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Abstract

Multimodal learning falls into the trap of the optimization dilemma due to the1

modality imbalance phenomenon, leading to unsatisfactory performance in real2

applications. A core reason for modality imbalance is that the models of each3

modality converge at different rates. Many attempts naturally focus on adjusting4

learning procedures adaptively. Essentially, the reason why models converge at5

different rates is because the difficulty of fitting category labels is inconsistent for6

each modality during learning. From the perspective of fitting labels, we find that7

appropriate positive intervention label fitting can correct this difference in learning8

ability. By exploiting the ability of contrastive learning to intervene in the learning9

of category label fitting, we propose a novel multimodal learning approach that dy-10

namically integrates unsupervised contrastive learning and supervised multimodal11

learning to address the modality imbalance problem. We find that a simple yet12

heuristic integration strategy can significantly alleviate the modality imbalance phe-13

nomenon. Moreover, we design a learning-based integration strategy to integrate14

two losses dynamically, further improving the performance. Experiments on widely15

used datasets demonstrate the superiority of our method compared with state-of-16

the-art (SOTA) multimodal learning approaches. The code is available at https:17

//anonymous.4open.science/r/Dynamic_Modality_Gap_Learning.18

1 Introduction19

Multimodal learning (MML) [3, 29, 35, 30, 11, 20, 24, 32, 12] integrates heterogeneous information20

from different modalities to build an effective way to perceive the world. Over the past decades,21

multimodal learning has made incredible progress [24, 11, 12] and become a hot research topic with22

a wide range of real applications including image caption [6], cross-modal retrieval [41], vision23

reasoning [25, 8], and so on.24

In multimodal learning, several recent studies [29, 24] have revealed an interesting phenomenon, i.e.,25

the performance of the multimodal model is far from the upper bound or even inferior to the uni-26

modal in certain situations. The root of this problem lies in the existence of the modality imbalance27

phenomenon [29]. Concretely, there commonly exists dominant modality and non-dominant modality28

in heterogeneous multimodal data. Multimodal learning usually adopts a uniform objective. Due to29

greediness [31], the optimization tends to dominant modality while neglecting the non-dominant one30

during joint training, thus leading to unsatisfactory performance in real applications.31

Recently, many impressive works [29, 10, 24, 12, 18] have been proposed to address the modality im-32

balance problem. Early pioneering approaches, such as gradient blending (G-Blend) [29], on-the-fly33

gradient modulation (OGM) [24], adaptive gradient modulation (AGM) [18], and prototypical modal-34

ity rebalance (PMR) [12], focus on designing customized learning strategies for different modalities35

to adjust the optimization of dominant and non-dominant modality. These methods demonstrate36
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that suppressing the optimization of the dominant modality can alleviate the modality imbalance37

problem to a certain extent. Besides, several attempts, including uni-modal teachers (UMT) [10]38

and balanced multimodal learning [31], try to introduce extra networks as an auxiliary module to39

facilitate multimodal learning.40
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Figure 1: The influence of labels fitting on perfor-
mance gaps (best view in color), where LS and LU
denote the loss with one-hot labels and uniform
labels (label free).

Although the aforementioned approaches can41

boost performance in MML, these solutions are42

based on the phenomenon of inconsistent learn-43

ing speed itself and do not study the underlying44

causes of modality imbalance. We can’t help45

but ask what is the essential reason behind this46

phenomenon. Is there a bias in the process of47

fitting category labels for different modalities?48

We carry out a simple experiment on Kinetics-49

Sounds dataset to seek answers. We adopt two50

types of labels to explore the influence of fitting51

labels. The first type is one-hot labels which52

indicate the category of each sample, where the53

loss is denoted as LS. The second type is la-54

bel free, i.e., uniform label 1/c for all samples,55

where c denotes the number of categories. The56

second loss is defined as LU. Furthermore, we57

define a mixed loss 0.7LS+0.3LU by combining58

one-hot labels and uniform labels. The accuracy59

is reported in Figure 1. From Figure 1, we can60

observe that with proper intervention by using61

uniform labels, the performance is slightly better than the model that fits one-hot labels. More62

importantly, the performance gap becomes smaller if we learn from uniform labels. This means that63

the difference between audio and video modalities is smaller in feature space when we reduce the64

weight of one-hot labels. The experiment inspires us that appropriate intervention label fitting can65

alleviate the difference in the learning ability of different modalities. This also implies that fitting66

category labels is a core cause of modality imbalance in multimodal learning.67

How do we impose positive intervention in multimodal learning so that the impact of fitting labels on68

