
Task-recency bias strikes back: Adapting covariances
in Exemplar-Free Class Incremental Learning

Grzegorz Rypeść∗
IDEAS NCBR

Warsaw University of Technology
grzegorz.rypesc@ideas-ncbr.pl

Sebastian Cygert
IDEAS NCBR

Gdańsk University of Technology
sebastian.cygert@ideas-ncbr.pl

Tomasz Trzciński
IDEAS NCBR

Warsaw University of Technology
Tooploox

Bartłomiej Twardowski
IDEAS NCBR

Autonomous University of Barcelona
Computer Vision Center

Abstract

Exemplar-Free Class Incremental Learning (EFCIL) tackles the problem of training
a model on a sequence of tasks without access to past data. Existing state-of-the-art
methods represent classes as Gaussian distributions in the feature extractor’s latent
space, enabling Bayes classification or training the classifier by replaying pseudo
features. However, we identify two critical issues that compromise their efficacy
when the feature extractor is updated on incremental tasks. First, they do not
consider that classes’ covariance matrices change and must be adapted after each
task. Second, they are susceptible to a task-recency bias caused by dimensionality
collapse occurring during training. In this work, we propose AdaGauss – a novel
method that adapts covariance matrices from task to task and mitigates the task-
recency bias owing to the additional anti-collapse loss function. AdaGauss yields
state-of-the-art results on popular EFCIL benchmarks and datasets when training
from scratch or starting from a pre-trained backbone.

1 Introduction

Continual learning (CL), an essential area of machine learning, focuses on developing algorithms
that can learn progressively from a continuous stream of data and adapt to new tasks while retaining
previously acquired knowledge. This paradigm is paramount for creating systems capable of lifelong
learning, much like humans, and robust in dynamic environments where data distribution evolves
over time. A significant challenge within CL is exemplar-free class incremental learning (EFCIL) [41,
26], which requires the model to incorporate new classes without storing previous data samples
(exemplars). This approach is especially relevant in scenarios with privacy constraints or limited
storage capacity, as it compels the model to retain knowledge and prevent catastrophic forgetting [9,
27] solely through internal mechanisms, such as knowledge distillation [12, 21, 45, 51, 24], parameter
regularization [17, 2, 6], expanding neural architecture [44, 53, 32, 3] or generative replay [40, 14, 28].

Recent state-of-the-art methods designed for EFCIL often represent classes as Gaussian distributions
in the latent space of the feature extractor. That enables an inference using Bayes classifier [10, 35] or
training a linear classifier using pseudo-prototypes sampled from these distributions [24, 31, 51, 37].
However, we present in this work that these methods have multiple shortcomings and can be improved.
First, they assume that covariance matrices of past classes are constant across incremental training.

∗Code: https://github.com/grypesc/AdaGauss

38th Conference on Neural Information Processing Systems (NeurIPS 2024).

https://github.com/grypesc/AdaGauss

Figure 1: Latent space visualization, average accuracy after the last task, and symmetrical KL
divergence between memorized and ground truth distributions for ResNet18 trained sequentially
on ImagenetSubset dataset split into ten tasks. Freezing the feature extractor prevents changes in
data distribution but results in inseparable classes. When the network is trained on incremental tasks
(unfrozen), the ground truth distributions change and do not match the memorized ones. A suitable
CL method should adapt the mean and covariance of distributions to retain valid decision boundaries.

However, as presented in Fig. 1, when the feature extractor is updated on incremental tasks (it is
unfrozen), distributions of previous classes change and no longer match the memorized ones. Suitable
methods must adapt both means and covariances. EFC [24] predicts drift (change) only of the
distribution mean and points out that adapting covariances is an open question. Second, the methods
suffer from a dimensionality collapse [30, 16], which is more significant in early tasks. That makes
old classes’ covariances to be of lower rank than those from recent tasks, which introduces errors
while inverting the matrices for the classification, leading to increased task-recency bias. We explain
this in detail in Sec. 3.2.

This work focuses on the challenging problems of adapting classes’ covariances and overcoming
dimensional collapse in EFCIL. We are the first to introduce a method that adapts the mean and
covariance of memorized distributions, significantly reducing the error between memorized and
ground truth distributions. We also overcome the dimensionality collapse of feature representations
by introducing a novel anti-collapse loss, which alleviates the problem of task-recency bias. We dub
the resulting method AdaGauss - Adapting Gaussians. Our contributions are as follows:

• We analyze dimensionality collapse in EFCIL settings and explain that it leads to task-
recency bias. We introduce a novel anti-collapse loss to prevent it.

• We show that knowledge distillation techniques in EFCIL provide different representation
strengths of the feature extractor. We are the first to utilize knowledge distillation through a
learnable projector network in EFCIL.

• Based on these findings, we propose AdaGauss, a novel method to adapt both means and
covariances of memorized class distributions, which results in state-of-the-art results when
the model is trained from scratch or starting from a pre-trained weights.

2 Related works

Semantic drift. We investigate offline, EFCIL setting [26] focusing on keeping the network size
constant, where no task information is available at test time. Regularization-based approaches
penalize changes to important neural network parameters [17, 6, 47, 22] or use distillation techniques
to regularize neuron activations [21, 45, 51, 24]. However, even with knowledge distillation, the
features from old classes will change, causing catastrophic forgetting [9, 27]. Therefore, few works
tried to predict these changes by approximating their semantic drift [45, 24, 15, 36]. However, those
strategies’ limitations are that they adapt only prototypes, ignoring changes in covariance matrices,
which we experimentally show is suboptimal. As predicting the drift is challenging, many methods
focus on scenarios where the backbone is frozen after the first task [4, 31, 23, 29, 10]. However, this
prevents the feature extractor to adapt to new tasks [24]. We show that it is possible to change the
feature extractor and adapt the covariance matrices of classes.

2

Task-recency bias. Another challenge in CL is a task-recency bias, where the model is biased towards
classifying classes from new tasks [13, 26, 50]. While some works approached this problem using
exemplars [1, 43, 13, 48] the problem is amplified in an exemplar-free setting. Some works considered
prototype replay, which maintains the decision boundary between classes [31, 51, 37, 39, 38, 53].
To improve this strategy, PASS [52] included prototype augmentation, and EFC [24] updates their
prototypes after each task. In this work, we point out that the cause for task-recency bias in the EFCIL
scenario is the dimensionality collapse of the feature extractor, leading to numerical instabilities when
inverting covariance matrices.

Dimensionality collapse. Recent works revealed that supervised learning exhibits signs of neural
collapse [30, 16], where a large fraction of features’ variance is described only by a small fraction
of their dimensions. Since then, several studies [5, 7, 46, 16] showed that utilizing additional MLP
projector is a crucial component to alleviate the collapse of the representations and improve their
transferability. Another implication of the neural collapse in CL is that it becomes challenging to
invert covariance matrices. Existing methods add a constant value to the diagonal [35, 24, 51] of
the covariance matrices or utilize shrinking [10] to prevent that. On the contrary, we propose an
anti-collapse loss, which is more elegant and does not artificially alter covariance matrices.

3 Method

3.1 Exemplar-Free Class-Incremental Learning (EFCIL)

Class-Incremental Learning (CIL) scenario considers a dataset split into T tasks, each corresponding
to the non-overlapping set of classes C1 ∪ C2 ∪ · · · ∪ CT = C such that Ct ∩ Cs = ∅ for t ̸= s.
In Exemplar-Free CIL (EFCIL), during a training step t, we have only access to current task data
Dt = {(x, y)|y ∈ Ct} and we cannot store any exemplars from the previous steps. The objective
is to train a model that discriminates between old (< t) and new classes combined. We assume a
task-agnostic evaluation [41, 26], where the method does not know the task id during the inference.

