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Abstract

We consider contextual bandits with graph feedback, a class of interactive learning
problems with richer structures than vanilla contextual bandits, where taking an
action reveals the rewards for all neighboring actions in the feedback graph under
all contexts. Unlike the multi-armed bandits setting where a growing literature
has painted a near-complete understanding of graph feedback, much remains
unexplored in the contextual bandits counterpart. In this paper, we make inroads
into this inquiry by establishing a regret lower bound Ω(

√
βM (G)T ), where M is

the number of contexts, G is the feedback graph, and βM (G) is our proposed graph-
theoretic quantity that characterizes the fundamental learning limit for this class
of problems. Interestingly, βM (G) interpolates between α(G) (the independence
number of the graph) and m(G) (the maximum acyclic subgraph (MAS) number
of the graph) as the number of contexts M varies. We also provide algorithms
that achieve near-optimal regret for important classes of context sequences and/or
feedback graphs, such as transitively closed graphs that find applications in auctions
and inventory control. In particular, with many contexts, our results show that the
MAS number essentially characterizes the statistical complexity for contextual
bandits, as opposed to the independence number in multi-armed bandits.

1 Introduction

Contextual bandits encode a rich class of sequential decision making problems in reality, including
clinical trials, personalized healthcare, dynamic pricing, recommendation systems (Bouneffouf et al.,
2020). However, due to the exploration-exploitation trade-off and a potentially large context space,
the pace of learning for contextual bandits could be slow, and the statistical complexity of learning
could be costly for application scenarios with bandit feedback (Agarwal et al., 2012). There are two
common approaches to alleviate the burden of sample complexity, either by exploiting the function
class structure for the reward (Zhu and Mineiro, 2022), or by utilizing additional feedback available
during exploration.

In this paper we focus on the second approach, and aim to exploit the feedback structure efficiently
in contextual bandits. The framework of formulating the feedback structure as feedback graphs
in bandits has a long history (Mannor and Shamir, 2011; Alon et al., 2015, 2017; Lykouris et al.,
2020), where a direct edge between two actions indicates choosing one action provides the reward
information for the other. Such settings have also been generalized to contextual cases (Balseiro
et al., 2019; Dann et al., 2020; Han et al., 2024), where counterfactual rewards could be available
under different contexts. Typical results in these settings are that, the statistical complexity of bandits
with feedback graphs is characterized by some graph-theoretic quantities, such as the independence
number or the maximum acyclic subgraph (MAS) number of the feedback graph.

To understand the influence of the presence of contexts on the statistical complexity of learning and to
compare with multi-armed bandits, we focus on the tabular setting where the contexts are treated as
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general variables determining the rewards. A widely studied alternative is the structured setting that
leverages certain structures in the dependence on the context. Examples of the latter include linear
contextual bandits (Auer, 2002; Agrawal and Goyal, 2013), which assume a linear reward function
on the contexts, and their variants (Chu et al., 2011; Li et al., 2017; Agrawal and Devanur, 2016).

Despite the existing results, especially in multi-armed bandits where a near-complete characterization
of the optimal regret is available (Alon et al., 2015; Kocák and Carpentier, 2023; Eldowa et al., 2024),
the statistical complexity of contextual bandits with feedback graphs is much less understood. For
example, consider the case where there is a feedback graph G across the actions and a complete
feedback graph across the contexts (termed as complete cross-learning in (Balseiro et al., 2019)). In
this case, for a long time horizon T , the optimal regret scales as Θ̃(

√
α(G)T ) when there is only

one context (Alon et al., 2015), but only an upper bound Õ(
√

m(G)T ) is known regardless of the
number of contexts (Dann et al., 2020). Here α(G) and m(G) denote the independence number and
the MAS number of the graph G, respectively; we refer to Section 1.1 for the precise definitions.
While α(G) = m(G) for all undirected graphs, for directed graphs their gap could be significant. It
is open if the change from α(G) to m(G) is essential with the increasing number of contexts, not to
mention the precise dependence on the number of contexts.

1.1 Notations

For n ∈ N, let [n] := {1, · · · , n}. For two probability measures P and Q over the same space, let
TV(P,Q) =

∫
|dP−dQ|/2 be the total variation (TV) distance, and KL(P∥Q) =

∫
dP log(dP/dQ)

be the Kullback-Leibler (KL) divergence. We use the standard asymptotic notations O,Ω,Θ, as well
as Õ, Ω̃, Θ̃ to denote respective meanings within polylogarithmic factors.

We use the following graph-theoretic notations. For a directed graph G = (V,E), let u→ v denote
that (u, v) ∈ E. For u ∈ V , let Nout(u) = {v ∈ V : u → v} be the set of out-neighbors of u
(including u itself). We will also use Nout(A) = ∪v∈ANout(v) to denote the set of all out-neighbors
of vertices in A. The independence number α(G), dominating number δ(G), and maximum acyclic
subgraph (MAS) number m(G) are defined as

α(G) = max{|I| : I ⊆ V is an independent set, i.e. u ̸→ v,∀u ̸= v ∈ I},
δ(G) = min{|J | : J ⊆ V is a dominating set, i.e. Nout(J) = V },
m(G) = max{|D| : D ⊆ V induces an acyclic subgraph of G},

respectively. It is easy to show that max{α(G), δ(G)} ≤ m(G), with a possibly unbounded gap, and
a probabilistic argument also shows that δ(G) = O(α(G) log |V |) (cf. Lemma A.1).

1.2 Our results

In this paper we focus on contextual bandits with both feedback graphs across actions and complete
cross-learning across contexts. This setting was proposed in (Han et al., 2024), with applications to
bidding in first-price auctions. As opposed to an arbitrary feedback graph across all context-action
pairs in (Dann et al., 2020), we assume a complete cross-learning because of two reasons. First, in
many scenarios the contexts encode different states which only play roles in the reward function;
in other words, the counterfactual rewards for all contexts can be observed by plugging different
contexts into the reward function. Such examples include bidding in auctions (Balseiro et al., 2019;
Han et al., 2024) and sleeping bandits modeled in (Schneider and Zimmert, 2024). Second, this
scenario is representative and sufficient to reflect the main ideas and findings of this paper. Discussion
and results under more general settings is left to Section 4.1.

Throughout this paper we consider the following stochastic contextual bandits. At the beginning of
each round t ∈ [T ] during the time horizon T , an oblivious adversary chooses a context ct ∈ [M ]
and reveals it to the learner, and the learner chooses an action at ∈ [K]. There is a strongly
observable1 directed feedback graph G = ([K], E) across the actions such that all rewards in
(rt,c,a)c∈[M ],(at,a)∈E are observable, where we assume no structure in the rewards except that
rt,c,a ∈ [0, 1]. In our stochastic environment, the mean reward E[rt,c,a] = µc,a is unknown but
invariant with time. We are interested in the characterization of the minimax regret achieved by the

1For every a ∈ [K], either a → a or a′ → a for all a′ ̸= a, as defined in (Alon et al., 2015).
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learner:
R⋆
T (G,M) = inf

πT
RT (π

T ;G,M)

= inf
πT

sup
cT

sup
µ∈[0,1]K×M

E

[
T∑

t=1

(
max

a⋆(ct)∈[K]
µct,a⋆(ct) − µct,πt(ct)

)]
, (1)

where the infimum is over all admissible policies based on the available observations. In the sequel
we might also constrain the class of context sequences to cT ∈ C, and we will use R⋆

T (G,M, C) and
RT (π

T ;G,M, C) to denote the respective meanings by taking the supremum over cT ∈ C.

