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Abstract

One of the central goals of neuroscience is to gain a mechanistic understanding
of how the dynamics of neural circuits give rise to their observed function. A
popular approach towards this end is to train recurrent neural networks (RNNs)
to reproduce experimental recordings of neural activity. These trained RNNs are
then treated as surrogate models of biological neural circuits, whose properties
can be dissected via dynamical systems analysis. How reliable are the mechanistic
insights derived from this procedure? While recent advances in population-level
recording technologies have allowed simultaneous recording of up to tens of thou-
sands of neurons, this represents only a tiny fraction of most cortical circuits. Here
we show that observing only a subset of neurons in a circuit can create mechanistic
mismatches between a simulated teacher network and a data-constrained student,
even when the two networks have matching single-unit dynamics. In particular,
partial observation of models of low-dimensional cortical dynamics based on
functionally feedforward or low-rank connectivity can lead to surrogate models
with spurious attractor structure. Our results illustrate the challenges inherent in
accurately uncovering neural mechanisms from single-trial data, and suggest the
need for new methods of validating data-constrained models for neural dynamics.

1 Introduction

In recent years, advances in recording techniques have brought forth a deluge of neural data. Simul-
taneous measurements of the activity of hundreds to thousands of neurons can now be obtained at
high spatiotemporal resolution [1–3]. These methods are increasingly deployed to perform longitudi-
nal recordings in animals executing quasi-naturalistic behaviors or complex tasks [2–7], meaning
that one may not have recourse to repeatable trial structure when analyzing these data [8]. A critical
question for contemporary systems neuroscience then arises: How can mechanistic insights about the
neural dynamics underlying animal behavior be extracted from large-scale recordings [3, 5, 7, 9, 10]?

Given access to only a single, non-repeatable measurement of neural activity, a natural question is
whether one could construct a reliable in silico surrogate model for the dynamics of the measured
neural circuit. As this surrogate model would not be subject to measurement limitations, it could be
used to generate hypotheses about the corresponding biological neural populations, and to simulate
how such populations might behave under various external inputs or perturbations. A natural approach
to constructing a surrogate model is to optimize a recurrent neural network (RNN) to mimic the
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recorded neural activity. In recent years, this approach has gained broad popularity, and has been
applied to data from many species and recording modalities [9, 11–20].

Data-driven models of neural dynamics are constructed under a number of less-than-ideal conditions.
First, in single-trial settings, one has access to measurements of dynamics only in a restricted condition
or set of conditions, so it may be impossible to observe how changes in input or in internal state affect
the circuit of interest [8]. Second, the system of interest is only partially observed: one can only
usually record from a subset of the neurons in a given circuit, and certainly cannot simultaneously
record all of their inputs [7]. Third, measurements of neural activity are noisy, and may be biased to
capture only certain components of neural activity. For example, intrinsic indicator dynamics mean
that calcium imaging may effectively low-pass filter neural activity, even if one is only interested
in firing rates and not precise spike times [21, 22]. Fourth, it can be challenging to account for
the presence and structure of intrinsic neuronal noise. Finally, there will always be a significant
mismatch between the single-unit dynamics of a model and biology, as models abstract away or
ignore biophysical details to enable efficient optimization and simulation [17, 18].

Even in the unrealistic scenario where the activity of every relevant neuron is recorded, exactly
inferring synaptic weights from dynamical measurements alone is extremely challenging [23]. A more
modest hope is that data-constrained models should be able to capture the mechanistic dynamical
properties of ground-truth circuits at a qualitative level—that is, to recapitulate slow time scales,
unstable directions, oscillatory dynamics, and attractors [9, 12–14, 17, 19, 24, 25]. Given a data-
constrained model, one can identify attractor properties using dynamical systems analysis [13, 26, 27].
These macroscopic dynamical properties are of substantial neuroscientific interest, as low-dimensional
attractors are believed to underlie observed neural activity across a variety of neural circuits and tasks
[24]. In particular, line attractors—sets of stable fixed points organized along lines in neural activity
space—have been proposed to underlie cognitive functions requiring short-term or working memory,
including sensory integration, decision making, and even aggressive behavior [12, 13, 24, 26, 28, 29].
Importantly, low-dimensional structures in data should be relatively robustly detectable even under
partial observation [7], so there is reason to be optimistic that data-constrained models could correctly
recover line attractor dynamics. Indeed, several recent papers have used data-constrained models
with low-dimensional latent RNN dynamics to propose that line attractors underlie the accumulation
of internal drives and of external reward [12, 13, 30, 31].

However, despite some positive examples [14, 19], previous works have not mapped out how partial
observation affects whether data-driven modeling can accurately recover low-dimensional attractor
structure. To address this question, in this paper, we consider a teacher-student setup in which activity
from one RNN is imitated by another, and show that partial observation can induce mechanistic
mismatches even under relatively ideal conditions where the input to a circuit is either perfectly
known or white noise, and where the single-unit dynamics of the student match the teacher. Our
primary contributions are as follows:

• In §2, we begin with a motivating example: we show that data-constrained modeling fails to dis-
tinguish between two mechanistically-distinct models in a stimulus-integration task. Both a line
attractor network [28] and a functionally feedforward chain [32] are identified as line attractors.

• We then turn to the analytically-tractable setting of noise-driven linear RNNs (§3). In §3.1, we
show that when the teacher is an approximate line attractor, the student will recover this struc-
ture. In contrast, when the teacher connectivity is non-normal, the student may learn spurious
approximate attractor structure. We illustrate this with two biologically-motivated examples:
functionally-feedforward integrators (§3.2), and networks with low-rank connectivity (§3.3).

• Then, in §4, we explore how these insights generalize beyond the linear setting. Focusing on
the example of nonlinear low-rank networks, we show that partial observation once again can
induce overestimation of eigenvalue magnitude. Here, though, this can result in spurious attractor
structure including additional stable fixed points and limit cycles.

Our results begin to illuminate the inductive biases of data-constrained RNNs trained under partial
observation towards particular mechanisms of generating long timescales. They suggest that caution
is warranted in inferring mechanism from data-constrained models, and underscore the primacy of
direct activity perturbations for validating putative attractor dynamics [25].
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Figure 1: Data-constrained models fail to distinguish between mechanistically different sensory
integration circuits. a. Recovery of a line attractor through data-constrained modeling. i). Schematic
of integrator network, showing the subsampled neurons (blue), and its interpretation as a set of
independent self-excitatory modes. ii). Input signal (top) and its integral (bottom) as estimated by the
network (green) and computed exactly (black). iii). Example activity traces from the true network
(top) and an LDS fit to observations of 5% of its neurons (bottom). The agreement is excellent. iv).
Spectrum of time constants for the data-constrained LDS model (main figure) and for the top five time
constants of the true circuit (inset). Both show a single large time constant, indicating approximate
line attractor dynamics, though the data-constrained model underestimates that of the true network.
v-vi). Flow field in the space of the top two principal components of activity for the LDS model (v)
and line attractor network (vi). Shading indicates the magnitude of the flow, while arrows indicate its
direction. Observed activity is shown by dots colored by their time. The learned flow field shows
good qualitative agreement with the ground truth; both networks have a slow line along which the
observed activity is driven. b. As in a, but for a functionally-feedforward integrator circuit. As
diagrammed in (i), this network can be thought of as a set of non-self-exciting modes which are
connected in a feedforward chain. Though this network solves the integration task (ii) and the LDS
fit is good (iii), the LDS identifies a single long time constant that is not present in the true dynamics
(iv). The learned (v) and ground-truth (vi) flow fields correspondingly do not match, with the activity
lying off the slow line of the true dynamics. See Appendix G for detailed experimental methods.

2 A motivating example: data-constrained modeling of integrator circuits

The circuit basis for temporal integration of scalar sensory inputs is a longstanding question in systems
neuroscience [12, 24, 28, 29, 32–41]. Though many models for integrator circuits have been proposed
[28, 32, 37, 40, 42], two linear RNN models are perhaps the most prominent: the line attractor
[28, 40], and the feedforward chain [32, 37]. Both of these models have extremely simple dynamics

τ ż = −z+ Jz+ bu

for state z ∈ RD, recurrent weights J ∈ RD×D, and input u(t) ∈ R encoded through b ∈ RD.
However, they posit structurally distinct mechanisms for how memories can be maintained beyond the
single-unit time constant τ . In classic line attractor networks, the recurrent weights are chosen to be
symmetric, and one eigenvalue of J is tuned to be precisely equal to one, with the rest being less than
one. Then, by choosing the input weights b to align with the corresponding eigenvector, one obtains
a perfect integrator of the signal u(t) [28] (App. A). However, this model suffers from a substantial
fine-tuning problem: slight mis-tuning of the weights causes exponentially large deviations from
perfect integration [28, 32, 37]. In contrast, a functionally feedforward chain maintains a memory
by iteratively passing signals from one mode of activity to the next (Fig. 1; App. A) [32, 37]. Most
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simply, a literal feedforward chain has connectivity Jij = δi+1,j . However, one can encode modes in
distributed patterns of neural activity rather than single neurons, so that this structure is not obviously
apparent in recordings (see App. A for details). Such networks are more robust to mistuning of
synaptic strengths than line attractor networks, but they can only sustain a memory over O(τD) time.
Importantly, the dynamics of such a network are highly non-normal; the recurrent connectivity matrix
J has all eigenvalues equal to zero. Here, inspired by [36], we add skip connections from each mode
to the last mode in the chain (Fig. 1; App. A). This guarantees that, like the line attractor network,
the activity produced by the functionally feedforward network is approximately low-dimensional.

Given the simplicity and ubiquity of these models, we first asked whether data-constrained modeling
could robustly distinguish between them. We constructed a model sensory integration task, which
networks of both architectures could effectively solve (Fig. 1). Using standard variational inference
methods [13, 18], we fit recordings of 5% of the neurons from each network with a latent linear
dynamical system (LDS), which models the neural activity as a linear projection of a low-dimensional
latent RNN [18] (App. G).1 These models explicitly encode the prior belief that population activity is
low-dimensional. In this case, we used 5 latent dimensions.

