
Functionally Constrained Algorithm Solves
Convex Simple Bilevel Problems

Huaqing Zhang* 1,2 Lesi Chen* 1,2 Jing Xu1 Jingzhao Zhang1,2,3

1IIIS, Tsinghua University 2Shanghai Qizhi Institute
3Shanghai AI Lab

{zhanghq22, chenlc23, xujing21}@mails.tsinghua.edu.cn
jingzhaoz@mail.tsinghua.edu.cn

Abstract

This paper studies simple bilevel problems, where a convex upper-level function is
minimized over the optimal solutions of a convex lower-level problem. We first
show the fundamental difficulty of simple bilevel problems, that the approximate
optimal value of such problems is not obtainable by first-order zero-respecting
algorithms. Then we follow recent works to pursue the weak approximate solutions.
For this goal, we propose a novel method by reformulating them into functionally
constrained problems. Our method achieves near-optimal rates for both smooth and
nonsmooth problems. To the best of our knowledge, this is the first near-optimal
algorithm that works under standard assumptions of smoothness or Lipschitz
continuity for the objective functions.

1 Introduction

This work focuses on the following optimization problem:

min
x∈Z

f(x) s.t. x ∈ X ∗
g ≜ argmin

z∈Z
g(z), (1)

where f, g are convex and continuous functions and Z ⊆ Rn is a compact convex set. Such a problem
is often referred to as “simple bilevel optimization” in the literature, as the upper-level objective
function f is minimized over the solution set of a lower-level problem. It captures a hierarchical
structure and thus has many applications in machine learning, including lexicographic optimization
[13, 15] and lifelong learning [13, 18]. Understanding the structure of simple bilevel optimization
and designing efficient algorithms for it is vital and has gained massive attention in recent years
[1, 5, 6, 10, 12–14, 19, 23–27].

To solve the problem, one may observe that Problem (1) is equivalent to the convex optimization
problem minx∈X∗

g
f(x) with implicitly defined convex domain X ∗

g . Hence, it is natural to try to
design first-order methods to find x̂ ∈ Rn such that

|f(x̂)− f∗| ≤ ϵf , g(x̂)− g∗ ≤ ϵg, (2)

where f∗ is the optimal value of Problem (1) and g∗ is the optimal value of the lower-level problem
(minz∈Z g(z)). We highlight the asymmetry in f and g here. f∗ is the minimal in the constrained
set X ∗

g , and hence it is possible that f(x) < f∗ for some x ∈ Z . On the other hand, g∗ is globally
minimal and hence g∗ ≤ g(x) for any x ∈ Z . Such asymmetry is natural as the role of f, g are
inherently asymmetrical for bilevel problems. We call such x̂ a (ϵf , ϵg)-absolute optimal solution.

*Equal contributions.

38th Conference on Neural Information Processing Systems (NeurIPS 2024).

When X ∗
g is explicitly given, finding such a solution is easy as we can apply methods for constrained

optimization problems such as the projected gradient method and Frank-Wolfe method [4, Section 3].
Yet, somewhat surprisingly, our first contribution in this paper (Theorem 4.1 and 4.2) shows that it is
generally intractable for any zero-respecting first-order method to find absolute optimal solutions
for Problem (1). Our negative result shows the fundamental difficulty of simple bilevel problems
compared to classical constrained optimization problems.

As a compromise, most approaches developed for simple bilevel optimization in the literature aim to
find a solution x̂ ∈ Rn such that

f(x̂)− f∗ ≤ ϵf , g(x̂)− g∗ ≤ ϵg, (3)

which we call a (ϵf , ϵg)-weak optimal solution. Much progress has been achieved towards this goal
[10, 18, 19, 23–25]. We note all the above algorithms fall in the class of zero-respecting algorithms
(Assumption 3.4) and hence cannot obtain absolute optimal solutions, unless additional assumptions
are made. (See Remark4.1 and Appendix D for further discussions.)

Our second contribution pushes this boundary by proposing near-optimal lower and upper bounds.
We study two settings: (a) f is Cf -Lipschitz and g is Cg-Lipschitz, (b) f is Lf -smooth and g is
Lg-smooth. We can extend the worst-case functions for single-level optimization to Problem (1) to
show lower bounds of

1. Ω
(
max

{
C2

f/ϵ
2
f , C

2
g/ϵ

2
g

})
for the setup (a);

2. Ω
(
max

{√
Lf/ϵf ,

√
Lg/ϵg

})
for the setup (b).

Given our constructed lower bounds, we further improve known upper bounds by reducing the task
of finding (ϵf , ϵg)-weak optimal solutions to minimizing the functionally constrained problem:

min
x∈Z

f(x), s.t. g̃(x) ≜ g(x)− ĝ∗ ≤ 0, (4)

where ĝ∗ is an approximate solution to the lower level problem minx∈Z g(x). Then we further
leverage the reformulation by Nesterov [20, Section 2.3.4] which relates the optimal value of Problem
(4) to the minimal root of the following auxiliary function, where a discrete minimax problem defines
the function value:

ψ∗(t) = min
x∈Z

{
ψ(t,x) ≜ max {f(x)− t, g̃(x)}

}
. (5)

Based on this reformulation, we introduce a novel method FC-BiO (Functionally Constrained Bilevel
Optimizer). FC-BiO is a double-loop algorithm. It adopts a bisection procedure on t in the outer
loop and applies gradient-based methods to solve the sub-problem (5). Our algorithms achieve the
following upper bounds:

1. Õ
(
max

{
C2

f/ϵ
2
f , C

2
g/ϵ

2
g

})
for the setup (a);

2. Õ
(
max

{√
Lf/ϵf ,

√
Lg/ϵg

})
for the setup (b),

where Õ hides logarithmic terms. Both complexity upper bounds match the corresponding lower
bounds up to logarithmic factors. In words, we summarize our contributions as follows:

• We prove the intractability for any zero-respecting first-order methods to find a (ϵf , ϵg)-
absolute optimal solution of simple bilevel problems.

• We propose a novel method FC-BiO that has near-optimal rates for finding (ϵf , ϵg)-weak
optimal solutions of both nonsmooth and smooth problems. To the best of our knowledge,
this is the first near-optimal algorithm that works under standard assumptions of smoothness
or Lipschitz continuity for the objective functions. A comparison of previous results can be
found in Section 2.

2

2 Related work

In the literature, various methods [1, 3, 6, 10, 12–14, 18, 19, 23–27] have been proposed to achieve a
(ϵf , ϵg)-weak optimal solution to simple bilevel problems defined as Equation (3) . Below, we review
the existing methods with non-asymptotic convergence. For ease of presentation, we state the results
for ϵf = ϵg = ϵ.

Prior results on Lipschitz problems Kaushik and Yousefian [14] proposed the averaging iteratively
regularized gradient method (a-IRG) for convex optimization with variational inequality constraints,
of which Problem (1) is a special case. a-IRG achieves the rate of O(1/ϵ4). Shen et al. [25] proposed
a method for solving Problem (1) with O(1/ϵ3) complexity based on the online learning framework.
When f is Lipschitz continuous and g is smooth, Merchav and Sabach [19] proposed a gradient-based
algorithm with O(1/ϵ1/(1−α)) complexity for any α ∈ (0.5, 1). However, none of these methods can
achieve the optimal rate of O(ϵ−2).

Prior results on smooth problems Samadi et al. [24] proposed the regularized accelerated proximal
method (R-APM) with a complexity of O(1/ϵ). Under the additional weak sharp minima condition
on g, the complexity of R-APM improves to O (1/

√
ϵ). However, this condition is often too strong

and does not hold for many problems. Chen et al. [10] extended the result of [24] to the more general
α-Hölderian error bound condition. However, their method achieves the optimal rate only when
α = 1, which reduces to the weak sharp minima condition. Jiang et al. [13] developed a conditional
gradient type algorithm (CG-BiO) with a complexity of O (1/ϵ), which approximates X ∗

g similar to
the cutting plane approach. Later on, Cao et al. [6] proposed an accelerated algorithm with a similar
cutting plane approach to achieve the rate of O(max{1/√ϵf , 1/ϵg}), which can further be improved
to O(1/

√
ϵ) under the additional weak sharp minima condition. Recently, Wang et al. [28] reduced

Problem (1) to finding the smallest c such that the optimal value of the following parametric problem
is g∗: minx∈Rn g(x), s.t. f(x) ≤ c. They adopted a bisection method to find such a c. To solve this
parametric problem, Accelerated Proximal Gradient method is applied on g with projection operator
onto the sublevel set Fc = {x | f(x) ≤ c}, which we call sublevel set oracles. This leads to an upper
bound of Õ(1/

√
ϵ). Such an oracle is obtainable for norm-like functions such as f(x) = 1

2∥x∥
2.

However, it may be computationally intractable for more general functions, such as MSE loss or
logistic loss. It is a very strong oracle that is seldom used in the literature on optimization: the
single-level optimization of a function f using sublevel set oracles can be completed in O(log(1/ϵ))
iterations of bisection procedure. Compared with previous work [6, 10, 24, 28], our proposed methods
achieve the Õ(1/

√
ϵ) rate under standard assumptions, without assuming f is a norm-like function

or g satisfies the weak sharp minima condition.

Comparison with Nesterov’s methods for functionally constrained problems Based on similar
reformulation, Nesterov [20] has proposed algorithms for functionally constrained problems, of
which Problem (4) is a special case: one for smooth problems in Section 2.3.5, and one for Lipschitz
problems in Section 3.3.4. However, Nesterov’s algorithm for smooth problems relies on the strong
convexity of f and g, which does not hold in our bilevel setups. In this case, X ∗

g would be a singleton,
rendering the upper-level problem trivial. Our algorithm does not require the strong convexity
assumption, and has a unified framework for both smooth and nonsmooth problems.

