains
generalized from the anchor of the original samples. Unlike existing methods of embedding invisible
information into protected datasets, our approach quantizes the domains representing protected style
and content representations into implicit watermarks to delineate the copyright boundaries.

In this paper, we aim to generate implicit watermarks from the disentangled style domains of protected
units, enabling self-generalization and mutual exclusivity. Specifically, we initially employ the style
domain encoder to disentangle each protected unit into its style representation, serving as the center
anchor points for the contraction domain. Then, we generalize the contraction domain by the dynamic
contrastive learning between central samples and boundary samples of the specific protected unit.
Finally, the domain achieves the maximum concealed offset of probability distribution through
both the injection of identifier z and dynamic contrastive learning, enabling copyright boundary
delineation quantized as implicit watermarks. During the verification phase, to address the complex
copyright boundaries in image generation with multiple sources of styles and contents, we propose
a verification mechanism utilizing the style domain and watermark distribution to tackle hybrid or
partial infringements. We highlight our main contributions as follows:

1. We propose a novel watermarking method for dataset copyright protection against unautho-
rized AI mimicry. To the best of our knowledge, this work is the first study that facilitates the
structured delineation of dataset copyright boundaries in the disentangled style domain. No-
tably, experiments demonstrate that ours accomplish the one-sample verification challenge
for copyright ownership of hybrid or partial infringements.

2. We utilize strategies for the self-generalization and mutual exclusivity of z-watermarking,
breaking away from the traditional methods of embedding invisible information into datasets.

3. To tackle hybrid or partial infringements in image generation with multiple sources of styles
and contents, we introduce the concept of watermark distribution to establish a verification
mechanism for dataset copyright ownership by the disentangled style domain.

4. Extensive experiments on benchmark datasets demonstrate the effectiveness, robustness,
and versatility of our method against various challenges, including adversarial fine-tuning
methods (e.g., Dreambooth), watermark removal (e.g., Latent attack) and the usage detection
of unauthorized data in black-box cross-APIs and models (e.g., DALL·E·3).

2 Related Works

2.1 Text-to-Image Generation and Diffusion Models

Recently, the field of visual synthesis has experienced significant advancements, with various research
[1, 26, 27, 28, 29, 30, 31, 32] achieving impressive outcomes. Notably, diffusion models [1, 30, 31,
32] have emerged as pioneers in image generation, surpassing earlier models based on adversarial
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generative networks [26, 27] and autoregressive methods [28, 29]. Among these, Stable Diffusion [31]
stands out for its noteworthy contributions to latent diffusion models. Besides, recent studies, such as
Lora [4], Dreambooth [5], Textual inversion [6], and ControlNet [7], have shifted towards personalized
fine-tuning of pre-trained diffusion models. These advancements empower individuals to replicate
specific styles and contents with just minimal shared unauthorized samples.
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Figure 1: The main pipeline of dataset copyright verification with our method. Notably, we use the
watermark extractor (with specific K watermark mapping relationships) and identifier z to detect
protected datasets usage, instead of the traditional embedding and extraction pairing process.

2.2 Preventing Unauthorized Data Usage

There are several ways [12, 13, 14, 33, 34, 35, 36] to prevent unauthorized data usage. Adversarial
example-based methods (i.e., Glaze [12], AdvDM [33], and Anti-Dreambooth [34]) introduce
perturbations to induce mimic models to learn different image styles during training and fine-tuning.
Nevertheless, the added perturbations are dependent on and constrained by the surrogate model,
resulting in weak generalization and transferability. Besides, backdoor-based dataset ownership
verification [13, 35, 36] is conducted by defenders triggering whether suspicious models exhibit
specific backdoor behaviors. However, the integration of backdoors into datasets could introduce new
harmful security risks, as indicated in [16]. At the same time, Luo et al. [14] propose a watermarking
framework for detecting art theft mimicry based on digital watermarking techniques [37, 38, 39, 40].
However, the robustness of these is insufficient, as they are easily removable, as indicated in [17].

