
Appendix447

A Method Elaboration448

Detailed Reasoning for Our Method. As discussed in Section 2, the true shared information c449

exists for the entire token set X , which is equivalent to statistical dependency among the patches in450

X . With training, MAE learns to estimate this high-level latent variable ĉ, which reflects the context451

of the entire image. Let us denote by sm and sv for information specific to masked out patches Xm452

and visible patches Xv respectively, e.g., positional embeddings.453

Since MAE cannot access Xm during training, the decoder is forced to reconstruct Xm via 1) simple454

interpolation using visible tokens, or 2) estimated statistical dependency among the entire tokens, i.e.,455

ĉ. As shown in Figure I, simple interpolation means reconstructing Xm mainly with Xv and sv , which456

is not directly related to Xm, leading to poor reconstruction result. However, due to the reconstruction457

loss, MAE is forced to improve the reconstruction quality, establishing high-level information ĉ and458

performing the reconstruction based on it. As a result, at some moment, the encoder starts to map the459

visible tokens Xv to estimated shared information ĉ for the whole token set X , and decoder exploits460

this hierarchical information to reconstruct the low-level information; i.e., the raw RGB pixels of Xm.461

This process is verified in Figure 4 in the main manuscript.462

High-level information
(Latent space)

Low-level information
(RGB)

Figure I: Hierarchical latent variable model framework [29]. Assuming high-level shared informa-
tion c exists among the whole tokens, MAE encoder learns to estimate ĉ from Xv to reconstruct raw
pixels of Xm. Here, shared information is equivalent to statistical dependency inside X . sm and sv
stand for information specific to Xm and Xv , respectively. Dotted line indicates potential dependency.

Moreover, connecting this logic to our discovery in Section 3.2, we claim that this unknown c463

conceptually corresponds to pattern-based patch clustering information. In other words, considering464

the pattern-based patch clustering in MAE (as verified in Section 3), it suggests that MAE clusters465

the patches and builds corresponding high-level variable containing ĉ for each patch cluster.466

In summary, MAE learns to construct the latent variables for each potential patch cluster. However,467

considering the fact that MAE learns relevance among the patches from the extremely early stages468

in pre-training process (Section 3.3), it can be inferred that MAE with naive random masking is469

actually revisiting key dissimilarities in X , which exists between easily separable patches, every470

epoch wasting large portion of its training resources. Especially, when it comes to bi-partitioning471

(which is the simplest form of key dissimilarities), MAE learns it from the very early epochs as472

verified in Fig. 3a.473

Based on this reasoning, we can enforce MAE to focus on learning hardly distinguishable tokens474

by guiding MAE to skip revisiting key dissimilarities by injecting the information about it as input.475

We can inject this information via informed masks, which possess key dissimilarities by intensively476

masking one of the bi-partitioned clusters, leading MAE to assign most of the training resource to477

learning relatively vague patch clusters in masked out patch sets.478

Qualitative Analysis. As discussed in Section 4, our method generates informed masks by itself479

without using any external model or requiring additional information. Recall that MAE generates480

informed masks after T ≈ 50 epochs of training. Figure II compares our informed masking with and481

without the hint tokens to the random masking. It also illustrates the bi-partitioned clusters extracted482

from MAE itself after 51 epochs, which are used for the internal generation of the informed masks.483

We observe in these examples that our relevance-score-based masking (Section 4) guarantees to fully484

mask out the target cluster even when the bi-partitioning is not perfect. For example, the target cluster485

in (e) consists of the portion of house and sky, but our method fully masks out the patches composing486

the house in the image. Similar results can be found in (j) and (k). Also, even when the foreground487
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Figure II: Qualitative examples of informed masking on ImageNet training set. Based on our
method, informed masks are generated after 51 epochs of pre-training with a hint ratio of 0.05.
Results clearly show that MAE in early training steps provides appropriate bi-partitioning information
and successfully creates informed mask without using external models or additional information. We
also note that, our similarity-score-based masking strategy yields robust informed mask even in the
case when the bi-partitioning is imperfect.