3.2 The three observations that motivate towards AdaGauss

In this section, we provide an insight into problems with current EFCIL methods. We train the
standard ResNet18 [11] network on the ImagenetSubset dataset divided into ten equal tasks. We
point out that: 1. covariance of class distributions during CL sessions change and must be adapted; 2.
the task recency bias comes from the differences in representational strength of the model; 3. when
training from scratch in EFCIL, the models are susceptible to dimensionality collapse.

Observation 1. As illustrated in Fig. 1, training the feature extractor on incremental tasks makes
memorized distribution not match the ground truth (GT) ones. More specifically, the mean and
covariance of GT change, and to keep valid decision boundaries, both memorized means and
covariances must be adapted. That decreases symmetrical KL divergence between memorized and GT
distributions, thus increasing average accuracy after the last task. However, existing state-of-the-art
methods [36, 24, 51, 52] do not adapt covariance matrices, while others [31, 10, 55, 54] freeze the
feature extractor after the initial task, which does not guarantee separability of classes from new tasks
(first image in Fig. 1).

Observation 2. When training the feature extractor with different knowledge distillation methods
(feature [53, 52, 45], logit [21, 33], projected [18]), representational strength of the feature extractor
increases with each task, as presented in Fig. 2. That makes memorized covariance matrices of late
tasks have a higher rank than those from early tasks, as presented in Fig. 3. When these matrices are
inverted, the opposite happens - due to numerical instabilities, norms of inverted covariance matrices
of early tasks will be greater. That causes task-recency bias as presented in Fig. 4. In the case of Bayes
classification [35, 10], the Mahalanobis distance is much higher for early tasks, whereas in the case of
sampling pseudo-prototypes [24, 51] the logits for recent tasks are higher, what skews classification
towards recent tasks. This bias differs from already well-studied linear head bias [13, 43, 48], as it
occurs at the level of the representations, where no linear head and no exemplars are utilized.

Observation 3. Fig. 3 also presents that feature extractor suffers from dimensionality collapse [30, 16]
as ranks of covariance matrices are much lower than the latent space size (512 for ResNet18).
That makes classes covariance matrices non-invertible. That, in turn, disallows the calculation
of Mahalanobis distance, likelihood, and sampling from such collapsed distribution. In order

3

Figure 2: The representational
strength of ResNet18 trained
on 10 tasks of ImagenetSubset
dataset split into 10 tasks for
different knowledge distillation
methods. After each task, we
measure how many eigenvalues
sum to 95% variance of all fea-
tures provided.

Figure 3: Average rank of mem-
orized covariance matrices of
classes after each task (black) on
ImagenetSubset for logit distil-
lation. Norm of these matrices
when inverted (green). Lower
rank leads to larger values in
inverses of covariance matrices
due to numerical instabilities.

Figure 4: Average Mahalanobis
distance between memorized
distributions and joint dataset
per each task after the last task
(black) and average logit value
on linear head trained by sam-
pling prototypes from memo-
rized distributions. There is a
visible task-recency bias.

to overcome this issue, the existing methods utilize shrinking [10] or add a constant value to
the diagonal [35, 24, 51] of the covariance matrices to prevent that. However, these techniques
artificially alter classes’ distributions, introducing additional hyperparameters and a new source of
errors accumulating during long CIL sessions. A more elegant solution would directly prevent the
dimensionality collapse of the feature extractor during training while preserving the class separability
provided by cross-entropy.

3.3 AdaGauss method

Motivated by these three observations, we made the following decisions about AdaGauss. Based
on the first observation, after training the feature extractor F on an incremental task, we train an
auxiliary network (adapter), which we utilize to adapt the means and covariances of old classes to
the latent space of the new feature extractor. To perform knowledge distillation and improve the
representation strength of the feature extractor (second observation), we utilize feature distillation
through a learnable projector. In order to overcome the dimensionality collapse and task-recency bias,
showcased by the second and third observations, we utilize a novel anti-collapse loss that regularizes
the features’ covariance matrix and prevents dimensional collapse. AdaGauss memorizes each class
as a mean and covariance and performs Bayes classification as in [10, 35]. We provide a pseudo-code
of our method in Alg. 1. Below, we explain the motivation and details of the method.

3.3.1 Feature distillation through a learnable projector

Inspired by representational-learning [18], we utilize a feature distillation through a learnable projector
to mitigate forgetting, which we refer to as projected distillation. As presented in Fig. 2, this
distillation technique provides representations with a better eigenvalues distribution, thus decreasing
the problem of task-recency bias compared to standard logit [21, 33] and feature [45, 53, 52]
distillation techniques. As the projector, we utilize a 2-layer MLP network ϕt→t−1 : RS → RS
with hidden size d times bigger than the latent space S. Following existing continual learning
works [21, 45, 33], when training Ft on minibatch B, we freeze Ft−1 trained on the previous task.
Finally, we calculate our knowledge distillation loss as follows:

LPKD =
∑
i∈B

||ϕt→t−1 (Ft (xi))− Ft−1 (xi) ||2. (1)

3.3.2 Overcoming dimensionality collapse

As described in Sec. 3.2, existing methods for EFCIL that represent classes as Gaussian distributions
suffer from dimensionality collapse, which leads to task-recency bias caused by the fact that ranks of
covariance matrices are different amongst the tasks. To overcome the collapse, we encourage the

4

feature extractor to produce features whose dimensions are linearly independent. Therefore, in each
task, we directly optimize the covariance matrices of features produced by Ft to be positive-definitive
by the diagonal of the Cholesky decomposition of covariance of each training minibatch to be positive.
More precisely, let S be the size of the feature vectors and ai be i-th element of the diagonal of a
Cholesky decomposition of minibatch’s covariance matrix. We formulate the anti-collapse loss LAC
in the form:

LAC = − 1

S

S∑
i=1

min(ai, 1) (2)

This loss forces Cholesky’s decomposition of covariance of each minibatch to have diagonal entries
greater than 1. Therefore, they are positive, and the covariance matrix is positive-definite due to the
property of Cholesky decomposition. More on the definition of LAC in Appendix, Sec. A.2).

3.3.3 Training the feature extractor

In each task t, we train all parameters of the feature extractor Ft together with additional projector
ϕ used for knowledge distillation. Following most works [10, 35, 51, 31, 21], we utilize popular
cross-entropy loss LCE to discriminate between classes. The final loss function is:

L = LCE + LAC + λLPKD, (3)

where λ ∈ R is a plasticity-stability trade-off hyperparameter, similar to [21].

After training the feature extractor, we represent classes Ct as multivariate Gaussian distributions in
the latent space. More precisely, we represent any class c ∈ Ct as N (µc,Σc).

3.3.4 Adapting Gaussian distributions

After training of Ft is completed, representations of old classes drifted [45] (changed) and no
longer match memorized Gaussians. Therefore, we update memorized Gaussians representing past
classes to recover ground truth representations. To do that, we train an auxiliary adaptation network
ψt−1→t : RS → RS (called adapter), which maps features from the old latent space to the new one.
We use only the current data from task t for that. Training loss is:

Lψ =
∑
i∈B

||ψt−1→t(Ft−1(xi))− Ft(xi)||2 + LAC . (4)

LAC is the same anti-collapse loss as used during the training of the feature extractor. After training
the adapter, for each old class c, we sample from N (µc,Σc) a set of N points: n1, n2, . . . , nN ,
where N ≫ |S| and transform them through ψ obtaining new set: {ψ(n1), ψ(n2), . . . , ψ(nN)}.
We calculate adopted mean µnewc and covariance Σnewc using new sets of data and update the old
distribution as follows: (µc,Σc) = (µnewc ,Σnewc) A pseudocode of the full AdaGauss method is
presented in Alg. 1.