2.3 Disentangled Representation Learning

Disentangled representation learning [41] aims to model the factors driving data variations [42].
Early works [43] used labeled data to factorize representations in a supervised manner. Recently,
unsupervised method [44] has been largely explored, especially for disentangling style and content
from the image [45, 42, 46, 47, 48]. Inspired by recent studies in disentangled representation learn-
ing [18, 19, 20, 21, 22] and IP customization [23, 24, 25], we consider that the act of generating
them from scratch requires a deep understanding of the underlying factors and complex generative
processes, unlike mere analysis of text or images. In other words, image generation is conceptualized
as entangled combinations of styles and contents of the original samples. Taking this viewpoint,
we redefine the concept of image beyond digital forms, viewing them as compositions of multiple
representations that serve as class-free guidance for diffusion models in self-disentanglement. Addi-
tionally, since these disentangled representations are mutually exclusive in high-dimensional space,
they naturally demarcate copyright boundaries through mutual exclusivity.

3 Method

3.1 Threat Model

Attacker’s Goal and Capability. Attackers could train or fine-tune on protected datasets (D)
to replicate the styles and contents of personal portfolios, exploiting them for financial gain or
involvement in criminal. The attacker’s capabilities are as follows:
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• Unauthorized access to proprietary datasets, such as personal portfolios and photo albums.

• Utilize data attacks like second-stage fine-tuning, mixed-clean dilution, purification-latent
attack, prompt attack, and data augmentations to remove potentially hidden information.

• Just publicize the APIs and keep the mimicry details hidden, including fine-tuning ap-
proaches and training parameters.

Defender’s Goal and Capability. The defender aims to detect single or minimal instances of mimic
images, i.e., publicly available online or offline, to track back copyright ownership. Before sharing
data, defenders register the identifier z and implicit watermarksWz for protected units with a third
party. The defender’s capabilities are as follows:

• General Ability: Defenders obtain stylized mimic images from known suspicious models or
APIs to verify copyright ownership in black-box setting.

• Limited Ability: Defenders occasionally and randomly acquire minimal (even a single)
mimic images online or offline without any prior knowledge.

3.2 The overview of z-Watermarking

The overview of our method is depicted in Figure 2. Our pipeline consists of three phases. Initially,
all units within the protected dataset are disentangled, with the contraction domain embedded
within the style domain. This is achieved by maximizing the offset via identifier z, ensuring non-
overlap. Subsequently, self-generalization of each contraction occurs through dynamic contrastive
learning between the central and boundary samples of the protected unit. Finally, the watermark is
implicitly quantized based on the mutual exclusivity of contraction domains, leveraging their distinct
representations of style and content.
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Figure 2: Overview of z-watermarking. In this framework, z acts as the key or unique bias of the
disentangled style domain Sz of protected units, andQ denotes the dynamic historical negative queue.

3.3 Disentangled Style Domain for z-Watermarking

The style domain encoder Ez (ResNet) and denoising decoder Dz (UNet with 2m + 1 activation
layers) are formally defined by a pair of forward and backward Markov chains representing a T -steps
transformation from a normal distribution zT ∼ N (0, 1) into the learned distribution z0 ∼ pθ(zx).
We aim to achieve disentanglement of images at the latent level. To this end, we regularize data x into
latent representations zx, which follow a Gaussian distribution N , using a Variational Autoencoder
(VAE) as follows.

qϕ(zx|x) = N (zx;µ(x), σ
2(x)I). (1)

Eq.1 denotes the probability distribution qϕ(zx|x) for zx, which is the mean µ(x) and variance σ2(x)
of zx (i.e., ϕ denotes the parameters of VAE). The style domain encoder is represented as follows:
Ez(zx|(x, ϕ), z) = s, where s = {vi}mi=1 (i.e., s1:m is semantically or visually relates to x). Identifier
z serves as the key or special bias of the style domain Sz . Identifier z can be the spatial embedding
vector (e.g., image, text, audio, model, etc.). In this paper, we set the text ’swz’ to be converted into
text feature embeddings by CLIP (i.e., ϕz) as z, embedding it into E . Then, we partition the vector s
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into m+ 1 sections, which is half the number of layers in the decoder Dz . Each vi ∈ s is utilized
to modulate the corresponding pair of layers (hi, h2m−i), thus fostering specialization among the
latent sub-vectors. Moreover, we implement layer-wise guidance dropout by selectively zeroing out
portions of s1:m, thereby diminishing the decoder’s dependency on sub-vector correlations. The
details and tricks are in the supplemental material, and we derive a pre-trained style encoder trained
in MS-COCO.