Our first result concerns a new lower bound on the minimax regret.

Theorem 1.1 (Minimax lower bound). For T ≥ βM (G)3, it holds that R⋆
T (G,M) = Ω(

√
βM (G)T ),

where the graph-theoretic quantity βM (G) is given by

βM (G) = max

{
M∑
c=1

|Ic| : I1, · · · , IM disjoint independent subsets of [K], and Ii ̸→ Ij for i < j

}
,

(2)
and Ii ̸→ Ij means that u ̸→ v whenever u ∈ Ii and v ∈ Ij .

Theorem 1.1 provides a minimax lower bound on the optimal regret, depending on both the number of
contexts M and the feedback graph G. Note that the independent subsets I1, . . . , IM are allowed to
be empty if needed. It is clear that β1(G) = α(G) is the independence number, and βM (G) = m(G)
whenever M ≥ m(G). This leads to the following corollary.
Corollary 1.2 (Tightness of MAS number). For any graph G, if M ≥ m(G) and T ≥ m(G)3, one
has R⋆

T (G,M) = Ω(
√
m(G)T ).

Corollary 1.2 shows that, the regret change from Θ̃(
√
α(G)T ) in multi-armed bandits to

Õ(
√
m(G)T ) in contextual bandits (Dann et al., 2020) is in fact not superfluous when there are many

contexts. In other words, although the independence number determines the statistical complexity of
multi-armed bandits with graph feedback, the statistical complexity in contextual bandits with many
contexts is completely characterized by the MAS number.

For intermediate values of M ∈ (1,m(G)), the next result shows that the quantity βM (G) is tight for
a special class CSA of context sequence called self-avoiding contexts. A context sequence (c1, · · · , cT )
is called self-avoiding iff cs = ct for s < t implies cs = cs+1 = · · · = ct (or in other words, contexts
do not jump back). For example, 113222 is self-avoiding, but 12231 is not. This assumption is
reasonable when contexts model a nonstationary environment changing slowly, e.g. the environment
changes from season to season.
Theorem 1.3 (Upper bound for self-avoiding contexts). For self-avoiding contexts, there is a policy π
achieving RT (π;G,M, CSA) = Õ(

√
βM (G)T ). This policy can be implemented in polynomial-time,

and does not need to know the context sequence in advance.

As the minimax lower bound in Theorem 1.1 is actually shown under CSA, for large T , Theorem
1.3 establishes a tight regret bound for stochastic contextual bandits with graph feedback and self-
avoiding contexts. The policy used in Theorem 1.3 is based on arm elimination, where a central step
of exploration is to solve a sequential game in general graphs which has minimax value Θ̃(βM (G))
and could be of independent interest.

For general context sequences, we have a different sequential game in which we do not have a tight
characterization of the minimax value in general. Instead, we have the following upper bound, which
exhibits a gap compared with Theorem 1.1.
Theorem 1.4 (Upper bound for general contexts). For general contexts, there is a policy π achieving

RT (π;G,M) = Õ

(√
min

{
βM (G),m(G)

}
T

)
,

where

βM (G) = max

{
M∑
c=1

|Ic| : I1, · · · , IM are disjoint independent subsets of [K]

}
. (3)
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Fortunately, additional assumptions on the feedback graph G can be leveraged to recover the tight
regret bound:
Corollary 1.5 (Upper bound for transtively closed or undirected feedback). For any undirected
or transitively closed graph G, the policy π in Theorem 1.4 achieves a near-optimal regret
RT (π;G,M) = Õ(

√
βM (G)T ).

A directed graph G is called transitively closed if u→ v and v → w imply that u→ w. In reality
directed feedback graphs are often transitively closed, for a directed structure of the feedback typically
indicates a partial order over the actions. Examples include bidding in auctions (Zhao and Chen, 2019;
Han et al., 2024) and inventory control (Huh and Rusmevichientong, 2009), both of which exhibit
the one-sided feedback structure i → j for i ≤ j. For general graphs, Theorem 1.4 gives another
graph-theoretic quantity βM (G). Note that βM (G) ≥ βM (G) as there is no acyclic requirement
between Ic’s in (3), which in turn is due to a technical difficulty of non-self-avoiding contexts. Further
discussions on this gap are deferred to Section 4.3.

Interestingly, the upper bound quantities βM (G) and βM (G) are not explicitly linear in M and are
always no larger than α(G)M . Hence our results partially answer an open problem in (Hao et al.,
2022, Remark 5.11) that if the dependence of regret bound O(

√
α(G)MT ) on M can be improved.

1.3 Related work

The study of bandits with feedback graphs has a long history dating back to (Mannor and Shamir,
2011). For (both adversarial and stochastic) multi-armed bandits, a celebrated result in (Alon et al.,
2015, 2017) shows that the optimal regret scales as Θ̃(

√
α(G)T ) if T ≥ α(G)3; the case of smaller

T was settled in (Kocák and Carpentier, 2023), where the optimal regret is a mixture of
√
T and

T 2/3 rates. For stochastic bandits, simpler algorithms based on arm elimination or upper confidence
bound (UCB) are also proposed (Lykouris et al., 2020; Han et al., 2024), while the UCB algorithm is
only known to achieve an upper bound of Õ(

√
m(G)T ).2 In addition to strongly observable graphs

we primarily focus on, weakly observable graphs have also drawn vast interest (Alon et al., 2015;
Chen et al., 2021) where the optimal regret is characterized by the dominating number δ(G). There
exploration plays a more significant role due to weaker observability of certain nodes, leading to an
optimal regret Θ̃(δ(G)1/3T 2/3). We will briefly discuss the regret characterization of our contextual
setting with weakly observable graphs in Section 4.1 and 4.2.

Recently, the graph feedback was also extended to contextual bandits under the name of “cross-
learning” (Balseiro et al., 2019; Schneider and Zimmert, 2024). The work (Balseiro et al., 2019)
considered both complete and partial cross-learning, and showed that the optimal regret for stochastic
bandits with complete cross learning is Θ̃(

√
KT ). Motivated by bidding in first-price auctions,

(Han et al., 2024) generalized the setting to general graph feedback across actions and complete
cross-learning across contexts, a setting used in the current paper. The finding in (Han et al., 2024) is
that the effects of graph feedback and cross-learning could be “decoupled”: a regret upper bound
Õ(
√
min{α(G)M,K}T ) is shown, which is tight only for a special choice of the feedback graph G.

The work (Dann et al., 2020) considered a tabular reinforcement learning setting with adversarial
initial states, so that their setting with episode length H = 1 coincides with our problem with a general
feedback graph G across all context-action pairs. They showed that the UCB algorithm achieves
a regret upper bound Õ(

√
m(G)T ); however, their lower bound was only Ω(

√
α(G)T ) when

T ≥ α(G)3. Therefore, tight lower bounds that work for general graphs G are still underexplored in
the literature, and our regret upper bounds in Theorems 1.3 and 1.4 also improve or generalize the
existing results.

The problem of bandits with feedback is also closely related to partial monitoring games (Bartók
et al., 2014). Although this is a more general setting which subsumes bandits with graph feedback, the
results in the literature (Bartók et al., 2014; Lattimore, 2022; Foster et al., 2023a) typically have tight
dependence on T , but often not on other parameters such as the dimensionality. Similar issues also
applied to the recent line of work (Foster et al., 2021, 2023b) aiming to provide a unified complexity
measure based on the decision-estimation coefficient (DEC); the nature of the two-point lower bound

2The result of (Lykouris et al., 2020) was stated using the independence number, but they only considered
undirected graphs so that m(G) = α(G).
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used there often leaves a gap. We also point to some recent work (Zhang et al., 2024) which adopted
the DEC framework and established regret bounds for contextual bandits with graph feedback, but no
cross-learning across contexts, based on regression oracles.

