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Abstract

M♮-concave functions, a.k.a. gross substitute valuation functions, play a fundamen-
tal role in many fields, including discrete mathematics and economics. In practice,
perfect knowledge of M♮-concave functions is often unavailable a priori, and we
can optimize them only interactively based on some feedback. Motivated by such
situations, we study online M♮-concave function maximization problems, which are
interactive versions of the problem studied by Murota and Shioura (1999). For the
stochastic bandit setting, we present O(T−1/2)-simple regret and O(T 2/3)-regret
algorithms under T times access to unbiased noisy value oracles of M♮-concave
functions. A key to proving these results is the robustness of the greedy algorithm
to local errors in M♮-concave function maximization, which is one of our main
technical results. While we obtain those positive results for the stochastic setting,
another main result of our work is an impossibility in the adversarial setting. We
prove that, even with full-information feedback, no algorithms that run in poly-
nomial time per round can achieve O(T 1−c) regret for any constant c > 0 unless
P = NP. Our proof is based on a reduction from the matroid intersection problem
for three matroids, which would be a novel idea in the context of online learning.

1 Introduction

M♮-concave functions form a fundamental function class in discrete convex analysis [32], and various
combinatorial optimization problems are written as M♮-concave function maximization. In economics,
M♮-concave functions (restricted to the unit-hypercube) are known as gross substitute valuations [19,
13, 25]; in operations research, M♮-concave functions are often used in modeling resource allocation
problems [46, 30]. Furthermore, M♮-concave functions form a theoretically interesting special case
of (DR-)submodular functions that the greedy algorithm can exactly maximize (see, Murota and
Shioura [33], Murota [32, Note 6.21], and Soma [48, Remark 3.3.1]), while it is impossible for the
submodular case [34, 10] and the greedy algorithm can find only approximately optimal solutions [35].
Due to the wide-ranging applications and theoretical importance, efficient methods for maximizing
M♮-concave functions have been extensively studied [33, 46, 30, 20, 39].

When it comes to maximizing M♮-concave functions in practice, we hardly have perfect knowledge of
objective functions in advance. For example, it is difficult to know the exact utility an agent gains from
some items, which is often modeled by a gross substitute valuation function. Similar issues are also
prevalent in submodular function maximization, and researchers have addressed them by developing
no-approximate-regret algorithms in various settings, including stochastic/adversarial environments
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and full-information/bandit feedback [49, 14, 43, 54, 16, 36, 37, 38, 51, 55, 11, 40]. On the other
hand, no-regret algorithms for M♮-concave function maximization have not been well studied, despite
the aforementioned importance and practical relevance. Since the greedy algorithm can exactly solve
M♮-concave function maximization, an interesting question is whether we can develop no-regret
algorithms—in the standard sense without approximation—for M♮-concave function maximization.

1.1 Our contribution

This paper studies online M♮-concave function maximization for the stochastic bandit and adversarial
full-information settings. Below are details of our results.

In Section 4, we study the stochastic bandit setting, where we can only observe values of an underlying
M♮-concave function perturbed by sub-Gaussian noise. We first consider the stochastic optimization
setting and provide an O(T−1/2)-simple regret algorithm (Theorem 4.2), where T is the number of
times we can access the noisy value oracle. We then convert it into an O(T 2/3)-cumulative regret
algorithm (Theorem 4.3), where T is the number of rounds, using the explore-then-commit technique.
En route to developing these algorithms, we show that the greedy algorithm for M♮-concave function
maximization is robust to local errors (Theorem 3.1), which is one of our main technical contributions
and is proved differently from related results in submodular and M♮-concave function maximization.

In Section 5, we establish the NP-hardness of no-regret learning for the adversarial full-information
setting. Specifically, Theorem 5.2 shows that unless P = NP, no algorithms that run in polynomial
time in each round can achieve poly(N) · T 1−c regret for any constant c > 0, where poly(N) stands
for any polynomial of N , the per-round problem size. Our proof is based on the fact that maximizing
the sum of three M♮-concave functions is at least as hard as the matroid intersection problem for
three matroids, which is known to be NP-hard.2 We carefully construct a concrete online M♮-concave
function maximization instance that enables reduction from this NP-hard problem. Our high-level
idea, namely, connecting sequential decision-making and finding a common base of three matroids,
might be useful for proving hardness results in other online combinatorial optimization problems.

1.2 Related work

There is a large stream of research on no-regret submodular function maximization. Our stochastic
bandit algorithms are inspired by a line of work on explore-then-commit algorithms for stochastic
bandit problems [37, 38, 11] and by a robustness analysis for extending the offline greedy algorithm
to the online setting [36]. However, unlike existing results for the submodular case, the guarantees of
our algorithms in Section 4 involve no approximation factors. Moreover, while robustness properties
similar to Theorem 3.1 are widely recognized in the submodular case, our proof for the M♮-concave
case substantially differs from them. See Appendix A for a detailed discussion.

Combinatorial bandits with linear reward functions have been widely studied [6, 9, 8, 41], and many
studies have also considered non-linear functions [7, 21, 15, 29]. However, the case of M♮-concave
functions has not been well studied. Zhang et al. [53] studied stochastic minimization of L♮-convex
functions, which form another important class in discrete convex analysis [32] but fundamentally
differ from M♮-convex functions. Apart from online learning, a body of work has studied maximizing
valuation functions approximately from samples to do with imperfect information [2, 3, 4].

Regarding hardness results in online learning, most arguments are typically information-theoretic.
For instance, the minimax regret of hopeless games in partial monitoring is Ω(T ) [24, Section 37.2].
By contrast, we establish the NP-hardness of the adversarial full-information online M♮-concave
function maximization, even though the offline M♮-concave function maximization is solvable in
polynomial time. Such a situation is rare in online learning. One exception is the case studied by
Bampis et al. [5]. They showed that no polynomial-time algorithm can achieve sub-linear approximate
regret for some online min-max discrete optimization problems unless NP = RP, even though their
offline counterparts are solvable in polynomial time. Despite the similarity in the situations, the
problem class and proof techniques are completely different. Indeed, while their proof is based on the
NP-hardness of determining the minimum size of a feasible solution, it can be done in polynomial
time for M♮-concave function maximization [47, Corollary 4.2]. They also proved the NP-hardness of

2Note that this fact alone does not immediately imply the NP-hardness of no-regret learning since the learner
can take different actions across rounds and each M♮-concave function maximization instance is not NP-hard.
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the multi-instance setting, which is similar to the maximization of the sum of M♮-concave functions.
However, they did not relate the hardness of multi-instance problems to that of no-regret learning.