modality imbalance is as low as possible without affecting the overall performance? For multimodal69

learning, although the models are learned from the heterogeneous data, we hope that multimodal data70

describing the same entity should be as close as possible in the feature space, which is usually modeled71

as contrastive learning [26]. Ideally, contrastive learning can also mitigate the effect of modality72

imbalance problem. Hence, we introduce contrastive learning to impose positive intervention in73

multimodal learning to alleviate the impact of fitting labels.74

In this paper, we propose a novel multimodal learning approach by integrating unsupervised con-75

trastive learning and supervised multimodal learning dynamically. Specifically, after demonstrating76

the effectiveness of unsupervised contrastive learning in multimodal learning, we design two dynami-77

cal integration strategies, i.e., a heuristic and a learning-based integration strategy. Our contributions78

are outlined as follows: (1). We observe a key phenomenon: fitting category labels leads to a larger79

performance gap between different modalities. To the best of our knowledge, this is the first time80

that the modality imbalance problem has been analyzed from the perspective of category label fitting.81

(2). We propose a novel multimodal learning approach by integrating unsupervised contrastive82

learning and supervised multimodal learning. Two strategies are designed for dynamic integration.83

(3). Extensive experiments on widely used datasets show that our proposed approach can significantly84

outperform other baselines to achieve state-of-the-art performance.85

2 Related Work86

2.1 Multimodal Learning87

Multimodal learning aims to leverage multimodal data from different sources to improve model per-88

formance. Based on the fusion strategy, multimodal learning approaches can be categorized into early89

fusion [29, 34, 39, 38], late fusion [36, 35, 1, 21], and hybrid fusion [17, 40]. Early fusion methods90
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aim to integrate multimodal features to study the interrelationship between different modalities with91

joint representations when features are extracted by encoders. Representative early fusion methods92

include G-Blend [29], association-based fusion (AF) [20], and DOMFN [34]. On the contrary, late93

fusion methods leverage the prediction of each model to make final decisions. Late fusion methods94

can be divided into two categories, i.e., soft late fusion and hard late fusion, where the former utilizes95

the confidence score to make decisions and the latter the category decision of each model. Pioneering96

late fusion methods include modality-specific learning rate (MSLR) [35]. Hybrid fusion methods try97

to amalgamate the advantages of both early and late fusion methods. Representative hybrid fusion98

methods include multimodal transfer module (MMTM) [17] and balanced multi-modal learning [31].99

Although these methods explore the algorithms and applications in multimodal learning, all of them100

assume that each modality can make sufficient contributions to achieve satisfactory performance101

during the training procedure.102

2.2 Imbalanced Multimodal Learning103

In reality, an obvious situation is that multimodal data and models are diverse, which naturally104

leads to different contributions during the training procedure. Recent works [29, 24, 12, 18] have105

shown that modality imbalance is a ubiquitous phenomenon and often results in unsatisfactory106

performance or even worse than unimodal algorithms in some cases. Considering the existence107

of dominant modality and non-dominant modality, early pioneering approaches [29, 24, 12] focus108

on adjusting learning speed for different modalities with customized learning strategies to balance109

the optimization of dominant and non-dominant modality. For instance, G-Blend [29] proposes to110

minimize the overfitting-to-generalization ratio (OGR) by using a gradient blending technique based111

on the modality’s overfitting behavior. OGM [24] utilizes an on-the-fly gradient modulation strategy112

to control the modality’s optimization procedure. To achieve the purpose of balanced multimodal113

learning, PMR [12] designs a prototypical modal rebalance strategy to facilitate the learning of114

non-dominant modality. Other attempts [10, 31] try to utilize extra networks to facilitate multimodal115

learning. Concretely, UMT [10] utilizes the teacher networks to distill the pretrained unimodal116

features to the multimodal network to tackle the modality imbalance problem. Balanced multimodal117

learning [31] utilizes the gradient norm and model parameters’ norm to define conditional learning118

speed and uses it to guide the learning procedure. These methods alleviate the modality imbalance119

problem to a certain extent.120

3 Methodology121

We present our proposed method in this section. Specifically, we first present the problem definition122

of multimodal learning. Then, we introduce unsupervised contrastive learning to impose positive123

intervention in multimodal learning and propose two dynamical integration strategies to maximize124

the learning collaboration of unsupervised contrastive learning and supervised multimodal learning.125

3.1 Preliminary126

For the sake of simplicity, we use boldface lowercase letters like a and boldface uppercase letters like127