3 Preliminaries

For any x ∈ Rn, let x[j] represent the j-th coordinate of x for j = 1, · · · , n. We use supp(x) := {j ∈
[d] : x[j] ̸= 0} to denote the support of x. The Euclidean ball centered at x with radius R is denoted
as B(x, R) ≜ {y | ∥y − x∥2 ≤ R}. For any closed convex set C ⊆ Rn, the Euclidean projection
of x onto C is denoted by ΠC(x) ≜ argminy∈C ∥y − x∥2. We say a function h is C-Lipschitz in
domain Z if ∥h(x) − h(y)∥2 ≤ C∥x − y∥2 for all x,y ∈ Z . We say a differentiable real-valued
function h is L-smooth if it has L-Lipschitz continuous gradients.

We now state the assumptions required in our theoretical results.
Assumption 3.1. Consider Problem (1). We assume that

1. Functions f and g : Rn → R are convex and continuous.

3

2. The feasible set Z is convex and compact with diameter D = supx,y∈Z ∥x− y∥2.

The compactness assumption ensures that the subprocesses adopted in our method have a unified
upper complexity bound (see Section 5.3). We note that other works involving bisection procedures,
such as Wang et al. [28], may also need to address this issue to derive an explicit dependence on the
distance term (although it is not stated formally in their paper). For unconstrained problems, if we
know that the initial distance ∥x∗ − x0∥2 is upper bounded by R, we can simply take Z = B(x0, R).

We use Assumption 3.1 throughout this paper, but distinguish the following two different settings.
Assumption 3.2. Consider Problem (1). We assume that f and g are Lf -smooth and Lg-smooth
respectively. We call such problems (Lf , Lg)-smooth problems.
Assumption 3.3. Consider Problem (1). We assume that f and g are Cf -Lipschitz and Cg-Lipschitz
in Z respectively. We call such problems (Cf , Cg)-Lipschitz problems.

To study the complexity of solving Problem (1), we make the following assumption on the algorithms.
Assumption 3.4 (zero-respecting algorithm class). An iterative method A can access the objective
functions f and g only through a first-order black-box oracle, which takes a test point x̂ as the input
and returns ∂f(x̂), ∂g(x̂), where ∂f(x̂), ∂g(x̂) are arbitrary subgradients of the objective functions
at x̂. A generates a sequence of test points {xk}Kk=0 with

supp(xk+1) ⊆ supp(x0) ∪

 ⋃
0≤s≤k

supp (∂f(xs)) ∪ supp(∂g(xs))

 . (6)

This assumption generalizes the standard definition of zero-respecting algorithm for single-
level minimization problems [7, 20]. Many existing methods that incorporate a gradient
step in the update for Problem (1) clearly fall within this class of algorithms, including
those proposed by [10, 18, 19, 23–25], since the gradient step ensures that xk ∈ x0 +
Span{∂f(x0), ∂g(x0), . . . , ∂f(xk−1), ∂g(xk−1)}. In the appendix, we show that the proposed
algorithm in this paper and the conditional gradient type methods [5, 13] also satisfy the condition
(6) when the domain is a Euclidean ball centered at x0 (see Proposition C.1 and Remark C.1), which
suffices to establish the negative results, including the intractability results for absolute optimal
solutions and lower complexity bounds for weak optimal solutions.

The following concept of first-order zero-chain, introduced by Nesterov [20, Section 2.1.2], plays an
essential role in proving lower bounds for zero-respecting algorithms. In our paper, we leverage the
chain-like structure to show the intractability of finding absolute optimal solutions.
Definition 3.1 (first-order zero-chain). We call a differentiable function h(x) : Rq → R a first-order
zero-chain if for any sequence {xk}k≥0 satisfying

supp(xk+1) ⊆
⋃

0≤s≤k

supp (∇h(xs)) , k ≥ 1; x0 = 0,

it holds that xk,[j] = 0, k + 1 ≤ j ≤ q.

Definition 3.1 defines differentiable zero-chain functions. We can similarly define non-differentiable
zero-chain, by requiring supp(xk+1) to be in

⋃
0≤s≤k supp (∂h(xs)), where ∂h(x) is a (possibly

adversarial) subgradient of h at x.

4 Finding absolute optimal solutions is hard

Faced with Problem (1), a natural initial response is to seek an approximate solution x̂ such that f(x̂)
is as close to f∗ as possible, under the premise that g(x̂) is close to g∗. Such a goal is captured by
the concept of (ϵf , ϵg)-absolute optimal solutions as defined in (2). However, it turns out that finding
a (ϵf , ϵg)-absolute optimal solution is intractable for any zero-respecting first-order methods in both
smooth and Lipschitz problems as shown in the following theorems.
Theorem 4.1. For any first-order algorithm A satisfying Assumption 3.4 that runs for T iterations
and any initial point x0, there exists a (1, 1)-smooth instance of Problem (1) such that the optimal
solution x∗ satisfies ∥x0 − x∗∥2 ≤ 1 and |f(x0)− f∗| ≥ 1

48 . For the iterates {xk}Tk=0 generated
by A, the following holds:

f(xk) = f(x0), ∀1 ≤ k ≤ T.

4

Theorem 4.2. For any first-order algorithm A satisfying Assumption 3.4 that runs for T iterations
and any initial point x0, there exists a (1, 1)-Lipschitz instance of Problem (1) and some adversarial
subgradients {∂f(xk), ∂g(xk)}T−1

k=0 such that the optimal solution x∗ satisfies ∥x0 − x∗∥2 ≤ 1 and
|f(x0)− f∗| ≥ 1

4 . For the iterates {xk}Tk=0 generated by A, the following holds
f(xk) = f(x0), ∀1 ≤ k ≤ T.

The proofs of Theorem 4.1 and Theorem 4.2 rely on the concept of worst-case convex zero-chain
(Proposition A.1 and A.2). We show that for any first-order zero-respecting algorithm that runs for T
iterations, there exists a “hard instance” such that f(xt) remains unchanged from the initial value
f(x0) throughout the entire process. The complete proof is provided in Appendix A.

The constructions of the above hardness results are motivated by the work [9], which demonstrated
that for general bilevel optimization problems of the form minx∈Rn,y∈Rm f(x,y) subject to y ∈
argminz∈Rm g(x, z), there exists a "hard instance" in which any zero-respecting algorithm always
yields xk = x0 for all 1 ≤ k ≤ T . Although our construction has a very similar high-level idea to
[9], the f and g we construct are different from the functions in [9] since our desired conclusion is
different.
Remark 4.1. Some previous works [6, 13, 24] provide guarantees for finding (ϵf , ϵg)-absolute
optimal solutions. However, these works assume an additional Hölderian error bound condition [21]
on g. Our near-optimal methods for finding weak optimal solutions, proposed in the next section,
also work well under this additional assumption and achieve the best-known convergence rate for
absolute suboptimality both in smooth and Lipschitz settings. See Appendix D for further discussions.

5 Near-optimal methods for weak optimal solutions

Due to the intractability of obtaining (ϵf , ϵg)-absolute optimal solutions of Problem (1), most existing
works focus on developing first-order methods to find (ϵf , ϵg)-weak optimal solutions as defined in
(3). In this section, we establish the lower complexity bounds for finding weak optimal solutions
and propose a new framework for simple bilevel problems named Functionally Constrained Bilevel
Optimizer (FC-BiO) that achieves near-optimal convergence in both Lipschtitz and smooth settings.

5.1 Lower complexity bounds

We first establish the lower complexity bounds for finding a (ϵf , ϵg)-weak optimal solution of
(Lf , Lg)-smooth problems and (Cf , Cg)-Lipschitz problems. The results follow directly from
existing lower bounds for single-level optimization problems, as simple bilevel optimization is a more
general framework. Although the proof is straightforward, we present the results because establishing
a precise lower bound is essential for demonstrating that an algorithm is truly near-optimal.
Theorem 5.1. Given Lf , Lg, D > 0. For any first-order algorithm A satisfying Assumption
3.4 and any initial point x0, there exists a (Lf , Lg)-smooth instance of Problem (1) on the do-
main Z = B(x0, D) such that the optimal solution x∗ is contained in Z and A needs at least

Ω
(
max

{√
Lf

ϵf
,
√

Lg

ϵg

}
D
)

iterations to find a (ϵf , ϵg)-weak optimal solution.

Theorem 5.2. Given Cf , Cg, D > 0. For any first-order algorithm A satisfying Assumption
3.4 and any initial point x0, there exists a (Cf , Cg)-Lipschitz instance of Problem (1) on the do-
main Z = B(x0, D) such that the optimal solution x∗ is contained in Z and A needs at least

Ω
(
max

{
C2

f

ϵ2f
,
C2

g

ϵ2g

}
D2
)

iterations to find a (ϵf , ϵg)-weak optimal solution.

5.2 Our proposed algorithms

We now present a unified framework applicable to both smooth and Lipschitz problems. The proposed
algorithms nearly match the lower complexity bounds in both settings up to logarithmic factors.

Problem reformulation We apply two steps of reformulation. First, we relax Problem (1) to
Problem (4), where the constraint x ∈ X ∗

g is replaced by a relaxed functional constraint g̃(x) ≜
g(x)− ĝ∗ ≤ 0 and ĝ∗ is an approximate solution to the lower level problem minx∈Z g(x). Denoting
f̂∗ as the optimal value of Problem (4), the following lemma holds:

5

Algorithm 1 Functionally Constrained Bilevel Optimizer (FC-BiO)
Require: Problem parameters x0, D, desired accuracy ϵ, total number of iterations T , initial bounds

ℓ, u, and a subroutine for Problem (7) M.
1: Set N =

⌈
log2

u−ℓ
ϵ/2

⌉
, K = T/N . Set x̄ = x0.

2: for k = 0, · · · , N − 1 do
3: Set t = ℓ+u

2 .
4: Solve with the subroutine (x̂(t), ψ̂

∗(t)) = M(x̄, D, t,K).
5: Set x̄ = x̂(t)

6: if ψ̂∗(t) > ϵ
2 then

7: Set ℓ = t.
8: else
9: Set u = t.