2 Preliminaries

Let V = {1, . . . , N} be a ground set of size N . Let 0 be the all-zero vector. For i ∈ V , let ei ∈ RV

denote the ith standard vector, i.e., the ith element is 1 and the others are 0; let e0 = 0 for convenience.
For x ∈ RV and S ⊆ V , let x(S) =

∑
i∈S xi. Slightly abusing notation, let x(i) = x({i}) = xi.

For a function f : ZV → R ∪ {−∞} on the integer lattice ZV , its effective domain is defined as
dom f := {x ∈ ZV : f(x) > −∞}. A function f is called proper if dom f ̸= ∅. We say a proper
function f : ZV → R∪ {−∞} is M♮-concave if for every x, y ∈ dom f and i ∈ V with x(i) > y(i),
there exists j ∈ V ∪ {0} with x(j) < y(j) or j = 0 such that the following inequality holds:

f(x) + f(y) ≤ f(x− ei + ej) + f(y + ei − ej). (1)

Similarly, we say f : ZV → R ∪ {+∞} is M♮-convex if −f is M♮-concave. If x(V ) ≤ y(V ),
M♮-concave functions satisfy more detailed conditions, as follows.
Proposition 2.1 (Corollary of Murota and Shioura [33, Theorem 4.2]). Let f : ZV → R∪ {−∞} be
an M♮-concave function. Then, the following conditions hold for every x, y ∈ dom f :
(a) if x(V ) < y(V ), ∃j ∈ V with x(j) < y(j), f(x) + f(y) ≤ f(x+ ej) + f(y − ej) holds.
(b) if x(V ) ≤ y(V ), ∀i ∈ V with x(i) > y(i), ∃j ∈ V with x(j) < y(j), (1) holds.

Let [a, b] = {x ∈ ZV : a(i) ≤ x(i) ≤ b(i) } be an integer interval of a, b ∈ (Z ∪ {±∞})V and f
be M♮-concave. If dom f ∩ [a, b] ̸= ∅, restricting dom f to [a, b] preserves the M♮-concavity [32,
Proposition 6.14]. The sum of M♮-concave functions is not necessarily M♮-concave [32, Note 6.16].
In this paper, we do not assume monotonicity, i.e., x ≤ y (element-wise) does not imply f(x) ≤ f(y).

2.1 Examples of M♮-concave functions

Maximum-flow on bipartite graphs. Let (V,W ;E) be a bipartite graph, where the set V of N
left-hand-side vertices is a ground set. Each edge ij ∈ E is associated with a weight wij ∈ R. Given
sources x ∈ ZV

≥0 allocated to the vertices in V , let f(x) be the maximum-flow value, i.e.,

f(x) = max
ξ∈ZE

≥0
, y∈ZW

≥0

{∑
ij∈E wijξij : ∀i ∈ V,

∑
j:ij∈E ξij = xi; ∀j ∈W,

∑
i:ij∈E ξij = yj

}
.

This function f is M♮-concave; indeed, more general functions specified by convex-cost flow problems
on networks are M♮-concave [32, Theorem 9.27]. If we restrict the domain to {0, 1}V and regard V
as a set of items, W as a set of agents, and wij ≥ 0 as the utility of matching an item i with an agent
j, the resulting set function f : {0, 1}V → R≥0 coincides with the OXS valuation function known in
combinatorial auctions [45, 25], which is a special case of the following gross substitute valuation.

Gross substitute valuation. In economics, an agent’s valuation (a non-negative monotone set
function of items) is said to be gross substitute (GS) if, whenever the prices of some items increase
while the prices of the other items remain the same, the agent keeps demanding the same-priced items
that were demanded before the price change [19, 25]. M♮-concave functions can be viewed as an
extension of GS valuations to the integer lattice [32, Section 6.8]. Indeed, the class of M♮-concave
functions restricted to {0, 1}V is equivalent to the class of GS valuations [13].

Resource allocation. M♮-concave functions also arise in resource allocation problems [46, 30],
which are extensively studied in the operations research community. For example, given n univariate
concave functions fi : Z → R ∪ {−∞} and a positive integer K, a function f defined by f(x) =∑n

i=1 fi(x(i)) if x ≥ 0 and x(V ) ≤ K and f(x) = −∞ otherwise is M♮-concave. More general
examples of M♮-concave functions used in resource allocation are given in, e.g., Moriguchi et al. [30].

More examples can be found in Murota and Shioura [33, Section 2] and Murota [32, Section 6.3]. As
shown above, M♮-concave functions are ubiquitous in various fields. However, those are often difficult
to know perfectly in advance: we may neither know all edge weights in maximum-flow problems,
exact valuations of agents, nor fis’ values at all points in resource allocation. Such situations motivate
us to study how to maximize them interactively by selecting solutions and observing some feedback.
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Algorithm 1 Greedy-style procedure with possibly erroneous local updates
1: x0 = 0
2: for k = 1, . . . ,K :
3: Select ik ∈ V ∪ {0} ▷ Standard greedy selects ik ∈ argmaxi∈V ∪{0} f(xk−1 + ei).
4: xk ← xk−1 + eik

2.2 Basic setup

Similar to bandit convex optimization [23], we consider a learner who interacts with a sequence of
M♮-concave functions, f1, . . . , fT , over T rounds. To avoid incurring f t(x) = −∞, we assume that
dom f2, . . . ,dom fT are identical to dom f1. We also assume 0 ∈ dom f1 and dom f1 ⊆ ZV

≥0,
which are reasonable in all the examples in Section 2.1. We consider a constrained setting where the
learner’s action x ∈ dom f1 must satisfy x(V ) ≤ K. If dom f1 ⊆ {0, 1}V , this is equivalent to the
cardinality constraint common in set function maximization. Let X :=

{
x ∈ dom f1 : x(V ) ≤ K

}
denote the set of feasible actions, which the learner is told in advance. (More precisely, a poly(N)-
time membership oracle of X is given.) Additional problem settings specific to stochastic bandit and
adversarial full-information cases are provided in Sections 4 and 5, respectively.