Though the data-constrained models do an excellent job of capturing the activity recorded from both
the line attractor and the feedforward chain, analyzing the latent dynamics matrices reveals that
both networks are interpreted as approximate line attractors (Fig. 1). In particular, the spectrum of
eigenvalues λ̂i of each LDS dynamics matrix induces a spectrum of decay time constants τ̂i = τ/|1−
ℜλ̂i| (in continuous time; see App. A and B.3) [13, 27]. Previous works have identified networks
with large gaps between the top two timescales as approximate line attractors [13, 27]. As a simple
metric, Nair et al. [13] defined a “line attractor score” log2(τ̂1/τ̂2), and interpreted scores greater
than 1 as indicative of approximate line attractors. The LDS models fitted to these mechanistically
different integrator circuits each have a single slow direction, with a line attractor score in excess
of 6 (Fig. 1). However, visualising the flow fields of the ground truth and data-constrained models
shows that the dynamics of the line attractor are qualitatively recovered well, while the model fit to
recordings of the feedforward chain shows a strong mismatch as it discovers a spurious line attractor
(Fig. 1). Therefore, data-driven modeling fails to distinguish circuit hypotheses for this simple task.

An intuitive explanation for why the data-driven model fails to mechanistically reproduce the
functionally-feedforward chain is immediate: if the single-unit time constants are fixed and the data-
constrained model has fewer neurons, it cannot realize a feedforward chain with sufficiently long
memory [32, 37]. The only way to manufacture long memory timescales with a small number of
latent neurons is through large eigenvalues. This is potentially a fundamental obstacle to the ability
of latent space models to recover neural mechanisms; we will return to this point in the Discussion.

3 A tractable model setting: noise-driven linear networks

Motivated by the observations of the previous section, we now seek a setting in which we can
analytically study the structure of the student RNN’s weight matrix. Whereas in §2 we assumed the
teacher networks were driven by a known low-dimensional signal, here we consider the case in which
the teacher and student are driven by isotropic Gaussian noise. This is an optimistic assumption, as it
means that the teacher network will explore all directions in its phase space evenly over the course of
a single long trial [37].

Concretely, we consider a teacher-student setup in which both networks are rate-based linear RNNs
driven by isotropic Gaussian noise, or, equivalently, their activity evolves according to multivariate
Ornstein–Uhlenbeck (OU) processes [43]. The teacher has D neurons and a recurrent weight matrix
B, such that the dynamics of its firing rate vector z(t) ∈ RD is

τ ż = −z+Bz+ ξ(t)

where ξ(t) is white Gaussian noise. The student’s dynamics are identical, except that it has d neurons,
recurrent weights A, and driving noise η(t), such that its rate x(t) ∈ Rd evolves as

τ ẋ = −x+Ax+ η(t).

Then, the task is to estimate the student’s dynamics matrix A given access only to partial observations
of the teacher’s activity. For simplicity, we assume that we observe the first d neurons of the teacher

1All code is available at https://github.com/wqian0/DataConstrainedRNNs/.
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Figure 2: Partial observation of symmetric teacher networks does not lead to spurious attractor
dynamics in a data-constrained student network. a. Ground truth teacher (red) and learned student
(blue) dynamics matrix eigenvalues. (i),(ii): symmetric teacher without attractor structure. (iii),(iv):
symmetric teacher that is an approximate line attractor. (i),(iii): for infinite observation time. (ii),(iv):
for a finite observation time window. b. Flow fields of learned (student) and ground truth (teacher)
networks for a finite observation window. (i),(ii): symmetric teacher without attractor structure.
(iii),(iv): symmetric teacher that is an approximate line attractor. All plots correspond to 5% partial
observation. See Appendix G for detailed experimental methods.

network for time T , i.e., we observe
xobs(t) = Pz(t) for t ∈ [0, T ] and P = (Id, 0d×(D−d)).

Assuming an isotropic Gaussian prior Aij ∼i.i.d. N (0, 1/(ρT )) scaled such that the long-time limit
is well-defined, we show in Appendix B that the maximum a posteriori (MAP) estimate of A can
be computed explicitly in terms of empirical covariances of xobs(t) [44–47]. To make the problem
analytically tractable, we focus on the limit T →∞, where these covariances can be computed using
classical results on stationary states of OU processes [43, 48]. We assume that the eigenvalues of the
teacher’s weight matrix B have real part strictly less than one, such that it admits a stable stationary
state with covariance S = limt→∞ E[z(t)z(t)⊤]. Then, in the limit of a long observation window
T →∞, the MAP estimate of the student’s dynamics matrix can be written in terms of the stationary
covariance S as (App. B)

Â∞ = PBSP⊤(PSP⊤ + ρId)
−1.

This result is stated in continuous time; we also give the corresponding result for discretized dynamics
in Appendix B. In the fully-observed case, the zero-ridge limit of the MAP recovers the teacher
dynamics matrix, i.e., limρ↓0 Â∞|d=D = B. The stability condition means that we can consider at
best approximate line attractors with arbitrarily large but not infinite time constants, but this is not a
substantial limitation [28, 32, 37].

To determine when this data-driven modeling approach recovers the mechanistic structure of the
teacher, our task is then to analyze the spectrum of Â∞ for various choices of B, as for linear networks
the eigenspectrum fully determines the (approximate) attractor structure [28]. Concretely, letting λi

and λ̂i be the eigenvalues of the teacher and student dynamics matrices, respectively, we want to
compare the resulting spectra of timescales τi = τ/|1−ℜλi| and τ̂i = τ/|1−ℜλ̂i|. We are primarily
interested in whether the existence or non-existence of slow timescales can be accurately recovered.

3.1 Normal dynamics

We begin by considering teacher networks with normal connectivity matrices (BB⊤ = B⊤B).
This includes attractor networks like the idealized line attractor, which have symmetric connectivity
(B = B⊤), and when driven by noise have an equilibrium stationary state [43, 48]. As such matrices
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Figure 3: Heavily subsampling a feedforward chain leads to line-attractor-like student dynamics.
a. Line attractor score as a function of subsampling fraction d/D for teacher networks of varying
sizes D. b. Real parts of the top two eigenvalues of a d = 25 student’s dynamics matrix for varying
teacher network size D. c. As in b., but showing the time constants corresponding to the top two
eigenvalues. Beyond a threshold value of D, the separation increases rapidly. Thus, the student shows
two mechanistic mismatches: First, it learns a dynamics matrix with non-vanishing eigenvalues.
Second, at sufficiently low subsampling fraction the top two eigenvalues are separated by a substantial
gap, yielding line-attractor-like dynamics. See Appendix G for detailed experimental methods.

have orthogonal eigenspaces, the dynamics of a normal teacher network can be viewed as a set of non-
interacting modes with decay timescales determined by the real parts of the eigenvalues (App. A).

For such teachers, we show in Appendix C that partial observation does not lead to overestimation of
timescales under MAP inference. Ordering the eigenvalues of B in descending order of their real
parts as 1 > ℜ(λ1) ≥ ℜ(λ2) ≥ · · · ≥ ℜ(λD), the eigenvalues λ̂i of the student’s dynamics matrix
Â∞ satisfy ℜ(λ1) ≥ ℜ(λ̂i) ≥ ℜ(λD) for all 1 ≤ i ≤ d. However, this positive recovery result does
not exclude the possibility that the spectrum of the student’s dynamics matrix will have qualitatively
distinct gap structure, which would lead to incorrect inference of approximate attractor mechanisms.

In the special case of an ideal line attractor, this does not happen: if the teacher is a symmetric
approximate line attractor, then the student will be as well. Concretely, suppose that B is symmetric,
with eigenvalues satisfying λ1 = 1 − ε, ε ≪ 1, and λi ≪ 1 for i ≥ 2, and that the eigenvector
u1 corresponding to the leading eigenvalue (the direction of the approximate line attractor) is
randomly oriented or delocalized. Then, the eigenvalues of the student dynamics matrix satisfy
λ̂1 ≥ λ1 −O(εD/d) and λ̂2 ≤ λ2 (App. C.3). This implies that approximate line attractors can be
recovered even under heavy partial observation so long as the deviation ε of the teacher dynamics
from a perfect line attractor is small. In Figure 2, we illustrate this successful recovery, and show
that it is not qualitatively affected even if the observation time is finite. This successful recovery is
consistent with what we found in the driven setting in Figure 1.

3.2 Non-normal dynamics: Feedforward amplification

Our results for normal teacher dynamics in §3.1 show that the student can correctly recover line
attractor dynamics, matching our motivating observation in Figure 1. However, we recall that we
found that a non-normal network performing integration through feedforward amplification was
incorrectly recognized as also being a line attractor. While it is challenging to analyze general non-
normal teacher matrices in the noise-driven setting [43, 48], we can show that this mismatch again
emerges for feedforward chains. In particular, we show in Appendix D that the dynamics of a student
of fixed size approach that of a line attractor as teacher size increases. Assume that the teacher is a
perfect feedforward chain with connectivity Bij = δi+1,j . Then, as D →∞ for fixed d, the student
dynamics matrix Â∞ in the limit of long observation time and vanishing regularization approaches
δi+1,j + δidδij , hence its leading eigenvalue approaches 1, while the others tend to zero (App. D).