A to denote vectors and tensors, respectively. The i-th element of a is denoted as ai. Furthermore,128

we use ∥ · ∥2 to denote L2 norm of the vectors.129

The goal of multimodal learning is to train a model to predict the category labels for given multimodal130

data. Without any loss of generality, we use X = {xi}ni=1 to denote the training data points, where131

each data point is with m modalities, i.e., xi = {x(j)
i }mj=1. The category labels are represented as132

Y = {yi | yi ∈ {0, 1}c}ni=1, where c denotes the number of category labels.133

For deep learning based multimodal approaches, we usually adopt a deep neural network to extract134

representation from original space into feature space. We utilize ϕ(j)(·) to denote the feature135

extraction function for j-th modality. Given data point x(j)
i , the feature extraction can be formed as:136

z
(j)
i = ϕ(j)(x

(j)
i ; Φ(j)),

where z
(j)
i ∈ Rd denotes the d-dimension feature vector of x(j)

i , and Φ(j) denotes the parameters of137

j-th encoder. After vectors for all modalities are extracted, we adopt a fusion function f(·) to fuse138
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the different feature vectors. Then, we leverage a fully-connected layer to map the vector into Rc.139

This procedure can be formed as:140

zi = f(z
(1)
i , · · · , z(m)

i ), ŷi = softmax(Wzi + b).

Here, W ∈ Rc×D, b ∈ Rc denote the weights and bias of the last fully-connected layer, respectively,141

and D denotes the dimension of zi. Then, the objective function of multimodal learning can be142

formulated as:143

LCLS(X,Y ) = − 1

n

n∑
i=1

y⊤
i log ŷi.

3.2 Integrating Unsupervised Contrastive Learning in MML144

To bridge the heterogeneous data in feature space, we utilize contrastive learning [26] in multimodal145

learning. For a pair of data points {x(j)
i ,x

(l)
k }, we define the similarity as:146

s(x
(j)
i ,x

(l)
k ) =

[z
(j)
i ]⊤z

(l)
k

∥z(j)
i ∥2∥z(l)

k ∥2
.

The modality matching objective function can be written as:147

LMM(X) = − 1

2nb

nb∑
i

[
log

( exp(s(x
(j)
i ,x

(l)
i )/τ)∑

k exp(s(x
(j)
i ,x

(l)
k )/τ)

)
+ log

( exp(s(x
(j)
i ,x

(l)
i )/τ)∑

k exp(s(x
(j)
k ,x

(l)
i )/τ)

)]
,

where τ is the temperature parameter and nb denotes the batch size. By integrating the classification148

loss and modality matching loss, we can get the following objective function:149

LTotal = (1− α)LCLS(X,Y ) + αLMM(X), (1)

where α denotes the weighted parameter between two losses.150

3.3 Dynamic Integration151

Although a fixed value of α allows the model to take into account both classification loss and modality152

matching loss, it cannot dynamically evaluate the weight of two losses during training. Hence, we153

propose two strategies to adjust α dynamically to balance two losses.154

Firstly, we utilize a monotonically decreasing function to adjust the impact of category labels. The155

definition of the function can be written as: αt = ω(t), where t denotes the number of training156

epochs. In this paper, we set ω(t) = 1− e−
1
t .157

Then, we further exploit a learning-based integration method by utilizing bi-level optimization158

strategy [28]. Specifically, while considering optimizing the multimodal classification loss LCLS, we159

use the minimum value of the total loss LTotal to restrict the feasible region of the parameters θ. In160

other words, we require the parameters not just to minimize classification loss but also to comply161

with a precisely defined constraint, i.e., simultaneously minimize a composite loss function—a162

strategically engineered combination of modality matching loss and multimodal classification loss.163

The specific formula is defined as follows:164

min
0≤α≤1

LCLS(θ
∗(α)) s.t. θ∗(α) ∈ argmin

θ

{
(1− α)LCLS(θ) + αLMM(θ)

}
. (2)

Here, θ denotes the parameters of multimodal models, and α emerges as a key parameter, delicately165

balancing modality matching loss and multimodal classification loss to direct the model toward an166

optimal balance where both types of loss are effectively managed. The optimal parameter set, θ∗(α),167

thus represents a fine-tuned balance that, for any chosen α, strategically minimizes this composite168

loss. Within Equation (2), LCLS is pivotal for guiding classification accuracy, while LMM enhances169

the model’s ability to establish meaningful connections across different modalities.170

We utilize an approximation method proposed by [14] to solve bi-level optimization problem (2)171

efficiently. Specifically, the gradient of LCLS(θ(α)) with respect to α can be approximated by:172