3 Robustness of greedy M♮-concave function maximization to local errors

This section studies a greedy-style procedure with possibly erroneous local updates for M♮-concave
function maximization, which will be useful for developing stochastic bandit algorithms in Section 4.
Let f : ZV → R ∪ {−∞} be an M♮-concave function such that 0 ∈ dom f ⊆ ZV

≥0, which we want
to maximize under x(V ) ≤ K. Let x∗ ∈ argmax{ f(x) : x ∈ dom f, x(V ) ≤ K } be an optimal
solution. We consider the procedure in Algorithm 1. If f is known a priori and i1, . . . , iK are selected
as in the comment in Step 3, it coincides with the standard greedy algorithm for M♮-concave function
maximization and returns an optimal solution [33]. However, when f is unknown, we may select
different i1, . . . , iK than those selected by the exact greedy algorithm. Given any x ∈ ZV and update
direction i ∈ V ∪ {0}, we define the local error of i at x as

err(i |x) := max
i′∈V ∪{0}

f(x+ ei′)− f(x+ ei) ≥ 0, (2)

which quantifies how much direction i deviates from the choice of the exact greedy algorithm when x
is given. The following result states that local errors affect the eventual suboptimality only additively,
ensuring that Algorithm 1 applied to M♮-concave function maximization is robust to local errors.

Theorem 3.1. For any i1, . . . , iK ∈ V ∪ {0}, it holds that f(xK) ≥ f(x∗)−
∑K

k=1 err(ik |xk−1).

Proof. The claim is vacuously true if err(ik |xk−1) = +∞ occurs for some k ≤ K. Below, we
focus on the case with finite local errors. For k = 0, 1, . . . ,K, we define

Yk := { y ∈ X : y ≥ xk, y(V ) ≤ K − k + xk(V ) },
where y ≥ xk is read element-wise. That is, Yk ⊆ X consists of feasible points that can be reached
from xk by the remaining K − k updates (see Figure 1). Note that x∗ ∈ Y0 and YK = {xK} hold.

To prove the theorem, we will show that the following inequality holds for any k ∈ {1, . . . ,K}:
max
y∈Yk

f(y) ≥ max
y∈Yk−1

f(y)− err(ik |xk−1). (3)

Take yk−1 ∈ argmaxy∈Yk−1
f(y) and yk ∈ argmaxy∈Yk

f(y). If f(yk) ≥ f(yk−1), we are done
since err(ik |xk−1) ≥ 0. Thus, we assume f(yk) < f(yk−1), which implies yk−1 ∈ Yk−1 \ Yk.
Then, we can prove the following helper claim by using the M♮-concavity of f .

Helper claim. If yk−1 ∈ Yk−1 \ Yk, there exists j ∈ V ∪ {0} such that yk−1 + eik − ej ∈ Yk and

f(xk) + f(yk−1) ≤ f(xk − eik + ej) + f(yk−1 + eik − ej). (4)

Assuming the helper claim, we can easily obtain (3). Specifically, (i) f(yk−1 + eik − ej) ≤ f(yk)
holds due to yk−1 + eik − ej ∈ Yk and the choice of yk, and (ii) err(ik |xk−1) ≥ f(xk−1 + ej)−
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Figure 1: Images of Yk on Z2. The set of integer points in the trapezoid is the feasible region X . Left:
the gray area represents Yk−1 consisting of points reachable from xk−1. Middle: if ik = 0 (case 1),
xk−1 = xk holds and Yk−1 shrinks to Yk, the darker area, since the constraint on y(V ) gets tighter.
Right: if ik = i1 (cases 2 and 3), the area, Yk, reachable from xk = xk−1 + ei1 shifts along ei1 .

f(xk−1+eik) = f(xk−eik+ej)−f(xk) holds due to the definition of the local error (2). Combining
these with (4) and rearranging terms imply (3) as follows:

f(yk)
(i)
≥ f(yk−1 + eik − ej)

(4)
≥ f(yk−1) + f(xk)− f(xk − eik + ej)

(ii)
≥ f(yk−1)− err(ik |xk−1).

Given (3), the theorem follows from a simple induction on k = 1, . . . ,K. For each k, we will prove

max
y∈Yk

f(y) ≥ f(x∗)−
k∑

k′=1

err(ik′ |xk′−1). (5)

The case of k = 1 follows from (3) since x∗ ∈ Y0. If it is true for k− 1, (3) and the induction hypoth-
esis imply maxy∈Yk

f(y) ≥ maxy∈Yk−1
f(y)− err(ik |xk−1) ≥ f(x∗)−

∑k−1
k′=1 err(ik′ |xk′−1)−

err(ik |xk−1), thus obtaining (5). Since YK = {xK} holds, setting k = K in (5) yields Theorem 3.1.

The rest of the proof is dedicated to proving the helper claim, which we do by examining the following
three cases. The middle (right) image in Figure 1 illustrates case 1 (cases 2 and 3).

Case 1: ik = 0. Due to xk−1 = xk, yk−1 ∈ Yk−1 \Yk implies yk−1(V ) = K− (k−1)+xk−1(V ).
Thus, xk(V ) = xk−1(V ) = yk−1(V )−(K−k+1) < yk−1(V ) holds. From Proposition 2.1 (a), there
exists j ∈ V with xk(j) < yk−1(j) that satisfies (4). Also, yk−1 ≥ xk−1 = xk, xk(j) < yk−1(j),
and (yk−1 − ej)(V ) = K − k + xk−1(V ) = K − k + xk(V ) imply yk−1 − ej ∈ Yk.

Case 2: ik ̸= 0 and xk(V ) ≤ yk−1(V ). In this case, yk−1 ∈ Yk−1 \ Yk implies yk−1 ≥ xk−1 and
yk−1 ≱ xk = xk−1 + eik , hence xk(ik) > yk−1(ik). From Proposition 2.1 (b), there exists j ∈ V
with xk(j) < yk−1(j) that satisfies (4). Since yk−1 ≥ xk−1 = xk − eik and xk(j) < yk−1(j), we
have yk−1 + eik − ej ≥ xk. Also, we have (yk−1 + eik − ej)(V ) = yk−1(V ) ≤ K − (k − 1) +
xk−1(V ) = K − k + xk(V ). Therefore, we have yk−1 + eik − ej ∈ Yk.