As illustrated in Figure 2, the qualitative conclusion that partial observation leads to timescale
overestimation does not change even when the observation time is finite. We remark that the fact that
the student becomes closer and closer to a line attractor as D increases is consistent with the intuitive
argument given at the end of Section 2: if the number of observed neurons is fixed and small, the only
way for the student network to capture the long integration window of the feedforward chain is through
tuning its eigenvalues to create long timescales. In Figures 3 and G.3, we substantiate this intuition by
showing how the estimated timescales depend on the size of the teacher network relative to the student.
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Figure 4: Spurious slow directions in data-constrained student models for low-rank teacher dynamics.
a. Learning from a rank-2 teacher. i). Schematic of teacher weights. ii). Ground truth teacher (red)
and learned student (blue) dynamics matrix eigenvalues at 5% subsampling. Note the presence of
a single learned outlier eigenvalue with real part near 1. iii). Activity traces for the teacher (red)
and student (blue) networks. iv). Example student network dynamics for 5% and 50% subsampling
compared to the ground truth (GT). Here, points along the trajectory are colored by their time. The
student dynamics rapidly converge to a line and then decay slowly towards the origin, consistent with
the outlier eigenvalue observed in (ii). b. As in a, but for a rank-3 teacher network. Correspondingly,
the student learns two outlier eigenvalues, and two slow directions. See Appendix G for detailed
experimental methods.

3.3 Low-rank non-normal dynamics

As a second neuroscience-inspired example of non-normal teacher dynamics, we consider low-rank
connectivity. In recent years, low-rank RNNs have emerged as popular models for cortical dynamics
[15, 16, 25, 49, 50]. Importantly for our purposes, they yield low-dimensional population activity,
and hence are again a relatively ideal scenario for data-constrained modeling under partial observation
[7, 50]. However, we find that connectivity that is both non-normal and low-rank can also give rise to
severe timescale overestimation in the student network.

As a particularly simple example of low-rank teacher dynamics, we consider the case in which
B = MN⊤ is rank r ≪ D, with M,N ∈ RD×r having null overlap M⊤N = 0r×r and orthogonal
columns M⊤M = N⊤N = γ2Ir. Then, B is a non-normal matrix with all-zero eigenvalues. When
γ ≫ 1, the stationary covariance S of the teacher network’s activity will have precisely r large
eigenvalues of order γ4, separated from a bulk of eigenvalues that are of O(1) with respect to γ (App.
E). In this large-γ regime where the teacher’s activity is approximately low-dimensional, the student’s
learned dynamics matrix has r eigenvalues approaching 1, with the rest approaching zero (App. E).
Therefore, the student learns an r-dimensional hyperplane attractor. Importantly, this can occur when
γ2 is chosen such that B has order-1 elements. We show how this effect depends on subsampling
fraction in G.4.

In simulations, we observe a finite observation time effect whereby only r − 1 of the learned
eigenvalues are near 1 when process noise is small (Fig. G.1). Consequently, fitting a student network
to a non-normal teacher with null overlap connectivity of rank r as described above can result in
the spurious discovery of approximate (r − 1)-dimensional hyperplane attractors. We illustrate this
explicitly for the cases r = 2 and r = 3, where observing only 5% of the neurons in the teacher
network leads to the spurious discovery of approximate line attractor and plane attractor dynamics,
respectively, despite nearly perfectly recapitulating the observed activity (Fig. 4). Consistent
with these observations, we show that latent LDS models fit to the same teacher activity via more
sophisticated variational inference methods also learn a few vastly enlarged timescales (Fig. G.5).

4 Mismatched attractor structure in data-constrained nonlinear networks

Though the linear networks studied in §3 are analytically tractable, they are of course inherently
limited in the types of attractor dynamics they can display. We therefore asked which qualitative
insights from the linear setting carry over to nonlinear networks where one allows for a nonlinear
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firing rate transfer function ϕ. That is, we again consider a student-teacher setup, but now the teacher
and student dynamics are τ ż = −z+Bϕ(z)+ξ(t) and τ ẋ = −x+Aϕ(x)+η(t), respectively (App.
B). Our focus is again on low-rank networks, both for their usage as models for cortical processing
and for the fact that their approximately low-dimensional activity makes them a natural candidate for
data-driven modeling under partial observation [15, 16, 49].

While it is less straightforward to relate attractor dynamics to the eigenspectrum of B in the nonlinear
setting, one can still use spectral information to gain insight into the dynamics near the trivial fixed
point at the origin. Specializing to ϕ(z) = tanh(z), the Jacobian of the teacher dynamics at the
origin is simply −ID +B, and that of the student is analogously −Id +A. Therefore, connectivity
matrix eigenvalues of real part greater than 1 would imply that the fixed point at the origin is
unstable, and thus the network must support other dynamical behavior (e.g, other stable fixed points,
limit cycles, and/or chaos). In the linear case, eigenvalues of real part greater than 1 were never
spuriously discovered, as that would yield exponentially divergent activity. However, with a saturating
nonlinearity, this extreme eigenvalue overestimation is no longer pathological. Indeed, when we infer
the weights of a student network using MAP estimation, we find that at small subsampling fractions
the student can learn eigenvalues of real part greater than one from a teacher with no such eigenvalues
if the teacher connectivity is non-normal. Strikingly, this can lead to the discovery of spurious limit
cycles (Fig. 5a) and fixed points (Fig. G.6).

At this point, one might ask whether the eigenvalue overestimation phenomenon we have observed is
an artefact of the estimation methods (thus far, MAP and LDS variational inference) on which we
have focused. The conceptual argument given at the end of §2 suggests that this should hold more
broadly for low-dimensional student networks learning from partial observations of high-dimensional
teachers, but this is a heuristic argument, not a rigorous test. We therefore applied several other
commonly-used inference methods [14, 51, 52] to fit student dynamics in the low-rank nonlinear
teacher setting. All of the methods produced mismatched attractor structure, with many showing a
propensity to overestimate eigenvalues, yielding spurious limit cycles (Fig. 5). We show that these
effects persist for more general teacher weight matrices and for student networks with additional
hidden units to account for unobserved neurons in Fig. G.2.

5 Discussion

In this paper, we have shown partial observation can lead data-constrained models to incorrectly
identify the mechanistic basis for slow recorded neural dynamics. We found that, while attractor-
like networks can be faithfully recovered even when only a small fraction of neurons are recorded,
data-constrained models can learn spurious attractor structure from non-normal transient dynamics.

As noted in §2, an intuitive explanation of our results for linear networks is that low-dimensional
dynamical systems are limited in the longest timescales they could generate through functionally
feedforward integration, and thus are inherently biased towards line-attractor-like mechanisms when
fit to observations of slow dynamics. Though our focus has been on partial observation as a driver
for this dimensional restriction, most approaches to data-constrained modeling with latent dynamics
explicitly bias model selection towards smaller latent spaces. In particular, it is standard to select the
smallest latent space dimension that captures more than a certain threshold fraction of the variance
in the data [13, 18]. This will necessarily favor approximate-attractor-like solutions. Indeed, if one
applied such a model selection procedure to the integrator models studied in Figure 1, one would
select at most a two-dimensional latent space (see Figure G.8), and thus fall victim to the failure
mode noted there. This bias in model selection procedures illustrates a wider issue: benchmarking
and model selection based on explained variance for a restricted set of measured dynamics alone
are not necessarily sufficient to diagnose mechanistic mismatches [23, 53]. It highlights a tension
between the desire to recapitulate mechanism and our intuitive conception of low dimensionality as a
signature of model parsimony.

Here, we have focused on the setting in which one measures dynamics over a single trial for inputs
that are either fully known or white noise. Previous works have shown how failure to account for
unobserved inputs can lead to incorrect eigenvalue estimation [19]. Moreover, most previously-
proposed methods to disentangle input-driven versus autonomous dynamics require repeatable trial
structure [10, 19, 54]. Our work focuses only on the effects of unobserved neurons, and does not
attempt to address this additional source of mechanistic mismatch. Observation of a network under
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Figure 5: Eigenvalue overestimation leads to spurious limit cycle discovery across diverse inference
methods. a. Learning from a noise-driven teacher with low-rank non-normal connectivity using MAP
estimation. i). Ground truth teacher (red) and learned student (blue) dynamics matrix eigenvalues at
10% subsampling. Note the conjugate pair of learned eigenvalues with real part greater than 1. ii).
Activity traces for the teacher (red) and student (blue) networks at 10% subsampling. iii). Example
student network dynamics for 10% and 50% subsampling compared to the ground truth (GT). b. As
in a, but for the “Convex Optimization of Recurrent Neural Networks (CORNN)” algorithm proposed
by [14]. Since CORNN was proposed for leaky-rate (as opposed to leaky-current) dynamics, we
modify the student and teacher dynamics accordingly. A spurious limit cycle is fit at 5% subsampling.
c. As in a, but using backpropagation through time (BPTT). d. As in a, but for the recursive-least-
squares based FORCE algorithm [51]. See Appendix G for detailed numerical methods.

a restricted set of input conditions poses a particularly striking challenge if it has a spectrum of
heterogeneous integration timescales. If inputs drive activity along only a subset of dimensions, it is
easy to imagine how a heterogeneous spectrum of time constants could be reductively interpreted as
low-dimensional attractor structure [38, 39, 55]. When studying circuits whose upstream inputs are
not well-understood dynamically, inferences about circuit-intrinsic attractor structure become even
more tenuous.

As our work shows that data-constrained models can fail to correctly distinguish between mechanisti-
cally different hypotheses for the circuit basis of slow dynamics, an important question is how one
should validate putative attractor structure. Though we do not address this issue in the present work,
the obvious candidate for conclusive validation of attractor dynamics is of course direct experimental
perturbation of neural activity. Daie, Svoboda, and colleagues have identified feedforward amplifi-
cation (in lieu of line-attractor-like dynamics) in anterior lateral motor cortex using the correlation
structure of responses to optogenetic perturbations [36]. O’Shea, Duncker, and colleagues have used
targeted optogenetic perturbations to interrogate putative low-dimensional dynamics in primate mo-
tor cortex [25]. There, they show that data-constrained models with unconstrained weight matrices
do not readily predict perturbation responses, while those with weight matrices constrained to be low-
rank capture the fast recovery of the dynamics to a low-dimensional subspace. After the completion
of our work, Vinograd et al. [56] have begun to interrogate putative line attractor dynamics in hy-
pothalamus using similar perturbations. An important question for future work will be to determine
how specifically targeted a patterned optogenetic perturbation must be in order to distinguish between
the line attractor and functionally-feedforward integrator networks studied here. Another important
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question is how to relate patterned stimuli in silico and in vivo, particularly for latent variable models
where a possibly ill-posed inversion of the latent state to observed neuron mapping would be required.