∇LCLS(θ(α)) = −∇2
α,θLTotal[∇2

θ,θLTotal]
−1∇θLCLS(X,Y ). (3)
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Algorithm 1: The Proposed Algorithm.
Input :Training set X , labels Y , method.
Output :Learned parameters {θ} of all models.
INIT initialize parameters θ, parameter α, maximum iterations T , learning rate ηα.
for t = 1 to T do

/* updating neural network parameters θ. */
for i = 1 to Inner_Iters do

Calculate total loss LTotal by forward phase.
Update parameters θ according to its gradient.

end
/* updating weighting parameters α based on the chosen method. */
if method == ‘learning-based’ then

Calculate gradient appriximation:
∇LCLS(θ(α)) = −∇2

α,θLTotal · [∇2
θ,θLTotal]

−1 · ∇θLCLS(X,Y ).
Update α according to: α = α− ηα∇LCLS(θ(α)).
Clip α into [0, 1]: α := max(0, min(1, α)).

else if method == ‘heuristic’ then
Update α according to: α = 1− e−1/t.

end
end

Based on the approximation Equation in (3), we can use the gradient descent method to optimize α.173

After defining the updating strategy for α, we utilize an alternating algorithm between model174

parameters θ and α to perform model learning. Specifically, our algorithmic process iteratively refines175

the model parameters θ and the parameter α, employing a nested loop structure where the inner loop176

focuses on the currently given α to minimize total loss to update θ, and the outer loop updates α by177

function or bi-level policy to minimize classification losses. Through this structured optimization,178

the model achieves a delicate balance between multimodal matching and classification losses. The179

overall algorithm of our model is outlined in Algorithm (1), where we utilize method to indicate the180

chosen updating strategy in practice.181

4 Experiments182

4.1 Experimental Setup183

Datasets: We select five widely used datasets, including Kinetics-Sounds [2], CREMA-D [5],184

Sarcasm [4], Twitter2015 [37], and NVGesture [31] datasets, to validate our proposed method.185

Among these datasets, the Kinetics-Sounds and CREMA-D datasets consist of both audio and186

video modalities. The Kinetics-Sounds dataset, which contains 19,000 video clips categorized187

into 31 distinct actions, aims to advance video action recognition. It is divided into a training188

set of 15,000 clips, a validation set of 1,900 clips, and a test set of 1,900 clips. The CREMA-189

D dataset, encompassing 7,442 clips, is divided into six emotional categories to enhance speech190

emotion analysis, with 6,698 clips in the training set and 744 clips in the test set. Furthermore,191

the Sarcasm and Twitter2015 datasets consist of image and text modalities. The Sarcasm dataset192

offers a compilation of 24,635 text-image pairs, divided into 19,816 for the training set, 2,410 for193

the validation set, and 2,409 for the test set. The Twitter2015 dataset contains 5,338 text-image194

combinations from Twitter, with 3,179 in the training set, 1,122 in the validation set, and 1,037 in the195

test set. Lastly, the NVGesture dataset is used to construct research that goes beyond the limitation of196

two modalities. In this paper, we use RGB, Depth, and optical flow (OF) modalities for experiments,197

with 1,050 samples in the training set and 482 samples in the test set.198

Baselines: We select a wide range of baselines for comparison. These baselines can be divided199

into two categories, i.e., traditional MML approaches and fusion methods with modal rebalancing200

strategies. The former category encompasses techniques like feature concatenation (CONCAT), affine201

transformation (Affine) [25], channel-wise fusion (Channel) [17], multi-layer LSTM fusion (ML-202

LSTM) [23], prediction summation (Sum), prediction weighting (Weight) [33], and enhanced trust203

modal combination (ETMC) [15]. And the latter category includes MSES [13], G-Blend [29],204

OGM [24], Greedy [30], DOMFN [34], MSLR [35], PMR [12], AGM [18], and MLA [39].205
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Table 1: Comparison with SOTA multimodal learning methods. The best results are highlighted in
bold. The underlining symbol denotes the second best performance.