4 Experiments

Datasets and metrics. We evaluate our method on several well-established benchmark datasets.
CIFAR100 [19] consists of 50k training and 10k testing images in resolution 32x32. TinyIma-
geNet [20], a subset of ImageNet [8], has 100k training and 10k testing images in 64x64 resolution.
ImagenetSubset contains 100 classes from ImageNet (ILSVRC 2012) [34]. We split these datasets
into 10 and 20 equal tasks. Thus, each task contains the same number of classes, a standard practice
in EFCIL [21, 45, 35, 24]. We also evaluate our method on fine-grained datasets: CUB200 [42]
represents 11, 788 images of bird species, and FGVCAircraft [25] dataset consists of 10, 200 images
of planes. We split fine-grained datasets into 5, 10, and 20 tasks. As the evaluation metric, we
utilize commonly used average accuracy Alast, which is the accuracy after the last task, and average
incremental accuracy Ainc, which is the average of accuracies after each task [26, 24, 10].

Baselines and hyperparameters. We compare our method to multiple EFCIL baselines. Well-
established ones, like EWC [17], LwF [21], PASS [52], IL2A [51], SSRE [53], and the most recent
and strong EFCIL baselines: FeTrIL [31], FeCAM [10], DS-AL [54] and EFC [24]. For the baseline

5

Algorithm 1 AdaGauss: Adapting Gaussians in EFCIL

1: Initialize: Training data (D1, D2, . . . , DT), F1 (feature extractor), λ, N
2: Train F1 on D1 using LCE + LAC
3: for c ∈ C1 do
4: Obtain set of features: O = {F1(x) : x, c ∈ D1}
5: Store µc = mean(O) and Σc = covariance(O)
6: end for
7: for t = 2, 3, 4, . . . do
8: Initialize ϕt→t−1 (distiller), ψt−1→t (adapter)
9: Train Ft on Dt using L = LCE + LAC + λLPKD

10: for c ∈ Ct do
11: Obtain set of features: O = {Ft(x) : x, c ∈ Dt}
12: Store µc = mean(O) and Σc = covariance(O)
13: end for
14: Train adapter ψt−1→t on Dt using Lψ + LAC
15: for c ∈ ∪t−1

i=1Ci do
16: Sample n1, n2, . . . , nN from N (µc,Σc)
17: Calculate µnewc , Σnewc of set {ψt−1→t(n1), ψ

t−1→t(n2), . . . , ψ
t−1→t(nN)}

18: µc = µnewc ; Σc = Σnewc
19: end for
20: end for

results on CIFAR100, TinyImageNet, and ImagenetSubset, we take the results reported in [24], while
for FeCAM, we run its original implementation. For fine-grained datasets (CUB200, FGVCAircrafts),
we run implementations provided in FACIL [26] and PyCIL [49] frameworks (if provided) or from
the authors’ repositories. We set default hyperparameters proposed in the original works. We utilize
random crops and horizontal flips as data augmentation.

Implementation details and reproducibility. We utilize standard ResNet18 [11] as a feature
extractor F for all methods. We train it from scratch on CIFAR100, TinyImagenetSubset, and
ImagenetSubset, while for experiments on fine-grained datasets, we utilize weights pre-trained on
ImageNet. We implement our method in FACIL[26] benchmark2. We set λ = 10, N = 10000, d =
32 and add a single linear bottleneck layer at the end of the F with S output dimensions, which
define the latent space. When training from scratch, we set S = 64, while for fine-grained datasets,
we decrease it to 32, as there are fewer examples per class. We use an SGD optimizer running for
200 epochs with a weight decay equal to 0.0005. When training from scratch, we utilize a starting
learning rate (lr) of 0.1, decreased by ten times after 60, 120, and 180 epochs. We train the adapter
using an SGD optimizer with weight decay of 0.0005, running for 100 epochs with a starting lr of
0.01; we decrease it ten times after 45 and 90 epochs.

We utilize a single machine with an NVIDIA RTX4080 graphics card to run experiments. The time
for execution of a single experiment varied depending on the dataset type, but it was at most ten hours.
We attach details of utilized hyperparameters in scripts in the code repository. We report all results as
the mean and variance of five runs.

4.1 Results

Training from scratch. We present the baseline results and AdaGauss method when training from
scratch in Tab. 1. We consider T = 10 and T = 20 equal tasks. We can see an improvement
over the most recent state-of-the-art method - EFC [24]. We improve its results by 3.7% and 6.8%
points in terms of average accuracy on ImagenetSubset split into 10 and 20 tasks, respectively. This
improvement is also consistent in terms of average incremental accuracy - 5.1% and 7.5% points and
on the other datasets. This increase can be attributed to the fact that EFC does not adapt covariance
matrices from task to task (just means), which, as we showed in Sec. 3.2, is required to improve
the results. Older method - IL2A [51], which does not adapt their classes representations (means
and covariance matrices) method at all, achieves much lower results than our approach - 23.4% and
25.1% points lower average accuracy on ImagenetSubset.

2The code is provided in the Supplementary Materials and will be published upon acceptance.

6

Table 1: Average incremental and last accuracy in EFCIL when training the feature extractor from
scratch. The mean of 5 runs is reported. Full results are in Tab. 5. We denote the best results in bold.

CIFAR-100 TinyImageNet ImagenetSubset

Method T=10 T=20 T=10 T=20 T=10 T=20
Alast Ainc Alast Ainc Alast Ainc Alast Ainc Alast Ainc Alast Ainc

EWC [17] 31.2 49.1 17.4 31.0 17.6 32.6 11.3 26.8 24.6 39.4 12.8 27.0
LwF [21] 32.8 53.9 17.4 38.4 26.1 45.1 15.0 32.9 37.7 56.4 18.6 40.2
PASS [52] 30.5 47.9 17.4 32.9 24.1 39.3 18.7 32.0 26.4 45.7 14.4 31.7
IL2A [51] 31.7 48.4 23.0 40.2 25.3 42.0 19.8 35.5 27.7 48.4 17.5 34.9
SSRE [53] 30.4 47.3 17.5 32.5 22.9 38.8 17.3 30.6 25.4 43.8 16.3 31.2
FeTrIL [31] 34.9 51.2 23.3 38.5 31.0 45.6 25.7 39.5 36.2 52.6 26.6 42.4
FeCAM [10] 32.4 48.3 20.6 34.1 30.8 44.5 25.2 38.3 38.7 54.8 29.0 44.6
DS-AL [54] 40.8 54.9 31.7 43.2 33.6 47.2 26.5 41.6 46.8 58.6 36.7 48.5
EFC [24] 43.6 58.6 32.2 47.3 34.1 48.0 28.7 42.1 47.4 59.9 35.8 49.9
AdaGauss 46.1 60.2 37.8 52.4 36.5 50.6 31.3 45.1 51.1 65.0 42.6 57.4

Table 2: Average incremental and last accuracy in EFCIL fine-grained scenarios when utilizing a
pre-trained feature extractor. We report the mean of 5 runs, while variances are reported in Tab. 6.

CUB200 FGVCAircraft

Method T=5 T=10 T=20 T=5 T=10 T=20
Alast Ainc Alast Ainc Alast Ainc Alast Ainc Alast Ainc Alast Ainc

EWC [17] 21.6 38.2 15.8 32.6 12.3 27.2 24.3 44.0 14.3 34.5 10.9 27.9
LwF [21] 44.3 57.7 30.4 46.1 19.4 34.7 39.0 55.2 28.0 46.5 14.7 30.5
PASS [52] 34.5 48.6 27.0 42.3 18.1 36.9 33.3 48.9 26.4 41.0 13.9 28.1
IL2A [51] 36.9 51.3 29.4 45.5 20.8 35.1 39.4 49.1 27.3 45.1 14.2 28.7
FeTrIL [31] 41.9 53.2 36.9 48.2 34.6 45.3 46.0 58.5 40.5 53.4 32.5 43.3
FeCAM [10] 43.5 56.0 40.2 54.9 36.2 48.9 45.3 58.0 41.4 55.2 34.0 46.0
DS-AL [54] 49.4 61.9 45.8 59.1 41.4 53.8 50.6 62.7 42.6 56.4 34.2 46.7
EFC [24] 58.3 68.9 51.0 63.3 46.1 59.3 50.1 63.2 43.1 57.6 28.1 48.2
AdaGauss 60.4 69.2 55.8 66.2 47.4 60.6 53.3 64.0 47.5 58.5 34.8 48.6

Methods such as FeTrIL [31], FeCAM [10] and DS-AL [54] overcome the problem of distribution
drift by freezing the feature extractor on the first task. However, it cannot adapt well to the new
incremental tasks, resulting in poor plasticity and worse results than AdaGauss and EFC [24]. FeTrIL
achieves 14.9% and 16.0% points lower average accuracy on ImagenetSubset, while FeCAM - 12.4%
and 13.6%.