Finally, we remark that our work relates to a broader question of inference for partially-observed
dynamical systems. There is a substantial literature on performance guarantees for parameter
estimation for linear systems, which largely focuses on predictive accuracy rather than qualitative
features [44–47, 57]. There are also a host of methods which leverage delay embeddings; in addition
to predictive accuracy, these methods prioritize accurately inferring the dimensionality and topological
structure of an underlying system [20, 58–60]. However, such methods are “equation-free", and
thus are not ideal for identifying how dynamical variables are coupled [61]. Consequently, such
methods might not be suitable for distinguishing between mechanistically distinct circuit hypotheses
that generate similarly low dimensional neural activity. Indeed, delay embeddings do not appear to
distinguish between the two integrator circuits studied here (Fig. G.7). We leave a more detailed
investigation of delay embedding-based approaches for future work.
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A Introduction to integrator models

In this appendix, we provide a brief, pedagogical introduction to the integrator models used as
motivating examples in §2. We recall from the main text that both models have dynamics

τ ż = −z+ Jz+ bu

for state z ∈ RD, recurrent weights J ∈ RD×D, and input u(t) ∈ R encoded through a vector
b ∈ RD. They differ only in the choice of weight matrix J . These linear dynamics are of course
exactly solvable, yielding

z(t) = e(J−ID)t/τz(0) +

∫ t

0

ds

τ
e(J−ID)(t−s)/τbu(s).

A.1 Line attractor

The construction of the classic line attractor network as popularized by Seung [28] starts by assuming
that J is symmetric, such that it admits an orthogonal eigendecomposition with real eigenvalues

J = OΛO⊤

for OO⊤ = O⊤O = ID and Λ = diag(λ1, . . . , λD) for λj ∈ R. We assume that the eigenvalues are
ordered as λ1 ≥ λ2 ≥ · · · ≥ λD. For the system to be stable, we must of course have λj ≤ 1 for all
j. Then, letting

z̃(t) = O⊤z(t)

and
b̃ = O⊤b

be the projections of the state and encoding vector into the eigenvector basis, we have

z̃j(t) = e−t/τj z̃j(0) + b̃j

∫ t

0

ds

τ
e−(t−s)/τju(s),

where we have introduced the timescales

τj =
τ

1− λj
.

Then, it is easy to see that if for some j we have λj = 1, the corresponding timescale τj will be
infinite and the activity z̃j(t) along that dimension will perfectly integrate u(t). If integrating u(t)
in a way that is stable to perturbations of the network is our only goal, then activity along other
dimensions should decay in time, meaning that we should have all other eigenvalues be strictly less
than one, i.e., 1 = λ1 > λ2 ≥ · · · ≥ λD. Moreover, we should have b̃k = 0 for all k > 1, i.e., the
input should be aligned to the top eigenvector of J . For the decay to be fast, we want the gap between
λ1 and λ2 to be large. The classic line attractor network achieves this very simply, choosing

Jij =

{
0 i = j

1/(D − 1) i ̸= j
,

such that it has eigenvalue 1 with multiplicity 1, corresponding to an eigenvector proportional to 1D,
and eigenvalue −1/(D − 1) with multiplicity D − 1 [28, 40].

However, in a realistic setting, it will not be possible to fine-tune the top eigenvalue exactly to 1, and
there will be some decay along the integration dimension. Therefore, one must consider approximate
line attractor dynamics, for which λ1 = 1− ε for some error ε > 0, while the other eigenvalues are
far smaller, i.e., λ1 ≫ λ2 ≥ · · · ≥ λD [13, 27, 28, 40]. This network is exceptionally sensitive to
the error ε, as with λ1 = 1− ε one has τ1 = τ/ε, and the error between the true integral of u(t) and
the readout from the approximate attractor network is exponentially large in time. Yet, so long as
λ1 ≫ λ2, perturbations along the approximate integration dimension will still decay exponentially
more slowly than those along other dimensions.
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In Figure 1, we generated connectivity J such that the largest eigenvalue is close to 1, and all other
eigenvalues are < 1. Specifically, we used J = QΛQ−1 for

Λij =


1− 10−3 i = j = 1

0.2 i = j ≥ 2

0 i ̸= j

,

and Q a matrix generated with entries Qij ∼ N (0, 1√
D
). Note that for realism, we have relaxed the

symmetry constraint, and instead use connectivity that can be related to a corresponding symmetric
approximate line attractor via a similarity transform. We use D = 500 as the size of the network.

A.2 Functionally-feedforward integrator

The exquisite sensitivity of the line attractor network to small perturbations of the synaptic weights
has motivated theoretical investigation of a panoply of alternative integrator circuits. Restricting our
attention to simple linear networks, the most prominent proposal is approximate integration through
functionally-feedforward non-normal integration [32, 37]. This model starts with the following
linear-algebraic observation: if J is non-normal (i.e., JJ⊤ ̸= J⊤J), though one loses orthogonal
diagonalizability, one can still consider the Schur decomposition

J = OTO⊤,

where O is orthogonal and T is upper triangular. As proposed by Goldman [32], the Schur decom-
position is a more conceptually useful tool for interpreting non-normal dynamics than the eigende-
composition, as it preserves the orthogonality of the modes. In particular, while if the dynamics are
normal T is diagonal and each mode only excites itself, if J is non-normal a given mode may interact
‘later’ modes in a hidden feedforward structure, revealing a circuit basis for non-normal amplification.

As the simplest example of this structure, Goldman [32] considered a hidden chain structure
Tij = δi+1,j .

As T is strictly upper triangular, all eigenvalues of J vanish. Considering the mode decomposition

z̃(t) = O⊤z(t)

and
b̃ = O⊤b

as we did in the symmetric case, we have the mode-wide dynamics

τ ˙̃zj+1(t) = −z̃j+1(t) + z̃j(t) + b̃j+1u(t).

This gives sequential low-pass filtering of the input, which allows approximate maintenance of a
memory over O(τD) time [32, 37]. Importantly, this mechanism is inherently far less sensitive to
small variations in the weights than the line attractor.

For the functionally feedforward network in Figure 1, we use
Tij = δi+1,j + βδi,1(1− δ1,j).

Here, β controls the strength of skip connections that further amplify the output mode of activity.
We select β = 0.5 so that, like the line attractor network, the activity produced by the functionally
feedforward network is approximately low-dimensional. We generate O as an orthonormal matrix
uniformly at random with respect to the Haar measure, and use D = 500 as the size of the network.
For input weights, we use the sum of the Schur modes b =

∑D
i=1 O:,i, where O:,i denotes the ith

Schur mode. Then, any readout proportional to the mean Schur mode will then solve the integration
task up to a constant rescaling. To achieve the correct readout scale for β = 0.5, we used readout
weights 0.7 ·O, where O = 1

D

∑D
i=1 O:,i denotes the mean Schur mode.

B MAP inference of connectivity in noise-driven RNNs

In this Appendix, we lay out the procedure sketched in §3 for maximum a posteriori (MAP) inference
of connectivity in noise-driven RNNs that underlies our analytical results. We first consider the
continuous-time setting directly, and then the discretized case.
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B.1 Continuous time

We first consider the continuous-time setting. We recall from the main text that we consider a teacher-
student setup, where the teacher has D neurons and a recurrent weight matrix B, such that the
dynamics of its firing rate vector z(t) ∈ RD is

τ ż = −z+Bϕ(z) + ξ(t)

where ξ(t) is uncorrelated Gaussian noise with E[ξ(t)] = 0 and E[ξ(t)ξ(s)⊤] = 2σ2
ξδ(t − s)ID,

and ϕ is a possibly nonlinear transfer function, which we take to act elementwise. Again, we assume
a d-dimensional student with recurrent weights A, such that its rate x(t) ∈ Rd evolves as

τ ẋ = −x+Aϕ(x) + η(t),

where η(t) is d-dimensional white noise with E[η(t)] = 0 and E[η(t)η(s)⊤] = 2σ2
ηδ(t − s)Id.

Assuming d < D, we observe the first d neurons of the teacher:
xobs(t) = Pz(t) for t ∈ [0, T ] and P = (Id, 0d×(D−d)).

Our goal is to infer the student’s weight matrix A given these observations.

To do so, we use MAP inference. Our starting point is the likelihood of observing a trajectory
{xobs(t) : t ∈ [0, T ]} given a particular weight matrix A, which using the path integral representation
of an Itô process can be written non-rigorously as

p({xobs(t) : t ∈ [0, T ]} |A) ∝ exp

[
− 1

2σ2
η

∫ T

0

dt ∥τ ẋobs(t) + xobs(t)−Aϕ(xobs(t))∥2
]
.

Here, we have used that
ϕ(xobs) = ϕ(Pz) = Pϕ(z)

to simplify the notation. To make the problem analytically tractable, we choose an isotropic Gaussian
prior over the elements of A:

Aij ∼i.i.d. N

(
0,

σ2
η

Tρ

)
where ρ > 0. We have chosen this parameterization of the prior variance because it makes the log-
posterior density particularly simple:

L = −
σ2
η

T
log p(A | {xobs(t) : t ∈ [0, T ]})

=

∫ T

0

dt

T
∥τ ẋobs(t) + xobs(t)−Aϕ(xobs(t))∥2 + ρ∥A∥2F .

