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In this supplementary document, we describe the parametric scheme of homography matrix in Sec.
provide an additional explanation with graph for our uni-directional cross attention in Sec. 2] discuss
the details on segmentation in Sec. [3] describe more implementation details in Sec.[d} provide a proof
for the use of homography hypotheses in Sec. [5]and show some qualitive results in Sec. [

1 Parametric Scheme

H,; can be decomposed into 2d-translation p§ —pi € R2, scale s, € R!, rotations around the z-axis
r; € R, and perspective components ¢; € R*. We use these attributes to calculate four imaginary
points in target images to construct the system of linear equations and solve them for homography
matrix:
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Here (Q; represents the influence of perspective vectors ¢; for B in the 15t-order of Taylor series,
which behaves as the offsets on B. # is the operation of rotate points around their center for r;
degree. B{ and B! are four virtual points that assist in calculating the homography matrix H;. These
operations allow each variable within the homography matrix H; to be deduced from four projection
equations B! = H;B;.

The reason why we use this parametric scheme to solve the homography matrix instead of directly
estimating the coordinates of the four imaginary points on target images is that the direct parametric
scheme can easily construct singular matrices. For example, if connecting three of the four points in
a line, the optimization process will fail. In the experiment of outdoor pose estimation for Megadepth
dataset [[L], the direct parametric scheme will induce 0.53 for the indicator of AUC@5, while our
parametric scheme induce 28.5.
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Fig. 1. Uni-directional cross attention.

2 Uni-directional Cross Attention.

As shown by Fig. [T} previous methods [2] apply self-attention and cross-attention to each feature
within a 5x35 feature map, resulting in 2,500 (25x25x4) inner product calculations to gather fea-
ture information within a 4-pixel radius. In contrast, our approach conducts a uni-directional cross-
attention solely at the query position on a 7x7 feature map, requiring just 49 inner product calcula-
tions to capture feature information up to a 6-pixel distance. This makes our method approximately
50 times faster than the previous approach.

3 Details on Segmentation.

Segmentation refers to the classification of each unit, where we determine which homography hy-
pothesis should be adopted for unit j on M, through classification. The way to obtain the classifica-
tion result is by comparing the classification score matrix C'; of unit j for different hypotheses H; ,
where the largest one is the result of our classification operation. This classification uses the concept
of multi-label classification, a method widely applied in detection problems. Therefore, we refer to
DETR and use focal loss to optimize segmentation here. We can describe the process of obtaining
the classification score matrix C; in the form of a formula: C;; = (T'(f;) + P(3), f;) . where C};
refers to the matching score of unit j for hypothesis i. T refers to the function that converts the fea-
ture dimension of ¢ (256 dimensions) to the feature dimension of 5 (128 dimensions); here, we use
a 2D CNN to perform 7" . P refers to positional embedding, which directly represents the relative
position of the unit corresponding to the hypotheses ¢ in the local 3*3 units. And ( * , *) indicates
the inner product.

4 Implementation Details

Outdoor model. When training the outdoor model, in order to make our model more generalized, we
introduced a data enhancement after the initial training. Specifically, we customized the collect_fn
function to make the matching images in different batches have different resolutions, while the
matching images in the same batch have the same resolution. In addition, we also rotate 10% of the
matched images by 90 degrees to make the model more robust to extreme rotation.

Indoor model. Consider that our model is trained on 3 RTX3090, we differentiated between the
training data on different GPUs when training the indoor model, specifically by using the ScanNet
dataset for training on two RTX3090 and Megadepth on the third RTX3090.
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Fig. 2. Qualitative Results of Feature Matching. Inlier matches are highlighted in green and outliers in red.
For visual clarity, the displayed matches are reduced to one-tenth of the actual number. As can be seen from the
figure, our method is robust to various extreme scenarios and thus can achieve very superior performance.

5 Proof

According to the theory of multiple view geometry [3], the correspondence for the same plane in
R3 from two viewpoints can be defined by a homography matrix. Here we provide the process of
proof.

the correspondence function from two view points is:

To = KQ(RKl_lltl + t) 2)

where R is the rotation matrix, ¢ is the translation vector, K is the intrinsic matrix of camera, x is
the coordinates of points on images, and the plane can be defined as:
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where d is the distance between points and the plane and n is the normal vector of the plane.Then
we can substitute Eq.[3]into Eq.
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Here H is the homography matrix. We use the homography hypothesis to represent the correspon-
dence is the same as simplifying real world in R3 to many planes.

6 Qualitative Results.

We show some Qualitative Results in Fig.
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