
A Additional Proofs448

For any D, let d = dlog(|D|)e + 1 and let  : D ! {0, 1}d be a one-to-one mapping of tokens to449

Boolean vectors, s.t.  1(s) = 1 for all s 2 D.450

Definition 9. A function f : DL ! D is called k-Junta if there exists a set of separate indexes451

i1, . . . , ik 2 [L] and function g : Dk ! D s.t. f(x) = g(xi1 , . . . , xik).452

Lemma 10. For every k-Junta f : DL ! D, there exists a tree T of size O

⇣
|D|k

⌘
and depth453

O(k log |D|) s.t. T ( (x)) = f(x) for all x 2 DL.454

Proof. Let T the perfect binary tree of depth dk, where each level of the tree corresponds to a pair455

(j, l) 2 [k]⇥ [d], and all the nodes at the level implement the condition  l(xij ) � 1. Observe that in456

this construction, each leaf correspond to a specific choice of values for  (xi1), . . . , (xik), and we457

can set its output to be g(xi1 , . . . , xik).458

Proof of Theorem 3. Let A be some automaton, defined by transition function � : Q⇥⌃! Q, and we459

can arbitrarily extend it to � : D2 ! D s.t. �(x, hPADi) = q0 for all x 2 D. Then, from Theorem 10460

there exists some tree T of size O(|D|2) s.t. for all x 2 DL it holds that T ( (x)) = �(xL, xL�n).461

We prove by induction that for all i 2 [n] it holds that T AR
i (x) = qi, where qi is the state of the462

automaton A at iteration i.463

• Let z 2 RL,d be the padded output of  (x), i.e. z =464

[ (hPADi), . . . , (hPADi), (x1), . . . , (xn)]. Note that since xL�n = hPADi465

we have T AR
1 (x) = T (z) = �(xL, hPADi) = q1.466

• Assume that T AR
1:i�1(x) = (q1, . . . , qi�1). Therefore,467

T AR
i (x) = T ( (hPADi , . . . , hPADi , x1, . . . , xn, q1, . . . , qi�1))

= �(qi�1, xi) = qi

Therefore, the required follows.468

Proof of Theorem 6. We encode the state of the Turing machine by a string s 2 DM+1 as follows:469

if the head is in state q 2 Q and at position i 2 [M ], and the memory is m1, . . . ,mM 2 ⌃, we set470

s = (m1, . . . ,mi�1, q,mi, . . . ,mM ). That is, we add a token indicating the state of the head before471

the cell where the head is located. Let � : Q⇥⌃! Q⇥⌃⇥{hLEFTi , hRIGHTi} be the transition472

function of the Turing machine. We define the following function g : D4 ! D4:473

g(s) =

8
>>>>>>>>><

>>>>>>>>>:

x2 if x1, x2, x3 /2 Q

q if x1 2 Q and �(x1, x2) = (q,↵, hRIGHTi)
↵ if x1 2 Q and �(x1, x2) = (q,↵, hLEFTi)
↵ if x2 2 Q and �(x2, x3) = (q,↵, hRIGHTi)
x1 if x2 2 Q and �(x2, x3) = (q,↵, hLEFTi)
x2 if x3 2 Q and �(x3, x4) = (q,↵, hRIGHTi)
q if x3 2 Q and �(x3, x4) = (q,↵, hLEFTi)

Observe that the function f : DM+1 ! DM+1 s.t. fi(s) = g(si�1, si, si+1, si+2) exactly defines the
transition between the encoded states of the Turing machine. Namely, if the state of the machine at
iteration i is s, then the state at iteration i+ 1 is f(s). We slightly modify g to handle the generation
of the first iteration, as follows:

g̃(s) =

8
>><

>>:

hSEPi x1 = hPADi and x2 = hPADi and x3 = hPADi
q0 x1 = hPADi and x2 = hPADi and x3 6= hPADi
hSEPi x2 = hSEPi
g(s) otherwise
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Now, from Lemma 10 there exists a tree T of size O(|D|4) s.t. T ( (x)) = g̃(x1, x2, x3, x4).474

Let s1, . . . , sT 2 DM+1 the encodings of the state of the Turing machine at iterations 1, . . . , T . Let475

x 2 DL be the encoding of the input, staring with hPADi tokens, followed by one hBOSi token and476

the input string. Denote the output of the ARDT T AR after T · (M + 2) given the input x, where we477

split the output into chunks of size M + 2 by:478

T AR(x) = (z1, . . . , zT ) 2 DT ·(M+2)
, zi 2 DM+2

Claim: For all i 2 [T ], it holds that zi = (hSEPi , si).479

Prove: We prove by induction on i.480

• For i = 1, notice that the input begins with 3 hPADi tokens, followed by the input tokens481

x1, . . . , xM , and therefore by definition of g̃ we get z1 = (hSEPi , q0, x1, . . . , xM ) =482