We remark that we have proceeded rather cavalierly in our treatment of the functional density, but
this procedure can equally well be viewed as ridge-regularized least-squares estimation. We will also
arrive at the same characterization of the log-posterior density as the continuous-time limit of the
discrete setting in the subsequent subsection.

As the log-posterior density is quadratic, it is easy to read off that the MAP estimate of A is

ÂT =

[∫ T

0

dt

T
[τ ẋobs(t) + xobs(t)]ϕ(xobs(t))⊤

][∫ T

0

dt

T
ϕ(xobs(t))ϕ(xobs(t))⊤ + ρId

]−1

,

where we add a subscript T to emphasize the observation window. Using the dynamics of xobs(t) =
Pz(t), we can re-write this in terms of the teacher’s dynamics as

ÂT = P

[
BCT +

∫ T

0

dt

T
ξ(t)ϕ(z(t))⊤

]
P⊤ [PCTP

⊤ + ρId
]−1

(B.1)

where

CT =

∫ T

0

dt

T
ϕ(z(t))ϕ(z(t))⊤

is the empirical covariance of the teacher network activity.
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So far, we have let ϕ be general. However, we now specialize to the linear setting ϕ(z) = z, in
which the student and the teacher are Ornstein–Uhlenbeck (OU) processes. Then, we have the formal
solution

z(t) = e(−ID+B)tz(0) +

∫ t

0

ds e(−ID+B)(t−s)ξ(s),

and, at least in the long-time limit, we can leverage the classical theory of such processes [43, 48].

Provided that all eigenvalues of the dynamics matrix −ID +B have negative real part, this process
will converge to a Gaussian stationary state with equal-time covariance

Es[z(t)z(t)
⊤] = S

which solves the Lyapunov equation
(ID −B)S + S(ID −B) = 2σ2

ξID,

or equivalently is given by the matrix integral

S = 2σ2
ξ

∫ ∞

0

dt e−(ID−B)te−(ID−B)⊤t.

In the stationary state, the time-lagged correlation

C(τ) = Es[z(t)z(t+ τ)⊤]

is given by

C(τ) = e−(ID−B)τS

Moreover, if one adds infinitesimal linear perturbations to the dynamics as
ż(t) = (−ID +B)z+ η(t) + h(t),

one has that the linear response to perturbations of the system in the stationary state is given by

Rij(τ) =
δEs[zi(t+ τ)]

δhj(t)
= e−(ID−B)τ

so that
C(τ) = R(τ)S.

Thus, we will have
lim

T→∞
CT = S,

and we claim that

lim
T→∞

∫ T

0

dt

T
ξ(t)z(t)⊤ = 0.

The vanishing of this term follows from the observation that

E

[∫ T

0

dt

T
ξ(t)z(t)⊤

]
= 0

while by the Itô isometry

E

(∫ T

0

dt

T
ξ(t)z(t)⊤

)
ij

(∫ T

0

dt

T
ξ(t)z(t)⊤

)
i′j′

 =
1

T
δii′σ

2
ξ

∫ T

0

dt

T
E[zj(t)zj′(t)].

Thus, from (B.1), we conclude that the MAP estimated student dynamics matrix in the long time
limit takes the form

Â∞ = PBSP⊤ (PSP⊤ + ρId
)−1

. (B.2)

As an aside, if B is a symmetric matrix, the process will be reversible, and the stationary state an
equilbrium. In this case, setting σ2

ξ = 1 for brevity, the stationary covariance takes the relatively
simple form

S =

∫ ∞

0

dt e−(ID−B)t = (ID −B)−1. (B.3)

In this case, we can gain some intution for the effect of partial observation directly from considering
the stationary covariance. Consider a generic symmetric weight matrix, partitioned according to the
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observed and non-observed neurons:

B =

(
Boo Bon

B⊤
on Bnn

)
We can then write the marginal covariance matrix of the observed neurons as

Soo = [Id −Boo −Bon(ID−d −Bnn)
−1B⊤

on]
−1.

We can then interpret

Boo +Bon(ID−d −Bnn)
−1B⊤

on

as a sort of effective weight matrix that accounts for the effect of feedback through the unobserved
neurons on the stationary state.

B.2 Discrete time

We now consider the discrete-time setting, in which the teacher and student are both AR(1) processes.
Our goal here is to show that taking the continuum limit of the resulting estimate of the dynamics
matrix recovers the result obtained directly in continuous time. Letting

α =
∆t

τ
be the discretization scale, the teacher’s dynamics are now

zt = (1− α)zt−1 + αBϕ(zt−1) +
√
2αξt, (B.4)

where ξt ∼ N (0, σ2
ξID) is isotropic Gaussian noise, while those of the student are

xt = (1− α)xt−1 + αAϕ(xt−1) +
√
2αηt.

where ηt ∼ N (0, σ2
ηId) is isotropic Gaussian noise. The likelihood of some observed data

{xobs
t }t∈[T ] is then given by

P ({xobs
t }t∈[T ]|A) ∝

T∏
t=1

exp

(
− 1

2σ2
ηα
||(1− α)xobs

t−1 + αAϕ(xobs
t−1)− xobs

t ||22
)
,

which is precisely the time-sliced analogue of the functional density considered above. Again
assuming an isotropic Gaussian prior on the entries of A, we obtain the corresponding loss function

L =
1

T

T∑
t=1

||(1− α)xo
t−1 + αAϕ(xo

t−1)− xo
t ||22 + ρ||A||22

where ρ corresponds to the strength of the prior/regularization. We then can arrive at the MAP
estimate of the dynamics matrix

ÂT = α

(
1

T

T∑
t=1

(xo
t − (1− α)xo

t−1)ϕ(x
o
t−1)

⊤

)(
ρI + α2 1

T

T∑
t=1

ϕ(xo
t−1)ϕ(x

o
t−1)

⊤

)−1

.

Again assuming that the observed data {xobs
t }t∈[T ] are produced via partial observations of the teacher

activity
xobs
t = Pzt, P =

(
Id×d 0d×(D−d)

)
,

we can then describe the learned dynamics matrix solely in terms of properties of the teacher RNN:

ÂT = α2P

(
BCT +

1

T

T∑
t=1

ξtϕ(zt−1)
⊤

)
P⊤ (ρId + α2PCTP

⊤)−1
,

where

CT =
1

T

T∑
t=1

ϕ(zt−1)ϕ(zt−1)
⊤.

It is now easy to see that the continuum limit of this discrete-time estimate converges in distribution
to the continuous-time result.
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In discrete time, it is easy to see that

E

[
1

T

T∑
t=1

ξtϕ(zt−1)
⊤

]
= 0

and

E

( 1

T

T∑
t=1

ξtϕ(zt−1)
⊤

)
ij

(
1

T

T∑
t=1

ξtϕ(zt−1)
⊤

)
i′j′


=

1

T 2

T∑
t=1

E[ξt,iϕ(zt−1,j)ξt,i′ϕ(zt−1,j′)] +
1

T 2

T∑
t=1

∑
s̸=t

E[ξt,iϕ(zt−1,j)ξs,i′ϕ(zs−1,j′)]

= δii′σ
2
ξ

1

T 2

T∑
t=1

E[ϕ(zt−1,j)ϕ(zt−1,j′)]

+
1

T 2

T∑
t=1

∑
s>t

E[ξt,iϕ(zt−1,j)ϕ(zs−1,j′)]E[ξs,i′ ]

+
1

T 2

T∑
t=1

∑
s<t

E[ϕ(zt−1,j)ξs,i′ϕ(zs−1,j′)]E[ξt,i]

= δii′σ
2
ξ

1

T 2

T∑
t=1

E[ϕ(zt−1,j)ϕ(zt−1,j′)]

=
1

T
δii′σ

2
ξ (CT )jj′ ,

as zt−1 is independent of ξt. Then, so long as CT remains bounded, this correlator tends in probability
to zero as T →∞.

We thus arrive at the MAP estimate of the student dynamics matrix in the long time limit:

Â∞ = α2PBC∞P⊤ (ρId + α2PC∞P⊤)−1
,

the discrete time analog of (B.2). If we specialize to the linear case, letting
J = (1− α)ID + αB

such that
zt = Jzt−1 +

√
2αξt,

we have the formal solution

zt = J tz0 +
√
2α

t∑
k=1

J t−kξk.

B.3 A note on time constants

We note an equivalence between the time constants

τi =
τ

|1−ℜλi|
used in this work and the discrete time analog used in previous work [13, 27, 30],

τ ′i =

∣∣∣∣ 1

ln |λ′
i|

∣∣∣∣ ,
where λ′

i are the eigenvalues of the discrete-time dynamics matrix J = (1 − α)ID + αB,
which in terms of the eigenvalues λi of B has eigenvalues λ′

i = 1 − α + αλi. Thus, |λ′
i| =√

(1− α+ αℜλi)2 + (αℑλi)2. Taylor-expanding the logarithm yields

(∆t)τ ′i =

∣∣∣∣ τ

(1−ℜλi) +O(α)

∣∣∣∣
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or, in the true continuous-time limit,

lim
∆t↓0

(∆t)τ ′i =
τ

|1−ℜλi|
,

which matches the continuous-time time constants. For α ≪ 1 − ℜλi, we therefore may use the
continuous-time result with negligible error.

C Normal teacher

In this Appendix, we derive the two results on normal teachers claimed in §3.1 of the main text:
that the student eigenvalues are contained within the support of the teacher spectrum, and that an
approximate line attractor is recovered by MAP inference even under severe partial observation.