Method Kinetics-Sounds CREMA-D Sarcasm Twitter2015

ACC MAP ACC MAP ACC F1 ACC F1

Audio/Text 54.12% 56.69% 63.17% 68.61% 81.36% 80.65% 73.67% 68.49%
Video/Image 55.62% 58.37% 45.83% 58.79% 71.81% 70.73% 58.63% 43.33%
Concat 64.55% 71.31% 63.31% 68.41% 82.86% 82.43% 70.11% 63.86%
Affine 64.24% 69.31% 66.26% 71.93% 82.47% 81.88% 72.03% 59.92%
Channel 63.51% 68.66% 66.13% 71.75% - - - -
ML-LSTM 63.84% 69.02% 62.94% 64.73% 82.05% 70.73% 70.68% 65.64%
Sum 64.97% 71.03% 63.44% 69.08% 82.94% 82.47% 73.12% 66.61%
Weight 65.33% 71.33% 66.53% 73.26% 82.65% 82.19% 72.42% 65.16%
ETMC 65.67% 71.19% 65.86% 71.34% 83.69% 83.23% 73.96% 67.39%
MSES 64.71% 72.52% 61.56% 66.83% 84.18% 83.60% 71.84% 66.55%
G-Blend 67.12% 71.39% 64.65% 68.54% 83.35% 82.71% 74.35% 68.69%
OGM 66.06% 71.44% 66.94% 71.73% 83.23% 82.66% 74.92% 68.74%
Greedy 66.52% 72.81% 66.64% 72.64% - - - -
DOMFN 66.25% 72.44% 67.34% 73.72% 83.56% 82.62% 74.45% 68.57%
MSLR 65.91% 71.96% 65.46% 71.38% 84.23% 83.69% 72.52% 64.39%
PMR 66.56% 71.93% 66.59% 70.36% 83.61% 82.49% 74.25% 68.62%
AGM 66.02% 72.52% 67.07% 73.58% 84.28% 83.44% 74.83% 69.11%
MLA 70.04% 74.13% 79.43% 85.72% 84.26% 83.48% 73.52% 67.13%
Ours-H 69.05% 72.97% 72.15% 80.45% 84.12% 83.98% 73.87% 69.17%
Ours-LB 72.53% 78.38% 83.62% 90.06% 84.97% 84.57% 75.01% 70.57%

Evaluation Metrics: Following [24], we utilize accuracy (ACC) and mean Average Precision (MAP)206

as performance metrics for audio-video datasets. For text-image datasets, we adopt ACC and Macro207

F1-score (Mac-F1) [4, 37]. ACC measures the proportion of correct predictions to total predictions,208

indicating the overall predictive accuracy. Macro F1 calculates the average of F1 scores across209

all categories, balancing precision and recall to evaluate performance evenly across classes. MAP210

represents the average precision across all categories, assessing the model’s ranking ability for each211

category.212

Implementation Details: In our experiments, we utilize raw data for experiments. Following [24,213

12], for the Kinetics-Sounds and CREMA-D datasets, ResNet18 [16] serves as the foundational214

architecture for processing both audio and video data. For video analysis, we select 10 frames from215

each clip and subsequently sample three frames uniformly as inputs. We adapt ResNet18’s input216

channels from three to one to accommodate our data format [7]. In terms of audio, we transform217

our sound recordings into spectrograms measuring 257× 1004 for Kinetics-Sounds and 257× 299218

for CREMA-D, employing the librosa [22] library for conversion. For text-image datasets, our219

framework incorporates ResNet50 for images and BERT [9] for text processing. We resize images to220

224 × 224 and limit text sequences to a maximum length of 128 characters. Optimization for the221

audio-video datasets is conducted using stochastic gradient descent (SGD) with a momentum set222

to 0.9 and a weight decay parameter of 10−1. We initialize the learning rate to 10−2, progressively223

reducing it by a factor of ten upon observing a plateau in loss reduction, with a batch size of 256.224

For text-image datasets [4, 37], we employ the Adam optimizer starting with a learning rate of 10−4,225

with a batch size of 128. All models are trained on a single RTX 3090 GPU.226

4.2 Comparison with SOTA MML Baselines227

Main results on audio-video datasets and image-text datasets are presented in Table 1, where “Our-H”228

and “Ours-LB” denote the proposed method based on heuristic strategy and learning-based strategy,229

respectively. From the results, we can derive the following observation: (1). Compared with all230

baselines including traditional multimodal learning approaches and fusion methods with modal rebal-231

ancing strategies, our proposed method with learning-based strategy can achieve best performance232

by a large margin on all datasets. We can also find that the model with learning-based strategy can233

achieve better performance than that with heuristic strategy. (2). Across the Twitter2015 dataset,234

there is a discernible trend where the optimal unimodal performance outstrips that of multimodal joint235
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Table 2: Results on NVGes-
ture dataset.