10: end if
11: end for
12: return x̂ = x̂(u) as the approximate solution.

Lemma 5.1. If g∗ ≤ ĝ∗ ≤ g∗ +
ϵg
2 and x̂ is a (ϵf , ϵg/2)-weak optimal solution to Problem (4), i.e.

f(x̂) ≤ f̂∗ + ϵf , g̃(x̂) ≤ ϵg/2, then x̂ is a (ϵf , ϵg)-weak optimal solution to Problem (1).

Therefore, it suffices to pursue an approximate solution of Problem (4). Second, Problem (4) is
further reduced to the problem of finding the smallest root of the following auxiliary function:

ψ∗(t) = min
x∈Z

{
ψ(t,x) ≜ max {f(x)− t, g̃(x)}

}
. (7)

Such reformulation is introduced in Nesterov [20, Section 2.3] with the following characterization.

Lemma 5.2 (Nesterov [20, Lemma 2.3.4]). Let f̂∗ be the optimal value of Problem (4), and let ψ∗(t)
be the auxiliary function as defined in (7). The following holds:

1. ψ∗(t) is continuous, decreasing, and Lipschitz continuous with constant 1.

2. f̂∗ is exactly the smallest root of ψ∗(t).

Bisection procedure Based on the preceding reformulation, we propose Algorithm 1 (FC-BiO),
which uses a bisection procedure to estimate the smallest root of ψ∗(·). For now, we assume that the
desired accuracy on upper-level and lower-level problems is the same, (i.e. ϵf = ϵg = ϵ). Later we
will show in Corollary 5.1 that we can handle the case when ϵf ̸= ϵg by simply scaling the objectives.

Algorithm 1 applies the bisection method within an initial interval [ℓ, u] which contains the smallest
root, f̂∗, for N =

⌈
log2

u−ℓ
ϵ/2

⌉
iterations. Similar to [28], the initial interval can be obtained by

applying single-level first-order methods. The lower bound ℓ is obtained by solving the global
minimum of the upper-level objective f over x ∈ Z , while u = f(x̂g) serves as a valid upper bound,
where x̂g is an approximate solution to the lower-level problem. Further details can be found in
Appendix B.1. In each iteration, we set t = ℓ+u

2 . To approximate the function value of ψ∗(t), we
apply a first-order algorithm M to solve the discrete minimax problem (7). For the Lipschitz setting,
we let M be the Subgradient Method (SGM, Algorithm 2) [4, Section 3.1]. For the smooth setting,
we let M be the generalized accelerated gradient method (generalized AGM, Algorithm 3) [20,
Algorithm 2.3.12]. These methods guarantee to find an approximate solution x̂(t) of Problem (7)
such that

ψ∗(t) ≤ ψ̂∗(t) ≜ ψ(t, x̂(t)) ≤ ψ∗(t) +
ϵ

2
. (8)

If ψ̂∗(t) > ϵ/2, we update ℓ = t. Conversely, if ψ̂∗(t) ≤ ϵ/2, we set u = t. For the initial point
of M, we exploit a warm-start strategy (see more details in Appendix B.2). After completing N
iterations, we return x̂ = x̂(u) as the output. As shown in Lemma 5.3, x̂ is guaranteed to be a
(ϵ, ϵ)-weak optimal solution to Problem (1).

6

Algorithm 2 Solve Problem (7) with SGM (x0, D, t,K)

Require: Problem parameters x0, D, t, total number of iterations K.
1: Set η = D/(C

√
K), where C = max{Cf , Cg}.

2: for k = 0, · · · ,K − 1 do
3: Obtain a subgradient s ∈ ∂xψ(t,x) by Proposition 5.1.
4: Update xk+1 = ΠZ(xk − ηs).
5: end for
6: return x̂(t) =

1
K

∑K−1
k=0 xk as the approximate solution and ψ̂∗(t) = max{f(x̂(t))−t, g̃(x̂(t))}

as the approximate value.

We remark that since we can only solve an approximate value of ψ∗(t), the upper bound u might fall
below f̂∗ during the bisection process. But this is acceptable since we are only in pursuit of a weak
optimal solution instead of an absolute optimal solution.
Lemma 5.3. If ĝ∗ satisfies g∗ ≤ ĝ∗ ≤ g∗ + ϵ

2 and (8) holds for every t in the process of Algorithm
1, then the approximate solution x̂ returned by Algorithm 1 is a (ϵ, ϵ/2)-weak optimal solution to
Problem (4), and therefore a (ϵ, ϵ)-weak optimal solution to Problem (1) by Lemma 5.1.

According to this lemma, O(log(1/ϵ)) iterations of the outer loops are sufficient to find a (ϵ, ϵ)-weak
optimal solution. Next, we will discuss the process and complexity of the subroutines in detail.

5.3 Subroutines and total complexity

To proceed with the bisection process, we need to invoke a subroutine M to approximate the function
value of ψ∗(t) = minx∈Z ψ(t,x) in each outer iteration, where ψ(t,x) = max{f(x) − t, g̃(x)}.
This reduces to a discrete minimax optimization problem (Problem (7)) for a given t. Below we
demonstrate the subroutines to solve this problem in Lipschitz and smooth settings.

Lipschitz setting When f and g are convex and Cf and Cg-Lipschitz respectively, it holds that
ψ(t,x) is also convex and Lipschitz with constant max{Cf , Cg}. In this case, setting M to be the
Subgradient Method (SGM) [4, Section 3.1] applied on ψ(t, ·) (Algorithm 2) directly achieves the
optimal convergence rate. To implement the SGM method, the subgradient of ψ(t,x) needs to be
computed as given in the following proposition:
Proposition 5.1 (Nesterov [20, Lemma 3.1.13]). Consider ψ(t,x) = max{f(x)− t, g̃(x)} where f
and g are convex functions. For given t. We have

∂xψ(t,x) =

∂f(x), f(x)− t > g̃(x);

∂g̃(x), f(x)− t < g̃(x);

Conv {∂f(x), ∂g̃(x)} , f(x)− t = g̃(x).

Algorithm 2 has the following convergence guarantee:
Lemma 5.4 (Bubeck et al. [4, Theorem 3.2]). Suppose Assumption 3.1 and 3.3 hold. When K ≥
4D2C2

ϵ2 , the approximate value ψ̂∗(t) produced by Algorithm 2 satisfies ψ∗(t) ≤ ψ̂∗(t) ≤ ψ∗(t) + ϵ
2 ,

where C = max{Cf , Cg}.

We refer to Algorithm 1 with SGM subroutine (Algorithm 2) as FC-BiOLip. Combining with Lemma
5.3, we obtain the following total iteration complexity of FC-BiOLip:
Theorem 5.3 (Lipschitz setting). Suppose Assumption 3.1 and 3.3 hold and ϵf = ϵg = ϵ. When

T ≥
⌈
log2

u− ℓ

ϵ/2

⌉
4max{C2

f , C
2
g}

ϵ2
D2,

the approximate solution x̂ produced by FC-BiOLip is a (ϵ, ϵ)-weak optimal solution to Problem (1).

Smooth setting The optimal first-order method for optimizing smooth objective functions is the
celebrated Accelerated Gradient Method (AGM) [20, Section 2.2] proposed by Nesterov. In contrast
to the Lipschitz setting, AGM cannot be applied to ψ(t,x) = max{f(x)− t, g̃(x)} directly when

7

Algorithm 3 Solve Problem (7) with Generalized AGM (x0, D, t,K) [20, Algorithm 2.3.12]
Require: Problem parameters x0, D, t, total number of iterations K.

1: Set y0 = x0, α0 = 1
2 .

2: for k = 0, · · ·K − 1 do
3: Compute xk+1 as the solution to (9) by Proposition 5.2.
4: Compute αk+1 from the equation α2

k+1 = (1− αk+1)α
2
k.

5: Set βk = αk(1−αk)
α2

k+αk+1
, yk+1 = xk+1 + βk(xk+1 − xk).

6: end for
7: return x̂(t) = xK as the approximate solution and ψ̂∗(t) = max{f(xK) − t, g̃(xK)} as the

approximate value.

f and g are convex and smooth, as the smoothness condition no longer holds for ψ(t, ·). However,
Nesterov [20, Section 2.3] showed that by simply replacing the gradient step in standard AGM with
the following gradient mapping (Nesterov [20, Definition 2.3.2])

xk+1 = argmin
x∈Z

{
ψ̄(t,x;yk) ≜ max

{
f(yk) + ⟨∇f(yk),x− yk⟩+

L

2
∥x− yk∥22 − t,

g̃(yk) + ⟨∇g̃(yk),x− yk⟩+
L

2
∥x− yk∥22

}}
,

(9)

the optimal rate of O(
√
L/ϵ) can be achieved for Problem (7). Here {xk}, {yk} are the test point

sequences and L = max{Lf , Lg}. Solving xk+1 for general discrete minimax problems (where
the maximum is taken over potentially more than two objective functions, as studied in Nesterov
[20, Section 2.2]), reduces to a quadratic programming (QP) problem and may not be efficiently
solvable. However, we demonstrate that in our problem setup, xk+1 can be expressed in the form
of a projection onto the feasible set Z , or onto the intersection of Z and a hyperplane. A similar
subproblem also arises in Cao et al. [6, Remark 3.2]. When the structure of H is simple, such as
when it is a Euclidean ball, the subproblem may admit a closed-form solution. Otherwise, Dykstra’s
projection algorithm can be applied to solve it [11].
Proposition 5.2. Define the descent step candidates

x1 = ΠZ

(
yk − 1

L
∇f(yk)

)
, x2 = ΠZ

(
yk − 1

L
∇g̃(yk)

)
,

x3 = ΠZ∩H

(
yk − 1

L
∇f(yk)

)
,

(10)

where H ⊂ Rn is a hyperplane defined by

H = {x | f(yk)− g̃(yk) + ⟨∇f(yk)−∇g̃(yk),x− yk⟩ − t = 0}.