is not clearly distinguished due to the barely discernible patterns as in (i) and (l), we see that our488

approach still fully masks out the object. The success of relevance score strongly indicates that patch489

vectors are hierarchically clustered based on their visual patterns, as they are masked out in the order490

of pattern similarity with the mean patch vector.491

We confirm from the examples that even in early epochs, MAE is able to appropriately bi-partition492

the image, which means it has already learned to discriminate the image into two clusters. We also493

find that most of the examples are bi-partitioned into foreground and background, since the similarity494

edges between these two groups tend to have the weakest values. In summary, although MAE in495

the early epochs does not promise to provide perfectly discriminated object-centric cluster from the496

image, our proposed approach robustly builds object-centric masks through the introduction of the497

relevance score.498

B Token Relations499

Patch Clustering in Projected Latent Space. Figure III illustrates the patch clusters on a few500

examples and their t-sne plots. We consider a graph G = (V, E) for the given image, where V and E501

correspond to patches and edges between them weighted by M in Eq. (2), respectively. From this502

graph, we repeatedly apply Normalized Cut [42] to remove edges with the lowest relevance until the503

graph is split into a predefined number (K) of clusters. We clearly see that tokens with similar visual504

patterns (color, texture) are 1) grouped together as the same patch cluster (2nd row) and 2) embedded505

closely in the latent space (last row). Apparent discrimination in the representation space supports506

the patch-level clustering.507

KL Divergence of All Layers in MAE. We additionally provide KL divergence (KLD) of token508

relations for all layers in MAE as an extension of Section 3.3. For the decoder, we use token relations509

with the intact input, i.e., D([E(X)]), for the criterion distribution in the KLD (Equation 4). In other510

words, we compare the token relations from each epoch with masked inputs to the token relations511

from the last epoch with intact inputs. Due to this setting, KLD with decoder does not converge to512

zero at the final epoch in Figure IV.513

As shown in Figure IV, all layers but the first one in the decoder drastically converge at the early514

epochs with both of M than A. Encoder (E(X)) layers are much stabler and converge faster than515

decoder (D([E(Xv);m])) layers due to the difference in the amount of given information. Also, since516

the cosine similarity scores M directly compare the similarity among the tokens, strong convergence517

of M supports the observation that MAE intrinsically learns the patch-level clustering.518
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Figure III: Illustrations of patch clusters learned by MAE. (a) Input images. (b) Similarity-based
patch clusters. (c) t-sne plots of the patch embeddings.

KLD of the attention scores in the first encoder layer is low at the first epoch, which implies that it519

learns homogeneous attention map rather than random values as discussed in Section 5.4. The first520

layer of the decoder shows high KLD with the attention scores along with the training, because 1) the521

mask tokens are not contextualized yet (that is, mask token vectors does not represent the masked out522

patches at all), and 2) the index of each mask token is randomly selected for every epoch. On the523

other hand, KLD with the similarity scores decreases along the epochs, because the similarity score524

matrix is calculated after the contextualization. This suggests that even a single first layer in decoder525

has ability to properly exploit ĉ from the encoder to discriminate the patches although it is weaker526

than the later layers.
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(a) Similarity score (b) Attention score

Figure IV: KL divergence of the token relations between the final and intermediate epochs.
Layer numbers are displayed in the legend. All the layers but the first one in decoder show drastic
decrement of (a) similarity score and (b) attention score at early epochs. The convergence speed and
the final converged values vary in layers.

527

Further Experiments on ViT [15] and MoCo [23]. We provide bi-partitioning performance and KL528

divergence of token relations of ViT and MoCo for better understanding on our metrics in Figure V.529

We display the result of MAE encoder together for comparison. Before delving into the analysis, we530

note that the result of this experiment with ViT and MoCo is irrelevant to our main claims since ViT531

and MoCo do not learn patch clustering.532

As MoCo yields homogeneous attention map [40] resulting in simple form of embedding space, e.g.,533

main object cluster and background cluster, the result of MoCo in Figure V indicates that the last534

epoch of MoCo has provided properly bi-partitioned patch groups. Consistent gap between mean535

inter-cluster (µinter) and mean intra-cluster (µintra) edge weights of similarity score matrix M and536

attention score matrix A of MoCo supports this claim.537
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Figure V: Bi-partitioning performance of various models. MAE, MoCo and ViT show different
trends of bi-partitioning performance in both of (a) similarity score and (b) attention score.

Unlike MAE or MoCo, embedding space of ViT does not guarantee to provide appropriate bi-538

partitioning results. As a result, in Figure V, although the similarity score matrix M enlarges the gap539

between µinter and µintra, the attention score matrix A increases the µinter rather than µintra. This hardly540

interpretable pattern implies that the pseudo-ground truth for bi-partitioned patch groups generated at541

the last epoch is unstable or even incorrect.542

In summary, only MAE explicitly shows its ability to clearly recognize key dissimilarities among543

the tokens, i.e., bi-partitioning information, from the extremely early stage of pre-training, and544

consistently escalates the gap between µinter and µintra.545
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(a) Similarity score (b) Attention score
Figure VI: KL divergence of token relations of various models. MoCo and ViT show weaker
convergence of token relations in both of (a) similarity score and (b) attention score.