Training from pre-trained model. We provide the baseline results and our method when training
from a ImageNet pre-trained model in Tab. 2. Despite having a strong feature extractor from the
very beginning, it still needs to be adapted to discriminate better between fine-grained classes. We
report results for 5, 10, and 20 equal tasks. AdaGauss achieves state-of-the-art results. It improves
the average accuracy of the second-best method EFC [24] by 4.8% and 4.4% points on CUB200 and
StanfordCars for T = 10, respectively. The results are consistent for other number of tasks.

Ablation study. We perform ablation of our method on CIFAR100 and ImagenetSubset datasets split
into ten equal tasks in Table 3. First, we test our method with the nearest mean classifier (NMC)
instead of the Bayes classifier to verify whether considering covariance improves the results. Without
covariance matrices and with NMC [33] (1st row), we get worse results: 9.7% and 9.6% points lower
average accuracy on CIFAR100 and ImagenetSubset, respectively. Memorizing covariances and
sampling pseudo-prototypes to adapt means (2nd row) improves NMC results only slightly. Next,
we utilize the Bayes classifier instead of NMC but assume that class distributions have diagonal
covariance matrices (3rd row). That decreases the average accuracy of our method by 5.0% and
3.9%, respectively, proving that ground truth test distributions have non-zero off-diagonal. Then, we
test our method without adapting means (5th row) like in IL2A [51] method. That severely hurts
the performance - average accuracy decreases by 21.5% and 27.2 %. On the contrary, if we adapt
means but not covariances like in EFC [24], we lose far less, 3.2% and 3.1%, respectively. Lastly, we
check the performance of our method without the LAC component. To allow covariance matrices
to be invertible, we add a shrink value of 0.5, similarly to [10]. This results in an average accuracy
drop of 5.9% and 4.0%. The results are also consistent with the average incremental accuracies. This
ablation proves our design choices and that all components are necessary to get the best results.

7

Table 3: Ablation of AdaGauss indicating the contribution from the different components. ∗ signifies
that we utilized covariance matrix shrinking with the value of 0.5 (chosen on the validation set)
instead of anti-collapse loss to overcome the covariance matrix singularity problem.

CIFAR-100 (T=10) ImagenetSubset (T=10)Classifier Cov. Matrix Adapt mean Adapt covariance LAC Alast Ainc Alast Ainc

NMC None ✓ ✓ ✓ 36.4 54.0 41.5 57.9
NMC Full ✓ ✓ ✓ 37.6 54.8 42.3 58.7
Bayes Diagonal ✓ ✓ ✓ 41.1 56.3 45.5 61.3
Bayes Full % % % 22.9 42.8 22.5 43.4
Bayes Full % ✓ ✓ 24.6 44.7 23.9 44.9
Bayes Full ✓ % ✓ 42.9 57.7 48.0 62.7
Bayes Full ✓ ✓ %∗ 40.2 56.2 46.7 57.1
Bayes Full ✓ ✓ ✓ 46.1 60.2 51.1 65.0

4.2 Adaptation results

We verify how our adaptation method improves the quality of memorized class distributions on
ImagenetSubset split into ten equal tasks. For this purpose, we measure the average distances
between memorized and real classes after each task. More precisely, we measure the L2 distance
between means and covariances as well as symmetrical Kulbach-Leibler divergence (DKL) between
memorized and real distributions. We utilize projected distillation (λ = 10) and compare our method
to a baseline that does not adapt distributions like in [51, 52] (No adapt) and to the prototype drift
compensation introduced in EFC [24] that adapts only means. We provide results in Fig. 5. We can
see that our approach allows us to better approximate ground truth distributions. More precisely,
compared to EFC, it decreases the distance to real-mean by ≈29%, to real-covariance by ≈39%
and DKL distance by ≈72%. We can also see that the EFC approach does not improve distance to
real-covariance compared to no adaptation, which is a drawback of this method.

Figure 5: Distances from memorized distributions to the real ones in terms of distributions’ mean,
covariance and KL divergence across 10 tasks on ImagenetSubset dataset. AdaGauss greatly reduces
errors and allows for better adaptation than prototype drift compensation (EFC).

4.3 Analysis of anti-collapse loss

We analyze the impact of anti-collapse LAC regularization term on ImagenetSubset split to 10 equal
tasks. After the last task, we verify how much LAC improves the distribution of classes’ covariance
eigenvalues. We report results in Fig. 6. Without utilizing LAC , the largest eigenvalue is ≈ 1.2 ∗ 105
times greater than the lowest, showcasing the dimensionality collapse. However, with LAC , this
difference equals ≈84, proving that more eigenvectors contribute towards representations, and the
collapse is greatly diminished.

Next, we measure the average rank of covariance matrices memorized in each task for different
knowledge distillation methods and projected distillation with LAC . Here, we set S = 64. In Fig. 7
can see that without LAC , all distillation methods present in existing methods struggle to achieve
class covariance equal to latent size S, which according to Sec. 3.2 results in task-recency bias.
Interestingly, when combining projected distillation with LAC , the rank of covariance matrices equals
64 for each task, proving that LAC is a promising approach for combating dimensionality collapse
when training from scratch.

8

An alternative method for overcoming singularity in covariance matrices is shrinking [10]. In
Fig. 8, we present results for our method with different values of shrink performed when calculating
covariance matrices on CIFAR100. Intuitively, increasing the shrink value decreases the method’s
efficacy, as it artificially alters the covariance to be different from the ground truth representation.
Without using LAC and without shrink, it is impossible to invert the matrices, resulting in the crash
of the method. Nevertheless, the results are the highest when utilizing LAC without shrink (60.2%).

Figure 6: Distribution of eigen-
values of class representations
for our method with and without
LAC (anti-collapse loss) term.
LAC greatly reduces the differ-
ence between the most and least
significant eigenvalues, thus pre-
venting dimensional collapse.

Figure 7: Ranks of classes’
covariance matrices with dif-
ferent distillation methods and
projected distillation with anti-
collapse term (red) for latent
space size S = 64. LAC makes
covariance ranks to be equal to
S in every task.

Figure 8: Average incremen-
tal accuracy for AdaGauss for
different values of covariance
shrinking, with and without anti-
collapse regularization. Results
without LAC and shrink were
not included due to the inabil-
ity to invert covariance matrices
after the first task.

4.4 Different distillation techniques

We test the performance of the projected distillation against other distillation techniques in AdaGauss.
We train from scratch on CIFAR100, ImagenetSubset and utilize the pre-trained model on CUB200.
We split datasets into ten equal tasks and use hyperparameters from experiments in Tab. 1 and
Tab. 2. We present the results in Fig. 9. Projected distillation achieves better average accuracy than
logit distillation by 1.4%, 0.9%, and 4.0% points on CIFAR100, ImagenetSubset, and CUB200,
respectively. Interestingly, the gap between projected distillation and not using knowledge distillation
is much lower on CUB200, which we contribute to using a strong pre-trained model.

4.5 Memory requirements

Figure 9: Average last task acc. of
our method for different knowledge
distillation techniques.