Assuming that BB⊤ = B⊤B, for large T , we can simplify the teacher covariance as follows:

CT =
1

T

T∑
t=1

zt−1z
⊤
t−1

≈ 1

T

T∑
t=1

J t−1z0z
⊤
0 (J

⊤)t−1 +
2ασ2

ξ

T

T∑
t=2

t−1∑
τ=1

J t−1−τ (J⊤)t−1−τ ,

as only the diagonal noise terms should contribute. Further, the first sum above should also tend to 0
assuming that J only has eigenvalues with modulus < 1. Note that if α is small, this condition is
equivalent to the real parts of eigenvalues of B being < 1. Simplifying the remaining term, we have

2ασ2
ξ

T

T∑
t=2

t−1∑
τ=1

J t−1−τ (J⊤)t−1−τ =
2ασ2

ξ

T

T∑
t=2

t−1∑
τ=1

(JJ⊤)t−1−τ

=
2ασ2

ξ

T

T∑
t=2

(JJ⊤)t−1
t−1∑
τ=1

(JJ⊤)−τ ,

where the first equality above follows from normality of B. Summing this Neumann series, this
simplifies to

=
2ασ2

ξ

T

T∑
t=2

(JJ⊤)t−1((ID − (JJ⊤)−1)−1(ID − (JJ⊤)−t)− ID)

=
2ασ2

ξ

T

[(
((ID − (JJ⊤)−1)−1 − ID)

T∑
t=2

(JJ⊤)t−1

)
− (ID − (JJ⊤)−1)−1(JJ⊤)−1(T − 2)

]
.

The only term that remains in the limit T →∞ is

−
2ασ2

ξ

T
(ID − (JJ⊤)−1)−1(JJ⊤)−1T = 2ασ2

ξ (ID − JJ⊤)−1,

yielding
C∞ = 2ασ2

ξ (ID − JJ⊤)−1.

Expanding,

JJ⊤ = (1− α)2ID + (1− α)α(B +B⊤) + α2BB⊤

= ID + 2α(Bs − ID) + α2(BB⊤ − 2Bs),

where we have defined Bs =
B+B⊤

2 as the symmetric part of B. This yields the simplification

C∞ = σ2
ξ

[
ID −Bs + α

(
Bs −

1

2
BB⊤

)]−1

.

For α≪ 1, we recover the continuous time result for symmetric B stated in (B.3).

Thus, we arrive at the expression

Â∞ = PB(ID −Bs)
−1P⊤(ρ̃Id + P (ID −Bs)

−1P⊤)−1

where the regularization ρ̃ has been re-scaled appropriately to absorb constants.
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Since B is normal, it can be diagonalized over C as B = UΛU∗. Observe that B+B⊤

2 = B+B∗

2 =
Uℜ(Λ)U∗ where ℜ denotes the real part. We then have that

Â∞ = PUΛ(ID −ℜ(Λ))−1U∗P⊤
(
ρ̃Id + PU(ID −ℜ(Λ))−1U∗P⊤

)−1

=

(
D∑
i=1

λi

1−ℜ(λi)
ui
1:d(u

i
1:d)

∗

)(
ρ̃Id +

D∑
i=1

1

1−ℜ(λi)
ui
1:d(u

i
1:d)

∗

)−1

(C.1)

where ui
1:d represents the truncated/projected ith eigenvector of B. For brevity, define K =(

ρ̃Id +
∑D

i=1
1

1−ℜ(λi)
ui
1:d(u

i
1:d)

∗
)

.

We first analyze the symmetric case B = B⊤, where the argument is slightly simpler. The more
general normal case is addressed in C.1. In this case, we have:

Â∞ =

(
D∑
i=1

λi

1− λi
ui
1:d(u

i
1:d)

⊤

)
K−1 (C.2)

Using the fact that for general matrices P and Q, PQ and QP have the same eigenvalues, we can
instead analyze the spectrum of

Â′
∞ = K−1/2

(
D∑
i=1

λi

1− λi
ui
1:d(u

i
1:d)

⊤

)
K−1/2.

Using that λ1 ≥ λi for all i, we have

Â′
∞ ⪯ K−1/2

(
D∑
i=1

λ1

1− λi
ui
1:d(u

i
1:d)

⊤

)
K−1/2

where P ⪯ Q denotes that P −Q is negative semidefinite.

If we further suppose that ρ̃λ1 ≥ 0, we have the relation

K−1/2

(
D∑
i=1

λ1

1− λi
ui
1:d(u

i
1:d)

⊤

)
K−1/2 ⪯ K−1/2

(
ρ̃λ1Id +

D∑
i=1

λ1

1− λi
ui
1:d(u

i
1:d)

⊤

)
K−1/2

= K−1/2(λ1K)K−1/2

= λ1Id

Thus, if ρ̃λ1 ≥ 0, all eigenvalues of Â∞ satisfy λ̂i ≤ λ1. Similarly, if ρ̃λD ≤ 0, all eigenvalues of
Â∞ satisfy λ̂i ≥ λD. Both upper and lower bounds are necessarily satisfied simultaneously in the
ridgeless limit ρ→ 0.

C.1 More general normal matrix case

Suppose B has p pairs of complex eigenvalues λcj , λcj with corresponding eigenvectors ucj , ucj , as
well as D−2p real eigenvalues λrj with corresponding eigenvectors urj . We can then rewrite (C.1) as

Â∞ =

2

p∑
j=1

ℜ(λcj )

1−ℜ(λcj )
Fcj + 2

p∑
j=1

ℑ(λcj )

1−ℜ(λcj )
Gcj +

D−2p∑
j=1

u
rj
1:d(u

rj
1:d)

⊤ λrj

1− λrj

K−1

where
Fcj =

(
ℜ(ucj

1:d)ℜ(u
cj
1:d)

⊤ + ℑ(ucj
1:d)ℑ(u

cj
1:d)

⊤)
and

Gcj =
(
ℜ(ucj

1:d)ℑ(u
cj
1:d)

⊤ −ℑ(ucj
1:d)ℜ(u

cj
1:d)

⊤)
. Similarly, we can also express K in terms of real components:

K = ρ̃Id + 2

p∑
j=1

1

1−ℜ(λcj )
Fcj +

D−2p∑
j=1

1

1− λrj

u
rj
1:d(u

rj
1:d)

⊤.
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We then study the spectrum of

Â′
∞ = K−1/2

(
2

p∑
j=1

ℜ(λcj )

1−ℜ(λcj )
Fcj + 2

p∑
j=1

ℑ(λcj )

1−ℜ(λcj )
Gcj +

D−2p∑
j=1

u
rj
1:d

λrj

1− λrj

(u
rj
1:d)

⊤

)
K−1/2

Â′
∞ is no longer symmetric because of the skew-symmetric components Gcj . However, we can still

analyze the symmetric component

(Â′
∞)s = K−1/2

2

p∑
j=1

ℜ(λcj )

1−ℜ(λcj )
Fcj +

D−2p∑
j=1

u
rj
1:d

λrj

1− λrj

(u
rj
1:d)

⊤

K−1/2.

As before, under the condition ρ̃ℜ(λ1) ≥ 0, we have the ordering

(Â′
∞)s ⪯ K−1/2

ρ̃ℜ(λ1)Id + 2

p∑
j=1

ℜ(λ1)

1−ℜ(λcj )
Fcj +

D−2p∑
j=1

u
rj
1:d

ℜ(λ1)

1− λrj

(u
rj
1:d)

⊤

K−1/2

= K−1/2(ℜ(λ1)K)K−1/2

= ℜ(λ1)Id

We can then observe that v⊤(Â′
∞ − ℜ(λ1)Id)v ≤ 0 for arbitrary v ∈ Rd, since the symmetric

component of Â′
∞ −ℜ(λ1)Id is NSD. This implies that ℜ(λ̂j) ≤ ℜ(λ1) for all j.

Similarly, under the condition ρ̃λD ≤ 0, ℜ(λ̂j) ≥ ℜ(λD) for all j. Both upper and lower bounds
again hold simultaneously for ρ→ 0, regardless of the teacher spectra.

C.2 Stronger result for symmetric teachers

In the symmetric case B = B⊤ with ρ→ 0, we can also show a stronger result that λ̂j ≤ λj for all
j ∈ {1, . . . d}:
Observe that for any j > 1, that

Â′
∞ = K−1/2

(
j−1∑
i=1

λi

1− λi
ui
1:du

i
1:d

⊤
)
K−1/2 +K−1/2

 D∑
i=j

λi

1− λi
ui
1:du

i
1:d

⊤

K−1/2

Let λj(·) denote the jth largest eigenvalue of ·. Applying Weyl’s inequality, we have

λj(Â
′
∞) ≤ λj

(
K−1/2

(
j−1∑
i=1

λi

1− λi
ui
1:du

i
1:d

⊤
)
K−1/2

)

+ λ1

K−1/2

 D∑
i=j

λi

1− λi
ui
1:du

i
1:d

⊤

K−1/2


= λ1

K−1/2

 D∑
i=j

λi

1− λi
ui
1:du

i
1:d

⊤

K−1/2

 (C.3)

which follows since the first term of the RHS is of rank ≤ j − 1.