Method ACC F1

MSES 81.12% 81.47%
OGR-GB 82.99% 83.05%

MSLR 82.37% 82.39%
AGM 82.78% 82.84%
MLA 83.73 % 83.87%

Ours-H 83.24% 83.87%
Ours-LB 84.36% 84.68%

Table 3: Ablation study on Kinetics-Sounds dataset. The sym-
bols “CL” and “DI” denote that whether the contrastive learn-
ing and dynamic integration are applied during training.

Module MAP

CL DI Audio-Video Audio Video GAP

× × 69.32% 48.82% 27.19% 21.63%
✓ × 71.76% 51.05% 47.05% 3.80%
✓ ✓ 78.97% 58.40% 60.42% 2.02%

Table 4: Results with different dynamic integration strategy on Kinetics-Sounds dataset.

Modal Constant Stepwise Dynamic

0 0.5 1 h(0) h(1) h(0.05) h(0.95) Ours-H Ours-LB

Audio-Video 64.55% 64.70% 28.67% 65.17% 66.92% 66.01% 67.41% 69.32% 72.89%
Audio 49.17% 46.30% 34.11% 51.12% 52.34% 52.21% 53.41% 53.89% 54.32%
Video 24.64% 44.02% 28.41% 41.21% 41.45% 42.31% 46.72% 49.18% 54.17%

learning. Additionally, in other datasets, fusion methodologies devoid of rebalancing mechanisms236

manifest negligible enhancements relative to the foremost unimodal performance, notably on the237

CREMA-D and Sarcasm datasets. This shortfall originates from the prevalent challenge of modal238

imbalance. (3). Every modality rebalancing technique demonstrates significant improvements over239

traditional feature concatenation fusion. This finding not only underscores the detrimental impact240

of modal imbalance on performance but also corroborates the efficacy of the modality rebalancing241

approach. Detailed results with error bars are provided in the supplementary materials due to space242

limitations.243

In Table 2, we report the comparison with SOTA baselines on NVGesture dataset, where the similar244

symbols are used to denote our method. From Table 2, we can see that differing from modal rebal-245

ancing methods restricted to scenarios with only two modalities, such as Greedy, our approach with246

learning-based strategy can address challenges in scenarios involving more than two modalities and247

achieve best results. Furthermore, our proposed method with heuristic strategy can also outperform248

all baselines in all cases.249

4.3 Ablation Study250

To comprehensively assess the effectiveness of our proposed method, we conduct experiments to251

study the influence of main components, i.e., contrastive learning (CL) and dynamic integration (DI).252

The results are shown in Table 3, where the “CL” and “DI” denote that whether the contrastive253

learning and dynamic integration are applied during training. Please note that dynamic integration254

depends on the contrastive learning loss. From Table 3, we can see that both contrastive learning255

and dynamic integration can boost performance in multimodal learning. Moreover, by integrating256

contrastive learning into multimodal learning, the performance gap between audio and video is greatly257

reduced. More results are presented in the supplementary materials due to space limitations.258

4.4 Effectiveness of Integration Learning259

Analysis of Integration Strategy: We further study the impact of different integration strategies260

for contrastive loss and classification loss. Specifically, we analyze three categories of integration261

strategy, i.e., constant, stepwise and dynamic strategy. For constant strategy, we assign a constant262

value to α for the experiment and run three sets of experiments by setting α = 0, α = 0.5, and263

α = 1. Here, “α = 0” denotes that we only perform supervised multimodal learning. Similarly,264

“α = 1” denotes that we only perform unsupervised contrastive learning. For stepwise strategy, we265

define an indicator function h(p), where h(p) denotes that α = p if the current epoch is less than half266
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Figure 2: Visualizations of the modality gap dis-
tance on the CREMA-D dataset.
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of the total epochs, otherwise α = 1− p. For dynamic strategy, we assign value to α by heuristic267

strategy (Ours-H) and learning-based strategy (Ours-LB).268

The experimental results are shown in Table 4. From Table 4, we can draw the following observations:269

(1). Integrating multimodal learning and contrastive learning simultaneously with a constant ratio270

can slightly boost performance in some cases and greatly reduce the performance gap between audio271

and video. (2). In general, the model with a stepwise strategy can outperform the model with a272

constant strategy. Furthermore, we can find that the performance of the model with two-stage training,273

i.e., h(0) or h(1), is worse than that of the model which combines two losses with a constant value,274

i.e., h(0.05) or h(0.95). (3). The overall performance of the model with the dynamic strategy is275

better than that with the other strategy. Moreover, the model with the learning-based strategy can276

achieve the best performance. And the performance gap of this model is nil or negligible. The277

experimental results prove that the smaller the performance gap of the uni-modals, the better the278