Our method does not increase the number of feature extractor’s
parameters. In addition, the adapter and distiller are discarded
after the training, thus not increasing memory during the long
CIL sessions and evaluations. AdaGauss requires S+ S(S−1)

2
parameters to memorize the mean and covariance of a class,
where S is the latent space size. Therefore, the method requires
the same number of parameters as FeCAM [10] and fewer
weights than EFC [24] as we do not expand the linear classifier.
Additionally, S can be decreased using linear bottleneck layer
before the latent space.

4.6 Time complexity of AdaGauss

We measure the training and inference time of popular EFCIL methods using their original implemen-
tations on a single machine with NVIDIA GeForce RTX 4060 and AMD Ryzen 5 5600X CPU. We
repeat each experiment 5 times, train all methods for 200 epochs, use four workers, and have a batch
size equal to 128. We test vanilla AdaGauss and AdaGauss, where the Bayes classifier is replaced
with a trained linear head, where the classifier is trained on samples from class distributions (mean
and cov. matrix). We utilize the FeTrIL version with a linear classification head.

We present results in Tab. 4. The inference of our method takes a similar amount of time as in
FeCAM, as the feature extraction step is followed by performing Bayes classification. The inference

9

time of AdaGauss is slightly higher than that of methods with linear classification head (LwF, FeTrIL,
AdaGauss with linear head) because Bayes classification requires an additional matrix multiplication
when calculating the Mahalanobis distance.

The training time of AdaGauss is longer than for LwF, EFC, FeCAM, and FeTriL as we do not
freeze the backbone after the initial task and additionally train the auxiliary adaptation network. Still,
AdaGauss takes less time to train than its main competitor - EFC, and is much faster than SSRE. Our
method does not increase the number of networks’ parameters because the distiller and the adapter
are disposed after training steps.

Table 4: Time complexity of EFCIL methods measured on CIFAR100 split into 10 tasks.
LwF FeTrIL FeCAM SSRE EFC AdaGauss AdaGauss (lin. head)

Inference time (sec) 66.3±2.7 68.3±3.4 74.2±4.0 274.7±12.3 67.4±3.1 72.8±3.2 65.3±2.2
Training time (min) 53.8±2.9 5.3±0.3 5.9±0.4 548.1±17.4 94.±2.9 86.3±3.2 103.3±4.2

5 Conclusions and limitations

In this work, we analyze the impact of dimensionality collapse in EFCIL. We explain that it leads to
differences across tasks in ranks of classes’ covariance matrices, which in turn causes task-recency
bias. We also present that due to distribution drift, means and covariance of classes change, and they
should be adapted from task to task. Based on these findings, we propose the first EFCIL method
to adapt both means and covariances, dubbed AdaGauss. It utilizes feature distillation through a
learnable projector and a novel anti-collapse regularization term during training that prevents having
degenerated, non-invertible features covariance matrices as class representations. That, in turn,
alleviates the task-recency bias of the classifier in continual learning. With the series of experiments,
we show that AdaGauss achieves state-of-the-art results in common EFCIL scenarios, both when
trained from scratch and when initialized from a pre-trained model.

The limitation of our method is that the cross-entropy separates classes only from the current task.
However, when training the feature extractor, old classes can begin overlapping with each other
and with new classes int he latent space causing forgetting. This problem is an open question in
EFCIL. We speculate it can be alleviated wit a contrastive loss. Another problem arises when there is
very little data representing a single class, making high-dimensional covariance matrix impossible
to calculate. We tackle it by introducing a bottleneck layer at the very end of the feature extractor.
However, it can limit its representational strength.

Acknowledgments

The research of Grzegorz Rypeść was supported by the National Science Centre (Poland), PRE-
LUDIUM 23 grant no. 2024/53/N/ST6/03018. This research was partially funded by National Science
Centre, Poland, grant no: 2020/39/B/ST6/01511, 2022/45/B/ST6/02817, and 2023/51/D/ST6/02846.
Bartłomiej Twardowski acknowledges the grant RYC2021-032765-I. This paper has been supported
by the Horizon Europe Programme (HORIZON-CL4-2022-HUMAN-02) under the project "ELIAS:
European Lighthouse of AI for Sustainability", GA no. 101120237. We gratefully acknowledge
Polish high-performance computing infrastructure PLGrid (HPC Center: ACK Cyfronet AGH) for
providing computer facilities and support within computational grant no. PLG/2023/017431.

References
[1] Hongjoon Ahn, Jihwan Kwak, Subin Lim, Hyeonsu Bang, Hyojun Kim, and Taesup Moon. Ss-il: Separated

softmax for incremental learning. In ICCV, 2021.

[2] Rahaf Aljundi, Francesca Babiloni, Mohamed Elhoseiny, Marcus Rohrbach, and Tinne Tuytelaars. Memory
aware synapses: Learning what (not) to forget. In Proceedings of the European conference on computer
vision (ECCV), pages 139–154, 2018.

[3] Rahaf Aljundi, Punarjay Chakravarty, and Tinne Tuytelaars. Expert gate: Lifelong learning with a network
of experts. In Proceedings of the IEEE conference on computer vision and pattern recognition, pages
3366–3375, 2017.

10

[4] Eden Belouadah and Adrian Popescu. Deesil: Deep-shallow incremental learning. In Proceedings of the
European Conference on Computer Vision (ECCV) Workshops, pages 0–0, 2018.

[5] Florian Bordes, Randall Balestriero, Quentin Garrido, Adrien Bardes, and Pascal Vincent. Guillotine
regularization: Why removing layers is needed to improve generalization in self-supervised learning.
Transactions on Machine Learning Research, 2023.

[6] Arslan Chaudhry, Puneet K Dokania, Thalaiyasingam Ajanthan, and Philip HS Torr. Riemannian walk
for incremental learning: Understanding forgetting and intransigence. In Proceedings of the European
conference on computer vision (ECCV), pages 532–547, 2018.

[7] Xinlei Chen and Kaiming He. Exploring simple siamese representation learning. In Proceedings of the
IEEE/CVF conference on computer vision and pattern recognition, pages 15750–15758, 2021.

[8] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-scale hierarchical
image database. In 2009 IEEE conference on computer vision and pattern recognition, pages 248–255.
Ieee, 2009.

[9] Robert M French. Catastrophic forgetting in connectionist networks. Trends in cognitive sciences,
3(4):128–135, 1999.

[10] Dipam Goswami, Yuyang Liu, Bartłomiej Twardowski, and Joost van de Weijer. Fecam: Exploiting the
heterogeneity of class distributions in exemplar-free continual learning. Advances in Neural Information
Processing Systems, 36, 2024.

[11] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recognition.
In Proceedings of the IEEE conference on computer vision and pattern recognition, pages 770–778, 2016.

[12] Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. Distilling the knowledge in a neural network. arXiv
preprint arXiv:1503.02531, 2015.

[13] Saihui Hou, Xinyu Pan, Chen Change Loy, Zilei Wang, and Dahua Lin. Learning a unified classifier
incrementally via rebalancing. In Proceedings of the IEEE/CVF conference on computer vision and pattern
recognition, pages 831–839, 2019.

[14] Wenpeng Hu, Zhou Lin, Bing Liu, Chongyang Tao, Zhengwei Tao Tao, Dongyan Zhao, Jinwen Ma, and
Rui Yan. Overcoming catastrophic forgetting for continual learning via model adaptation. In International
conference on learning representations, 2019.

[15] Ahmet Iscen, Jeffrey Zhang, Svetlana Lazebnik, and Cordelia Schmid. Memory-efficient incremental
learning through feature adaptation. In Computer Vision–ECCV 2020: 16th European Conference, Glasgow,
UK, August 23–28, 2020, Proceedings, Part XVI 16, pages 699–715. Springer, 2020.