Then the solution to (9) is xk+1 = argmin{xi|i∈{1,2,3}} ψ̄(t,xi;yk).

We present the generalized AGM subroutine (Algorithm 3) and its convergence rate below.
Lemma 5.5 (Nesterov [20, Theorem 2.3.5]). Suppose Assumption 3.1 and 3.2 hold.When K ≥
D
√

12L
ϵ , the approximate value ψ̂∗(t) produced by Algorithm 3 satisfies ψ∗(t) ≤ ψ̂∗(t) ≤ ψ∗(t)+ ϵ

2 ,
where L = max{Lf , Lg}.

We refer to Algorithm 1 with generalized AGM subroutine (Algorithm 3) as FC-BiOsm, whose total
iteration complexity is given by the following theorem:
Theorem 5.4 (Smooth setting). Suppose Assumption 3.1 and 3.2 hold and ϵf = ϵg = ϵ. When

T ≥
⌈
log2

u− ℓ

ϵ/2

⌉√
12max{Lf , Lg}

ϵ
D,

the approximate solution x̂ produced by FC-BiOsm is a (ϵ, ϵ)-weak optimal solution to Problem (1).

8

0 5 10 15
time (s)

10-6

10-2

102

jg
(x

k
)
!

g
$
j

0 5 10 15
time (s)

10-2

10-1

jf
(x

k
)
!

f
$
j

FC-BiOsm

FC-BiOLip

AGM-BiO
PB-APG
Bi-SG
a-IRG
CG-BiO
Bisec-BiO

Figure 1: The performance of Algorithm 1 compared with other methods in Problem (11).

For more general cases when the desired accuracy for the upper-level and lower-level problems is
different (i.e. ϵf ̸= ϵg), we can simply scale the objective functions before applying FC-BiOLip or
FC-BiOsm, resulting in the following guarantee:
Corollary 5.1. Suppose Assumption 3.1 holds. By scaling g̃◦ =

ϵf
ϵg
g̃ and applying FC-BiOLip or

FC-BiOsm on functions f and g̃◦, a (ϵf , ϵg)-weak optimal solution to Problem (1) is obtained within

the complexity of Õ
(
max

{
C2

f

ϵ2f
,
C2

g

ϵ2g

}
D2
)

under Assumption 3.3 and Õ
(
max

{√
Lf

ϵf
,
√

Lg

ϵg

}
D
)

under Assumption 3.2.

Our proposed algorithms are near-optimal in both Lipschitz and smooth settings as the convergence
results in Corollary 5.1 match the lower bounds established in Theorem 5.1 and Theorem 5.2.

6 Numerical experiments

In this section, we evaluate our proposed methods on two different bilevel problems with smooth
objectives. We compare the performance of FC-BiOsm with existing methods, including a-IRG [14],
Bi-SG [19], CG-BiO[13], AGM-BiO [6], PB-APG[10], and Bisec-BiO[28]. The following problems
are also Lipschitz on a compact set Z , so we implement FC-BiOLip as well. The initialization time
of FC-BiOsm, FC-BiOLip, CG-BiO, and Bisec-BiO is taken into account and is plotted in the figures.
Our implementations of CG-BiO and a-IRG are based on the codes from [13], which is available
online1.

6.1 Minimum norm solution

As in [28], we consider the following simple bilevel problem:

f(x) =
1

2
∥x∥22, g(x) =

1

2
∥Ax− b∥22. (11)

We set the feasible set Z = B(0, 2). We use the Wikipedia Math Essential dataset [22], which
contains 1068 instances with 730 attributes. We uniformly sample 400 instances and denote the
feature matrix and outcome vector by A and b respectively. We choose the same random initial point
x0 for all methods. We set ϵf = ϵg = 10−6. For this problem, we can explicitly solve x∗ and f∗
to measure the convergence. Figure 1 shows the superior performance of our method compared to
existing methods in both upper-level and lower-level. The only exception is Bisec-BiO [28], which
shows a comparable performance to our method. This also aligns well with the theory as these two
methods have the same convergence rates. We remark that the output of our method satisfies that
f(x̂) < f∗. Thus although |f(x̂)− f∗| > ϵf , indeed a (ϵf , ϵg)-weak optimal solution is solved by
FC-BiOsm. See more experiment details in Appendix E.1.

6.2 Over-parameterized logistic regression

We examine simple bilevel problems where the lower-level and upper-level objectives correspond to
the training loss and validation loss respectively. Here we address the logistic regression problem

1https://github.com/Raymond30/CG-BiO

9

https://github.com/Raymond30/CG-BiO

0 5 10 15
time (s)

10-3

10-2

10-1

100

101

g
(x

k
)

0 5 10 15
time (s)

10-2

10-1

100

101

f
(x

k
)

FC-BiOsm

FC-BiOLip

AGM-BiO
PB-APG
Bi-SG
a-IRG
CG-BiO

Figure 2: The performance of Algorithm 1 compared with other methods in Problem (12)

using the “rcv1.binary” dataset from “LIBSVM” [8, 16], which contains 20, 242 instances with
47, 236 features. We uniformly sample m = 5000 instances as the training dataset (Atr,btr), and m
instances as the validation dataset (Aval,bval). We consider the bilevel problem with:

f(x) =
1

m

m∑
i=1

log(1 + exp(−(Aval
i)⊤xbval

i)),

g(x) =
1

m

m∑
i=1

log(1 + exp(−(Atr
i)⊤xbtr

i)).

(12)

We set the feasible set Z = B(0, 300). We set the initial point x0 = 0 for all methods. We set
ϵf = ϵg = 10−3. Since projecting to the sublevel set of f(x) is not practical, Bisec-BiO [28] does
not apply to this problem, thus we only consider other methods. To the best of our knowledge, no
existing solver could obtain the exact value of f∗ and g∗ of Problem (12). Thus we only plot function
value f(xk) and g(xk), instead of suboptimality. As shown in Figure 2, our method converges faster
than other algorithms in both upper-level and lower-level. More details are provided in Appendix E.2.

7 Conclusion and future work

This paper provides a comprehensive study of convex simple bilevel problems. We show that finding
a (ϵf , ϵg)-absolute optimal solution for such problems is intractable for any zero-respecting first-order
algorithm, thus justifying the notion of weak optimal solution considered by existing works. We then
propose a novel method FC-BiO for finding a (ϵf , ϵg)-weak optimal solution. Our proposed method

achieves the near-optmal rates of Õ
(
max{L2

f/ϵ
2
f , L

2
g/ϵ

2
g}
)

and Õ
(
max{

√
Lf/ϵf ,

√
Lg/ϵg}

)
for

Lipschitz and smooth problems respectively. To the best of our knowledge, this is the first near-
optimal algorithm that works under standard assumptions of smoothness or Lipschitz continuity for
the objective functions.

We discuss some limitations unaddressed in this work. First, our method introduces an additional
logarithmic factor compared to the lower bounds. We hope future works can further close this gap
between upper and lower bounds. Second, our methods cannot be directly applied to stochastic
problems [5]. Establishing lower complexity bounds and developing optimal methods for stochastic
simple bilevel problems remain an open question for future research.

Acknowledgement

We would like to express our sincere gratitude to the anonymous reviewers and the area chair for their
invaluable feedback and insightful suggestions. In particular, we thank the area chair for suggesting
simplifying the proofs of Theorem 5.1 and Theorem 5.2.

10

References
[1] Mostafa Amini and Farzad Yousefian. An iterative regularized incremental projected subgradient

method for a class of bilevel optimization problems. In 2019 American Control Conference
(ACC), pages 4069–4074. IEEE, 2019.

[2] Michael Arbel and Julien Mairal. Amortized implicit differentiation for stochastic bilevel
optimization. In ICLR, 2022.

[3] Amir Beck and Shoham Sabach. A first order method for finding minimal norm-like solutions
of convex optimization problems. Mathematical Programming, 147(1):25–46, 2014.

[4] Sébastien Bubeck et al. Convex optimization: Algorithms and complexity. Foundations and
Trends® in Machine Learning, 8(3-4):231–357, 2015.

[5] Jincheng Cao, Ruichen Jiang, Nazanin Abolfazli, Erfan Yazdandoost Hamedani, and Aryan
Mokhtari. Projection-free methods for stochastic simple bilevel optimization with convex
lower-level problem. In NeurIPS, 2023.

[6] Jincheng Cao, Ruichen Jiang, Erfan Yazdandoost Hamedani, and Aryan Mokhtari. An accel-
erated gradient method for simple bilevel optimization with convex lower-level problem. In
NeurIPS, 2024.

[7] Yair Carmon, John C. Duchi, Oliver Hinder, and Aaron Sidford. Lower bounds for finding
stationary points i. Mathematical Programming, 184(1):71–120, 2020.

[8] Chih-Chung Chang and Chih-Jen Lin. LIBSVM: A library for support vector machines. ACM
Transactions on Intelligent Systems and Technology, 2:27:1–27:27, 2011. Software available at
http://www.csie.ntu.edu.tw/~cjlin/libsvm.

[9] Lesi Chen, Jing Xu, and Jingzhao Zhang. On finding small hyper-gradients in bilevel optimiza-
tion: Hardness results and improved analysis. In COLT, 2024.

[10] Pengyu Chen, Xu Shi, Rujun Jiang, and Jiulin Wang. Penalty-based methods for simple bilevel
optimization under Holderian Error Bounds. In NeurIPS, 2024.

[11] Patrick L Combettes and Jean-Christophe Pesquet. Proximal splitting methods in signal
processing. Fixed-point algorithms for inverse problems in science and engineering, pages
185–212, 2011.