overall performance of the model. More experimental results on CREMA-D dataset are provided in279

the supplementary materials due to space limitation.280

Change of α for Learning-based Strategy: To further observe the change of the optimal α during281

training, we illustrate the change of α on all datasets. The results are shown in Figure 3, where α282

is calculated by learning-based strategy, and ω(t) denotes the heuristic based strategy. As the total283

epochs for different datasets are different, we change the x-axis as the proportion of the current epoch,284

i.e., #epoch/#total_epochs. From Figure 3, we can draw the following observations: (1). The general285

trend of the change for α is roughly the same on different datasets. (2). The customized function ω(t)286

is close to the actual changes to some extent, but there is still a gap between the customized function287

and the actual changes. In practice, it is difficult to fit the change of parameter α perfectly. Hence, we288

can see that our method has good adaptability in different scenarios.289

4.5 Further Analysis290

Analysis of Modality Gap: As mentioned in the paper [19], modality gap characterizes the corre-291

lation between different modalities in multimodal learning. And large modality gap leads to better292

performance in some situations. We further illustrate the modality gap for CONCAT, G-Blend, MLA,293

and our method. The results are shown in Figure 2. From Figure 2, we can find that our method can294

learn more discriminative representations and results in higher accuracy with a large modality gap295

compared with other methods.296

Robustness Analysis of the Pretrained Mode: We further exploit the robustness of the CLIP [26]297

model on Sarcasm and Twitter2015 datasets. We replace the encoders for image and text as the corre-298
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Table 5: Results on the Sarcasm and Twitter2015 datasets achieved by using the CLIP pre-trained
model as encoders.

Method Sarcasm Twitter2015

Image Text Multi Image Text Multi

CLIP 74.82% 82.15% 83.11% 54.48% 71.75% 72.52%
CLIP+MLA 77.45% 83.19% 84.45% 56.53% 72.37% 73.95%

CLIP+Ours 79.78% 83.67% 85.42% 64.67% 72.59% 74.43%

CONCAT epoch = 1 epoch = 7 epoch = 15

Ours-LB epoch = 1 epoch = 7 epoch = 15

Figure 4: Visualization on Twitter2015 dataset. Our proposed method tends to perform feature
learning first and then fit the learned features to the category labels.

sponding encoders pretrained by CLIP and fine-tune the model on Sarcasm and Twitter2015 datasets299

respectively. The results are shown in Table 5, where “CLIP+MLA” and “CLIP+Ours” present that300

we apply the MLA’s and ours algorithm, respectively. From Table 5, we can draw the following301

observations: (1). Both CLIP+MLA and CLIP+Ours can outperform CLIP in all cases. (2). With the302

help of dynamic integration, the performance of our method is better than that of MLA.303

Visualization: We utilize GradCAM [27] to showcase the visualization of image regions that attract304

the weak modality’s focus during training. By using GradCAM, the importance scores are assigned305

to every pixel in each feature map, aiding in identifying the image regions critical for the model’s306

predictions. We compare the visualization for CONCAT and our proposed method. The visualization307

results are presented in Figure 4, where the second, the third, and the last columns denote the results of308

the first, the seventh, and the last epoch, respectively. The category label for this image is “Negative”309

and the corresponding text is “Crazy hair day ! T is a contender.”. By comparing our method with310

CONCAT, we can see that our method focuses on the textual information from text modality, and311

then fits the learned features to the category labels.312

5 Conclusion313

In this paper, we discuss a core reason for modality imbalance in multimodal learning, i.e., fitting314

category labels. We find that appropriate positive intervention label fitting can correct the difference315

in learning ability for different modalities, thus alleviating the modality imbalance phenomenon.316

Based on this observation, we propose a novel multimodal learning approach to overcome modality317

imbalance problem by dynamically integrating unsupervised contrastive learning and supervised318

multimodal learning. We design a heuristic strategy and a learning based strategy to perform319

integration dynamically. Experiments on various datasets demonstrate that our method can boost320

performance in multimodal learning.321

For the limitations of our proposed method. The root cause of modality imbalance caused by fitting322

category labels is worth discussing in depth. Does the specific category label contain attributes that323

are more suitable for fitting a certain modality? We leave it as a future work.324
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Supplementary Materials for Facilitating Multimodal416

Classification via Dynamically Learning Modality Gap417

A Additional Experimental Results418

A.1 Comparison with SOTA MML Baselines419

To remove the randomness, we run the experiment 3 times with different random seeds and present420

the detailed performance with mean and std. values in Table A1.

Table A1: Detailed performance with mean and std. values.