Based on the pre-trained style domain encoder, we design the parameters θd of the discriminator
and the θw of watermark extractor. Specifically, let D = {xi}Ki=1 that denotes the protected dataset,
where K is the number of the protection units (i.e., each sample or class with shared attributes). Let
Ds = {x(n)i }

K,N
i=1,n=1 denotes mimic samples that include K subsets of protected units generated by

the surrogate modelM trained onD, where N is the number of mimic samples for the k-th protected
unit. The optimization objective is as follows:

EI(sk,s(n)
k )

[
Ld((sk, s

(n)
k ), z, ck; θd) + Lw(sk, z, wk; θw)

]
s.t. θ∗ = argmin

θ

H1(C,Ds|zθd) +H2(W,Ds|zθw) +
1

|Ds|

K∑
sk∼D

∑
s
(n)
k ∼Ds

(Fs(sk, s
(n)
k ) + ψ)

 ,
(2)

where ck ∈ C denotes the class of k-th protected unit, and wk denotes the mapping watermark
relationship to k-th contraction domain. Fs denotes the cosine similarity function, and L(·) is the
loss function (e.g., H1 is cross entropy loss, H2 is mse loss). Specifically, identifier z denotes the
representation s is shifted to the marginal distribution. Moreover, ψ in Eq.2 represents the domain
regularization term, aimed at achieving dynamic self-generalization and mutual exclusivity of the
contraction domain according to the following constraints as Eq.3 and Eq.4.

1

|Dk+

s |
∑

s+k ∼Dk+
s

I(sk, s+k ) ≤
1

|Dk−
s |

∑
s−k ∼Dk−

s

I(sk, s−k ) ≤ c, (3)

Let xk ∈ D and {x(n)k } = Dk
s ∈ Ds, where Dk

s denotes the similar mimic set of the k-th protected
unit xk. Let Dk

s = Dk+

s +Dk−

s , where x+i ∈ Dk+

s is the central sample of the contraction domain of
xk, and x−i ∈ Dk−

s is the boundary sample of the contraction domain. c denotes the boundary value
of the contraction domain and I(·) denotes the distance function. We aim for the contraction domain
to ensure self-generalization in Eq.3, while evolving mutual exclusivity in Eq.4. Let x¬k ∈ D¬k

s

denote the complement of Dk
s , serving as the negative samples, where D¬k

s = Ds −Dk
s .∏

sk∼Dk
s ,s¬k∼D¬k

s

I(sk, s¬k)≫ (c+ β)|D
k
s |×|D¬k

s |, (4)

where β is a positive hyper-parameter. To achieve the above constraint, let ψ = λ1ψ1 + λ2ψ2,
where λ1, λ2 are two hyper-parameters. ψ1 aim to achieve self-generalization and ψ2 ensures mutual
exclusivity and maximum offset described in §3.4 and §3.5.

3.4 Self-Generalization Module

As previously mentioned, we aim to explore the style boundaries of the contraction around the anchor
sample xk to establish the range we want to protect. ψ1 aims to achieve self-generalization in Eq.5.

ψ1 = − log
exp(sk ⊕ s+i /τ)∑N
i=1 exp(sk ⊕ si/τ)

, (5)

where sk ∼ D, si ∼ Dk
s and s+i ∼ Dk+

s . τ is the temperature parameter. We designate a subset of the
k-th protected unit as positive samples and the rest as negative (normal). Notably, sk is disentangled
by Ez , while si and s+k are disentangled by E ′

z . Representing the parameters of Ez as θ and those
of E ′

z as θ′, we update θ′ by momentum update: θ
′ ← mθ

′
+ (1−m)θ, where m is a momentum

coefficient. Only θ are updated by back-propagation.
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3.5 Mutual Exclusivity Module

Let sk ∼ D, s ∼ Ds and si ∼ Dk
s . The contraction domain of the protected unit is quantized to the

predefined implicit watermark via Ez . Formally, the regularization term ψ2 is defined in Eq.6.

ψ2 = − log
exp(sk ⊕ si/τ)∑

s∼Ds,q∼Q exp(sk ⊕ (s+ q)/τ)
, (6)

where Q denotes the dynamic historical negative queue. Q is initially populated with anomalous
samples and anomaly identifiers, consistently serving as negative instances for contrastive learning.
Here, we also employ momentum updates of E ′

z to encode negative examples.