[16] Li Jing, Pascal Vincent, Yann LeCun, and Yuandong Tian. Understanding dimensional collapse in
contrastive self-supervised learning. arXiv preprint arXiv:2110.09348, 2021.

[17] James Kirkpatrick, Razvan Pascanu, Neil Rabinowitz, Joel Veness, Guillaume Desjardins, Andrei A Rusu,
Kieran Milan, John Quan, Tiago Ramalho, Agnieszka Grabska-Barwinska, et al. Overcoming catastrophic
forgetting in neural networks. Proceedings of the National Academy of Sciences (PNAS), 2017.

[18] Simon Kornblith, Mohammad Norouzi, Honglak Lee, and Geoffrey Hinton. Similarity of neural network
representations revisited. In International conference on machine learning, pages 3519–3529. PMLR,
2019.

[19] Alex Krizhevsky. Learning multiple layers of features from tiny images. Technical report, University of
Toronto, 2009.

[20] Ya Le and Xuan Yang. Tiny imagenet visual recognition challenge. CS 231N, 7(7):3, 2015.

[21] Zhizhong Li and Derek Hoiem. Learning without forgetting. Transactions on Pattern Analysis and Machine
Intelligence (T-PAMI), 2017.

[22] Xialei Liu, Marc Masana, Luis Herranz, Joost Van de Weijer, Antonio M Lopez, and Andrew D Bag-
danov. Rotate your networks: Better weight consolidation and less catastrophic forgetting. In 2018 24th
International Conference on Pattern Recognition (ICPR), pages 2262–2268. IEEE, 2018.

[23] Chunwei Ma, Zhanghexuan Ji, Ziyun Huang, Yan Shen, Mingchen Gao, and Jinhui Xu. Progressive
voronoi diagram subdivision enables accurate data-free class-incremental learning. In In The Eleventh
International Conference on Learning Representations, 2023.

[24] Simone Magistri, Tomaso Trinci, Albin Soutif-Cormerais, Joost van de Weijer, and Andrew D Bag-
danov. Elastic feature consolidation for cold start exemplar-free incremental learning. arXiv preprint
arXiv:2402.03917, 2024.

[25] Subhransu Maji, Esa Rahtu, Juho Kannala, Matthew Blaschko, and Andrea Vedaldi. Fine-grained visual
classification of aircraft. arXiv preprint arXiv:1306.5151, 2013.

11

[26] Marc Masana, Xialei Liu, Bartlomiej Twardowski, Mikel Menta, Andrew D Bagdanov, and Joost van de
Weijer. Class-incremental learning: Survey and performance evaluation on image classification. IEEE
Transactions on Pattern Analysis and Machine Intelligence, pages 1–20, 2022.

[27] Michael McCloskey and Neal J Cohen. Catastrophic interference in connectionist networks: The sequential
learning problem. In Psychology of learning and motivation, volume 24, pages 109–165. Elsevier, 1989.

[28] Oleksiy Ostapenko, Mihai Puscas, Tassilo Klein, Patrick Jahnichen, and Moin Nabi. Learning to remember:
A synaptic plasticity driven framework for continual learning. In Proceedings of the IEEE/CVF conference
on computer vision and pattern recognition, pages 11321–11329, 2019.

[29] Aristeidis Panos, Yuriko Kobe, Daniel Olmeda Reino, Rahaf Aljundi, and Richard E Turner. First session
adaptation: A strong replay-free baseline for class-incremental learning. In Proceedings of the IEEE/CVF
International Conference on Computer Vision, pages 18820–18830, 2023.

[30] Vardan Papyan, XY Han, and David L Donoho. Prevalence of neural collapse during the terminal phase of
deep learning training. Proceedings of the National Academy of Sciences, 2020.

[31] Grégoire Petit, Adrian Popescu, Hugo Schindler, David Picard, and Bertrand Delezoide. Fetril: Feature
translation for exemplar-free class-incremental learning. In Winter Conference on Applications of Computer
Vision (WACV), 2023.

[32] Quang Pham, Chenghao Liu, and Steven Hoi. Dualnet: Continual learning, fast and slow. Advances in
Neural Information Processing Systems, 34:16131–16144, 2021.

[33] Sylvestre-Alvise Rebuffi, Alexander Kolesnikov, Georg Sperl, and Christoph H Lampert. icarl: Incremental
classifier and representation learning. In Proceedings of the IEEE conference on Computer Vision and
Pattern Recognition, pages 2001–2010, 2017.

[34] Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh, Sean Ma, Zhiheng Huang,
Andrej Karpathy, Aditya Khosla, Michael Bernstein, et al. Imagenet large scale visual recognition challenge.
International journal of computer vision, 115:211–252, 2015.

[35] Grzegorz Rypeść, Sebastian Cygert, Valeriya Khan, Tomasz Trzcinski, Bartosz Michał Zieliński, and
Bartłomiej Twardowski. Divide and not forget: Ensemble of selectively trained experts in continual
learning. In The Twelfth International Conference on Learning Representations, 2023.

[36] Grzegorz Rypeść, Daniel Marczak, Sebastian Cygert, Tomasz Trzciński, and Bartłomiej Twardowski.
Category adaptation meets projected distillation in generalized continual category discovery. In European
Conference on Computer Vision (ECCV), 2024.

[37] Wuxuan Shi and Mang Ye. Prototype reminiscence and augmented asymmetric knowledge aggregation for
non-exemplar class-incremental learning. In Proceedings of the IEEE/CVF International Conference on
Computer Vision, pages 1772–1781, 2023.

[38] James Smith, Yen-Chang Hsu, Jonathan Balloch, Yilin Shen, Hongxia Jin, and Zsolt Kira. Always be
dreaming: A new approach for data-free class-incremental learning. In Proceedings of the IEEE/CVF
International Conference on Computer Vision, pages 9374–9384, 2021.

[39] Marco Toldo and Mete Ozay. Bring evanescent representations to life in lifelong class incremental
learning. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages
16732–16741, 2022.

[40] Gido M Van de Ven, Hava T Siegelmann, and Andreas S Tolias. Brain-inspired replay for continual
learning with artificial neural networks. Nature communications, 11(1):4069, 2020.

[41] Gido M Van de Ven and Andreas S Tolias. Three scenarios for continual learning. arXiv preprint
arXiv:1904.07734, 2019.

[42] Catherine Wah, Steve Branson, Peter Welinder, Pietro Perona, and Serge Belongie. The caltech-ucsd
birds-200-2011 dataset, 2011.

[43] Yue Wu, Yinpeng Chen, Lijuan Wang, Yuancheng Ye, Zicheng Liu, Yandong Guo, and Yun Fu. Large
scale incremental learning. In Proceedings of the IEEE/CVF conference on computer vision and pattern
recognition, pages 374–382, 2019.

[44] Shipeng Yan, Jiangwei Xie, and Xuming He. Der: Dynamically expandable representation for class
incremental learning. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 3014–3023, 2021.

[45] Lu Yu, Bartlomiej Twardowski, Xialei Liu, Luis Herranz, Kai Wang, Yongmei Cheng, Shangling Jui, and
Joost van de Weijer. Semantic drift compensation for class-incremental learning. In Proceedings of the
IEEE/CVF conference on computer vision and pattern recognition, pages 6982–6991, 2020.

[46] Jure Zbontar, Li Jing, Ishan Misra, Yann LeCun, and Stéphane Deny. Barlow twins: Self-supervised
learning via redundancy reduction. International Conference on Machine Learning (ICML), 2021.

12

[47] Friedemann Zenke, Ben Poole, and Surya Ganguli. Continual learning through synaptic intelligence. In
International conference on machine learning, pages 3987–3995. PMLR, 2017.

[48] Bowen Zhao, Xi Xiao, Guojun Gan, Bin Zhang, and Shu-Tao Xia. Maintaining discrimination and fairness
in class incremental learning. In Proceedings of the IEEE/CVF conference on computer vision and pattern
recognition, pages 13208–13217, 2020.