[12] Elias S. Helou and Lucas EA Simões. ϵ-subgradient algorithms for bilevel convex optimization.
Inverse problems, 33(5):055020, 2017.

[13] Ruichen Jiang, Nazanin Abolfazli, Aryan Mokhtari, and Erfan Yazdandoost Hamedani. A
conditional gradient-based method for simple bilevel optimization with convex lower-level
problem. In AISTATS, 2023.

[14] Harshal D. Kaushik and Farzad Yousefian. A method with convergence rates for optimization
problems with variational inequality constraints. SIAM Journal on Optimization, 31(3):2171–
2198, 2021.

[15] Matthias Kissel, Martin Gottwald, and Klaus Diepold. Neural network training with safe
regularization in the null space of batch activations. In Artificial Neural Networks and Machine
Learning, pages 217–228. Springer, 2020.

[16] David D Lewis, Yiming Yang, Tony Russell-Rose, and Fan Li. Rcv1: A new benchmark
collection for text categorization research. Journal of machine learning research, 5(Apr):
361–397, 2004.

[17] Hongzhou Lin, Julien Mairal, and Zaid Harchaoui. Catalyst acceleration for first-order convex
optimization: from theory to practice. JMLR, 18(212):1–54, 2018.

[18] Yura Malitsky. Chambolle-pock and Tseng’s methods: relationship and extension to the bilevel
optimization. arXiv preprint arXiv:1706.02602, 2017.

11

http://www.csie.ntu.edu.tw/~cjlin/libsvm

[19] Roey Merchav and Shoham Sabach. Convex bi-level optimization problems with nonsmooth
outer objective function. SIAM Journal on Optimization, 33(4):3114–3142, 2023.

[20] Yurii Nesterov. Lectures on convex optimization, volume 137. Springer, 2018.

[21] Jong-Shi Pang. Error bounds in mathematical programming. Mathematical Programming, 79
(1):299–332, 1997.

[22] Benedek Rozemberczki, Paul Scherer, Yixuan He, George Panagopoulos, Alexander Riedel,
Maria Astefanoaei, Oliver Kiss, Ferenc Beres, Guzman Lopez, Nicolas Collignon, et al. Py-
torch geometric temporal: Spatiotemporal signal processing with neural machine learning
models. In Proceedings of the 30th ACM international conference on information & knowledge
management, pages 4564–4573, 2021.

[23] Shoham Sabach and Shimrit Shtern. A first order method for solving convex bilevel optimization
problems. SIAM Journal on Optimization, 27(2):640–660, 2017.

[24] Sepideh Samadi, Daniel Burbano, and Farzad Yousefian. Achieving optimal complexity
guarantees for a class of bilevel convex optimization problems. arXiv preprint arXiv:2310.12247,
2023.

[25] Lingqing Shen, Nam Ho-Nguyen, and Fatma Kılınç-Karzan. An online convex optimization-
based framework for convex bilevel optimization. Mathematical Programming, 198(2):1519–
1582, 2023.

[26] Mikhail Solodov. An explicit descent method for bilevel convex optimization. Journal of
Convex Analysis, 14(2):227, 2007.

[27] Mikhail V. Solodov. A bundle method for a class of bilevel nonsmooth convex minimization
problems. SIAM Journal on Optimization, 18(1):242–259, 2007.

[28] Jiulin Wang, Xu Shi, and Rujun Jiang. Near-optimal convex simple bilevel optimization with a
bisection method. In AISTATS, 2024.

12

A Proofs for Section 4

A.1 Constructions of first-order zero-chains

We first give the constructions of the zero-chains that are used in our negative results. These zero-
chains are the worst-case functions that Nesterov [20] used to prove the lower complexity bounds for
first-order methods in single-level optimization.
Proposition A.1 (Paraphrased from Section 2.1.2 Nesterov [20]). Consider the family of functions
hq,L,R(x) : Rq → R:

hq,L,R(x) =
L

4

(
1

2

(
x2
[1] +

q−1∑
i=1

(x[i] − x[i+1])
2 + x2

[q]

)
−Rx[1]

)
(13)

The following properties hold for any hq,L,R(x) with q ∈ N+ and L,R > 0:

1. It is a convex and L-smooth function.

2. It has the following unique minimizer: x∗
[j] = R

(
1− j

q+1

)
with norm ∥x∗∥2 ≤ R

√
q.

3. It is a differentiable first-order zero-chain as defined in Definition 3.1.
Remark A.1. In Section 2.1.2 of Nesterov [20], it is shown that hq,L,1 is a convex and L-smooth
zero-chain. Here we define hq,L,R(x) := R2hq,L,1(

x
R). Then ∇2hq,L,R(x) = ∇2hq,L,1(

x
R), and

hq,L,R(x) is also a convex and L-smooth zero-chain. Similarly, in Proposition A.2, we define
rq,C,R(x) := Rrq,C,1(

x
R). Nesterov [20] showed rq,C,1 is a C-Lipschitz zero-chain, which implies

that rq,C,R is also a C-Lipschitz zero-chain, since ∇rq,C,R(x) = ∇rq,C,R(
x
R).

Proposition A.2 (Paraphrased from Section 3.2.1 Nesterov [20]). Consider the family of functions
rq,L,R(x) : Rq → R:

rq,C,R(x) =
C
√
q

1 +
√
q

max
1≤j≤q

x[j] +
C

2R(1 +
√
q)
∥x∥22. (14)

The following properties hold for any rq,L,R(x) with q ∈ N+ and C,R > 0:

1. It is a convex function and is C-Lipschitz in the Euclidean ball B(0, R).

2. It has a unique minimizer x∗ = − R√
q1.

3. It is a non-differentiable first-order zero-chain.
Remark A.2. The non-differentiable first-order zero-chain presented in Proposition A.2 is slightly
different from the one given in Nesterov [20]. rq,C,R(·) is Lipschitz in B(0, R), while the zero-chain
presented in Nesterov [20] is Lipschitz in B(x∗, R), where x∗ is the minimizer of the zero-chain.

A.2 Proofs of Theorem 4.1 and Theorem 4.2

Proof of Theorem 4.1. Consider any first-order algorithm A satisfying Assumption 3.4 that runs for
T iterations. Without loss of generality, we assume the initial point of A is x0 = 0. Otherwise, we
can translate the following construction to f(x− x0), g(x− x0). Let q = 2T and

f(x) =
1

2

q∑
j=T+1

x2
[j], g(x) = hq,1,1/√q(x),

where hq,1,1/√q(·) follows Proposition A.1. It is clear from the construction that both f(·), g(·) are
convex and 1-smooth. Furthermore, the optimal solution to Problem (1) defined by such f, g is the
unique minimizer of g(x), given by x∗

[j] =
1√
q (1−

j
q+1). We prove by induction on k that the test

points {xk}Tk=0 generated by A satisfies xk,[j] = 0 for 0 ≤ k ≤ T , T + 1 ≤ j ≤ 2T : Suppose for
some k ≤ T , xi,[j] = 0 holds for 0 ≤ i ≤ k − 1, T + 1 ≤ j ≤ 2T , we have

∇f(xi) = 0, 0 ≤ i ≤ k − 1.

13

The zero-respecting assumption of A (Assumption 3.4) leads to

xk ∈
⋃

0≤i≤k−1

supp(∇f(xi)) ∪ supp(∇g(xi))

=
⋃

0≤i≤k−1

supp(∇g(xi)).

Since g(x) is a first-order zero-chain, we conclude that

xk,[j] = 0, k + 1 ≤ j ≤ 2T.

Consequently, f(xk) remains zero for all 0 ≤ k ≤ K. However,

f∗ =
1

2

2T∑
j=T+1

x∗2
[j]

=
1

4T

2T∑
j=T+1

(
1− j

2T + 1

)2

=
1

24
· T + 1

2T + 1

≥ 1

48
.

Thus

|f(xk)− f∗| ≥ 1

48
, 1 ≤ k ≤ T.

Proof of Theorem 4.2. Consider any first-order algorithm A satisfying Assumption 3.4 that runs for
T iterations. We similarly assume that the initial point of A is x0 = 0. Let q = 2T and

f(x) =
1

2

2T∑
j=T+1

x2
[j], g(x) = r2T,1,1(x),

where r2T,1,1(·) follows the construction in Proposition A.2. Both g(·) and f(·) are convex and 1-
Lipschitz in B(0, 1), and the unique minimizer x∗ = − 1√

q1 of g is the optimal solution to Problem (1)
defined by such f and g, with norm ∥x∗∥2 = 1. Similar to the proof of Theorem 4.1, we prove by
induction on k that there exist some adversarial subgradients {∂g(x0), · · · , ∂g(xk−1)} such that the
test points {xk}Tk=0 generated by A satisfies xk,[j] = 0 for 0 ≤ k ≤ T, T + 1 ≤ j ≤ 2T : Suppose
for some k ≤ T , xi,[j] = 0 holds for 0 ≤ i ≤ k − 1, T + 1 ≤ j ≤ 2T , we have

∇f(xi) = 0, 0 ≤ i ≤ k − 1.

The zero-respecting assumption of A (Assumption 3.4) leads to

xk ∈
⋃

0≤i≤k−1

supp(∇f(xi)) ∪ supp(∂g(xi))

=
⋃

0≤i≤k−1

supp(∂g(xi)),

where {∂g(x0), · · · , ∂g(xk−1)} are the subgradients returned by a black-box first-order oracle.
Since g(x) is a first-order zero-chain, we conclude that there exists some adversarial subgradients
{∂g(x0), · · · , ∂g(xk−1)} such that

xk,[j] = 0, k + 1 ≤ j ≤ 2T.

Consequently, f(xk) remains zero for all 0 ≤ k ≤ K. However, f∗ = f(x∗) = 1
4 . Thus

|f(xk)− f∗| ≥ 1

4
, 1 ≤ k ≤ T.