4 Dataset Copyright Verification via z-Watermarking

One-Sample Verification. We aim to verify copyright ownership using single or minimal mimic
images. To achieve this, we propose leveraging the disentangled style domain to facilitate the
structured delineation of dataset copyright boundaries. Experiments show that our method offers
effective copyright verification, with the single-sample success rate far exceeding the baseline, in
Table 2. The probability of the watermark guided by z in the contraction domain of the protected unit
is denoted as Eq.7.

Pz(x|ϕ ⋍ D) = qϕz
(zemb|z)

2L ·K · (c+ β)K×N2×(K−1)
, (7)

where lim
x→D

Pz(x|ϕ) = η indicates x (mimic sample) originating from protected D is an extremely

unlikely probability event (i.e., η denotes infinitesimal). The occurrence of extremely low-probability
events ensures the credible mathematical basis for the ownership of sample copyrights. Meanwhile,
in generative scenarios, the challenge of identifying the target carrier ( relying solely on manual
similarity judgments) renders traditional one-to-one watermark verification mechanisms limited.

Extensive Statistical Verification. To further validate our method’s effectiveness from multiple
perspectives, we propose the concept of watermark distribution. Assuming the multi-styles and
multi-contents of T datasets are present in Dm, T defenders utilize {Ezt , zt}Tt=1 to disentangle the
image generations. Let Ezt(x) = (ct, wt), where ct ∈ {0, kt} and kt ∈ Kt (i.e., Kt is the number of
protected units of t-th dataset, and the corresponding watermark is wkt

). Watermark distribution is
defined as Eq.8,

t@wd =

∑
(ct,wt)

Ezt∼ Dm

{Fb(wt, wkt
)}ct=kt

|Dm|
. (8)

Let t@k@100%wd = t@wd[argmaxkt
{Fb(·) = 100%, ct = kt}] that denotes the best distribution

(i.e., within Dm, the number of samples of the kt type of t-th datasets is the largest) in the most
accurate distribution (i.e., with bits accuracy reaching 100%). When assessing data copyright for
single-party verification, two criteria must be fulfilled: Avg acc > α and t@k@100%wd > γ, where
Avg acc represents Average Watermark Accuracy. In this paper, the threshold for α is set to 0.99, and
the threshold for γ is set to 0.80. For multi-party hybrid or partial infringements, copyright ownership
is determined by comparing the maximum value of t@k@100%wd tested across T different style
domain encoders in Dm, attributing it to the k-th unit of the t-th protected dataset.

5 Experiments

5.1 Experimental Setting

Datasets and Models. In this paper, we pre-train the style domain encoder [49] and decoder [50] on
MS COCO [51]. We conduct experiments on three open-source benchmark datasets (i.e., CelebA [52],
Pokenmon [53], Dreambooth dataset [5]), 17 Artists (e.g, Van Gogh and Monet) and 10 AI’ artworks
(e.g., GhostMix and CatLora). The surrogate model is Stable diffusion v1.5 [32] fine-tuned (i.e.,
Lora [4] and Dreambooth [5]) on the benchmark datasets. Moreover, the attackers include Stable
Diffusion v1.5&v2.0, and the APIs of DALL·E·3 [3], Imagen2 [1], PG-v2.5 [54], PixArt-α [55].
We use CLIP to extract the zemb of text-z in our setting. Specifically, we randomly select a subset
containing K protected units from each dataset for training (i.e., N mimic images per unit generated).
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Baseline and Metrics. We compare our pipeline against existing digital watermarking methods
(i.e., DCT-DWT-SVD [39], RivaGan [37], SSL [40], Trustmark [56]), and RoSteALS [57]). We
evaluate each method’s performance using average watermark accuracy (Avg acc) and watermark
distribution metrics (t@wd and t@k@100%wd, as defined in §4). Additionally, we employ FID and
CLIP Score to evaluate the quality of AI-generation, and True Positive and True Negative to measure
Discriminator performance.
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Figure 3: Main results for our method. The left subfigure compares watermark distribution between
mimic (Red) and no-mimic (Blue) models from 10 random protected datasets. The right subfigure
illustrates the structured delineation of style domains’ boundaries.