[49] Da-Wei Zhou, Fu-Yun Wang, Han-Jia Ye, and De-Chuan Zhan. Pycil: A python toolbox for class-
incremental learning, 2021.

[50] Da-Wei Zhou, Qi-Wei Wang, Zhi-Hong Qi, Han-Jia Ye, De-Chuan Zhan, and Ziwei Liu. Deep class-
incremental learning: A survey. arXiv preprint arXiv:2302.03648, 2023.

[51] Fei Zhu, Zhen Cheng, Xu-Yao Zhang, and Cheng-lin Liu. Class-incremental learning via dual augmentation.
Advances in Neural Information Processing Systems (NeurIPS), 2021.

[52] Fei Zhu, Xu-Yao Zhang, Chuang Wang, Fei Yin, and Cheng-Lin Liu. Prototype augmentation and self-
supervision for incremental learning. In Conference on Computer Vision and Pattern Recognition (CVPR),
2021.

[53] Kai Zhu, Wei Zhai, Yang Cao, Jiebo Luo, and Zheng-Jun Zha. Self-sustaining representation expansion
for non-exemplar class-incremental learning. In Conference on Computer Vision and Pattern Recognition
(CVPR), 2022.

[54] Huiping Zhuang, Run He, Kai Tong, Ziqian Zeng, Cen Chen, and Zhiping Lin. Ds-al: A dual-stream
analytic learning for exemplar-free class-incremental learning. In Proceedings of the AAAI Conference on
Artificial Intelligence, volume 38, pages 17237–17244, 2024.

[55] Huiping Zhuang, Zhenyu Weng, Hongxin Wei, Renchunzi Xie, Kar-Ann Toh, and Zhiping Lin. Acil:
Analytic class-incremental learning with absolute memorization and privacy protection. Advances in
Neural Information Processing Systems, 35:11602–11614, 2022.

13

A Additional experiments

A.1 Adaptation results when starting from a pretrained model

We evaluate how our adaptation method improves the quality of memorized class distributions on
CUB200 [42] split into ten equal tasks when starting from a model pre-trained on ImageNet. For
this purpose, we measure the average distances between memorized and real classes after each task.
More precisely, we measure the L2 distance between means and covariances as well as symmetrical
Kulbach-Leibler divergence (DKL) between memorized and real distributions. We utilize projected
distillation (λ = 10) and compare our method to a baseline that does not adapt distributions like in
[51, 52] (No adapt) and to the prototype drift compensation introduced in EFC [24] that adapts means
only (EFC). We provide results in Fig. 10. Results are consistent with Fig. 10 - AdaGauss improves
memorized distributions after every task.

Figure 10: L2 distances from memorized distributions to the real ones in terms of distributions’
mean, covariance and KL divergence across 10 tasks on CUB-200 dataset. The feature extractor was
pre-trained on ImageNet.

A.2 Impact of anti-collapse loss on optimization

Training the feature extractor of AdaGauss combines three loss functions: cross-entropy LCE ,
knowledge distillation through a learnable projector LPKD, and anti-collapse term to prevent features
from dimensional collapse LAC . We analyze average values of these losses during training of our
method on ImagenetSubset (we set hyperparameters as in Tab. 1). Additionally, we modify Eq. 2 to
incorporate strength of covariance regularization (β hyperparameter):

LAC = − 1

S

S∑
i=1

min(ai, β) (5)

In all of our experiments, we utilized β = 1 as this was sufficient to prevent dimensional collapse.
Here, we test AdaGauss for β = {0.1, 1, 10, 100}.

We present results in Fig. 11. We can see that for β = 1, all losses are stable and consistently decrease.
LAC decreases to -1.0, a value for which it is clipped. However, when increasing β, LCE and LKD
become bigger, underfitting our approach. This results in much lower average and incremental
accuracies. On the other hand, decreasing β to 0.1 is not sufficient to prevent task-recency bias
resulting in decreased accuracies.

Figure 11: Value of LCE , LPKD, LAC losses for different β parameters, last task average accuracy
and average incremental accuracy.

14

A.3 Tab. 1 and Tab. 2 with variance

We report the mean and variance of results reported in Tab. 1 when training from scratch in Tab. 5.
Also, we report results from Tab. 2 when training from a pre-trained model in Tab. 6. Although we
utilize additional anti-collapse loss compared to other methods, variance of accuracies achieved by
AdaGauss is simillar to EFC.

Table 5: Average incremental and last accuracy in EFCIL scenarios when training the feature extractor
from scratch. We report means and variances of 5 runs. We denote the best results in bold.

CIFAR-100 TinyImageNet ImagenetSubset

Method T=10 T=20 T=10 T=20 T=10 T=20
Alast Ainc Alast Ainc Alast Ainc Alast Ainc Alast Ainc Alast Ainc

EWC [17] 31.2±2.9 49.1±1.3 17.4±2.4 31.0±1.2 17.6±1.5 32.6±1.2 11.3±1.2 26.8±1.1 24.6±4.1 39.4±3.1 12.8±2.0 27.0±1.0
LwF [21] 32.8±3.1 53.9±1.7 17.4±0.7 38.4±1.1 26.1±1.3 45.1±0.9 15.0±0.7 32.9±0.5 37.7±2.5 56.4±1.0 18.6±1.7 40.2±0.4
PASS [52] 30.5±1.0 47.9±1.9 17.4±0.7 32.9±1.0 24.1±0.5 39.3±0.9 18.7±1.4 32.0±1.8 26.4±1.3 45.7±0.2 14.4±1.2 31.7±0.4
IL2A [51] 31.7±1.3 48.4±2.0 23.0±0.9 40.2±1.1 25.3±0.9 42.0±1.7 19.8±1.8 35.5±2.3 27.7±1.8 48.4±1.5 17.5±1.6 34.9±0.7
SSRE [53] 30.4±0.7 47.3±1.9 17.5±0.8 32.5±1.1 22.9±1.0 38.8±2.0 17.3±1.1 30.6±2.0 25.4±1.2 43.8±1.1 16.3±1.1 31.2±1.5
FeTrIL [31] 34.9±0.5 51.2±1.1 23.3±0.8 38.5±1.1 31.0±0.9 45.6±1.7 25.7±0.6 39.5±1.2 36.2±1.2 52.6±0.6 26.6±1.5 42.4±2.1
FeCAM [10] 32.4±0.4 48.3±0.9 20.6±0.7 34.1±1.1 30.8±0.8 44.5±1.5 25.2±0.6 38.3±1.1 38.7±1.0 54.8±0.5 29.0±1.3 44.6±2.0
EFC [24] 43.6±0.7 58.6±0.9 32.2±1.3 47.3±1.4 34.1±0.8 48.0±0.6 28.7±0.4 42.1±1.0 47.4±1.4 59.9±1.4 35.8±1.7 49.9±2.1
AdaGauss 46.1±0.8 60.2±0.9 37.8±1.5 52.4±1.4 36.5±0.9 50.6±0.8 31.3±1.0 45.1±1.2 51.1±1.2 65.0±1.4 42.6±1.6 57.4±1.9

Table 6: Average incremental and last accuracy in EFCIL fine-grained scenarios when utilizing a
pre-trained feature extractor on ImageNet. The means and variance of 5 runs are reported with the
best results in bold.