14

B Algorithm details

B.1 Determining ĝ∗ and the initial interval

To apply the two-step reformulation, we need to solve an approximate value of the lower-level
problem ĝ∗ such that g∗ ≤ ĝ∗ ≤ g∗ + ϵ

2 . Furthermore, to conduct the bisection method of FC-BiO, it
is necessary to first determine an initial interval [ℓ, u] that contains the minimal root of ψ∗(t), which
is exactly f̂∗ (Lemma 5.2). The following procedure is inspired by Wang et al. [28]: First, we apply
optimal first-order methods for single-level optimization problems – subgradient method (SGM) [4,
Section 3.1] for Lipschitz functions, and accelerated gradient method (AGM) [20, Section 2.2] for
smooth functions – to the lower-level objective g to obtain an approximate minimum point x̂g ∈ Rn

such that g∗ ≤ g(x̂g) ≤ g∗ + ϵ
2 . We set ĝ∗ = g(x̂g) and define the relaxed constraint function g̃(x)

as in (4). We set u = f(x̂g), then

ψ∗(u) ≤ ψ(u, x̂g) = max{f(x̂g)− u, g̃(x̂g)} = 0.

Thus u is indeed an upper-bound of the minimal root of ψ∗(·) given that ψ∗(·) is decreasing.

To derive a lower bound of the minimal root f̂∗, we can also apply the optimal single-level min-
imization methods to the upper-level objective f to find an approximate global minimum point
x̂f ∈ Z such that p∗ ≤ p̂∗ ≜ f(x̂f) ≤ p∗ + ϵ

2 , where p∗ is the minimum value of f over Z (i.e.,
p∗ ≜ minx∈Z f(x)). Then ℓ = p̂∗ − ϵ

2 is a valid lower bound of f̂∗ since

ℓ = p̂∗ − ϵ

2
≤ p∗ ≤ f̂∗.

Nevertheless, any lower bound for f̂∗ is acceptable, such as 0 when the upper-level objective f is
non-negative.

The complexity of applying the optimal single-level minimization methods to f and g separately is

O
(

C2
f

ϵ2 D
2 +

C2
g

ϵ2 D
2
)

(SGM for Lipschitz problems) or O
(√

Lf

ϵ D +
√

Lg

ϵ D

)
(AGM for smooth

problems), which does not increase the total complexity established in Theorem 5.3 and 5.4.

B.2 Warm-start strategy

For the initial point of the subroutine M (SGM in FC-BiOLip or generalized AGM in FC-BiOSm),
we exploit the warm-start strategy, which uses the last point in the previous round (denoted by x̄ in
Algorithm 1) as the initial point of the current round. Intuitively, the subproblem (i.e. minimizing
max{f(x) − t, g(x)}) does not change significantly in each round since the parameter t does not
change too much as ℓ and u are getting closer. Thus the approximate solution of the last round is
supposed to be close to the optimal solution of the current round. Nevertheless, any initial point in Z
does not change the complexity upper bound. Such a strategy is widely used in two-level optimization
methods [2, 9, 17].

Similarly, we can use the approximate minimum point x̂g of g (as described in Appendix B.1) instead
of x0 as the initial point of the first round of the subroutine.

C Proofs for Section 5

C.1 Proofs of Theorem 5.1 and Theorem 5.2

Recall the lower complexity bounds for single-level convex optimization problems:

Lemma C.1 (Nesterov [20, Theorem 2.1.7]). Given L > 0, D > 0. For any first-order algorithm A
satisfying Assumption 3.4 and any initial point x0, there exists a convex and L-smooth function f
such that the minimizer x∗ satisfies ∥x∗ − x0∥2 ≤ D and

f(xT)− f(x∗) ≥ 3LD2

32(T + 1)2
,

15

Lemma C.2 (Nesterov [20, Theorem 3.2.1]). Given C > 0, D > 0. For any first-order algorithm A
satisfying Assumption 3.4 and any initial point x0, there exists a convex function f that is C-Lipschitz
in B(x0, D), such that the minimizer x∗ satisfies ∥x∗ − x0∥2 ≤ D and

f(xT)− f(x∗) ≥ CD

2(1 +
√
T)
,

The “hard functions” f(·) in the previous lemmas are exactly the zero-chain h2T+1,L,D(·) and
rT,C,D(·) as constructed in Proposition A.1 and Proposition A.2, respectively.

Proof of Theorem 5.1. Consider any first-order algorithm A satisfying Assumption 3.4 that runs for
T iterations. Without loss of generality, we assume the initial point of A is x0 = 0. Otherwise, we
can translate the following construction to f(x− x0), g(x− x0).

If Lf

ϵf
≥ Lg

ϵg
, we set the upper-level and lower-level objective f, g : R2T+1 → R be:

f(x) = h2T+1,Lf ,D(x), g(x) = 0,

where h2T+1,Lf ,D(·) is defined in Proposition A.1. Then the zero-respecting assumption on A
implies that for any k ≥ 1, we have supp(xk+1) ⊆

⋃
0≤s≤k−1 supp (∇f(xs)) . From Lemma C.1,

it holds that

ϵf = f(xT)− f∗ ≥ 3LfD
2

32(T + 1)2
,

which implies that any zero-respecting first-order method needs at least

T = Ω

(√
Lf

ϵf
D

)
= Ω

(
max

{√
Lf

ϵf
,

√
Lg

ϵg

}
D

)
iterations to solve a (ϵf , ϵg)-weak optimal solution.

If Lf

ϵf
≤ Lg

ϵg
, we set the upper-level and lower-level objective f, g : R2T+1 → R be:

f(x) = 0, g(x) = h2T+1,Lg,D(x).

By similar arguments, any zero-respecting first-order method needs at least

T = Ω

(√
Lg

ϵg
D

)
= Ω

(
max

{√
Lf

ϵf
,

√
Lg

ϵg

}
D

)
iterations to solve a (ϵf , ϵg)-weak optimal solution.

Proof of Theorem 5.2. Consider any first-order algorithm A satisfying Assumption 3.4 that runs for
T iterations. Without loss of generality, we assume the initial point of A is x0 = 0. Otherwise, we
can translate the following construction to f(x− x0), g(x− x0).

If Cf

ϵf
≥ Cg

ϵg
, we set the upper-level and lower-level objective f, g : RT → R be:

f(x) = rT,Cf ,D(x), g(x) = 0,

where rT,Cf ,D(·) is defined in Proposition A.2. Then the zero-respecting assumption on A implies
that for any k ≥ 1, we have supp(xk) ⊆

⋃
0≤s≤k−1 supp (∂f(xs)). From Lemma C.2, it holds that

ϵf = f(xT)− f∗ ≥ CfD

2(1 +
√
T)
,

which implies that any zero-respecting first-order method needs at least

T = Ω

(
C2

f

ϵ2f
D2

)
= Ω

(
max

{
C2

f

ϵ2f
,
C2

g

ϵ2g

}
D2

)

16

iterations to solve a (ϵf , ϵg)-weak optimal solution.

If Cf

ϵf
≤ Cg

ϵg
, we set the upper-level and lower-level objective f, g : RT → R be:

f(x) = 0, g(x) = rT,Cg,D(x).

By similar arguments, any zero-respecting first-order method needs at least

T = Ω

(
C2

g

ϵ2g
D2

)
= Ω

(
max

{
C2

f

ϵ2f
,
C2

g

ϵ2g

}
D2

)
iterations to solve a (ϵf , ϵg)-weak optimal solution.

C.2 Proofs in Section 5.2 and 5.3

Proof of Lemma 5.1. Any feasible solution to Problem (1) is also a feasible solution to Problem (4),
thus f̂∗ ≤ f∗. For any x that satisfies

f(x) ≤ f̂∗ + ϵf , g̃(x) ≤
ϵg
2
,

we have

f(x) ≤ f̂∗ + ϵf ≤ f∗ + ϵf ,

g(x) = g̃(x) + ĝ∗ ≤ ϵg
2

+ g∗ +
ϵg
2

= g∗ + ϵg.

Thus x is indeed a (ϵf , ϵg)-weak optimal solution to Problem (1).

Proof of Lemma 5.3. We first show that ℓ is always a lower bound of f̂∗. The initial lower bound
satisfies ℓ ≤ f̂∗. Furthermore, if (8) holds during the bisection process, we always have that
ψ∗(ℓ) ≥ ψ̂∗(ℓ)− ϵ

2 > 0. Given that ψ∗(·) is decreasing, and considering that f̂∗ is the minimal root
of ψ∗ (Lemma 5.2), it follows that ℓ < f̂∗.

As for the upper bound u, the initial upper bound satisfies

ψ̂∗(u) = ψ(u, x̂g) = max{f(x̂g)− u, g̃(x̂g)} = max{0, 0} ≤ ϵ

2
.

And during the bisection process, we also have that ψ̂∗(u) = max{f(x̂(u))− u, g̃(x̂(u))} ≤ ϵ
2 .

After N =
⌈
log2

u−ℓ
ϵ/2

⌉
bisection iterations, it holds that

u− ℓ ≤ ϵ

2
.

Consider the output of Algorithm 1 x̂ = x̂(u). Combining previous inequalities, we have

f(x̂) ≤ u+
ϵ

2
≤ ℓ+ ϵ ≤ f̂∗ + ϵ,

g̃(x̂) ≤ ϵ

2
.

Some of the lemmas in this section are adapted from existing results [4, 20], but not exactly the same.
We also provide a proof for these lemmas (Lemma 5.2, 5.4, 5.5).

Proof for Lemma 5.2. It’s clear the ψ∗(t) is continuous and decreasing. For any t ∈ R and ∆ > 0,
we have

ψ∗(t+∆) = min
x∈Z

{max{f(x)− t, g̃(x) + ∆}} −∆

17

≥ min
x∈Z

{max{f(x)− t, g̃(x)}} −∆

= ψ∗(t)−∆.