Dataset Ours-H Ours-LB

ACC MAP ACC MAP

Kinetics-Sounds 69.05%±0.15% 72.97%±0.43% 72.53%±0.31% 78.38%±0.37%
CREMA-D 72.15%±0.32% 80.45%±0.85% 83.62%±0.11% 90.06%±1.09%

ACC F1 ACC F1

Sarcasm 84.12%±0.17% 83.98%±0.22% 84.97%±0.27% 84.57%±0.18%
Twitter2015 73.87%±0.35% 69.17%±0.26% 75.02%±0.16% 70.57%±0.28%
NVGesture 83.24%±0.07% 83.87%±0.18% 84.36%±0.14% 84.68%±0.24%

421

A.2 Ablation Study422

In Table A2, we report the accuracy on all datasets except Kinetics-Sounds dataset for the ablation423

study. From Table A2, we can find that on CREMA-D, Sarcasm, and Twitter2015 datasets, contrastive424

learning and dynamic integration can boost performance in multimodal learning. Moreover, the425

performance gap is reduced by integrating contrastive learning into multimodal learning.

Table A2: Ablation study on the rest datasets. The “CL” and “DI” denote that whether contrastive
learning and dynamic integration are applied during training.

Dataset Module MAP

CL DI Multi Audio Video GAP

CREMA-D
× × 76.07% 70.97% 34.15% 36.82%
✓ × 86.32% 72.11% 52.51% 19.06%
✓ ✓ 90.06% 75.27% 67.36% 7.91%

Dataset Module F1

CL DI Multi Image Text GAP

Sarcasm
× × 82.43% 62.81% 77.96% 15.15%
✓ × 83.10% 68.74% 80.72% 11.98%
✓ ✓ 84.57% 74.53% 83.03% 8.50%

Twitter2015
× × 63.86% 40.99% 68.38% 27.39%
✓ × 65.33% 46.84% 69.04% 22.20%
✓ ✓ 70.57% 53.43% 69.68% 16.25%

426

A.3 Analysis of Integration Strategy on CREMA-D dataset.427

We further report the impact of different integration strategy on CREMA-D dataset. The results are428

shown in Table A3. On CREMA-D dataset, we can still observe similar results. Roughly speaking,429

the model with dynamic integration can achieve better performance compared with other strategies.430

Furthermore, the model with learning based strategy can achieve the best performance in all cases.431
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Table A3: Results with different dynamic integration strategy on CREMA-D dataset.

Modal Constant Stepwise Dynamic

0 0.5 1 h(0) h(1) h(0.05) h(0.95) Ours-H Ours-LB

Multi 63.31% 70.45% 26.49% 66.45% 70.24% 69.11% 71.45% 72.39% 84.11%
Video 18.68% 42.54% 20.42% 45.14% 49.97% 46.41% 55.32% 57.14% 64.89%
Audio 55.65% 60.17% 33.15% 56.19% 57.38% 58.09% 60.18% 61.89% 65.13%
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Answer: [Yes]436
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Answer: [Yes]441
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4. Experimental Result Reproducibility448

Question: Does the paper fully disclose all the information needed to reproduce the main ex-449

perimental results of the paper to the extent that it affects the main claims and/or conclusions450

of the paper (regardless of whether the code and data are provided or not)?451

Answer: [Yes]452

Justification: The experimental setup, including dataset, baseline, evaluation metric and453

implementation details, was provided in section 4.1. In the implementation details part, we454
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of main parameters, hardware environment, and so on, to support the reproducing of the456

method.457
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Question: Does the paper provide open access to the data and code, with sufficient instruc-459

tions to faithfully reproduce the main experimental results, as described in supplemental460

material?461

Answer: [Yes]462

Justification: We release our code at https://anonymous.4open.science/r/Dynamic_463

Modality_Gap_Learning. Furthermore, all datasets we used in this paper are available464

online based on their corresponding paper.465
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Question: Does the paper specify all the training and test details (e.g., data splits, hyper-467

parameters, how they were chosen, type of optimizer, etc.) necessary to understand the468

results?469

Answer: [Yes]470

Justification: All implementation details were provided in section 4.1.471

7. Experiment Statistical Significance472

Question: Does the paper report error bars suitably and correctly defined or other appropriate473

information about the statistical significance of the experiments?474

Answer: [Yes]475

Justification: We run the main experiments 3 times with different random seeds. The results476

with error bars were reported in section A.1 in the supplementary materials.477
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Answer: [NA]493
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11. Safeguards495
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Answer: [Yes]511
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