CUB200 StanfordCars

Method T=5 T=10 T=20 T=5 T=10 T=20
Alast Ainc Alast Ainc Alast Ainc Alast Ainc Alast Ainc Alast Ainc

EWC [17] 21.6±0.4 38.2±0.3 15.8±0.7 32.6±0.5 12.3±0.8 27.2±0.6 24.3±0.6 44.0±0.6 14.3±0.8 34.5±0.7 10.9±1.2 27.9±1.1
LwF [21] 44.3±0.7 57.7±0.7 30.4±1.1 46.1±1.0 19.4±1.6 34.7±1.8 39.0±0.8 55.2±0.6 28.0±1.0 46.5±1.0 14.7±1.5 30.5±1.4
PASS [52] 34.5±0.5 48.6±0.4 27.0±0.9 42.3±0.9 18.1±1.2 36.9±1.1 33.3±1.0 48.9±0.9 26.4±1.1 41.0±0.8 13.9±1.6 28.1±1.2
IL2A [51] 36.9±1.2 51.3±1.4 29.4±1.3 45.5±1.7 20.8±2.0 35.1±2.3 39.4±1.3 49.1±1.5 27.3±1.6 45.1±1.7 14.2±2.3 28.7±2.8
FeTrIL [31] 41.9±0.5 53.2±0.6 36.9±0.7 48.2±0.6 34.6±1.0 45.3±0.9 46.0±0.7 58.5±1.0 40.5±0.8 53.4±0.9 32.5±1.1 43.3±1.3
FeCAM [10] 43.5±0.5 56.0±0.7 40.2±0.8 54.9±1.0 36.2±1.1 48.9±1.3 45.3±0.5 58.0±0.6 41.4±0.8 55.2±0.9 34.0±1.1 46.0±1.2
EFC [24] 58.3±0.4 68.9±0.6 51.0±0.6 63.3±0.7 46.1±1.0 59.3±1.3 50.1±0.5 63.2±0.7 43.1±0.8 57.6±0.7 28.1±1.8 48.2±1.6
AdaGauss 60.4±0.5 69.2±0.7 55.8±0.5 66.2±0.8 47.4±0.8 60.6±1.0 53.3±0.7 64.0±1.0 47.5±0.9 58.5±1.1 34.8±1.2 48.6±1.3

A.4 Different architecture of pretrained backbone

We test AdaGauss with different feautre extractors, namely ViT small and ConvNext. The results,
presented in Tab. 7, are for EFCIL setting with 10 and 20 equal tasks and weights pretrained on
ImageNet (as in Tab. 2). Using more modern feature extractors architectures further improves the
results of AdaGauss.

Table 7: AdaGauss results with different backbone architectures. We report last accuracy | average
accuracy.

CUB200 FGVCAircraft
T=10 T=20 T=10 T=20

Resnet18 55.8 | 66.2 47.4 | 60.6 47.5 | 58.5 34.8 | 48.6
ConvNext (small) 63.4 | 73.1 47.9 | 64.1 49.3 | 62.9 37.3 | 51.4

ViT (small) 68.2 | 77.5 48.9 | 67.5 48.0 | 60.6 35.7 | 50.2

A.5 Half dataset results

Learning from scratch is more challenging than half-dataset setting as it requires to incrementally
train feature extractor, not just the classifier. However, using the pre-trained model (or learning
from half) can be considered a more practical and real-life setting. Thus, we evaluated our method
with a pre-trained model in Table 2. However, we have additionally compared our method to the
mentioned baselines in a half-dataset setting using the original implementations under the same data
augmentations as AdaGauss. Please note that we did not have enough time to perform hyperparameter
search for our method - we utilized these from the equal task setting, whereas the results for other
methods were optimized by their authors. We provide results in the Tab. 8.

15

AdaGauss performs better than PASS, SSRE, and FeTrIL (5 tasks) in the half-dataset setting. However,
it is slightly worse than most recent baselines when using default hyperparameters. FeCAM, ACIL,
and DS-AL freeze the feature extractor after the initial task, which can explain their good results in
the half-dataset training.

Table 8: Half dataset in the first task results. We report last accuracy | average accuracy.
CIFAR100 ImageNetSubset

T = 5 T = 10 T = 5 T = 10
PASS 54.5 | 61.8 53.8 | 60.9 57.9 | 64.4 58.2 | 61.8
SSRE 55.7 | 63.9 54.9 | 63.2 58.3 | 65.2 61.4 | 67.7
FeTrIL 58.3 | 65.1 56.2 | 64.6 65.6 | 72.8 65.3 | 72.1
FeCAM 60.2 | 67.2 59.9 | 66.9 67.3 | 75.3 67.6 | 74.9
ACIL 57.8 | 66.3 57.7 | 66.0 67.0 | 74.8 67.2 | 74.6

DS-AL 61.4 | 68.4 61.4 | 68.4 68.0 | 75.2 67.7 | 75.1
AdaGauss 58.9 | 65.7 55.4 | 63.7 66.8 | 74.1 62.8 | 68.0

A.6 Predicted semantic shift for classes

Here, we verify whether our adaptation network can predict different shift for different classes in
experiments from Tab.1. We test on CIFAR100 for T = 10 and the answer is positive, as shown in
Fig. 12.

Figure 12: Predicted shift for different classes on CIFAR100 (10 equal tasks) by AdaGauss. The
Euclidean distance is measured between old and new position in each task.

A.7 Batch norm influence on AdaGauss

We measure the accuracy achieved by AdaGauss in the EFCIL scenario from scratch (CIFAR100,
ImageNetSubset) and pretrained (CUB200). We train for 10 tasks without batch norm layers and
with frozen batch norm layers. Results are provided in Tab. 9. We can see that possesing batch-norm
layers in Resnet18 is beneficial.

Table 9: AdaGauss results without or with frozen batch-norm. We report last accuracy and average
accuracy separated by |.

CIFAR100 ImageNetSubset CUB200
Resnet18 (no BN) 44.6±0.7 | 58.1±0.7 49.1±0.8 | 61.7±0.9 54.2±0.5 | 66.1±0.7

Resnet18 (freezed BN) 45.3±0.7 | 58.7±0.9 49.4±0.8 | 62.0±1.0 55.2±0.4 | 65.7±0.6
Resnet18 46.1±0.8 | 60.2±0.9 51.1±1.0 | 65.0±1.2 55.8±0.5 | 66.2±0.8

16

NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: Yes, main claims accurately reflect contributions and scope of our paper.

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: Yes, we discuss limitations is Section 5.

Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [NA]

17

Justification: We do not include theoretical results.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: We discuss reproducibility in Sec. 4. We enclose code and scripts to reproduce
results. We will also publish them upon acceptance of the manuscript.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

18

Answer: [Yes]

Justification: We enclose code and scripts to reproduce results. We will also publish them
on Github upon acceptance of the manuscript. We utilize open source datasets and libraries.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: We discuss it in Sec. 4 and enclose scripts in the supplementary material.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: We report error bars on our plots. We repeat experiments 5 times.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).

19

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

• It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

• It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: We discuss it in Sec. 4

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: Yes, we have read and applied NeurIPS Code of Ethics.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader Impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]

Justification: Our work considers fundamental research in EFCIL, we do not see its connec-
tion to societal impact.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

20

https://neurips.cc/public/EthicsGuidelines

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: We do not release data nor models.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: Yes, we cite creators or original owners of assets we utilize in our work.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

21

paperswithcode.com/datasets

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [Yes]
Justification: Yes, we provide documentation of the code we submit.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: We do not perform crowdsourcing experiments and research with human
subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: We do not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

22

	Introduction
	Related works
	Method
	Exemplar-Free Class-Incremental Learning (EFCIL)
	The three observations that motivate towards AdaGauss
	AdaGauss method
	Feature distillation through a learnable projector
	Overcoming dimensionality collapse
	Training the feature extractor
	Adapting Gaussian distributions

	Experiments
	Results
	Adaptation results
	Analysis of anti-collapse loss
	Different distillation techniques
	Memory requirements
	Time complexity of AdaGauss

	Conclusions and limitations
	Additional experiments
	Adaptation results when starting from a pretrained model
	Impact of anti-collapse loss on optimization
	Tab. 1 and Tab. 2 with variance
	Different architecture of pretrained backbone
	Half dataset results
	Predicted semantic shift for classes
	Batch norm influence on AdaGauss