5.2 Main Result

To benchmark the effectiveness of the watermark, we primarily report the watermark distribution
across 1000 image generations from all units of each protected dataset in the black-box validation
scenario of AI mimicry, utilizing Avg acc and t@k@100%wd (i.e., the proportion of samples where
watermark bit accuracy hits 100%) for evaluation.

Table 1: Main results. We enumerate the sample count within each range of watermark distribution
(128 bits) from 1000 mimic images of all protected units for both mimic and non-mimic models.

The sample counts within each range of watermark distribution
128-bit w\mimicry 0-20% 20-40% 40-60% 60-80% 80-90% 90-100% Avg acc(%) t@k@100%wd (%)

× 0 272 495 231 2 0 51.46 0CelebA ✓ 0 0 1 1 3 995 99.81 98.1
× 0 249 513 227 11 0 49.26 0CUB ✓ 0 0 2 5 5 988 99.56 96.4
× 0 127 524 341 8 0 55.71 0Dreambooth ✓ 0 0 0 1 3 996 99.97 98.1
× 0 124 455 419 2 0 55.83 0Artists ✓ 0 0 0 1 6 993 99.87 97.9
× 0 144 561 292 3 0 52.20 0AIs ✓ 0 0 0 1 1 998 99.95 98.0

Main experimental findings regarding watermark distribution validation on both mimic and no-
mimic models across five datasets are detailed in Figure 3a and Table 1. Our method outperforms
the watermark distribution under random states, which are not exposed on the protected dataset.
Specifically, our average accuracy exceeds 99%, significantly higher than the approximately 50%
of the non-infringement state model. Such a significant difference in watermark distribution is one
of the key pieces of evidence for copyright authentication. Additionally, we compare our method
with digital watermarking approaches in Table 2, where our method achieves an Avg acc of 99.83%,
surpassing others that reach only around 60%. Notably, in cases of 100% watermark accuracy
(t@k@100%wd), the proportion of samples using digital watermarking methods is deficient, whereas
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our method reaches 97.7%. This indicates the failure of digital watermarking in attributing ownership
in AI mimicry scenarios, contrasting with the effectiveness of our proposed method.

Table 2: Main results. Comparison of results across different watermarking methods. The stark
disparity in t@k@100%wd between our results and the baseline reveals that traditional invisible
watermarks are prone to be removed or diluted during diffusion training.

Method Avg acc (%) ↑ t@k@100%wd (%) ↑
DCT-DWT-SVD 57.76 ≤ 0.1

RivaGan 61.34 ≤ 0.1
SSL 64.39 ≤ 0.1

Trustmark 55.37 6.6
RoSteALS 66.50 7.9

Ours 99.83 97.7

5.3 Robustness Study

To benchmark the robustness of our watermark, we document its performance against various attack
methods. These include identifier z error, second-stage fine-tuning with a 1:10 ratio between original
and generated images, mixed clean fine-tuning with a blending rate of 0.1, watermark removal in
latent attack [17], and prompt attack with different description in black-box scenarios. Additionally,
we utilize 7 data augmentations as attacks, consisting of 90o rotation, 50% JPEG compression, 60%
center cropping and scaling, Gaussian blur with a 3×3 filter size, color jitter with a hue factor of 100,
along with adjustments to brightness by a factor of 1.5 and contrast by a factor of 2.0.

Table 3: The results of the robustness study. We conduct robustness experiments from various
attack perspectives, including identifier z error, second-stage fine-tuning, mixed clean fine-tuning,
watermark removal in latent attack, prompt attack, and image augmentations.