Case 3: ik ̸= 0 and xk(V ) > yk−1(V ). Since yk−1 ∈ Yk−1, we have yk−1 ≥ xk−1. We also have
yk−1(V ) < xk(V ) = xk−1(V ) + 1. These imply yk−1 = xk−1. Therefore, (4) with j = 0 holds by
equality, and yk−1 + eik = xk ∈ Yk also holds.

The robustness property in Theorem 3.1 plays a crucial role in developing stochastic bandit algorithms
in Section 4. Furthermore, the robustness would be beneficial beyond the application to stochastic
bandits since M♮-concave functions often involve uncertainty in practice, as discussed in Section 2.1.
Note that Theorem 3.1 has not been known even in the field of discrete convex analysis and that the
above proof substantially differs from the original proof for the greedy algorithm without local errors
for M♮-concave function maximization [33]. Indeed, the original proof does not consider a set like
Yk, which is crucial in our proof. It is also worth noting that Theorem 3.1 automatically implies the
original result on the errorless case by setting err(ik |xk−1) = 0 for all k. We also emphasize that
while Theorem 3.1 resembles robustness properties known in the submodular case [49, 14, 36, 37,
38, 11], ours is different from them in that it involves no approximation factors and requires careful
inspection of the solution space, as in Figure 1. See Appendix A for a detailed discussion.
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4 Stochastic bandit algorithms

This section presents no-regret algorithms for the following stochastic bandit setting.

Problem setting. For t = 1, . . . , T , the learner selects xt ∈ X and observes f t(xt) = f∗(xt) + εt,
where f∗ : ZV → [0, 1] ∪ {−∞} is an unknown M♮-concave function and (εt)Tt=1 is a sequence of
i.i.d. 1-sub-Gaussian noises, i.e., E[exp(λεt)] ≤ exp(λ2/2) for λ ∈ R.3 Let x∗ ∈ argmaxx∈X f∗(x)
denote the offline best action. In Theorem 4.2, we will discuss the simple-regret minimization setting,
where the learner selects xT+1 ∈ X after the T th round to minimize the expected simple regret:

sRegT := f∗(x∗)− E
[
f∗(xT+1)

]
.

Here, the expectation is about the learner’s randomness, which may originate from noisy observations
and possible randomness in their strategy. This is a stochastic bandit optimization setting, where the
learner aims to find the best action without caring about the cumulative regret over the T rounds. On
the other hand, Theorem 4.3 is about the standard regret minimization setting, where the learner aims
to minimize the expected cumulative regret (or the pseudo-regret, strictly speaking):

RegT := T · f∗(x∗)− E

[
T∑

t=1

f∗(xt)

]
.

In this section, we assume that T is large enough to satisfy T ≥ K(N +2) to simplify the discussion.

Pure-exploration algorithm. Below, we will use a UCB-type algorithm for pure exploration in the
standard stochastic multi-armed bandit problem as a building block. The algorithm is based on MOSS
(Minimax Optimal Strategy in the Stochastic case) and is known to achieve an O(T−1/2) simple
regret as follows. For completeness, we provide the proof and the pseudo-code in Appendix B.

Proposition 4.1 (Lattimore and Szepesvári [24, Corollary 33.3]). Consider a stochastic multi-armed
bandit instance with M arms and T ′ rounds, where T ′ ≥M . Assume that the reward of the ith arm
in the tth round, denoted by Y t

i , satisfies the following conditions: µi := E[Y t
i ] ∈ [0, 1] and Y t

i − µi

is 1-sub-Gaussian. Then, there is an algorithm that, after pulling arms T ′ times, randomly returns
i ∈ {1, . . . ,M} with µ∗ − E[µi] = O(

√
M/T ′), where µ∗ := max{µ1, . . . , µM}.

Given this fact and our robustness result in Theorem 3.1, it is not difficult to develop an O(T−1/2)-
simple regret algorithm; we select ik in Algorithm 1 with the algorithm in Proposition 4.1 consuming
⌊T/K⌋ rounds and bound the simple regret by using Theorem 3.1, as detailed below. Also, given
the O(T−1/2)-simple regret algorithm, an O(T 2/3)-regret algorithm follows from the explore-then-
commit technique, as described subsequently. Therefore, we think of these no-regret algorithms
as byproducts and the robustness result in Theorem 3.1 as our main technical contribution on the
positive side. Nevertheless, we believe those algorithms are beneficial since no-regret maximization
of M♮-concave functions have not been well studied, despite their ubiquity as discussed in Section 2.1.

The following theorem presents our result regarding an O(T−1/2)-simple regret algorithm.

Theorem 4.2. There is an algorithm that makes up to T queries to the noisy value oracle of f∗ and
outputs xT+1 such that sRegT = O(K3/2

√
N/T ).

Proof. Based on Algorithm 1, we consider a randomized algorithm consisting of K phases. Fixing a
realization of xk−1, we discuss the kth phase. We consider the following multi-armed bandit instance
with at most N + 1 arms and ⌊T/K⌋ rounds. The arm set is { i ∈ V ∪ {0} : xk−1 + ei ∈ X }, i.e.,
the collection of all feasible update directions; note that the learner can construct this arm set since X
is told in advance. In each round t ∈ {1, . . . , ⌊T/K⌋}, the reward of an arm i ∈ V ∪ {0} is given by
Y t
i = f∗(xk−1+ei)+εt, where εt is the 1-sub-Gaussian noise. Let µi = E[Y t

i ] = f∗(xk−1+ei) ∈
[0, 1] denote the mean reward of the arm i and µ∗ = maxi∈V ∪{0} µi the optimal mean reward. If we
apply the algorithm in Proposition 4.1 to this bandit instance, it randomly returns ik ∈ V ∪ {0} such
that E[ err(ik |xk−1) |xk−1 ] = µ∗ − E[µik |xk−1 ] = O(

√
KN/T ), consuming ⌊T/K⌋ queries.

3Restricting the range of f∗ to [0, 1] and the sub-Gaussian constant to 1 is for simplicity; our results extend to
any range and sub-Gaussian constant. Note that any zero-mean random variable in [−1,+1] is 1-sub-Gaussian.
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Consider sequentially selecting ik as above and setting xk = xk−1 + eik , thus obtaining x1, . . . , xK .
For any realization of i1, . . . , iK , Theorem 3.1 guarantees f∗(xK) ≥ f∗(x∗)−

∑K
k=1 err(ik |xk−1).