Thus ψ∗(t) is 1-Lipschitz.

Let x̂∗ be the optimal solution to Problem (4), then f̂∗ = f(x̂∗). For any t ≥ f̂∗, it holds that

ψ∗(t) ≤ ψ∗(f̂∗) ≤ ψ(f̂∗, x̂∗) = max{f(x̂∗)− f̂∗, g̃(x̂∗)} ≤ 0.

Suppose that t < f̂∗ and ψ∗(t) ≤ 0, then there exists a x̂ ∈ Z such that g̃(x̂) ≤ 0, f(x̂) − t ≤ 0.
Then x̂ is a feasible solution to Problem (4), with f(x̂) ≤ t < f̂∗, contradiction to the fact that f̂∗ is
the optimal value to Problem (4). Thus for any t < f̂∗, it holds that ψ∗(t) > 0.

Thus f̂∗ is the smallest root of ψ∗(t).

Proof for Lemma 5.4. Theorem 3.2 in Bubeck et al. [4] states that applying subgradient method to
any C-Lipschitz convex function h on a compact set Q with diameter D gives

h

(
1

K

K−1∑
i=0

xi

)
− h∗ ≤ DC√

K
.

Here h(x) = ψ(t,x) = max(f(x)− t, g̃(x)), C = max(Cf , Cg). Then when K ≥ 4D2C2

ϵ2 , it holds
that

ψ̂∗(t) = ψ

(
t,

1

K

K−1∑
i=0

xi

)
≤ ψ∗(t) +

ϵ

2
.

Proof for Lemma 5.5. Theorem 2.3.5 in Nesterov [20] originally states that applying genearlized-
gradient method to any µ-strongly convex and L-smooth convex function h gives

h(xK)− h∗ ≤ 4L

(γ0 − µ)(K + 1)2
(f(x0)− f∗ +

γ0
2
∥x0 − x∗∥22),

where γ0 = α0(α0L−µ)
1−α0

. Here h(x) = ψ(t,x) = max(f(x) − t, g̃(x)), L = max(Lf , Lg), µ = 0,
α0 = 1

2 , γ0 = L
2 .

Then

ψ(t,xK)− ψ∗ ≤ 4L
1
2L(K + 1)2

(
L

2
∥x0 − x∗∥22 +

L

4
∥x0 − x∗∥22

)
≤ 6LD2

K2
.

Then when K ≥
√

12L
ϵ D, it holds that

ψ̂∗(t) = ψ(t,xK) ≤ ψ∗(t) +
ϵ

2
.

To prove Proposition 5.2, we first present a lemma:
Lemma C.3. For any strictly convex and continuous functions f , g : Rn → R, we define φ : Rn → R
by φ(x) = max{f(x), g(x)}. Let x∗ be the unique minimizer of φ(·) on a convex and compact set
Z ⊂ Rn, i.e. x∗ = argminx∈Z φ(x), and let x∗

f , x∗
g be the unique minimizer of f(·) and g(·) on Z

respectively. If x∗ ̸= x∗
f and x∗ ̸= x∗

g , then f(x∗) = g(x∗).

Proof. Below, we show that f(x∗) ̸= g(x∗) leads to contradiction. Without loss of generality,
assume f(x∗) > g(x∗). Due to the continuity of f and g, there exists some δ > 0 such that for any
0 < θ < δ,

f(x∗ + θ(x∗
f − x∗)) > g(x∗ + θ(x∗

f − x∗)).

18

Furthermore, for any θ ∈ (0, 1), we have that x∗ + θ(x∗
f − x∗) ∈ Z and

f(x∗ + θ(x∗
f − x∗)) < θf(x∗

f) + (1− θ)f(x∗) < f(x∗),

since f is strictly convex.

Then for any θ ∈ (0,min(1, δ)),

φ(x∗ + θ(x∗
f − x∗)) = f(x∗ + θ(x∗

f − x∗)) < f(x∗) = φ(x∗).

That contradicts the fact that x∗ is the minimizer of φ(·). Thus f(x∗) = g(x∗).

The previous lemma demonstrates that the minimizer of maxx∈Z{f(x), g(x)} falls into one of three
categories: the minimizer of f , the minimizer of g, or the case where the function values of f and g
are the same. x1,x2,x3 in Proposition 5.2 corresponds to the three cases respectively.

Proof for Proposition 5.2. Define

f̄(t,x;yk) ≜ f(yk) + ⟨∇f(yk),x− yk⟩+
L

2
∥x− yk∥22 − t,

ḡ(x;yk) ≜ g̃(yk) + ⟨∇g(yk),x− yk⟩+
L

2
∥x− yk∥22,

which can be written as

f̄(t,x;yk) = f(yk)− t− 1

2L
∥∇f(yk)∥2 +

L

2

∥∥∥∥x− yk +
1

L
∇f(yk)

∥∥∥∥2
2

,

ḡ(x;yk) = g̃(yk)−
1

2L
∥∇g(yk)∥2 +

L

2

∥∥∥∥x− yk +
1

L
∇g(yk)

∥∥∥∥2
2

.

Thus

x1 = argmin
x∈Z

∥∥∥∥x− yk +
1

L
∇f(yk)

∥∥∥∥
2

= argmin
x∈Z

f̄(t,x;yk),

x2 = argmin
x∈Z

∥∥∥∥x− yk +
1

L
∇g(yk)

∥∥∥∥
2

= argmin
x∈Z

ḡ(t,x;yk).

Assume the minimizer xk+1 of ψ̄(t,x;yk) satisfies xk+1 ̸= x1 and xk+1 ̸= x2, then Lemma C.3
implies that

xk+1 ∈{x | f̄(t,x;yk) = ḡ(x;yk)}
={x | f(yk)− g̃(yk) + ⟨∇f(yk)−∇g̃(yk),x− yk⟩ − t = 0}
=H.

Given that f̄(t,x;yk) = ḡ(x;yk) in the subset Z ∩H, we have

xk+1 = argmin
x∈Z∩H

ψ̄(t,x;yk)

= argmin
x∈Z∩H

f̄(t,x;yk)

= argmin
x∈Z∩H

∥∥∥∥x− yk +
1

L
∇f(yk)

∥∥∥∥
2

= x3.

Thus we conclude that xk+1 can only be one of x1,x2,x3.

Proof for Theorem 5.3. Combining Lemma 5.3 and Lemma 5.4, we directly get the result.

Proof for Theorem 5.4. Combining Lemma 5.3 and Lemma 5.5, we directly get the result.

19

Proof for Corollary 5.1. A (ϵf , ϵg)-weak optimal solution to Problem (4) is equivalent to a (ϵf , ϵf)-
weak optimal solution to

min
x∈Z

f(x), s.t. g̃◦(x) =
ϵf
ϵg
g̃(x) ≤ 0. (15)

When f and g are Cf , Cg-Lipschitz respectively, g̃◦ is ϵf
ϵg
Cg-Lipschitz. According to Theorem 5.3,

FC-BiOLip finds a (ϵf , ϵf)-weak optimal solution of Problem (15) in

T = Õ

max{C2
f ,

ϵ2f
ϵ2g
C2

g}

ϵ2f
D2

 = Õ

(
max

{
C2

f

ϵ2f
,
C2

g

ϵ2g

}
D2

)

iterations. Similarly, when f and g are Lf , Lg-smooth respectively, g̃◦ is ϵf
ϵg
Lg-smooth. According

to Theorem 5.3, FC-BiOsm finds a (ϵf , ϵf)-weak optimal solution of Problem (15) in

T = Õ

√max{Lf ,
ϵf
ϵg
Lg}

ϵf
D

 = Õ

(
max

{√
Lf

ϵf
,

√
Lg

ϵg

}
D

)
iterations.

Finally, we prove the claim that our proposed algorithms are zero-respecting algorithms when the
domain is a Eulidean ball centered at x0.
Proposition C.1. Both FC-BiOLip and FC-BiOsm on the domain B(x0, D) satisfy Assumption 3.4.

Proof. Without loss of generality, we assume x0 = 0. Note that the warm-start strategy preserves
the zero-respecting property in Assumption 3.4. Therefore, it suffices to prove that the subroutines
(Algorithm 2 and Algorithm 3) satisfy Assumption 3.4.

For Algorithm 2, the subgradient s ∈ ∂xψ(t,x) lies in Span{∂f(x), ∂g(x)} according to Proposition
5.1. And the projection onto B(0, D) does not disrupt the zero-respecting property. Thus, Algorithm
2 satisfies Assumption 3.4.

For Algorithm 3, we only need to prove that the gradient mapping xk+1 satisfies

xk+1 ∈ Span{∇f(x0),∇g(x0), · · · ,∇f(xk),∇g(xk)}.
We denote Sk = Span{∇f(x0),∇g(x0), · · · ,∇f(xk),∇g(xk)}. According to Proposition 5.2, it
suffices to prove that the three descent step candidates x1,x2 and x3 are in Sk. It is clear that

yk − 1

L
∇f(yk),yk − 1

L
∇g̃(yk) ∈ Sk.

Then after projection onto B(0, D), x1,x2 are still in Sk.

The case for x3 is slightly more complicated. Let z = yk − 1
L∇f(yk), w = ∇f(yk) − ∇g̃(yk),

and b = f(yk)− g̃(yk)− ⟨w,yk⟩ − t. Then H = {x |wTx+ b = 0}. The point x3 is the solution
to the following convex optimization problem:

min
x∈Rn

∥x− z∥2

s.t. ∥x∥2 ≤ D2

wTx+ b = 0.

The Lagrangian for this problem is:

L(x, λ, µ) = ∥x− z∥2 + λ(∥x∥2 −D2) + µ(w⊤x− b)

where λ ≥ 0 and µ are dual variables. The KKT conditions give:

∇xL(x, λ, µ)|x=x3 = 2(x3 − z) + 2λx3 + µw = 0.