The sample counts within each range of watermark distribution
128-bit 0-20% 20-40% 40-60% 60-80% 80-90% 90-100% FID CLIP Avg acc (%) ↓ t@k@100%wd (%)↓

w\o mimicry 0 124 455 419 2 0 - - 55.71 0
w\o correct z 0 151 555 291 3 0 - - 52.15 0
w\o Attack 0 0 0 1 6 993 266.48 0.9491 99.87 97.9

Second-stage Fine-tune 0 0 6 9 7 975 271.54 0.9358 99.13 93.3
Mixed Clean Fine-tune 0 1 11 29 35 944 259.89 0.9337 99.04 92.2

Latent Attack 0 0 13 19 24 925 289.75 0.9094 95.81 87.2
Prompt Attack 0 0 95 9 36 860 310.68 0.9094 95.81 76.7

Contrast 0 0 8 9 11 972 318.39 0.8951 99.01 92.2
JPEG 0 0 8 10 14 968 307.41 0.8399 98.97 91.6

GaussianBlur 0 0 11 17 15 957 341.04 0.9017 98.50 89.8
Brightness 0 0 24 22 19 935 318.41 0.8839 97.63 88.1
CenterCrop 0 0 43 82 68 805 379.10 0.8216 94.82 69.9

Hue 0 0 37 80 50 833 339.76 0.8362 94.44 68.6
Rotation 0 17 294 415 105 169 394.54 0.8124 83.66 14.8

In Table 2, baseline methods fall short in attributing copyright ownership due to their inability to
extract the complete watermark, achieving a likelihood of less than 0.1. Conversely, our methods
demonstrate heightened reliability. Table 3 reveals that even under adversarial conditions, we can
extract numerous samples with 100% bit accuracy, surpassing the performance of baseline models
(i.e., t@k@100%wd less than 0.1%). Notably, while attacks decrease t@k@100%wd, only a certain
proportion of t@k@100%wd samples is required for verification in AI mimicry copyright attribution.
This is attributed to the improbable occurrence of such events in a natural state, as outlined in Eq.7.

5.4 Generalization Study

To benchmark the generalization capability of our watermark, we document its performance in
copyright verification within the landscape of AI mimicry, considering an array of fine-tuning models
and black-box APIs in Table 4. We set the surrogate model to Stable Diffusion v1.5. Our primary
focus lies on examining its generalization across Stable Diffusion v1.5 (i.e., Lora and Dreambooth)
& v2.0, as well as the APIs of PixArt-α, PG-v2.5, DALL·E·3, and Imagen2. Each model and API
is instructed to generate 20 images for inspection using the prompt "An art piece resembling the
style of ’Starry Night’", aiming to discern whether the attack model has been exposed to Van Gogh’s
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portfolios. In Table 4, our method achieves 100% Avg acc on most suspicious models, with an
overall average of 98.60%. The t@k@100%wd also reaches nearly 100% on most models, with an
average level of 94.29%. Additionally, it achieves a 100% accuracy in True Positive (TP) detection, as
well as 100% Avg acc and t@k@100%wd. As depicted in Figure 4, our proposed method provides
strong evidence of its ability to detect imitation behavior of commercial APIs like PixArt-α using a
few suspicious samples.

(a) Van Gogh (b) Dreambooth, ✓ (c) Lora, ✓ (d) SD-v2.0, ✓

(e) DALL·E·3, ✓ (f) PixArt-α, ✓ (g) PGv2.5-α, ✓ (h) Imagen2, ✓

Figure 4: The results of generalization study. Each API or model is instructed to generate the image
for data copyright ownership using the prompt "An art piece resembling the style of ’Starry Night’".
Among them, subfigure 4a represents the protected sample units, while subfigures 4b-4h, represent
the suspicious mimic samples generated by various suspicious models.

Table 4: The results of generalization study. Utilizing the prompt "An art piece resembling the style
of ’Starry Night’", we generate 20 images by

::::::::
suspicious

::::::
models

::::
and

::::
APIs of black-box.

Attacker models/APIs FID CLIP TP TN Avg acc (%) t@k@100%wd (%)

SD-v1.5 + Dreambooth 259.76 0.9484 20 0 100 100
SD-v1.5 + Lora 265.21 0.9396 20 0 100 100

SD-v2.0 267.38 0.9163 20 0 100 100
PixArt-α 285.09 0.9011 20 0 100 100
PGv2.5 301.94 0.8836 19 1 98.98 95.0

DALL·E·3 318.13 0.8966 18 2 97.02 85.0
Imagen2 326.09 0.9368 17 3 94.35 80.0

Average 289.09 0.9175 - - 98.60 94.29

5.5 Ablation Study

We hereby discuss the effects of several key hyperparameters involved in z-watermarking. Please
find more experiments regarding other parameters and detailed settings in the Appendix.