Figure VI shows the KL divergence of token relations from ViT and MoCo. Compared to the result546

of MAE in Figure IV, both ViT and MoCo reveal gradual convergence of token relations and some547

layers exhibit their unstable convergence. Again, as ViT and MoCo do not learn patch-clustering, the548

experiment results of ViT and MoCo are off-topic to the main stream of our work.549

C Qualitative Results550

We provide more qualitative examples of patch clustering compared to vanilla MAE in Figure VII,551

where we see that images are segmented into K clusters in unsupervised manner. Successful552

segmentation from our recursive graph-cut suggests that features are hierarchically discriminated553

in the embedding space. Our method clearly shows more accurately clustered patches based on554

their pattern and also yields tighter boundary between the clusters for various types of images, i.e.,555

object-centered images and those containing higher portion of background.556
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Figure VII: Qualitative comparison on ImageNet validation set. Patches are discriminated in
more fine-grained manner with our method. More diverse and finer patch clusters constructed in
foreground verify our hypothesis that intensive masking on specific cluster leads to establish more
diverse high-level latent variables.

D Analysis on Ablation Studies557

As displayed in Table I, our ablation study on layer selection for embedding extraction verifies the558

hypothesis on it (See Section 3), while showing the minor effect on model performance relative559

to other factors. Especially, the last layer of the decoder shows higher performance than the early560

or intermediate layers of the encoder. Since the decoder possesses the patch cluster information561

constructed through the entire encoder layers, it may have more appropriate bi-partitioning quality562

than using a few early encoder layers, e.g., layer 3 or layer 7. To analyze the reason for the minor563

effect on layer selection, we display the examples of informed masks generated with bi-partitioned564

patch cluster from each layer in Figure VIII.565

Table I: Ablation Studies. The default is highlighted in gray. Detailed
analysis can be found in Appendix D.

Layer Target cluster Hint strategy Linear probing

Enc 3 Object Random 62.3
Enc 7 Object Random 62.4
Dec 8 Object Random 62.7

Enc 11 Background Random 61.1
Enc 11 Alternate Random 61.6

Enc 11 Object Si based 62.5
Enc 11 Object No hint 52.3

Enc 11 Object Random 62.9

In Figure VIII, we find that the later layer of the encoder provides the most accurate bi-partitioning566

result compared to others. However, in spite of the improper patch clustering, each layer can build567

plausible informed mask (and often proper) based on our similarity-score-based masking strategy.568

With a simple image, e.g., (a), all layers are able to properly bi-partition the image leading to fully569

mask out the main object. With more complex images like (b), (c), (e) and (f), whether 1) the570

bi-partitioned cluster contains a mixture of foreground and background or 2) only some patches of571

the foreground are discriminated, our method stably constructs the proper informed mask, aligning572

with the result in Figure II. In example (d), when the layer 7 is used, we observe that object-centric573

masks are successfully generated since the pattern of lizard is similar to that of plants, despite a574

failure in bi-partitioning where the discriminated foreground captures only the plants, missing the575

liazard. Also, although the decoder hardly captures the entire shape of the foreground, it precisely576

discriminates the salient patches belonging to the main objects, as expected to generate more accurate577

informed mask than the early or intermediate encoder layers.578
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Figure VIII: Comparison of the Quality of the informed masks generated from different layers.
Each example is denoted by the index of the original image in Figure II. Although early layers of
the encoder and the last layer of the decoder yield inappropriate bi-partitioning result, our similarity-
score-based masking strategy robustly alleviates this issue, leading to minor difference in performance
in the layer selection for generating informed mask.

E Extended Training579

We conduct extended pre-training sessions and report linear probing performance on ImageNet-1K580

along the training epochs in Table II. Our method consistently brings sustained performance gain581

after considerable length of training, i.e., for 1600 epochs.

Table II: Linear probing with ImageNet-1K

Pre-training epochs 200 400 800 1600

MAE [22] 53.9 61.4 63.8 68.0
Ours 54.4 62.9 65.9 68.7

582

F Compute Resources583

We conduct experiments on 8 NVidia A6000 GPUs (48GB) and it takes ~2.5 days on pre-training for584

400 epochs. For 1600 epochs of pre-training, it takes about 10 days.585

vi


	Method Elaboration
	Token Relations
	Qualitative Results
	Analysis on Ablation Studies
	Extended Training
	Compute Resources