Thus

x3 =
2z− µw

2(1 + λ)
,

implying that x3 is the linear combination of z and w. Since z,w ∈ Sk, it follows that x3 ∈ Sk.

20

Remark C.1. By similar analysis, we can show that the conditional gradient type methods for simple
bilevel problems [5, 13] on domain B(x0, D) also fall into the zero-respecting function class. At
each iteration k, their methods relies on the following linear program as an oracle.

sk = arg min
s∈Xk

⟨∇f(xk, s⟩,

where Xk = {s ∈ Z : ⟨∇g(xk), s− xk⟩ ≤ g(x0)− g(xk)}. According to our proof of Proposition
C.1, it suffices to prove that sk is a linear combination of ∇f(xK) and ∇g(xk) then the remaining
proofs are the same. Similarly, this can be seen by the KKT condition when Z = B(0, D), which is

∇f(xk) + 2λx+ µ∇g(xk) = 0,

where λ ≥ 0 and µ ≥ 0 are dual variables.

D Finding absolute optimal solutions under additional assumptions

In Section 4, we showed that, in general, it is intractable for any zero-respecting first-order methods
to find an absolute optimal solution of Problem (1). However, it is possible to establish a lower
bound for f(xk)− f∗ under additional assumptions. Hölderian error bound [21] is a well-studied
regularity condition in the optimization literature and is utilized by previous works to establish
the convergence rate of finding absolute optimal solutions [6, 13, 24]. Prior to our work, the best-
known result is established by Cao et al. [6], whose method achieves a (ϵf , ϵg)-absolute optimal

solution for smooth problems in Õ
(
max

{
1/ϵ

2α−1
2

f , 1/ϵ
2α−1
2α

g

})
iterations. Below we will show

that our proposed methods also work well with such an additional assumption and achieve superior
convergence rates with regard to absolute suboptimality.
Assumption D.1. The lower-level objective g satisfies the Hölderian error bound condition for some
α ≥ 1 and β > 0, i.e.

β

α
dist(x,X ∗

g)
α ≤ g(x)− g∗, ∀x ∈ Rn,

where dist(x,X ∗
g) ≜ infy∈X∗

g
∥x− y∥ for arbitrary norm ∥ · ∥.

Intuitively, when the lower-level suboptimality g(x̂) − g∗ is small, x̂ should be close to X ∗
g if

Hölderian error bound condition holds for g. Then we can lower bound f(x̂)− f∗ by the convexity
of f . Jiang et al. [13] formalizes the idea in the following proposition:
Proposition D.1 (Jiang et al. [13, Proposition 4.1]). Assume that f is convex and g satisfies Assump-
tion D.1. Define M = maxx∈X∗

g
{∥∇f(x)∥∗} where ∥ · ∥∗ is the dual norm of ∥ · ∥. Then it holds

that

f(x̂)− f∗ ≥ −M
(
α(g(x̂)− g∗)

β

) 1
α

for any x̂ ∈ Rn.

This proposition shows that when g(x̂)−g∗ ≤
(

1
M ϵf

)α β
α , it holds that f(x̂)−f∗ ≥ −ϵf . Combining

with Corollary 5.1, we obtain:
Corollary D.1. Suppose Assumption 3.2 or Assumption 3.3 hold and g satisfies Assumption
D.1. FC-BiOLip and FC-BiOsm find a (ϵf , ϵg)-absolute optimal solution within the complexity of

Õ
(
max

{
C2

f

ϵ2f
,
C2

g

ϵ2g
,
C2

gM
2αα2

β2ϵ2αf

}
D2
)

and Õ
(
max

{√
Lf

ϵf
,
√

Lg

ϵg
,
√

LgMαα
βϵαf

}
D
)

for Lipschitz and
smooth problems, respectively.

To our knowledge, this is the first result that establishes a convergence rate concerning absolute
suboptimality for Lipschitz problems. In a smooth setting, our result of Õ

(
max

{
1/ϵ

α
2

f , 1/ϵ
1
2
g

})
is

also superior to the convergence rate reported by Cao et al. [6] in both upper-level and lower-level.

E Experiment details

In this section, we provide more details of numerical experiments in Section 6. All experiments
are implemented using MATLAB R2022b on a PC running Windows 11 with a 12th Gen Intel(R)
Core(TM) i7-12700H CPU (2.30 GHz) and 16GB RAM.

21

E.1 Problem (11)

This problem is a (Lf , Lg)-smooth problem with Lf = 1, Lg = λmax(A
TA).

Experiment setting The original Wikipedia Math Essential dataset [22] contains 1068 instances
with 730 attributes. Following the setting of Jiang et al. [13] and Cao et al. [6], we randomly choose
one of the columns as the outcome vector and let the rest be the new feature matrix. We uniformly
sample 400 instances to make the lower-level regression problem over-parameterized. In this case,
the upper-level problem is actually equivalent to

min
x∈Z

1

2
∥x∥22 s.t. Ax = b.

The optimal solution x∗ for this problem can be explicitly solved via the Lagrange multiplier method:(
A O
I AT

)(
x∗

ν

)
=

(
b
0

)
,

where ν is the Lagrange multiplier. Then we use f∗ = 1
2∥x

∗∥22, g∗ = 0 as the benchmark.

Implementation details To be fair, all algorithms start from the same random point x0 of unit
length as the initial point. For our Algorithm 1, we take a slightly different implementation, that
instead of setting the maximum number of iterations of the inner subroutine to be T ′ = T/N , we
preset T ′ = 8000. If current xk already satisfies ψ(t,xk) ≤ ϵ

2 , then terminate the inner subroutine
directly. We adopt the warm-start strategy as described in Appendix B.2. We set L = 0 since f(x) is
nonnegative. For FC-BiOLip, we set η = 3× 10−4. For AGM-BiO, we set γ = 1 as in [6, Theorem
4.1]. For PB-APG, we set γ = 105. For Bi-SG, we set α = 0.75 and c = 1

Lf
. For a-IRG, we

set η0 = 10−3 and γ0 = 10−3. For CG-BiO, we set γk = 0.5/(k + 1). For Bisec-BiO, we set
the maximum number of iterations of the internal APG process to be T ′ = 10000. For FC-BiOsm,
FC-BiOLip and Bisec-BiO, solving ĝ∗ takes 15000 iterations; for CG-BiO, solving ĝ∗ takes 10000
iterations. The results of such pretreatments are also plotted in Figure 1.

E.2 Problem (12)

This problem is a (Lf , Lg)-smooth problem with

Lf =
1

4m
λmax((A

val)TAval), Lg =
1

4m
λmax((A

tr)TAtr).

Experiment setting In this experiment, a sample of 5000 instances is taken from the “rcv1.binary”
dataset [8, 16] as the training set (Atr,btr); another 5000 instances is sampled as the validation set
(Aval,bval). Each label btr

i (or bval
i) is either +1 or −1.

Implementation details In this experiment, we set the initial point x0 = 0 for all methods. The
implementation of our Algorithm 1 is similar to that in the first experiment. We set the maximum
number of iterations of the subroutine to be T ′ = 500 and T ′ = 1000 for FC-BiOsm and FC-BiOLip

respectively. For FC-BiOLip, we set η = 2. For AGM-BiO, we set γ = 1/(
2Lg

Lf
T

2
3 + 2) as in [6,

Theorem 4.4]. For PB-APG, we set γ = 104. For Bi-SG, we set α = 0.75 and c = 1
Lf

. For a-IRG,
we set η0 = 103 and γ0 = 0.1. For CG-BiO, we set γk = 2

k+2 . For FC-BiOsm, solving ĝ∗ takes 1000
iterations; for FC-BiOLip and CG-BiO, solving ĝ∗ takes 1500 iterations. As in the first experiment,
the results of such pretreatments are also plotted in Figure 2.

22

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: The abstract and introduction outline our results accurately.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We discuss the limitations and future directions in the last section.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [Yes]
Justification: We state all the assumptions we need in Section 3. We provide all proofs in
the appendix.

23

Guidelines:
• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: We present all experiment details in Section 6 and Appendix E. We also include
the codes to reproduce our results in the supplementary materials.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

24

Answer: [Yes]
Justification: We present all experiment details in Section 6 and Appendix E. We also include
the codes to reproduce our results in the supplementary materials.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: We present all experiment details in Section 6. We also include the codes to
reproduce our results in the supplementary materials.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [No]
Justification: We compare the training dynamics of the different algorithms in one graph on
the same datasets with the same initialization. All the algorithms are deterministic.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

25

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: Our experiments can be conducted on CPU with a single worker. (Detailed
information is provided in Appendix E.) We use the training time as the x-axis in the figures.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: This research follows the NeurIPS Code of Ethics in all aspects.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [NA]
Justification: This paper focuses on optimization theory, which has no direct societal impacts.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

26

https://neurips.cc/public/EthicsGuidelines

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: The methods proposed by this paper (near-optimal first-order methods for
simple bilevel optimization problems) do not pose such risks of misuse.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [NA]
Justification: The paper does not use existing assets.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

27

paperswithcode.com/datasets

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: The paper does not release new assets.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: This paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: This paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

28

	Introduction
	Related work
	Preliminaries
	Finding absolute optimal solutions is hard
	Near-optimal methods for weak optimal solutions
	Lower complexity bounds
	Our proposed algorithms
	Subroutines and total complexity

	Numerical experiments
	Minimum norm solution
	Over-parameterized logistic regression

	Conclusion and future work
	Proofs for Section 4
	Constructions of first-order zero-chains
	Proofs of Theorem 4.1 and Theorem 4.2

	Algorithm details
	Determining * and the initial interval
	Warm-start strategy

	Proofs for Section 5
	Proofs of Theorem 5.1 and Theorem 5.2
	Proofs in Section 5.2 and 5.3

	Finding absolute optimal solutions under additional assumptions
	Experiment details
	Problem (11)
	Problem (12)