2 Hard instance and the regret lower bound

In this section we sketch the proof of the minimax lower bound R⋆
T (G,M, CSA) = Ω(

√
βM (G)T )

for T ≥ βM (G)3 and general (G,M), implying Theorem 1.1. We first identify a hard instance that
corresponds to the graph-theoretic quantity βM (G), and then present the core exploration-exploitation
tradeoff in the proof to arrive at the fundamental limit of learning under this instance. This approach
has been widely adopted in the bandit literature. The complete proof is deferred to Appendix B.

The proof uses the definition (2) of βM (G) to construct M independent sets I1, · · · , IM such that
Ii ̸→ Ij for i < j; by definition, the independent sets I1, · · · , IM are disjoint. We then construct a
hard instance where the best action under context c ∈ [M ] is distributed uniformly over Ic; since Ic
is an independent set, this ensures that the learner must essentially explore all actions in Ic under
context c. Moreover, the context sequence cT is set to be 11 · · · 122 · · · 2 · · ·M , i.e. never goes back
to previous contexts. This order ensures that the exploration in Ic1 during earlier rounds provides no
information to the exploration in Ic2 during later rounds, whenever c1 < c2. Naïvely, if the learner
only explores in each Ic under context c, then learning under each context c becomes a multi-armed

bandit problem (because Ic is itself an independent set), and we can show lower bound
√
T
∑M

c=1 |Ic|
with appropriate context sequence cT . Maximizing over all possible constructions gives the desired
result.

It is possible, however, for the learner to choose actions outside Ic to obtain information for the later
rounds. To address this challenge, we use a delicate exploration-exploitation tradeoff argument to
show that this pure exploration must incur a too large regret to be informative when T ≥ βM (G)3.
Specifically, consider the regret incurred by this pure exploration:

Rexplore =

M∑
c=1

∑
t∈Tc

E[1(at ̸∈ Ic)]

where Tc = {t ∈ [T ] : ct = c}. Then for some absolute constants c1 and c2, the tradeoff can be
formulated as two lower bounds of the regret RT :

RT ≥ c1
√

βM (G)T exp(−βM (G)Rexplore/T ) and RT ≥ c2Rexplore.

The first bound is decreasing in the amount of pure exploration, while the second one is increasing.
Balancing this tradeoff gives the desired lower bound RT = Ω

(√
βM (G)T

)
for T ≥ βM (G)3.

In summary, the key structure used in the proof is that Ii ̸→ Ij for i < j; we remark that this does
not preclude the possibility that Ij → Ii for j > i, which underlies the change from α(G) to m(G)
as the number of context increases.

3 Algorithms achieving the regret upper bounds

This section provides algorithms that achieve the claimed regret upper bounds in Theorems 1.3 and
1.4. The crux of these algorithms is to exploit the structure of the feedback graph and choose a small
number of actions to explore. Depending on whether the context sequence is self-avoiding or not,
the above problem can be reduced to two different kinds of sequential games on the feedback graph.
Given solutions to the sequential games, Sections 3.2 and 3.3 will rely on the layering technique to
use these solutions on each layer, and propose the final learning algorithms via arm elimination.

3.1 Two sequential games on graphs

In this section we introduce two sequential games on graphs which are purely combinatorial and
independent of the learning process. We begin with the first sequential game.
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Definition 1 (Sequential game I). Given a directed graph G = (V,E) and a positive integer M , the
sequential game consists of M steps, where at each step c = 1, · · · ,M :

1. the adversary chooses a strongly observable subset Ac ⊆ V disjoint from Nout(∪c′<cDc′);

2. the learner chooses Dc ⊆ Ac such that Dc dominates Ac, i.e. Ac ⊆ Nout(Dc).3

The learner’s goal is to minimize the total size
∑M

c=1 |Dc| of the sets Dc.

The above sequential game is motivated by bandit learning under self-avoiding contexts. Consider a
self-avoiding context sequence in the order of 1, 2, · · · ,M . For c ∈ [M ], the set Ac represents the
“active set” of actions, i.e. the set of all probably good actions, yet to be explored when context c first
occurs. Thanks to the self-avoiding structure, “yet to be explored” means that Ac must be disjoint
from Nout(∪c′<cDc′). The learner then plays a set of actions Dc ⊆ Ac to ensure that all actions in
Ac have been explored at least once; we note that a good choice of Dc not only aims to observe all
of Ac, but also tries to observe as many actions as possible outside Ac and make the complement
of Nout(∪c′≤cDc′) small. The final cost

∑M
c=1 |Dc| characterizes the overall sample complexity to

explore every active action once over all contexts.

It is clear that the minimax value of this sequential game is given by

U⋆
1 (G,M) = max

A1⊆V
min

D1⊆A1

A1⊆Nout(D1)

· · · max
AM⊆V

∪M−1
c=1 Dc ̸→AM

min
DM⊆AM

AM⊆Nout(DM )

M∑
c=1

|Dc|. (4)

The following lemma characterizes the quantity U⋆
1 (G,M) up to an O(log |V |) factor.

Lemma 3.1 (Minimax value of sequential game I). There exists an absolute constant C > 0 that

βM (G) ≤ U⋆
1 (G,M) ≤ CβM (G) log |V |.

Moreover, the learner can achieve a slightly larger upper bound O(βM (G) log2 |V |) using a
polynomial-time algorithm.

The second sequential game is motivated by bandit learning with an arbitrary context sequence.
Definition 2 (Sequential game II). Given a directed graph G = (V,E) and a positive integer M , the
sequential game starts with an empty set D0 = ∅, and at time t = 1, 2, · · · :

1. the adversary chooses an integer ct ∈ [M ] (and a set Act ⊆ V if ct does not appear before).
The adversary must ensure that Act\Nout(Dt−1) is non-empty;

2. the learner picks a vertex vt ∈ Act and updates Dt ← Dt−1 ∪ {vt}.

The game terminates at time T whenever the adversary has no further move (i.e. ∪cAc ⊆ Nout(DT )),
and the learner’s goal is to minimize the duration T of the game.

The new sequential game reflects the case where the context sequence might not be self-avoiding, so
instead of taking a set of actions at once, the learner now needs to take actions non-consecutively.
Clearly the sequential game II is more difficult for the learner as it subsumes the sequential game I
when the context sequence is self-avoiding: the set Dc in Definition 1 is simply the collection of vt’s
in Definition 2 whenever ct = c. Consequently, the minimax values satisfy U⋆

2 (G,M) ≥ U⋆
1 (G,M).

The following lemma proves an upper bound on U⋆
2 (G,M).