Model Component Study. We evaluate the effectiveness of our components: Disentangled Style
Domain D, self-generalization module ψ1, and mutual exclusivity module ψ2. As shown in Figure 5a
and 5d, we compare Avg acc and t@k@100%wd across five datasets. It demonstrates that omitting
any proposed components leads to a decline in the model’s performance. Notably, the Disentangled
Style Domain enables the t@k@100%wd to rise from around 60% to over 90%, while the addition of
ψ1 and ψ2 further optimizes the model to achieve performance exceeding 99%.

Data Scale Study. We next explore the relationship between the training data scale and validation data
scale in Figure 5b and 5e, which is crucial for real-world copyright protection scenarios. Experimental
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evidence suggests that a minimal set can propel our model to an above 99% Avg acc. Besides, high
t@k@100%wd is observed on a limited scale of validation dataset, reflecting the effectiveness of
practical validation settings, where access to the APIs of suspicious black-box mimic models.

Bit Length Study. Watermark bit length serves as the bedrock of copyright verification reliability
theory in AI mimicry scenarios. Figure 5c and 5f present experiments validating lengths from 32
to 512 bits across five datasets. Notably, experiments with a bit length of 512 demonstrated higher
average accuracy and t@k@100%wd, highlighting the scalability and reliability of z-watermarking.
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(f) Variable-Bit Length

Figure 5: The results of Ablation study. We performed ablation experiments mainly on model
components (Distangled style domain D, self-generalization ψ1 , and mutual exclusivity ψ2), data
scale (ranging from 10 to 1000), and watermark bit length (ranging from 32 to 512).

6 Discussion and Limitation

Ethical Statement: To enrich our experimental dataset, we gathered a lot of contemporary authorized
artworks, historical artworks, and AI-generated pieces. We at this moment affirm that this collected
data is specifically for the experiments related to our method and is not for any other use.

Limitation: Our proposed method focuses on the disentangled style domains of protected units.
Consequently, modifications to the deep features of style domains using existing techniques (e.g.,
style transfer or bias injection), are expected to influence our performance. Although our robustness
study confirms our reliability against various attacks, the potential impact of specific targeted attacks
(e.g., Glaze) on performance degradation could not be overlooked. To address this challenge, adding
specific adversarial samples for adversarial optimization could guide our future research. Additionally,
the fine-tuning performance of the surrogate model may slightly affect the experimental results, so it
is necessary to set the optimization parameters appropriately.

7 Conclusion

This paper presents the first study on the disentangled style domain for implicit watermarking to
detect unauthorized data usage of AI mimicry, from the perspective of entity protection in styles and
contents. Extensive experiments demonstrate the superiority of z-watermarking compared to the
baseline. Notably, our method achieves one-sample verification for copyright ownership of hybrid or
partial AI infringements. We aspire for our work to advance the ethical evolution of future artificial
intelligence, ensuring due respect for creators’ copyrights.
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Justification: In this paper, the main claims made in the abstract and introduction accurately
reflect the paper’s contributions and scope.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.
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Question: Does the paper discuss the limitations of the work performed by the authors?
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Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
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only tested on a few datasets or with a few runs. In general, empirical results often
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• All assumptions should be clearly stated or referenced in the statement of any theorems.
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by formal proofs provided in appendix or supplemental material.
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to ensure the reproducibility of the experimental results presented in the paper.
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• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: The code for reproducing main experiments is available at: https://github.
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• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
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• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: We have provided all training and testing details in the appendix (such as data
splits, hyperparameters, selection methods, optimizer types, etc.). .

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: In our experiments conducted across five datasets, each repeated five times
under consistent settings, we observed mean errors within 1%, leading us to employ 1-sigma
error bars.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.
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• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: We provide sufficient information on the computer resources required to
reproduce each experiment in the appendix of the paper.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: Our research conduct in the paper adheres to the NeurIPS Code of Ethics in
every respect.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader Impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: We discuss both the potential positive societal impacts and negative societal
impacts of our work in the paper.

Guidelines:
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• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: Our paper may poses no such risks.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: We cite and provide detailed descriptions of benchmark datasets and some
related works in the paper.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
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• For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

• If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]

Justification: Our paper dose not release new assets.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: Our work does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: Our paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

20

paperswithcode.com/datasets


• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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