(hSEPi , s1).483

• Assume the required holds for i. First, observe that

zi+1,1 = T ( (si�1,M+1, hSEPi , si,1, . . . , si,M+1)) = hSEPi
Now, assume that zi+1,1:j = (hSEPi , si+1,1, . . . , si+1,j�1). Therefore484

zi+1,j+1 = T ( (si,j�1, si,j , si,j+1, . . . , si,M+1, hSEPi , si+1,1, . . . , si+1,j�1))

= g(si,j�1, si,j , si,j+1, si,j+2) = si+1,j

and by induction we get zi+1 = (hSEPi , si+1)485

Therefore, T outputs the final token of iteration T after T (M + 2) steps of auto-regression, which486

proves the theorem.487

B Additional Implementation Details488

B.1 Hardware & Computational Cost489

Our experiments were conducted on a single NVIDIA A100 GPU. For the Tiny Stories experiments,490

the training process took approximately 1 hour, and it required about 1 second to generate 20 words491

during the inference phase.492

B.2 Dataset Details493

Tiny Stories. As shown in Tab. 3, the training and validation datasets of Tiny Stories contain494

147,273 and 21,990 stories, respectively. We use NLTK Bird et al. (2009) as the tokenizer to obtain495

420,351,665 and 4,329,963 tokens from the training dataset. In the training dataset and validation496

dataset, the number of words in the vocabulary is 27,455 and 11,273, respectively.497

BIG-Bench-Hard is a dataset contains the selection of 23 difficult tasks from the BIG-Bench. These498

tasks are identified by their resistance to being outperformed by prior language model evaluations499

when compared to the average human evaluator. The BIG-Bench-Hard tasks often demand complex,500

multi-step reasoning, and the use of few-shot prompting without CoT, as previously utilized in501

BIG-Bench evaluations Srivastava et al. (2023), significantly underrepresents the true potential and502

performance of language models.503

Four representative reasoning tasks we select for evaluate our ARDTs:504

(1) Boolean Expressions. Example: not (True) and (True). Answer: False.505

(2) Navigate. Example: If you follow these instructions, will you return to the starting point?506

Instructions: Turn left. Take 5 steps. Turn right. Answer: No.507

(3) Web-of-Lies. Example: Delbert tells the truth. Delfina says Delbert lies. Antwan says Delfina tells508

the truth. Does Delfina tell the truth? Answer: No.509

(4) Sports Understanding. Example: Is the following sentence plausible? ”Elias Lindholm beat the510

buzzer.” Answer: No.511
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Table 3: Basic Information about the Tinystories Dataset.

Training dataset Validation dataset

The number of stories 147,273 21,990
The number of tokens 420,351,665 4,329,963
The word count of each story. 54 - 5,498 63 - 4,254
Vocabulary 27455 11274

B.3 Details about the Visualization of the Decision Trees512

To enable visualization that treats words as features, as shown in Algorithm 1, we map word513

embeddings into a lower-dimensional space. This process utilizes three primary inputs: word514

embeddings W in an N ⇥ 100 matrix, where N represents the number of words and 100 the515

dimensionality of each embedding; cluster centers C in a 20 ⇥ 100 matrix, indicating 20 clusters516

within the 100-dimensional embedding space; and a mapping matrix M sized 100⇥ 20, designed517

to reduce the embeddings’ dimensionality to 20. The algorithm begins with an orthogonalization518

procedure, applying QR decomposition to the transpose of C (CT ) and returning the first 20 columns519

of QT , thereby establishing an orthogonal basis for the cluster space. It then projects the word520

embeddings W into this lower-dimensional space by multiplying them with the mapping matrix M .521

By iterating over each word embedding in W , the algorithm applies this projection and ultimately522

returns a set of transformed embeddings {E1, . . . , EN}, where each Ei provides a lower-dimensional523

representation of the corresponding word embedding. This approach allows us to treat each vector524

value as individual words, facilitating a more intuitive understanding of the data.525

Algorithm 1 Map Word Embeddings to Lower Dimensional Space
input

Word Embeddings W ✓ RN⇥100

Cluster Centers C ✓ R20⇥100

Mapping Matrix M ✓ R100⇥20

procedure ORTHOGONALIZE(C)
Q,R QR Decomposition(CT )
return Q[:, : 20].T

end procedure

procedure MAPEMBEDDINGS(W , M )
return W ·M

end procedure

M  ORTHOGONALIZE(C)
for each word embedding wi in W do
Ei  MAPEMBEDDINGS(wi,M)

end for
Return {E1, . . . , EN}

B.4 The Story Beginnings Used in Our Evaluation526

In Table 6, we provide 10 examples over 100 story beginnings we used for our experiments on Tiny527

Stories.528

B.5 An Example on Multidimensional Scores529

As an example, we took the story that appears in the example above and cut it after the word ”loud”.530

We generated a completion of stories using our ARDTs and baselines, then we prompted GPT-4 to531

first provide a verbal assessment and then grade the completion. The transcript of interaction is as532

follows, with the parts produced by GPT-4 in italic font:533
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Table 4: Generated Chain-of-Thought data for boolean expression.