By taking the expectations of both sides and using the law of total expectation, we obtain

f∗(x∗)−E[f∗(xK)] ≤ E

[
K∑

k=1

err(ik |xk−1)

]
= E

[
K∑

k=1

E[ err(ik |xk−1) |xk−1 ]

]
= O(K

3
2

√
NT ).

Thus, xT+1 = xK achieves the desired bound. The number of total queries is K⌊T/K⌋ ≤ T .

We then convert the O(T−1/2)-simple regret algorithm into an O(T 2/3)-regret algorithm by using
the explore-then-commit technique as follows.

Theorem 4.3. There is an algorithm that achieves RegT = O(KN1/3T 2/3).

Proof. Let T̃ ≤ T be the number of exploration rounds, which we will tune later. If we use the algo-

rithm of Theorem 4.2 allowing T̃ queries, we can find xT̃+1 ∈ X with sRegT̃ = O(K3/2

√
N/T̃ ).

If we commit to xT̃+1 in the remaining T − T̃ rounds, the total expected regret is

RegT = E

 T̃∑
t=1

f∗(x∗)− f∗(xt)

+ (T − T̃ ) · sRegT̃ ≤ T̃ + T · sRegT̃ = O(T̃ + TK
3
2

√
N/T̃ ).

By setting T̃ = Θ(KN1/3T 2/3), we obtain RegT = O(KN1/3T 2/3).

5 NP-hardness of adversarial full-information setting

This section discusses the NP-hardness of the following adversarial full-information setting.

Problem setting. An oblivious adversary chooses an arbitrary sequence of M♮-concave functions,
f1, . . . , fT , where f t : ZV → [0, 1] ∪ {−∞} for t = 1, . . . , T , in secret from the learner. Then,
for t = 1, . . . , T , the learner selects xt ∈ X and observes f t, i.e., full-information feedback. More
precisely, we suppose that the learner gets free access to a poly(N)-time value oracle of f t by
observing f t since M♮-concave functions may not have polynomial-size representations in general.
The learner aims to minimize the expected cumulative regret:

max
x∈X

T∑
t=1

f t(x)− E

[
T∑

t=1

f t(xt)

]
, (6)

where the expectation is about the learner’s randomness. To simplify the subsequent discussion, we
focus on the case where the constraint is specified by K = N and f1, . . . , fT are defined on {0, 1}V ;
therefore, the set of feasible actions is X =

{
x ∈ dom f1 : x(V ) ≤ K

}
= {0, 1}V .

For this setting, there is a simple no-regret algorithm that takes exponential time per round. Specifi-
cally, regarding each x ∈ X as an expert, we use the standard multiplicative weight update algorithm
to select x1, . . . , xT [26, 12]. Since the number of experts is |X | = 2N , this attains an expected
regret bound of O(

√
T log |X |) ≲ poly(N)

√
T , while taking prohibitively long poly(N)|X | ≳ 2N

time per round. An interesting question is whether a similar regret bound is achievable in polynomial
time per round. Thus, we focus on the polynomial-time randomized learner, as with Bampis et al. [5].
Definition 5.1 (Polynomial-time randomized learner). We say an algorithm for computing x1, . . . , xT

is a polynomial-time randomized learner if, given poly(N)-time value oracles of revealed functions,
it runs in poly(N,T ) time in each round, regardless of realizations of the algorithm’s randomness.4

Note that the per-round time complexity can depend polynomially on T . Thus, the algorithm can use
past actions, x1, . . . , xt−1, as inputs for computing xt, as long as the per-round time complexity is
polynomial in the input size. The following theorem is our main result on the negative side.

4While this definition does not cover so-called efficient Las Vegas algorithms, which run in polynomial time
in expectation, requiring polynomial runtime for every realization is standard in randomized computation [1].
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Theorem 5.2. In the adversarial full-information setting, for any constant c > 0, no polynomial-time
randomized learner can achieve a regret bound of poly(N) · T 1−c in expectation unless P = NP.5

5.1 Proof of Theorem 5.2

As preparation for proving the theorem, we first show that it suffices to prove the hardness for any
polynomial-time deterministic learner and some distribution on input sequences of functions, which
follows from celebrated Yao’s principle [52]. We include the proof in Appendix C for completeness.
Proposition 5.3 (Yao [52]). Let A be a finite set of all possible deterministic learning algorithms
that run in polynomial time per round and F1:T a finite set of sequences of M♮-concave functions,
f1, . . . , fT . Let RegT (a, f

1:T ) be the cumulative regret a deterministic learner a ∈ A achieves on a
sequence f1:T = (f1, . . . , fT ) ∈ F1:T . Then, for any polynomial-time randomized learner A and
any distribution q on F1:T , it holds that

max
{
E
[
RegT (A, f1:T )

]
: f1:T ∈ F1:T

}
≥ min

{
Ef1:T∼q

[
RegT (a, f

1:T )
]
: a ∈ A

}
.

Note that the left-hand side is nothing but the expected cumulative regret (6) of a polynomial-time
randomized learner A on the worst-case input f1:T . Thus, to prove the theorem, it suffices to show
that the right-hand side, i.e., the expected regret of the best polynomial-time deterministic learner on
some input distribution q, cannot be as small as poly(N) · T 1−c unless P = NP. To this end, we will
construct a finite set F1:T of sequences of M♮-concave functions and a distribution on it.

The fundamental idea behind the subsequent construction of M♮-concave functions is that the matroid
intersection problem for three matroids (the 3-matroid intersection problem, for short) is NP-hard.

3-matroid intersection problem. A matroid M over V is defined by a non-empty set family B ⊆
2V such that for B1, B2 ∈ B and i ∈ B1 \B2, there exists j ∈ B2 \B1 such that B1 \ {i}∪{j} ∈ B.
Elements in B are called bases. We suppose that, given a matroid, we can test whether a given S ⊆ V
is a base in poly(N) time. (This is equivalent to the standard poly(N)-time independence testing.)
The 3-matroid intersection problem asks to determine whether three given matroids M1, M2, M3

over a common ground set V have a common base B ∈ B1 ∩ B2 ∩ B3 or not.
Proposition 5.4 (cf. Schrijver [44, Chapter 41]). The 3-matroid intersection problem is NP-hard.