Lemma 3.2 (Minimax value of sequential game II). There exists a polynomial-time algorithm for the
learner which achieves

U⋆
2 (G,M) ≤ βdom(G,M) ≤ min{m(G), CβM (G) log2 |V |},

where C > 0 is an absolute constant, βM (G) is given in (3), and

βdom(G,M) = max

{ M∑
c=1

|Bc| :
⋃
c

Bc is acyclic, Bc ⊆ Vc dominates some Vc

with disjoint V1, · · · , VM ⊆ V, and |Bc| ≤ δ(Vc)(1 + log |V |).
}

3Both sets (Ac, Dc) are allowed to be empty.
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3.2 Learning under self-avoiding contexts

Given a learner’s algorithm for the first sequential game, we are ready to provide an algorithm for
bandit learning under any self-avoiding context sequence. The algorithm relies on the well-known
idea of arm elimination (Even-Dar et al., 2006): for each context c ∈ [M ], we maintain an active
set Ac consisting of all probably good actions so far under this context based on usual confidence
bounds of the rewards. To embed the sequential games into the algorithm, we further make use of the
layering technique in (Lykouris et al., 2020; Dann et al., 2020): for ℓ ∈ N, we construct the set Ac,ℓ

as the active set on layer ℓ such that all actions in Ac,ℓ−1 have been taken for at least ℓ− 1 times. In
other words, the active set Ac,ℓ is formed based on ℓ− 1 reward observations of all currently active
actions. As higher layer indicates higher estimation accuracy, the learner now aims to minimize the
duration of each layer ℓ, which is precisely the place we will play an independent sequential game.

Algorithm 1: Arm elimination algorithm for self-avoiding contexts
Input: time horizon T , action set [K], context set [M ], feedback graph G, a subroutine A for the

sequential game I, failure probability δ ∈ (0, 1).
Initialize: active sets Ac,1 ← [K] for all contexts c ∈ [M ] on layer 1.
for c = 1 to M do

for ℓ = 1, 2, · · · do
compute Dc,ℓ ⊆ Ac,ℓ\Nout(∪c′<cDc′,ℓ) according to the subroutine A, based on past

plays
(Ac′,ℓ\Nout(∪i<c′Di,ℓ))c′≤c and (Dc′,ℓ)c′<c;

choose each action in Dc,ℓ once (break the loop if ct ̸= c or t > T during this process),
and update t accordingly;

compute the empirical rewards r̄c,a for all actions based on all historic reward
observations;

choose the following active set on the next layer:

Ac,ℓ+1 ←

{
a ∈ Ac,ℓ : r̄c,a ≥ max

a′∈Ac,ℓ

r̄c,a′ − 2

√
log(2MKT/δ)

ℓ

}
; (5)

move to the next layer ℓ← ℓ+ 1.
end

end

The description of the algorithm is summarized in Algorithm 1, and we assume without loss of gener-
ality that the self-avoiding contexts comes in the order of 1, . . . ,M (the duration of some contexts
might be zero). During each context, Algorithm 1 sequentially constructs a shrinking sequence of
active sets Ac,1 ⊇ Ac,2 ⊇ · · · , and on each layer ℓ, the algorithm plays the sequential game I based
on the current status (past plays (Ac′,ℓ)c′≤c, or equivalently (Ac′,ℓ\Nout(∪i<c′Di,ℓ))c′≤c, of the
adversary, and past plays (Dc′,ℓ)c′<c of the learner).4 After the rewards of all actions of Ac,ℓ have
been observed once, the algorithm constructs the active set Ac,ℓ+1 for the next layer based on the
confidence bound (5) and sample size ℓ.

The following theorem summarizes the performance of the algorithm.
Theorem 3.3 (Regret upper bound of Algorithm 1). Let the subroutine A for the sequential game
I be the polynomial-time algorithm given by Lemma 3.1. Then with probability at least 1− δ, the
regret of Algorithm 1 is upper bounded by

RT (Alg 1;G,M, CSA) = O

(√
TβM (G) log2(K) log(MKT/δ)

)
.

On a high level, by classical confidence bound arguments, each action chosen on layer ℓ suffers
from an instantaneous regret Õ(1/

√
ℓ). Moreover, Lemma 3.1 shows that the number of actions

chosen on a given layer is at most Õ(βM (G)). A combination of these two observations leads to the
Õ(
√
βM (G)T ) upper bound in Theorem 3.3, and a full proof is provided in Appendix C.

4It is possible that, at some layer ℓ and for some context c, every action active under c has been explored, i.e.
Ac,ℓ\Nout(∪c′<cDi,ℓ) = ∅. In this case, the learner simply skips to next layers by choosing Dc = ∅.
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3.3 Learning under general contexts

The learning algorithm under a general context sequence is described in Algorithm 2. Similar to
Algorithm 1, for each context c we break the learning process into different layers, construct active
sets Ac,ℓ for each layer, and move to the next layer whenever all actions in Ac,ℓ have been observed
once on layer ℓ. The only difference lies in the choice of actions on layer ℓ, where the plays from the
sequential game II are now used. The following theorem summarizes the performance of Algorithm
2, whose proof is very similar to Theorem 3.3 and deferred to Appendix C.

Algorithm 2: Arm elimination under general contexts
Input: time horizon T , action set [K], context set [M ], feedback graph G, a subroutine A for the

sequential game II, failure probability δ ∈ (0, 1).
Initialize: active sets Ac,ℓ ← [K] for all contexts c ∈ [M ] and layers ℓ ≥ 1; set of actions
Dℓ ← ∅ chosen on layer ℓ; the current layer index ℓ(c)← 1 for all c ∈ [M ].

for t = 1 to T do
receive the context ct, and compute the current layer index ℓt = ℓ(ct);
according to subroutine A, choose an action at ∈ Act,ℓt based on the active sets
(Ac,ℓt)c∈[M ] and previously taken actions Dℓt on the current layer;

update the set of actions on layer ℓt via Dℓt ← Dℓt ∪ {at};
for c ∈ [M ] do

compute the new layer index ℓnew(c) = min{ℓ : Ac,ℓ ⊈ Nout(Dℓ)};
if ℓnew(c) > ℓ(c) then

compute the empirical rewards r̄c,a for all actions based on all historic observations;
choose the following active set on the new layer:

Ac,ℓnew(c) ←

{
a ∈ Ac,ℓ(c) : r̄c,a ≥ max

a′∈Ac,ℓ(c)

r̄c,a′ − 2

√
log(2MKT/δ)

ℓnew(c)− 1

}
;

update the layer index ℓ(c)← ℓnew(c).
end

end
end

Theorem 3.4 (Regret upper bound of Algorithm 2). Let the subroutine A for the sequential game
II be the polynomial-time algorithm given by Lemma 3.2. Then with probability at least 1− δ, the
regret of Algorithm 2 is upper bounded by

RT (Alg 2;G,M) = O
(√

Tβdom(G,M) log(MKT/δ)
)
.

By the second inequality in Lemma 3.2, Theorem 3.4 implies Theorem 1.4. Corollary 1.5 then
follows from the following result.
Lemma 3.5. For undirected or transitively closed graph G, it holds that βdom(G,M) =
O(βM (G) log |V |).

4 Discussions

4.1 Weakly observable feedback graphs

Naturally, we may ask what results we would get under a weaker assumption / a more general
feedback structure. If the feedback graph G is instead weakly observable5, then under complete
cross-learning, an explore-then-commit (ETC) policy can achieve regret Õ(δ(G)1/3T 2/3) by first
exploring the minimum dominating set6 uniformly for time δ(G)1/3T 2/3, and then committing to the
empirically best action that has suboptimality bounded by Õ(δ(G)1/3T−1/3) with high probability.
This matches the existing lower bound in (Alon et al., 2015) and is hence near-optimal.

5In the language of (Alon et al., 2015), a graph G is weakly observable if Nin(a) ̸= ∅ for all a ∈ [K], and
there exists a0 ∈ [K] such that {a0}, [K]\{a0} ⊈ Nin(a0).