Input Prompt not not ( not ( False ) ) is True and False and not True and True is

Generated Prompt

Let’s think step by step.
Remember that (i) expressions inside
brackets are always evaluated first and
that (ii) the order of operations from
highest priority to lowest priority is
”not”, ”and”, ”or”, respectively. We
first simplify this expression ”Z” as
follows: ”Z = not not ( not ( False ) ) =
not not ( A )” where ”A = not ( False
)”. Let’s evaluate A: A = not ( False )
= not False = True. Plugging in A, we
get: Z = not not ( A ) = not not (True)
= not not False = True. So the answer
is True.

Let’s think step by step. Remember that (i) ex-
pressions inside brackets are always evaluated
first and that (ii) the order of operations from
highest priority to lowest priority is ”not”,
”and”, ”or”, respectively. We first simplify
this expression ”Z” as follows: ”Z = True and
False and not True and True = A and B” where
”A = True and False” and ”B = not True and
True”. Let’s evaluate A: A = True and False =
False. Let’s evaluate B: B = not True and True
= not (True and True) = not (True) = False.
Plugging in A and B, we get: Z = A and B
= False and False = False. So the answer is
False.

Table 5: Generated Chain-of-Thought data for navigation.

Input Prompt

If you follow these instructions, do
you return to the starting point? Al-
ways face forward. Take 2 steps
right. Take 9 steps left.Take 7 steps
right.

If you follow these instructions, do you return to
the starting point? Turn around. Take 1 step. Take
6 steps. Turn around. Take 6 steps. Take 9 steps.
Take 1 step.

Generated Prompt

Let’s think step by step.We start at
the origin (0, 0), facing the posi-
tive y-axis.(1) Always face forward:
(0, 0), facing the positive y-axis.(2)
Take 2 steps right: (0, 2), facing the
positive y-axis.(3) Take 9 steps left:
(0, -7), facing the positive y-axis.(4)
Take 7 steps right: (0, 7), facing the
positive y-axis. Since (0, 0) is (0,
0), we are indeed where we started.
So the answer is Yes.

Let’s think step by step. We start at the origin (0,
0), facing the positive y-axis. (1) Turn around: (0,
0), facing the negative y-axis. (2) Take 1 step: (0,
-1), facing the negative y-axis. (3) Take 6 steps: (0,
-7), facing the negative y-axis. (4) Turn around:
(0, -7), facing the positive y-axis. (5) Take 6 steps:
(0, -1), facing the positive y-axis. (6) Take 9 steps:
(0, 8), facing the positive y-axis. (7) Take 1 step:
(0, 9), facing the positive y-axis. Since (0, 9) is
not (0, 0), we are not where we started. So the
answer is No.

Table 6: Examples of the story beginnings generated by GPT-4. In the inference phase, we fed these
story beginnings generated by GPT-4 into the ARDTs to continue writting the stories.

The beginning of the stories (GPT-4 generated)

1 Kitty found a bright, lost treasure.
2 Thirsty, they sought a hidden pond.
3 Roxy climbed, seeking icy hill’s peak.
4 Billy’s idea sparked an unlikely friendship.
5 Leaves underfoot, Roxy ascended triumphantly.
6 Daisy, small yet happy, met Max.
7 Max’s playful antics delighted tiny Daisy.
8 Sue’s thoughtful gesture warmed her mother.
9 A candle’s flame united mother, daughter.