We construct M♮-concave functions that appropriately encode the 3-matroid intersection problem.
Below, for any B ⊆ V , let 1B ∈ {0, 1}V denote a vector such that 1B(i) = 1 if and only if i ∈ B.
Lemma 5.5. Let M be a matroid over V and B ⊆ 2V its base family. There is a function f :
{0, 1}V → [0, 1] such that (i) f(x) = 1 if and only if x = 1B for some B ∈ B and f(x) ≤ 1− 1/N
otherwise, (ii) f is M♮-concave, and (iii) f(x) can be computed in poly(N) time at every x ∈ {0, 1}V .

Proof. Let ∥·∥1 denote the ℓ1-norm. We construct the function f : {0, 1}V → [0, 1] as follows:

f(x) := 1− 1

N
min
B∈B
∥x− 1B∥1 (x ∈ {0, 1}V ).

Since 0 ≤ ∥y∥1 ≤ N for y ∈ [−1,+1]V , f(x) takes values in [0, 1]. Moreover, minB∈B∥x− 1B∥1
is zero if x = 1B for some B ∈ B and at least 1 otherwise, establishing (i). Below, we show that f is
(ii) M♮-concave and (iii) computable in poly(N) time.

We prove that τ(x) := minB∈B∥x− 1B∥1 is M♮-convex, which implies the M♮-concavity of f . Let
δB : ZV → {0,+∞} be the indicator function of B, i.e., δB(x) = 0 if x = 1B for some B ∈ B and
+∞ otherwise. Observe that τ is the integer infimal convolution of ∥·∥1 and δB. Here, the integer
infimal convolution of two functions f1, f2 : ZV → R ∪ {+∞} is a function of x ∈ ZV defined as
(f1 □Z f2)(x) := min{f1(x− y) + f2(y) : y ∈ ZV }, and the M♮-concavity is preserved under this
operation [32, Theorem 6.15]. Thus, the M♮-convexity of τ(x) = (∥·∥1 □Z δB)(x) follows from the
M♮-convexity of the ℓ1-norm ∥·∥1 [32, Section 6.3] and the indicator function δB [32, Section 4.1].

Next, we show that τ(x) is computable in poly(N) time for every x ∈ {0, 1}V , which implies the
poly(N)-time computability of f(x). As described above, τ is the integer infimal convolution of

5Our result does not exclude the possibility of polynomial-time no-regret learning with an exponential factor
in the regret bound. However, we believe whether poly(N) · T 1−c regret is possible or not is of central interest.

8



∥·∥1 and δB, i.e., τ(x) = min{∥x−y∥1+ δB(y) : y ∈ ZV }. Since the function y 7→ ∥x−y∥1 is M♮-
convex [32, Theorem 6.15], τ(x) is the minimum value of the sum of the two M♮-convex functions.
While the sum of two M♮-convex functions f1, f2 : ZV → Z≥0 ∪ {+∞} is no longer M♮-convex in
general, we can minimize it via reduction to the M-convex submodular flow problem [32, Note 9.30].
We can solve this by querying f1 and f2 values poly(N, logL, logM) times, where L is the minimum
of the ℓ∞-diameter of dom f1 and dom f2 and M is an upper bound on function values [18, 17]. In
our case of f1(y) = ∥x− y∥1 and f2(y) = δB(y), we have L = 1 and M ≤ N , and we can compute
f1(y) and f2(y) values in poly(N) time (where the latter is due to the poly(N)-time membership
testing for B). Therefore, τ(x) is computable in poly(N) time, and so is f(x).

Now, we are ready to prove Theorem 5.2.

Proof of Theorem 5.2. Let M1, M2, M3 be three matroids over V and f1, f2, f3 functions defined
as in Lemma 5.5, respectively. Let F1:T be a finite set such that each f t (t = 1, . . . , T ) is either f1,
f2, or f3. Let q be a distribution on F1:T that sets each f t to f1, f2, or f3 with equal probability.

Suppose for contradiction that some polynomial-time deterministic learner achieves poly(N) · T 1−c

regret in expectation for the above distribution q. Let T be the smallest integer such that the regret
bound satisfies poly(N) · T 1−c < T

3N ⇔ T > (3Npoly(N))1/c. Note that T is polynomial in N
since c > 0 is a constant. We consider the following procedure.

Run the polynomial-time deterministic learner on the distribution q and obtain xt for t = 1, . . . , T .
If some xt satisfies f1(xt) = f2(xt) = f3(xt) = 1, output “Yes” and otherwise “No.”

If M1, M2, M3 have a common base B ∈ B1 ∩B2 ∩B3, we have f1(1B) = f2(1B) = f3(1B) = 1.
On the other hand, if xt ̸= 1B for every B ∈ B1∩B2∩B3, E[f t(xt)] ≤ 1− 1

3N holds from Lemma 5.5
and the fact that f t is drawn uniformly from {f1, f2, f3}. Thus, to achieve the poly(N) · T 1−c regret
for T > (3Npoly(N))1/c, the learner must return xt corresponding to some common base at least
once among T rounds. Consequently, the above procedure outputs “Yes.” If M1, M2, M3 have
no common base, none of x1, . . . , xT can be a common base, and hence the procedure outputs
“No.” Therefore, the above procedure returns a correct answer to the 3-matroid intersection problem.
Recall that T is polynomial in N . Since the learner runs in T · poly(N,T ) time and we can check
f1(xt) = f2(xt) = f3(xt) = 1 for t = 1, . . . , T in T ·poly(N) time, the procedure runs in poly(N)
time. This contradicts the NP-hardness of the 3-matroid intersection problem (Proposition 5.4) unless
P = NP. Therefore, no polynomial-time deterministic learner can achieve poly(N) · T 1−c regret in
expectation. Finally, this regret lower bound applies to any polynomial-time randomized learner on
the worst-case input due to Yao’s principle (Proposition 5.3), completing the proof.

Remark 5.6. One might think that the hardness simply follows from the fact that no-regret learning
in terms of (6) is too demanding. However, similar criteria are naturally met in other problems:
there are efficient no-regret algorithms for online convex optimization and no-approximate-regret
algorithms for online submodular function maximization. What makes online M♮-concave function
maximization NP-hard is its connection to the 3-matroid intersection problem, as detailed in the proof.
Consequently, even though offline M♮-concave function maximization is solvable in polynomial time,
no polynomial-time randomized learner can achieve vanishing regret in the adversarial online setting.