We also have that

K−1/2

 D∑
i=j

λi

1− λi
ui
1:du

i
1:d

⊤

K−1/2 ⪯ K−1/2

 D∑
i=j

λj

1− λi
ui
1:du

i
1:d

⊤

K−1/2

= λjID

Thus, we can bound (C.3) above by λj , yielding the result

λ̂j ≤ λj (C.4)
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C.3 Line attractor recovery

Suppose the teacher is a near perfect symmetric line attractor. In particular, let B = B⊤ have
eigenvalues λ1 = 1− ε, ε≪ 1, and λi ≪ 1 for i ≥ 2. For simplicity, assume ρ→ 0. In this case,
we can express (C.2) as

Â∞ =

(
1− ε

ε
u1
1:d(u

1
1:d)

⊤ +

D∑
i=2

λi

1− λi
ui
1:d(u

i
1:d)

⊤

)(
1

ε
u1
1:d(u

1
1:d)

⊤ +

D∑
i=2

1

1− λi
ui
1:d(u

i
1:d)

⊤

)−1

(C.5)
Denote P1 =

∑D
i=2

λi

1−λi
ui
1:d(u

i
1:d)

⊤ and P2 =
∑D

i=2
1

1−λi
ui
1:d(u

i
1:d)

⊤. From Weyl’s perturbation
bounds on symmetric matrices [62], we can bound the eigenvalues of the "numerator" as follows:

∣∣∣∣λ1

(
1− ε

ε
u1
1:d(u

1
1:d)

⊤ + P1

)
− λ1

(
1− ε

ε
u1
1:d(u

1
1:d)

⊤
)∣∣∣∣ ≤ ||P1||op

≤ λ2

1− λ2
(C.6)

where (C.6) follows from the Cauchy interlacing theorem [63]. This yields the bound on the top
eigenvalue of the numerator,

λ1

(
1− ε

ε
u1
1:d(u

1
1:d)

⊤ + P1

)
≥ 1− ε

ε
||u1

1:d||22 −
λ2

1− λ2

We can obtain a similar bound on the largest eigenvalue of the "denominator":

λ1

(
1

ε
u1
1:d(u

1
1:d)

⊤ + P2

)
≤ 1

ε
||u1

1:d||22 +
1

1− λ2

In the case where λi ≥ 0 (e.g., no timescale is faster than the intrinsic timescale of a single neuron),
we can use bounds on the eigenvalues of products of PSD matrices to obtain the following:

λ̂1 = λ1(Â∞) ≥ λ1(Num)λd(Den−1)

= λ1(Num)(λ1(Den))−1

≥
(
1− ε

ε
||u1

1:d||22 −
λ2

1− λ2

)(
1

ε
||u1

1:d||22 +
1

1− λ2

)−1

≥
(
1− ε

ε
||u1

1:d||22 −
1 + λ2

1− λ2

)(
1

ε
||u1

1:d||22
)−1

= λ1 −
ε(1 + λ2)

||u1
1:d||22(1− λ2)

where we have used ‘Num’ and ‘Den’ as shorthand for the factors in (C.5). Assuming eigendirections
are randomly oriented, ||u1

1:d||22 = O
(

d
D

)
.

From result (C.4), we have an upper bound on the second largest eigenvalue

λ̂2 ≤ λ2

Thus, under the stated assumptions, we can conclude λ̂1 ≥ λ1 −O
(
εD
d

)
, and λ̂2 ≤ λ2.

D Feedforward chain

In this Appendix, we derive the approximation for the learned dynamics matrix resulting from partial
observations of a feedforward chain that we state in §3.2.
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Suppose the teacher matrix has structure B = QMQ⊤ for Mij = δi+1,j , and QQ⊤ = Q⊤Q = ID.
For convenience, we focus on the continuous-time limit. In this limit, the stationary covariance

Σ∞ = lim
T→∞

1

T

∫ T

0

z(t)z(t)⊤dt

satisfies the relation

Σ∞ = 2σ2
ξ

∫ ∞

0

e−(ID−B)te−(ID−B⊤)tdt = 2σ2
ξ

∫ ∞

0

e−2teBteB
⊤tdt

By the nilpotency of B, we have that

eBt =

D−1∑
n=0

(Bt)n

n!
= Q

(
D−1∑
n=0

(Mt)n

n!

)
Q⊤

(
D−1∑
n=0

(Mt)n

n!

)
ij

=

{
ti−j

(i−j)! i ≤ j

0 i > j

We then have that [
eMteM

⊤t
]
ij
=

D∑
k=max(i,j)

=
t2k−i−j

(k − i)!(k − j)!

Defining ΣM as

[ΣM ]ij =

∫ ∞

0

e−2t
[
eMteM

⊤t
]
ij
dt =

D∑
k=max(i,j)

1

22k−i−j+1

(
2k − i− j

k − i

)
,

we can express the stationary covariance as

Σ∞ = 2σ2
ξQΣMQ⊤

The learned dynamics matrix is then given by

Â = PQMΣMQ⊤P⊤

(
PQΣMQ⊤P⊤ +

ρ

2σ2
ξ

Id

)−1

For simplicity, we consider the Q = ID case, with ρ→ 0. Â will satisfy:

Â
(
PΣMP⊤) = PMΣMP⊤ (D.1)

Observe that [PΣMP⊤]ij = [ΣM ]ij for 1 ≤ i, j ≤ d, and that

[MΣM ]ij =

{
[ΣM ]i+1,j i ≤ D − 1

0 i = D

And thus, for d < D, [PMΣMP⊤]ij = [ΣM ]i+1,j for 1 ≤ i, j ≤ d. We can then make the ansatz
that Âij = δi+1,j + δidâj for some constants âj . This yields the following:

[Â
(
PΣMP⊤)]ij = {[ΣM ]i+1,j i ≤ d− 1∑d

k=1 âk[Σ
M ]kj i = d

The first d− 1 rows of D.1 are equal under this ansatz. The elements â ∈ R1×d are then chosen such
that the dth row of D.1 matches, yielding that they must satisfy the following linear relation:
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d∑
k=1

âk[Σ
M ]kj = [ΣM ]d+1,j , 1 ≤ j ≤ d

â[ΣM ]1:d,1:d = [ΣM ]d+1,1:d

Also note that Â has the form of a companion matrix, and thus has eigenvalues given by the roots
of the polynomial f(λ) = λd −

∑d
k=1 λ

k−1âk. Since â ̸= 0, we can say that Â will have nonzero
eigenvalues.

D.1 Structure of the subsampled stationary covariance

When d≪ D and D is very large, [PΣMP⊤] is well approximated as having a Toeplitz structure
with constant differences between diagonals. Specifically, we claim that for 1 ≤ i, j ≤ d≪ D,

[ΣM ]ij =

√
D

π
− |i− j|

2
+O

(
1√
D

)
.

To show this, we must obtain asymptotics for

[ΣM ]ij =

D∑
k=max(i,j)

1

22k−i−j+1

(
2k − i− j

k − i

)
when 1 ≤ i, j ≤ d as D →∞ for fixed d. It is easy to confirm that this sum is symmetric in i and j, as(

2k − i− j

k − i

)
=

(
(k − i) + (k − j)

k − i

)
=

(
2k − i− j

k − j

)
.

Consider the lower triangular elements, letting j = i− q for q ∈ {0, 1, 2, . . . , i− 1}. After shifting
k ← k − i, we have

[ΣM ]i,i−q =

D−i∑
k=0

1

22k+q+1

(
2k + q

k

)
.

It is then easy to see that the diagonal elements (q = 0) are weighted sums of central binomial
coefficients:

[ΣM ]i,i =
1

2
+

D−i∑
k=1

1

22k+1

(
2k

k

)
.

Then, using the bounds [64]

1

2

4k√
πk

<

(
2k

k

)
<

4k√
πk

,

we have that

1

2
+

1

4
√
π

D−i∑
k=1

1√
k
< [ΣM ]i,i <

1

2
+

1

2
√
π

D−i∑
k=1

1√
k
.

Using asymptotics for generalized harmonic numbers [64], we have

D−i∑
k=1

1√
k
= 2
√
D − i+O

(
1√

D − i

)
.

For any fixed i, this immediately yields

[ΣM ]i,i =

√
D

π
+O

(
1√
D

)
.
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Now, consider the off-diagonal elements, for q ∈ {1, 2, . . . , i − 1}. We remind ourselves that the
sum of interest is

D−i∑
k=0

1

22k+q+1

(
2k + q

k

)
Using the recurrence (

2k + q

k

)
=

2k + q

k + q

(
2k + q − 1

k

)
,

we have (
2k + q

k

)
≤ 2

(
2k + q − 1

k

)
so

D−i∑
k=0

1

22k+q+1

(
2k + q

k

)
≤

D−i∑
k=0

1

22k+(q−1)+1

(
2k + q − 1

k

)
,

which shows that the matrix elements are non-increasing as one moves away from the diagonal:

[ΣM ]i,i−q ≤ [ΣM ]i,i−(q−1).

Moreover, we have from the same recurrence the weak lower bound(
2k + q

k

)
≥
(
2k + q − 1

k

)
whence

[ΣM ]i,i−q ≥
1

2
[ΣM ]i,i−(q−1).

These bounds show that all elements of the truncated covariance matrix must be of the same order. To
show that the subleading term is of the desired form, we consider the difference between successive
diagonals, which using the above identities may be expressed as

[ΣM ]i,i−(q−1) − [ΣM ]i,i−q =

D−i∑
k=0

1

22k+q+1

q

2k + q

(
2k + q

k

)
.

Using the abovementioned bounds on central binomial coefficients, we have the bound

1

22k+q+1

q

2k + q

(
2k + q

k

)
≤ 1

22k+q+1

q

2k + q

(
2k + q

k + q/2

)
≤ 1√

2π

q

(2k + q)3/2

which shows that the series is convergent as D →∞, with an O(1/
√
D) remainder. In particular,

letting n = D − i+ 1, as this bound is monotone decreasing in k, we have
∞∑

k=n

1

22k+q+1

q

2k + q

(
2k + q

k

)
≤

∞∑
k=n

1√
2π

q

(2k + q)3/2

≤ 1√
2π

q

(2n+ q)3/2
+

∫ ∞

n

dk
1√
2π

q

(2k + q)3/2

=
1√
2π

q

(2n+ q)3/2
+

1√
2π

q

(2n+ q)1/2

= O
(

1√
D

)
.
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What remains is to compute the infinite sum, which evaluates to
∞∑
k=0

1

22k+q+1

q

2k + q

(
2k + q

k

)
=

1

2

for q ≥ 1. Therefore, we have

[ΣM ]i,i−(q−1) − [ΣM ]i,i−q =
1

2
+O

(
1√
D

)
,

hence in combination with our previous result for the diagonal terms we conclude that

[ΣM ]i,i−q =

√
D

π
− q

2
+O

(
1√
D

)
,

or, restoring the indices, we obtain the claimed result that

[ΣM ]ij =

√
D

π
− |i− j|

2
+O

(
1√
D

)
.