10 The sad cow wished for companionship.
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the following exercise, the student is given a beginning of a story. The student needs534

to complete it into a full story. The exercise tests the student’s language abilities and535

creativity. The symbol ⇤ ⇤ ⇤ marks the separator between the prescribed beginning536

and the student’s completion:537

Once upon a time, *** there was a little girl named Lily. She loved to play outside in the538

sunshine. One day, she saw a big tree in the garden. She was so excited about it.539

Please provide your general assessment about the part written by the student (the one540

after the *** symbol). Is it grammatically correct? Is it consistent with the beginning541

of the story? Pay special attention to whether the student manages to complete the542

sentence which is split in the middle by the separator ***.543

This is a charming and whimsical story about a little girl named Lily who feels excited upon544

discovering a big tree in the garden.545

The grammar is generally correct.546

Overall, the student’s completion of the story demonstrates adequate language abilities and547

creativity. However, adding more details about Lily’s exploration, as well as her thoughts548

and actions after discovering the tree, could make the story more engaging and vivid.549

Now, grade the student’s completion in terms of grammar, creativity, consistency with the550

story’s beginning and whether the plot makes sense. Moreover, please provide your best551

guess of what the age of the student might be, as reflected from the completion. Choose552

from possible age groups: A: 3 or under. B: 4-5. C: 6-7. D: 8-9. E: 10-12. F: 13-16.553

Grammar: 9/10, Creativity: 4/10, Consistency: 7/10, Age group: E (10-12)554

C Interpretability555

One advantage of using decision trees over complex neural networks is the Interpretability of the556

computational process. Unlike neural networks, which rely on abstract vector operations in high-557

dimensional space, decision trees implement relatively simple logic, computing their output based on558

splitting criteria that may be easily displayed to, and interpreted by, humans. That said, recall that559

our decision trees operate on aggregations of word vector embeddings, which make interpretability560

harder to achieve. Specifically, each splitting rule of the decision tree is based on the value of561

a single coordinate, which does not necessarily have an interpretable semantic value when using562

rotation-invariant word embedding methods such as Word2Vec.563

Figure 3: t-SNE van der Maaten (2013) visualization of 20 cluster centers. We selected 20 cluster
centers and display 4 words closest to the cluster centers.

In order to generate decision trees with meaningful splitting rules, we modify the word embedding564

such that single coordinates have specific semantic values. To achieve this, we begin by clustering565

all the word vectors from the dataset (over 16K words) into 20 clusters using K-means. We then566

choose one representative word for each cluster, by taking the word that is closest to the center of567
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Input Prompt: 

“Lily and Tom loved to play together, 

and they found”
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Figure 4: Track the decision-making process within the decision trees. We use ’Lily and Tom
loved to play together, and they found’ as an the input prompt and generate the next word using our
ARDTs. We visualize part of the process within the decision tree. Specifically, we visualized 31
nodes of the first decision tree.

Figure 5: Feature Importance. We present the feature importance of the top 20 words most closely
associated with each cluster, based on their average gain.

the cluster in the embedding space (see Figure 3 for an illustration of the clusters and representative568

words). Now, these words (represented as vectors) form a basis for a new 20-dimensional embedding569

space, which is a linear subspace of the original 100-dimensional space of Word2Vec. We use these570

basis words to compute the new word embedding, by projecting each vector from the original space571

into this subspace, and representating the projection as a linear combination of the basis words.572

Mathematically, if x1, . . . , xk are the basis words, we define our new embedding � into Rk by:573

�(x) = argminz2Rk k
P

i zi (xi)� (x)k2. Observe that each basis word xi is mapped by � to574

a unit vector ei. Intuitively, the i-th coordinate of the embedding � now represents words that are575

semantically similar to the word xi. Now, splitting rules based on the coordinate i can be interpreted576

as “testing” whether a word similar to xi appears in the sentence.577
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We visualize one of the decision trees trained on the Tiny Stories Dataset using the new “interpretable”578

embedding � in Figure 1. Note that, unlike complex neural network architectures, which carry out579

opaque computations, the decision process of the ARDT with the new embedding appears to be580

semantically meaningful. For example, observe that the word Lily appears for three times as the581

most relevant word during node splits. Considering Lily is a frequently occurring name in the Tiny582

Stories dataset, it’s frequent appearance in the tree can be deemed reasonable. We further analyze583

the importance of different features by plotting their importance score. We plot the importance of584

each cluster, represented by a single word, in Figure 5. We assess the importance of each cluster by585

calculating its average gain during every split within the model.586

In Figure 4, we use the input sentence “Lily and Tom loved to play together and they found” as an587

example to visualize part of the decision-making process of the first decision tree in the ensemble.588

We note that each feature corresponds to a single cluster, represented by a single word, e.g. the589

feature f2 corresponds to the word “Lily”. That is, the word “Lily” will be mapped to the unit vector590

e2 = (0, 1, 0, . . . , 0). Note that most words (besides the 20 words used as a basis for the embedding),591

will be mapped to a linear combination of the basis words, and so can also affect (positively or592

negatively) the value of the feature f2. Since the input vector is a weighted-average of the embedding593

of all words, the decision when splitting on the feature f2 may be affected by multiple words in the594

sentence.595
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