6 Conclusion and discussion

This paper has studied no-regret M♮-concave function maximization. For the stochastic bandit setting,
we have developed O(K3/2

√
N/T )-simple regret and O(KN1/3T 2/3)-regret algorithms. A crucial

ingredient is the robustness of the greedy algorithm to local errors, which we have first established for
the M♮-concave case. For the adversarial full-information setting, we have proved the NP-hardness
of no-regret learning through a reduction from the 3-matroid intersection problem.

Our stochastic bandit algorithms are limited to the sub-Gaussian noise model, while our hardness
result for the adversarial setting comes from a somewhat pessimistic analysis. Overcoming these
limitations by exploring intermediate regimes between the two settings, such as stochastic bandits
with adversarial corruptions [28], will be an exciting future direction from the perspective of beyond
the worst-case analysis [42]. We also expect that our stochastic bandit algorithms have room for
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improvement, considering existing regret lower bounds for stochastic combinatorial (semi-)bandits
with linear reward functions. For top-K combinatorial bandits, there is a sample-complexity lower
bound of Ω(N/ε2) for any (ε, δ)-PAC algorithm [41]. Since our O(K3/2

√
N/T )-simple regret

bound implies that we can achieve an ε-error in expectation with O(K3N/ε2) samples, our bound
seems tight when K = O(1), while the K factors would be improvable. Regarding the cumulative
regret bound, there is an Ω(

√
KNT ) lower bound for stochastic combinatorial semi-bandits [22].

Filling the gap between our O(KN1/3T 2/3) upper bound and the lower bound is an open problem.
(Since we have assumed T = Ω(KN) in Section 4, our upper bound does not contradict the
lower bound.) We believe that our upper bound is essentially tight considering a recent minimax
regret bound by Tajdini et al. [50] for bandit submodular maximization, which we discuss in detail
below. Regarding the adversarial setting, it will be interesting to explore no-approximate-regret
algorithms. If M♮-concave functions are restricted to {0, 1}V , the resulting problem is a special case
of online submodular function maximization and hence vanishing 1/2-approximate regret is already
possible [43, 16, 36]. We may be able to improve the approximation factor by using the M♮-concavity.

Discussion on the tightness of the O(KN1/3T 2/3) bound. As mentioned above, obtaining a
tight regret bound for stochastic bandit M♮-concave maximization is left open. Nevertheless, we
conjecture that our O(KN1/3T 2/3) bound in Theorem 4.3 is tight unless we admit exponential
factors in K. The rationale behind this conjecture lies in a recent result by Tajdini et al. [50]. They
studied stochastic bandit monotone submodular maximization with a ground set of size N and a
cardinality constraint of K, and they showed that there is a lower bound of

Ω

(
(K − i)N1/3T 2/3 +

√(
N −K

i

)
T

)
on robust greedy regret, which compares the learner’s actual reward with the output of the greedy
algorithm, denoted by Sgr, applied to the underlying true submodular function. Here, i ≤ K is the

largest positive integer with 16
N2K6

(
N−K

i

)3 ≤ T ; see Tajdini et al. [50, Theorem 2.3] for details.6 This
lower bound suggests that the O(KN1/3T 2/3) regret for stochastic bandit submodular maximization,
which can also be achieved by the explore-then-commit strategy, is inevitable in general. We can

interpret the
√(

N−K
i

)
T term as the regret achieved by regrading all

(
N−K

i

)
subsets as arms and

using a UCB-type algorithm. Thus, the lower bound consists of the two regret terms achieved by the
explore-then-commit and the UCB applied to exponentially many arms.

Currently, we have observed that the proof of the lower bound by Tajdini et al. [50] does not directly
apply to our stochastic bandit M♮-concave maximization problem. Specifically, the function used
in their proof for obtaining the lower bound is submodular but not M♮-concave. Nevertheless, the
problem setting of Tajdini et al. [50] and our problem in Section 4, with the domain restricted to
{0, 1}V , have notable connections:

1. Since the greedy algorithm applied to the unknown true M♮-concave function f∗ can find
an optimal solution x∗, we have x∗ = Sgr. Therefore, the notion of robust greedy regret in
Tajdini et al. [50] essentially coincides with the standard regret in our case.

2. Both the O(KN1/3T 2/3) and O

(√(
N−K

i

)
T

)
regret bounds discussed above can also be

achieved by the explore-then-commit and UCB strategies, respectively, in our M♮-concave
case, where the former is exactly what our Theorem 4.3 states.

Considering these facts, we expect that we can construct a hard instance of stochastic bandit M♮-
concave maximization similar to Tajdini et al. [50] to establish the same regret lower bound. Therefore,
we conjecture that our O(KN1/3T 2/3) regret bound in Theorem 4.3 is tight in K, N , and T , if we
want to avoid the exponential factor, which generally scales as NK , regardless of the value of T .

6More precisely, the lower bound of Tajdini et al. [50, Theorem 2.3] applies to the class of non-adaptive
greedy algorithms, which specify error thresholds only depending on T , N , and K. Our algorithm in Section 4,
which runs MOSS in each iteration for ⌊T/K⌋ rounds, falls into this category. Tajdini et al. [50, Theorem 2.1]
also shows that a weaker lower bound, with the first term replaced with (K − i)1/3N1/3T 2/3, applies to all
stochastic bandit submodular maximization algorithms.
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A Differences of Theorem 3.1 from robustness results in the submodular case

The basic idea of analyzing the robustness is inspired by similar approaches used in online submodular
function maximization [49, 14, 36, 37, 38, 11]. However, our Theorem 3.1 for the M♮-concave case
is fundamentally different from those for the submodular case.

At a high level, an evident difference lies in the comparator in the guarantees. Specifically, we need to
bound the suboptimality compared to the optimal value in the M♮-concave case, while the comparator
is an approximate value in the submodular case.