6Note that a (1 + logK)-approximate minimum dominating set can be found efficiently by Lemma A.2.
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4.2 Incomplete cross-learning

It is possible to further relax the assumption of complete cross-learning. Suppose the feedback
across contexts is characterized by another directed graph G[M ] (and denote G[K] across actions
respectively), and consider a product feedback graph G[K] ×G[M ] over the context-action pairs such
that (a1, c1) → (a2, c2) if a1 → a2 in G[K] and c1 → c2 in G[M ]. Then we can get the following
generalized results.

4.2.1 Weakly observable feedback graphs on actions

When the feedback graph G[K] is weakly observable, following the argument in Section 4.1, we

can achieve regret Õ
((

δ(G[K])m(G[M ])
)1/3

T 2/3
)

by running an ETC subroutine for each context
as follows: for every context c ∈ [M ], we keep an “exploration” counter nc. At each time t with
context ct, if nct ≲ δ(G[K])

1/3m(G[M ])
−2/3T 2/3, we are in the “exploration” stage and continue

to uniformly explore the minimum dominating set of G[K]. Then we increase the counter for all
observed contexts, i.e. nc ← nc + 1 for all c ∈ Nout(ct) in G[M ]. Otherwise, we “commit” to the

empirically best action that has suboptimality bounded by Õ
((

δ(G[K])m(G[M ])
)1/3

T−1/3
)

with
high probability.

The key observation is that the number of times we are in the “exploration” stage is
Õ
((

δ(G[K])m(G[M ])
)1/3

T 2/3
)

. This can be seen from a layering argument, similar to the one
in Section 3.2, that the number of actually played contexts on each layer is at most m(G[M ]). To-
gether with the bounded rewards and the bounded suboptimality in the “commit” stage, this proves
the regret upper bound.

Combining the context sequence construction in Section 2 and the lower bound argument in (Alon
et al., 2015), one can also prove a matching lower bound Ω

((
δ(G[K])m(G[M ])

)1/3
T 2/3

)
.

4.2.2 Strongly observable feedback graphs on actions

When G[K] is strongly observable, it is straightforward to generalize our upper (for self-avoiding
contexts) and lower bounds in Theorem 1.1 and 1.3 with βM (G[K]) replaced by

βM (G[K] ×G[M ]) =max

{ M∑
c=1

|Ic| : Ic independent subset of [K]× {c}, and Ic ̸→ Ic′ for c < c′
}

and βdom(G[K]) in Theorem 3.4 by

βdom(G[K] ×G[M ]) = max

{ M∑
c=1

|Bc| :
⋃
c

Bc is acyclic in G[K] ×G[M ],

Bc is a (1 + logK)-approx min dominating set of some subsets Vc ⊆ G[K] × {c}
}

where the new graph quantities are defined on the product graph G[K] × G[M ]. For general
contexts, this gives a tight upper bound Õ

(√
TβM (G[K] ×G[M ])

)
when G[K] and G[M ] are ei-

ther both undirected or both transitively closed7. Most generally, we have a loose upper bound
Õ
(√

T min{m(G[K] ×G[M ]), α(G[K])M}
)
.

4.3 Gap between upper and lower bounds

Although we provide tight upper and lower bounds for specific classes of context sequences (self-
avoiding in Theorem 1.3) or feedback graphs (undirected or transitively closed in Corollary 1.5), in
general the quantities βM (G) in Theorem 1.1 and min{βM (G),m(G)} in Theorem 1.4 exhibit a
gap. The following lemma gives an upper bound on this gap.

7We prove this statement in Appendix C.7 due to space limit.
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Lemma 4.1. For any graph G, it holds that

βM (G) ≤ min{βM (G),m(G)} ≤ max

{
ρ(G)

M
, 1

}
βM (G),

where ρ(G) denotes the length of the longest path in G.

Lemma 4.1 shows that if G does not contain long paths or M is large, the gap between βM (G) and
βM (G) is not significant. We also comment on the challenge of closing this gap. First, we do not
know a tight characterization of the minimax value of the sequential game II (cf. Definition 2), and
the upper bound βdom(G,M) in Lemma 3.2 could be loose, as shown in the following example.
Example 1. Consider an acyclic graph G = (V,E) with KM vertices {(i, j)}i∈[K],j∈[M ] and
edges (i, j) → (i′, j′) if either i < i′ and j ̸= j′, or i = i′ and j < j′, and all self-loops. By
choosing Bc = Vc = {(i, c) : i ∈ [K]} in the definition of βdom(G,M) in Lemma 3.2, it is clear that
βdom(G,M) = KM . However, we show that the minimax value is U⋆

2 (G,M) = K +M − 1. The
lower bound follows from U⋆

2 (G,M) ≥ U⋆
1 (G,M) ≥ βM (G) ≥ K +M − 1, as I1 = {(i,M) :

i ∈ [K]} and Ic = {(1,M + 1 − c)} for 2 ≤ c ≤ M satisfy the constraints in the definition
of βM (G) in (2). For the upper bound, we consider the following strategy for the learner in the
sequential game II: vt = (it, jt) is the smallest element (under the lexicographic order over pairs) in
Act\Nout(Dt−1). To show why U⋆

2 (G,M) ≤ K +M − 1, let Dc be the final set of vertices chosen
by the learner under context c. By the lexicographic order and the structure of G, each Dc can only
consist of vertices in one column. Moreover, for different c ̸= c′, the row indices of Dc must be
entirely no smaller or entirely no larger than the row indices of Dc′ . These constraints ensure that∑M

c=1 |Dc| ≤ K +M − 1.

This example shows the importance of non-greedy approaches when choosing vt. In the special case
where Ac = {(i, c) : i ∈ [K]} is the c-th column, within Ac this is an independent set, so any greedy
approach that does not look outside Ac will treat the vertices in Ac indifferently. In contrast, the
above approach makes use of the global structure of the graph G.

The second challenge lies in the proof of the lower bound. Instead of the sequential game where the
adversary and the learner take turns to play actions, the current lower bound argument assumes that
the adversary tells all his plays to the learner ahead of time. We expect the sequential structure to be
equally important for the lower bounds, and it is interesting to work out an argument for the minimax
lower bound to arrive at a sequential quantity like U⋆

2 (G,M).

4.4 Other open problems

Performance of the UCB algorithm. The UCB algorithm under feedback graphs has been analyzed
for both multi-armed (Lykouris et al., 2020) and contextual bandits (Dann et al., 2020). However,
both results only show a regret upper bound Õ(

√
m(G)T ), even in the case of multi-armed bandits

(i.e. M = 1). It is interesting to understand for algorithms without forced exploration (such as UCB),
if the MAS number m(G) (rather than α(G) or βM (G)) turns out to be fundamental.

Regret for small T . Note that our upper bounds hold for all values of T , but our lower bound
requires T ≥ βM (G)3. This is not an artifact of the analysis, as the optimal regret becomes
fundamentally different for smaller T . The case of multi-armed bandits has been solved completely
in a recent work (Kocák and Carpentier, 2023), where the regret is a mixture of

√
T and T 2/3 terms.

We anticipate the same behavior for contextual bandits, but the exact form is unknown.

Stochastic contexts. In this paper we assume that the contexts are generated adversarially, but the
case of stochastic contexts also draws some recent attention (Balseiro et al., 2019; Schneider and
Zimmert, 2024), and sometimes there is a fundamental gap between the optimal performances under
stochastic and adversarial contexts (Han et al., 2024). It is an interesting question whether this is the
case for contextual bandits with graph feedback.
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A Auxilary Lemmas

Lemma A.1 (Lemma 8 of (Alon et al., 2015)). For any directed graph G = (V,E), one has
δ(G) ≤ 50α(G) log |V |.