At a more technical level, we need to work on the solution space in the M♮-concave case, while the
proof for the submodular case follows from analyzing objective values directly. Let us overview the
standard technique for the case of monotone submodular function maximization under the cardinality
constraint, which is the most relevant to our case due to the similarity in the algorithmic procedures.
In this case, a key argument is that in each iteration, the marginal increase in the objective value
is lower bounded by a 1/K fraction of that gained by adding an optimal solution, minus the local
error. That is, regarding f : {0, 1}V → R as a submodular set function, the submodularity implies
f(xk) − f(xk−1) ≥ 1

K (f(xk−1 ∨ x∗)− f(xk−1)) − err(ik |xk−1), where ∨ is the element-wise
maximum. Consequently, by rearranging terms in the same way as the proof of the (1 − 1/e)-
approximation, one can confirm that local errors accumulate only additively over K iterations. In
this way, the robustness property directly follows from incorporating the effect of local errors into
the inequality for deriving the (1− 1/e)-approximation in the submodular case. By contrast, in our
proof of Theorem 3.1 for the M♮-concave case, we need to look at the solution space to ensure that
the local update by ik with small err(ik |xk−1) does not deviate much from Yk−1, as highlighted
in (3) (and this also differs from the original proof without errors [33]). After establishing this, we
can obtain the theorem by induction by virtue of the non-trivial design of Yk (k = 0, . . . ,K), which
satisfies x∗ ∈ Y0 and YK = {xK}.

B MOSS for pure exploration in stochastic multi-armed bandit

We overview the MOSS-based pure-exploration algorithm used in Section 4. For more details, see
Lattimore and Szepesvári [24, Chapters 9 and 33].

Let I{A} take 1 if A is true and 0 otherwise, and let log+(x) = logmax{1, x}. Given a stochastic
multi-armed bandit instance with M arms and T ′ rounds, we consider an algorithm that randomly
selects arms A1, . . . , AT ′ ∈ {1, . . . ,M}. For t = 1, . . . , T ′, let Y t be a random variable representing
the learner’s reward in the tth round, τ̂i(t) =

∑t
s=1 I{As = i} the number of times the ith arm is

selected up to round t, and µ̂i(t) =
1

τ̂i(t)

∑t
s=1 I{As = i}Y s the empirical mean reward of the ith

arm up to round t. Given these definitions, the MOSS algorithm can be described as in Algorithm 2.

Algorithm 2 MOSS

Input: Bandit instance with M arms and T ′ rounds
1: Choose each arm i ∈ {1, . . . ,M} during the first M rounds
2: for t = M + 1, . . . , T ′ :

3: Choose At = argmaxi∈{1,...,M} µ̂i(t− 1) +

√
4

τ̂i(t−1) log
+
(

T ′

Nτ̂i(t−1)

)

Let a1, . . . , aT
′

denote the realization of A1, . . . , AT ′
, respectively, after running the MOSS algo-

rithm. Then, we set the final output to i ∈ {1, . . . ,M} with probability 1
T ′

∑T ′

t=1 I{at = i}. This
procedure gives an O(

√
M/T ′)-simple regret algorithm, as stated in Proposition 4.1.

Proposition 4.1 (Lattimore and Szepesvári [24, Corollary 33.3]). Consider a stochastic multi-armed
bandit instance with M arms and T ′ rounds, where T ′ ≥M . Assume that the reward of the ith arm
in the tth round, denoted by Y t

i , satisfies the following conditions: µi := E[Y t
i ] ∈ [0, 1] and Y t

i − µi

is 1-sub-Gaussian. Then, there is an algorithm that, after pulling arms T ′ times, randomly returns
i ∈ {1, . . . ,M} with µ∗ − E[µi] = O(

√
M/T ′), where µ∗ := max{µ1, . . . , µM}.
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Proof. Since the suboptimality of the ith arm, defined by µ∗−µi, is at most 1 for all i ∈ {1, . . . ,M},
the MOSS algorithm enjoys a cumulative regret bound of RegT ′ := T ′ · µ∗ − E

[∑T ′

t=1 µAt

]
≤

39
√
MT ′ +M (see Lattimore and Szepesvári [24, Theorem 9.1]). Consider setting the final output

to i ∈ {1, . . . ,M} with probability 1
T ′

∑T ′

t=1 I{at = i}, where at denote the realization of At. Then,
it holds that µ∗ − Ei∼p[µi] = RegT ′/T ′ (see Lattimore and Szepesvári [24, Proposition 33.2]). The
right-hand side is at most (39

√
MT ′ +M)/T ′ ≤ 40

√
M/T ′, completing the proof.

C Proof of Proposition 5.3

Proposition 5.3 (Yao [52]). Let A be a finite set of all possible deterministic learning algorithms
that run in polynomial time per round and F1:T a finite set of sequences of M♮-concave functions,
f1, . . . , fT . Let RegT (a, f

1:T ) be the cumulative regret a deterministic learner a ∈ A achieves on a
sequence f1:T = (f1, . . . , fT ) ∈ F1:T . Then, for any polynomial-time randomized learner A and
any distribution q on F1:T , it holds that

max
{
E
[
RegT (A, f1:T )

]
: f1:T ∈ F1:T

}
≥ min

{
Ef1:T∼q

[
RegT (a, f

1:T )
]
: a ∈ A

}
.

Proof. We use the same proof idea as that of Yao’s principle (see, e.g., Motwani and Raghavan [31,
Section 2.2]). First, note that any polynomial-time randomized learner can be viewed as a polynomial-
time deterministic learner with access to a random tape. Thus, we can take A to be chosen according
to some distribution p on the family, A, of all possible polynomial-time deterministic learners.

Consider an |A| × |F1:T | matrix M , whose entry corresponding to row a ∈ A and column f1:T ∈
F1:T is RegT (a, f

1:T ). For any polynomial-time randomized learner A and any distribution q on
F1:T , it holds that

max
{
E
[
RegT (A, f1:T )

]
: f1:T ∈ F1:T

}
≥ min

p′
max
ef1:T

p′Mef1:T

= max
q′

min
ea

eaMq′

≥ min
{
Ef1:T∼q

[
RegT (a, f

1:T )
]
: a ∈ A

}
,

where p′ and q′ denote probability vectors on A and F1:T , respectively, and ef1:T and ea denote the
standard unit vectors of f1:T and a, respectively. The equality is due to Loomis’ theorem [27].
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authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
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material?
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paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
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parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
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Justification: This paper does not include experiments.
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• The factors of variability that the error bars are capturing should be clearly stated (for
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• The method for calculating the error bars should be explained (closed form formula,
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• It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.
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Question: For each experiment, does the paper provide sufficient information on the com-
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Answer: [NA]
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• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).
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Question: Does the research conducted in the paper conform, in every respect, with the
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Answer: [Yes]

Justification: This paper conforms, in every respect, with the NeurIPS Code of Ethics.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
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• The answer NA means that there is no societal impact of the work performed.
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• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
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