For a directed graph G, there is a well-known approximate algorithm for finding the smallest
dominating set: starting from D = ∅, recursively find the vertex v with the maximum out-degree in
the subgraph induced by V \Nout(D), and update D ← D ∪ {v}. The following lemma summarizes
the performance of this algorithm.
Lemma A.2 (Chvatal (1979)). For any graph G = (V,E), the above procedure outputs a dominating
set D with

|D| ≤ (1 + log |V |)δ(G).

Lemma A.3 (A special case of Lemma 3 in (Gao et al., 2019)). Let Q1, . . . Qn be probability
measures on some common measure space (Ω,F), with n ≥ 2, and Φ : Ω → [n] any measurable
test function. Then

1

n

n∑
i=1

Qi(Φ ̸= i) ≥ 1

2n

n∑
i=2

exp(−KL(Qi∥Q1)).

B Deferred Proof for the Lower Bound

In this appendix, we give the complete proof of the minimax lower bound R⋆
T (G,M, CSA) =

Ω(
√
βM (G)T ) for T ≥ βM (G)3 and general (G,M), implying Theorem 1.1.

Let I1, · · · , IM be the independent sets achieving the maximum in (2), by removing empty sets,
combining (Ii, Ii+1) whenever |Ii| = 1, and possibly removing the last set IM if |IM | = 1, we arrive
at disjoint subsets J1, · · · , Jm of [K] such that the following conditions hold:

• m ≤M , Kc ≜ |Jc| ≥ 2 for all c ∈ [m], and Ji ̸→ Jj for i < j;
• the only possible non-self-loop edges among Jc = {ac,1, · · · , ac,Kc

} can only point to ac,1;

•
∑m

c=1 Kc ≥
∑M

c=1 |Ic| − 1 = βM (G)− 1 ≥ βM (G)/2 whenever βM (G) ≥ 2.8

Given sets J1, · · · , Jm, we are ready to specify the hard instance. Let u = (u1, · · · , um) ∈ Ω :=
[K1]× · · · × [Km] be a parameter vector, the joint reward distribution Pu of (rt,c,a)c∈[M ],a∈[K] is a
product distribution Pu =

∏
c∈[M ],a∈[K] Bern(µ

u
c,a), where the mean parameters for the Bernoulli

distributions are µu
c,a = 0 whenever c > m, and

µu
c,a =


1
4 +∆ if a = ac,1,
1
4 + 2∆ if a = ac,uc and uc ̸= 1,
1
4 if a ∈ Jc\{ac,uc},
0 if a /∈ Jc,

for c ∈ [m].

Here ∆ ∈ (0, 1/4) is a gap parameter to be chosen later. We summarize some useful properties from
the above construction:

1. under context c ∈ [m], the best action under Pu is ac,uc
, and all other actions suffer from an

instantaneous regret at least ∆;
2. under context c ∈ [m], actions outside Jc suffer from an instantaneous regret at least 1/4;
3. for u = (u1, · · · , um) ∈ Ω and uc := (u1, · · · , uc−1, 1, uc+1, · · · , um), the KL divergence

between the observed reward distributions Pu(a) and Puc

(a) when choosing the action a is

KL(Puc

(a)∥Pu(a))
(a)
=

{
KL(Bern(1/4)∥Bern(1/4 + 2∆)) if a→ ac,uc

0 otherwise
(b)

≤ 64∆2

3
1(a /∈ J≤c\{ac,uc}).

8When βM (G) = 1, the Ω(
√
T ) regret lower bound is trivially true even under full information feedback

and M = 1.
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Here (a) follows from our construction of Pu that the only difference between Pu and
Puc

is the reward of action ac,uc
, which is observed iff a → ac,uc

; (b) is due to the
property of (J1, · · · , Jm) that any action in J≤c\{ac,uc

} does not point to ac,uc
, where

J≤c := ∪c′≤cJc′ .

Finally, we partition the time horizon [T ] into consecutive blocks T1, · · · , Tm (whose sizes will be
specified later), and choose the context sequence as ct = c for all t ∈ Tc. For a fixed policy, let RT

be the worst-case expected regret of this policy. By the second property of the construction, it is clear
that for all u ∈ Ω,

RT ≥
1

4

m∑
c=1

∑
t∈Tc

E(Pu)⊗(t−1) [1(at ̸∈ Jc)]. (6)

When u is uniformly distributed over Ω, we also have

RT

(a)

≥ Eu

[
∆

m∑
c=1

∑
t∈Tc

E(Pu)⊗(t−1) [1(at ̸= ac,uc
)]

]
(b)
= ∆

m∑
c=1

∑
t∈Tc

Eu\{uc}
[
Euc

[
E(Pu)⊗(t−1) [1(at ̸= ac,uc

)]
]]

(c)

≥ ∆

m∑
c=1

∑
t∈Tc

Eu\{uc}

[
1

2Kc

Kc∑
uc=2

exp
(
−KL

(
(Puc

)⊗(t−1)
∥∥(Pu)⊗(t−1)

))]
(7)

(d)

≥ ∆

m∑
c=1

∑
t∈Tc

Eu\{uc}

[
Kc − 1

2Kc
exp

(
− 1

Kc − 1

Kc∑
uc=2

KL
(
(Puc

)⊗(t−1)
∥∥(Pu)⊗(t−1)

))]
(e)

≥ ∆

4

m∑
c=1

∑
t∈Tc

Eu\{uc}

[
exp

(
− 64∆2

3(Kc − 1)

Kc∑
uc=2

∑
s<t

E(Puc )⊗(s−1) [1(as /∈ J≤c\{ac,uc})]

)]
,

where (a) lower bounds the minimax regret by the Bayes regret, with the help of the first property;
(b) decomposes the expectation over uniformly distributed u into u\{uc} and uc ∈ [Kc]; (c) follows
from Lemma A.3; (d) uses the convexity of x 7→ e−x; (e) results from the chain rule of KL divergence,
the third property of the construction, and that Kc ≥ 2 for all c ∈ [m].

Next we upper bound the exponent in (7) as

Kc∑
uc=2

∑
s<t

E(Puc )⊗(s−1) [1(as /∈ J≤c\{ac,uc})]

≤
Kc∑

uc=2

∑
c′<c

∑
s∈Tc′

E(Puc )⊗(s−1) [1(as /∈ Jc′)] +

Kc∑
uc=2

∑
s∈Tc
s<t

E(Puc )⊗(s−1) [1(as /∈ J≤c) + 1(as = ac,uc
)]

≤
Kc∑

uc=2

∑
c′≤c

∑
s∈Tc′

E(Puc )⊗(s−1) [1(as /∈ Jc′)] +

Kc∑
uc=2

∑
s∈Tc

E(Puc )⊗(s−1) [1(as = ac,uc
)]

(6)

≤ 4(Kc − 1)RT +

Kc∑
uc=2

∑
s∈Tc

E(Puc )⊗(s−1) [1(as = ac,uc
)].

Plugging it back into (7), we get

RT ≥
∆

4

m∑
c=1

∑
t∈Tc

Eu\{uc}

[
exp

(
− 64∆2

3(Kc − 1)

(
4(Kc − 1)RT +

Kc∑
uc=2

∑
s∈Tc

E(Puc )⊗(s−1) [1(as = ac,uc)]

))]
(f)

≥ ∆

4

M∑
c=1

∑
t∈Tc

Eu\{uc}

[
exp

(
−64∆2

3

(
4RT +

|Tc|
Kc − 1

))]
,
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where (f) crucially uses that uc = (u1, · · · , uc−1, 1, uc+1, · · · , um) does not depend on uc, so that
the sum may be moved inside the expectation to get

∑Kc

uc=2 1(as = ac,uc
) ≤ 1. Now choosing

|Tc| =
Kc∑m

c′=1 Kc′
· T ≤ 2KcT

βM (G)
, ∆ =

√
βM (G)

16T
∈
(
0,

1

4

)
,

we arrive at the final lower bound

RT ≥
√
βM (G)T

16
exp

(
−4βM (G)

3T

(
4RT +

4T

βM (G)

))
≥
√
βM (G)T

16e6
exp

(
−16βM (G)

3T
RT

)
≥
√
βM (G)T

16e6
exp

(
− 16RT

3
√

βM (G)T

)
, (8)

where the last inequality is due to the assumption T ≥ βM (G)3. Now we readily conclude from (8)
the desired lower bound RT = Ω(

√
βM (G)T ).

C Deferred Proofs for the Upper Bounds

Throughout the proofs, we will use α(A) ≜ α(G|A) (resp. δ(A), m(A)) to denote the independence
number (resp. dominating number, MAS number) of the subgraph induced by A ⊆ V when the graph
G is clear from the context.

C.1 Proof of Lemma 3.1

The lower bound U⋆
1 (G,M) ≥ βM (G) is easy: let I1, · · · , IM be M independent sets with Ii ̸→ Ij

for all i < j. Then the choice Ac = Ic is always feasible for the adversary, for Ic is disjoint from
Nout(∪c′<cIc′). For the learner, the only subset Dc ⊆ Ic which dominates Ic is Dc = Ic, hence
U⋆
1 (G,M) ≥

∑M
c=1 |Ic|. Taking the maximum then gives U⋆

1 (G,M) ≥ βM (G) by (2).

To prove the upper bound U⋆
1 (G,M) ≤ CβM (G) log |V |, the learner chooses Dc as follows. Given

Ac, the learner finds the smallest dominating set Jc ⊆ Ac and the largest independent set Ic ⊆ Ac,
and sets Dc = Ic ∪ Jc. Clearly this choice of Dc is feasible for the learner, and since Ii ̸→ Aj for
i < j, we have Ii ̸→ Ij as well. Consequently,

U⋆(G,M) ≤
M∑
c=1

|Dc| ≤
M∑
c=1

(|Jc|+ |Ic|)
(a)
=

M∑
c=1

O(|Ic| log |V |)
(b)
= O(βM (G) log |V |),

where (a) uses |Jc| = δ(Ac) = O(α(Ac) log |V |) = O(|Ic| log |V |) in Lemma A.1, and (b) follows
from the definition of βM (G) in (2).

Since it is NP-hard to find either the smallest dominating set or the largest independent set (Karp,
2010; Grandoni, 2006), the above choice of Dc is not computationally efficient. To arrive at a
polynomial-time algorithm, we may use a greedy algorithm to find an O(log |V |)-approximate
smallest dominating set J̃c such that |J̃c| = O(δ(Ac) log |V |) (cf. Lemma A.2). For Ic, although
finding the largest independent set is APX-hard (Feige et al., 1991), the constructive proof of (Alon
et al., 2015, Lemma 8) gives a polynomial-time randomized algorithm which finds Ĩc ⊆ Ac such
that |Ĩc| = Ω(δ(Ac)/ log |V |) and the average degree among Ĩc is at most O(1). The learner now
chooses Dc = Ĩc ∪ J̃c. By the average degree constraint and Turán’s theorem (Alon and Spencer,
2016, Theorem 3.2.1), each Ĩc contains an independent subset Ic with |Ic| = Ω(|Ĩc|). Since

|J̃c| = O(δ(Ac) log |V |) = O(|Ĩc| log2 |V |) = O(|Ic| log2 |V |),

we conclude that
∑M

c=1 |Dc| = O(
∑M

c=1 |Ic| log
2 |V |) = O(βM (G) log2 |V |).

C.2 Proof of Lemma 3.2

The second inequality is straightforward: βdom(G,M) ≤ m(G) since ∪cBc is acyclic, and the
other inequality follows from |Bc| = O(δ(Vc) log |V |) = O(α(Vc) log

2 |V |) in Lemma A.1. To
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prove the first inequality, we consider a simple greedy algorithm for the learner, where vt ∈ Act
is the vertex with the largest out-degree in the induced subgraph by Act\Nout(Dt−1). Intuitively,
Act\Nout(Dt−1) is the set of nodes in Act that remain unexplored by the learner by time t. Under
this greedy algorithm, for c ∈ [M ], define

Vc =
⋃

t:ct=c

(
Nout(vt)

⋂
(Act\Nout(Dt−1))

)
, Bc = {vt : ct = c} .

We claim that Vc are pairwise disjoint and |Bc| ≤ δ(Vc)(1+ log |V |), and thereby complete the proof
of
∑M

c=1 |Bc| ≤ βdom(G,M). The first claim simply follows from the pairwise disjointness of the
sets Nout(vt)

⋂
(Act\Nout(Dt−1)) for different t. For the second claim, let t1 < · · · < tn be all the

time steps where ct = c, and

Vc,i ≜
n⋃

j=i

(
Nout(vtj )

⋂
(Ac\Nout(Dtj−1))

)
, i ∈ [n].

It is clear that Vc,i+1 = Vc,i\Nout(vti). Since vti has the largest out-degree in the induced subgraph
by Ac\Nout(Dti−1) ⊇ Vc,i, and Nout(vti) ∩ (Ac\Nout(Dti−1)) = Nout(vti) ∩ Vc,i, this is also
the vertex with the largest out-degree in Vc,i. Therefore, the sets {Vc,i}n+1

i=1 evolve from Vc,1 = Vc

to Vc,n+1 = ∅ as follows: one recursively picks the vertex with the largest out-degree in Vc,i, and
removes its out-neighbors to get Vc,i+1. This is a well-known approximate algorithm for computing
δ(Vc), described above Lemma A.2, with

|Bc| = n ≤ δ(Vc)(1 + log |Vc|) ≤ δ(Vc)(1 + log |V |),
as desired.

C.3 Proof of Lemma 3.5

If G is undirected, then βdom(G) ≤ m(G) = α(G) = βM (G) easily holds. It remains to consider
the case where G is transitively closed.

Note that in a transitively closed graph, every vertex set has an independent dominating subset (by
tracing to the ancestors). Therefore, for the maximizing sets B1, · · · , BM in the definition of βdom,
we may run the above procedure to find independent dominating subsets I1, · · · , IM of V1, . . . , VM

respectively, with Ic ⊆ Bc and
M∑
c=1

|Ic| ≥
M∑
c=1

δ(Vc) ≥
1

C ′ log |V |

M∑
c=1

|Bc|.

Now consider the induced subgraph G′ by ∪cIc. Clearly G′ is acyclic, and the length of longest path
in G′ is at most M (otherwise, two points on a path belong to the same Ic, and transitivity will violate
the independence). Invoking Lemma 4.1 now gives

M∑
c=1

|Ic| = m(G′) ≤ ρ(G′)

M
βM (G′) ≤ βM (G′) ≤ βM (G),

and combining the above two inequalities completes the proof.

C.4 Proof of Theorem 3.3

The proof is decomposed into three claims: with probability at least 1− δ,

1. for every c ∈ [M ] and ℓ ∈ N, when the confidence bound (5) is formed, either every action
in Ac,ℓ has been observed for at least ℓ times or |Ac,ℓ| = 1;

2. for every c ∈ [M ] and ℓ ∈ N, the best action a⋆(c) under context c belongs to Ac,ℓ,
and every action in Ac,ℓ has suboptimality gap at most min{1, 4∆ℓ−1}, with ∆ℓ ≜√
log(2MKT/δ)/ℓ;

3. for every ℓ ∈ N, the total number Nℓ of actions taken on layer ℓ in those subsets Ac,ℓ with
|Ac,ℓ| > 1 is O(βM (G) log2 K).
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The first claim simply follows from (1) when G is strongly observable, any subset of size > 1 is
strongly observable, and (2) Ac,ℓ ⊆ Nout(∪c′≤cDc′,ℓ) required by the sequential game I, so that on
each layer ℓ′ ∈ [ℓ] there is at least one action which observes a ∈ Ac,ℓ ⊆ Ac,ℓ′ . For the second claim,
the first claim, the usual Hoeffding concentration, and a union bound imply that |r̄c,a − µc,a| ≤ ∆ℓ

in (5) for all c ∈ [M ] and a ∈ Ac,ℓ, when |Ac,ℓ| > 1 and with probability at least 1− δ. Conditioned
on this event:

• The best arm a⋆(c) is not eliminated by (5), because r̄c,a⋆(c) ≥ µc,a⋆(c) − ∆ℓ ≥
maxa′∈Ac,ℓ

µc,a′ −∆ℓ ≥ maxa′∈Ac,ℓ
r̄c,a′ − 2∆ℓ;

• The instantaneous regret of choosing any action a ∈ Ac,ℓ+1 is at most min{1, 4∆ℓ}, for
µc,a ≥ r̄c,a −∆ℓ ≥ r̄c,a⋆(c) − 3∆ℓ ≥ µc,a⋆(c) − 4∆ℓ, and |µc,a − µc,a⋆(c)| ≤ 1 trivially
holds.

Consequently the second claim holds for |Ac,ℓ| > 1. For the case |Ac,ℓ| = 1, note that starting from
Ac,1 = [K], the above argument implies that the best arm is never eliminated until |Ac,ℓ′ | = 1 at
some layer ℓ′ ≤ ℓ conditioned on the high probability event, which implies the single action in Ac,ℓ

is the best action and incurs 0 regret. The last claim is simply the reduction to the sequential game I,
where Lemma 3.1 shows that Nℓ =

∑M
c=1 |Dc,ℓ| = O(βM (G) log2 K).

Combining the above claims and that we incur 0 regret whenever |Ac,ℓ| = 1, with probability at least
1− δ, we have

RT (Alg 1;G,M, CSA) ≤
∞∑
ℓ=1

Nℓ min{1, 4∆ℓ},

where Nℓ ≤ N := O(βM (G) log2 K), and
∑∞

ℓ=1 Nℓ = T . It is straightforward to see that the
choice N1 = · · · = Nm = N and Nm+1 = T − Nm for a suitable m ∈ N maximizes the above
sum, and the maximum value is the target regret upper bound in Theorem 3.3.

C.5 Proof of Theorem 3.4

The proof follows verbatim the same lines in the proof of Theorem 3.3, except that the total number
Nℓ of actions taken on layer ℓ is now at most βdom(G,M) in the third claim, by Lemma 3.2.

C.6 Proof of Lemma 4.1

Let V1 ⊆ V be a maximum acyclic subset, then ρ(G|V1) ≤ ρ(G). Consider the following recursive
process: at time t = 1, 2, · · · , let Jt be the set of vertices in Vt with in-degree zero (which always
exist as Vt is acyclic), and Vt+1 = Vt\Jt. This recursion can only last for at most ρ(G) steps, for
otherwise there is a path of length larger than ρ(G). Then each Jt is an independent set, for every
vertex of Jt has in-degree zero in Vt ⊇ Jt. For the same reason we also have Ji ̸→ Jj for i > j. This
means that

m(G) = |V1| =
∑
t

|Jt| ≤ max

{
ρ(G)

M
, 1

}
βM (G),

where the last inequality follows from picking M largest sets among {Jt}.

C.7 Proof of the statement in Section 4.2.2

In this section, we show that when G[K] and G[M ] are either both undirected or both transitively
closed, the product graph quantities βdom := βdom(G[K] × G[M ]) and βM := βM (G[K] × G[M ])
satisfy

βdom = O(βM logK).

Combining with the Ω(
√
βMT ) lower bound, this shows the tightness of the upper bound

Õ
(√

βdomT
)
. The idea here is similar to Section C.3:

When G[K] and G[M ] are both undirected, the union set ∪cBc in the definition of βdom is an
independent set thanks to the acyclic requirement. Thus βdom ≤ βM .
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When G[K] and G[M ] are both transitively closed, for the maximizing sets B1, . . . , BM in the
definition of βdom, we can again find independent dominating subsets Ic ⊆ Bc (by transitive closure
of G[K]) with

M∑
c=1

|Ic| ≥
1

C ′ logK

M∑
c=1

|Bc| =
1

C ′ logK
βdom. (9)

Now it suffices to find independent subsets Jc ⊆ [K] × {c} that satisfy Jc ̸→ Jc′ when c < c′

and
∑

c |Jc| =
∑

c |Ic|. Toward this end, we first suppose there are c and c′ such that uc → uc′

and vc ← vc′ for uc, vc ∈ Ic and uc′ , vc′ ∈ Ic′ . This implies c ↔ c′ in G[M ] by the product graph
structure. Then

• Ic|[K] and Ic′ |[K] are disjoint since
⋃

c Ic is acyclic;

• by transitive closure of G[K] and that Ic, Ic′ are independent, Ic|[K]∪ Ic′ |[K] has path length
at most 1;

• from above, there exist disjoint and independent sets S1 and S2 such that S1 ∪ S2 =
Ic|[K] ∪ Ic′ |[K] and S1 ̸→ S2.

where we denote the set projection

S|[K] = {a ∈ [K] : (a, c) ∈ S for some c ∈ [M ]}.

Without loss of generality, assume c < c′. In this case, we can “rearrange” them by letting Jc =
S1 × {c} and Jc′ = S2 × {c′}, so Jc ̸→ Jc′ . Now suppose there is a loop on the set level, i.e. there
are c1, . . . , cm ∈ [M ] with Ic1 → · · · → Icm → Ic1 . Similarly, we must have that {c1, . . . , cm}
form a clique in G[M ], Ic1 |[K], . . . , Icm |[K] disjoint in G[K], and the path length in

⋃m
j=1 Icj is at

most m. Then we can again “rearrange” them and get independent sets Jcj ̸→ Jck for cj < ck
and j, k ∈ [m], and

∑m
j=1 |Jcj | =

∑m
j=1 |Icj |. In other cases, we simply let Jc = Ic and arrive at

J1, . . . , JM that are acyclic on the set level, i.e. up to reordering of the indices, we have Jc ̸→ Jc′
when c < c′. Together with Eq (9), we have

βdom ≤ C ′ logK

M∑
c=1

|Ic| = C ′ logK

M∑
c=1

|Jc| ≤ C ′βM logK.
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• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.
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• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: This work does not release new assets.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: This work does not involve or include such experiments.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: This work does not involve or include such experiments.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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