This shows that the subsampled stationary covariance matrix is approximately Toeplitz.

D.2 Structure of the student dynamics matrix under heavy subsampling

Now, we consider the structure of the student’s dynamics matrix in the d≪ D regime. The inverse
of the form of Toeplitz matrix by which the stationary covariance is approximated is known to take
the form [65]:

[PΣMP⊤]−1 ≈



1− 1
O(c)+O(d) −1 0 . . . 0 1

O(c)+O(d)

−1 2 −1 0 . . . 0
0 −1 2 −1 0 . . .
...

. . . . . . . . . . . .
...

0 0 0 −1 2 −1
1

O(c)+O(d) 0 0 0 −1 1− 1
O(c)+O(d)


where c =

√
D/π. We also have that PMΣMP⊤ ≈ PΣMP⊤+ 1

2R where Rij = 1(i < j)−1(i ≥
j). Thus,

Â = PMΣMP⊤ (PΣMP⊤)−1 ≈ Id +
1

2
R[PΣMP⊤]−1.

Taking the large c approximation, we find that the learned student dynamics approaches the form

Âij = δi+1,j + δidδij .

In other words, Â approaches a feedforward chain of size d, except with the activity of the start of
the chain never decaying. The largest learned eigenvalue in this limit is 1, while the others vanish
identically.

We note that in practice, the sensitivity of the eigenvalues of feedforward chain connectivity matrices
to small perturbations would cause multiple of the learned eigenvalues to be significantly larger than
0. In particular, the ε-pseudospectrum of a feedforward chain of length d has a radius on the order
ε1/d [66].

E Low rank

In this Appendix, we derive the results on MAP inference for low-rank null teachers stated in §3.3.

Consider a low-rank teacher of the form B = MN⊤, M ∈ RD×r, N ∈ RD×r. If N⊤M = 0r×r

and N⊤N = M⊤M = γ2Ir, then B has all 0 eigenvalues, but is nonnormal. Here γ2 is a
scale parameter, which in some sense controls the degree of non-normality (scales the norm of the
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commutator [B,B⊤] = BB⊤−B⊤B). We compute the stationary covariance of the teacher process,
suppressing factors of σ2

ξ by setting σ2
ξ = 1:

Σ∞ = 2

∫ ∞

0

e−(ID−B)te−(ID−B⊤)tdt =

∫ ∞

0

e−2teMN⊤teNM⊤tdt

= 2

∫ ∞

0

e−2t exp

(
t

r∑
i=1

min
⊤
i

)
exp

(
t

r∑
k=1

nkm
⊤
k

)
dt

Observe that min
⊤
i commutes with mjn

⊤
j due to the N⊤M = 0 constraint. Thus, we can write

Σ∞ = 2

∫ ∞

0

e−2t
r∏

i=1

exp
(
min

⊤
i t
) r∏
k=1

exp
(
nkm

⊤
k t
)
dt

= 2

∫ ∞

0

e−2t
r∏

i=1

(ID +min
⊤
i t)

r∏
k=1

(ID + nkm
⊤
k t)dt

= 2

∫ ∞

0

e−2t(ID +Bt)(ID +B⊤t)dt

= 2

∫ ∞

0

e−2t(ID + 2Bst+BB⊤t2)dt

where Bs =
B+B⊤

2 . Performing this integral yields the solution

Σ∞ = ID +Bs +
1

2
BB⊤.

E.1 Spectrum of the stationary covariance

Our first goal is to determine the eigenvalues and eigenvectors of Σ∞. To do so, suppose that u ∈ RD

is a unit-norm eigenvector of Σ∞ with eigenvalue λ. Then, it must satisfy

Σ∞u = u+
1

2
MN⊤u+

1

2
NM⊤u+

1

2
γ2MM⊤u = λu.

As M and N span orthogonal r-dimensional subspaces of RD, one possibility is that u lies in the
(D−2r)-dimensional complement of those subspaces, in which case it must have eigenvalue 1. Thus,
Σ∞ has eigenvalue 1 with multiplicity D− 2r. Now consider the case in which u lies in the union of
the subspaces spanned by M and N . Make a decomposition

u = Ma+Nb,

where a,b ∈ Rr. The unit-norm condition is

1 = ∥u∥2 = γ2(∥a∥2 + ∥b∥2),

while the eigenvector condition becomes

Σ∞u = Ma+Nb+ u⊥ +
1

2
Mγ2b+

1

2
Nγ2a+

1

2
γ4Ma

= λ[Ma+Nb+ u⊥].

Acting with M⊤, we have

a+
1

2
γ2b+

1

2
γ4a = λa

while acting with N⊤, we have

b+
1

2
γ2a = λb.
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Together these conditions imply that b = ta, which gives a coupled set of equations for t and λ:

1 +
1

2
γ2t+

1

2
γ4 = λ

t+
1

2
γ2 = λt.

This linear system has solutions

λ± =
4 + γ4 ± γ2

√
4 + γ4

4

t± =
−γ2 ±

√
4 + γ4

2
,

which each must correspond to orthogonal r-dimensional eigenspaces. Therefore, we at last conclude
that the eigenvalues of Σ∞ are 1 with multiplicity D − 2r and λ±, each with multiplicity r. When
γ ≫ 1, this gives an r-dimensional ‘signal’ eigenspace with eigenvalue

λ+ =
4 + γ4 + γ2

√
4 + γ4

4
=

γ4

2
+

3

2
+O

(
1

γ4

)
,

a (D − 2r)-dimensional ‘null’ eigenspace with eigenvalue 1, and an r-dimensional ‘suppressed’
eigenspace with eigenvalue

λ− =
4 + γ4 − γ2

√
4 + γ4

4
=

1

2
+O

(
1

γ4

)
.

As a result, increasing γ will push the effective dimensionality of activity in the stationary state closer
to r.

E.2 Spectrum of the learned dynamics matrix for large γ

We now turn to our main goal, which is to approximately determine the eigenvalues of the learned
dynamics matrix after subsampling. Using our result for the stationary covariance, we find that the
learned dynamics matrix in the infinite time limit is given by

Â = PB(ID +Bs +
1

2
BB⊤)P⊤(P (ID +Bs +

1

2
BB⊤)P⊤)−1

= (M̃Ñ⊤ +
γ2

2
M̃M̃⊤)

(
Id +

M̃Ñ⊤ + ÑM̃⊤

2
+

γ2

2
M̃M̃⊤

)−1

where M̃ = PM denotes M truncated to the first d rows. Since MN⊤ is of rank r, Â will have at
most r non-zero eigenvalues.

The relevant regime is when γ ≫ 1, such that the activity is approximately low-dimensional. Because
of the normalization condition N⊤N = M⊤M = γ2Ir, in any fixed dimension we must have Nij =
O(γ), Mij = O(γ). We can then consider making γ parametrically large, in which case we have

Â = ΠM̃M̃⊤ +O
(

1

γ2

)
where ΠM̃M̃⊤ is the orthogonal projector onto the r-dimensional span of M̃M̃⊤. Here, we have
used the fact that γ2M̃M̃⊤ ∼ O(γ4) and M̃Ñ⊤ ∼ O(γ2), so the former terms will dominate at
large γ. Therefore, it follows that as γ becomes large the r non-zero eigenvalues of Â tend to one.
This argument relies on fixing all dimensions.

A case of interest is when γ2 ∼ O(D/
√
r) for D ≫ r; with this scaling, the elements of B are O(1)

with respect to D and r.
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E.3 Low rank teachers with nontrivial eigenspectra

While the null overlap case is analytically tractable, we would like to also consider non-normal low
rank teachers with nontrivial eigenspectra. To do this, we can specify an overlap matrix Q with the
desired spectra, such that N⊤M = Q. For a fixed M (e.g. selected with random entries), we can
satisfy the desired overlap via selecting N⊤ as N⊤ = QM† where M† = M+ + V (ID −MM+)
is a generalized pseudoinverse. Here, V ∈ Rr×D is arbitrary, and M+ is the Moore-Penrose
pseudoinverse. Observe that in the case where M has orthogonal columns and V = 0r×D, M† =
M+ = M⊤, yielding that B = MN⊤ is normal so long as Q is normal.

Thus, there are then two ways to make B = MN⊤ = MQM† non-normal; one is to choose
choose V = 0r×D and make Q non-normal. Another way is to select nonzero V , e.g. with entries
drawn from N (0, σ2

V ). Then, one can construct a highly non-normal B even with a normal overlap
matrix. We use the latter method to generate non-normal low rank teacher connectivity that supports
oscillatory dynamics. Specifically, for Fig. 5, we construct teacher connectivity by generating M

with random entries ∼ N (0, 1), Q =

(
0.5 −0.5
0.5 0.5

)
and σV = 12√

D
for D = 500.

F Regularization

In the analysis thus far, we have focused on learning the dynamics matrix in the ridgeless limit.
However, using a high enough regularization may help prevent the discovery of spurious slow modes
of dynamics from non-normal transients. Indeed, this is necessarily true by observing that in the
opposing limit ρ ↑ ∞, the learned dynamics matrix collapses to the zeros matrix. One can attempt to
estimate an optimal regularization parameter that yields a predictive fit via cross-validation, but it is
unclear whether this would necessarily resolve the eigenvalue overstimation issues described here.
Obtaining an accurate estimate of the optimal ridge from cross-validation on windows of correlated
timeseries data is statistically challenging [67], and ill-defined if the timeseries is non-stationary.
Furthermore, such problems arising from an inherent expressivity issue of the student network—such
as when fitting a low-dimensional LDS model to a functionally feedforward chain—clearly cannot
simply be resolved through regularization. We leave a more detailed investigation of regularization-
based strategies for ablating spuriously discovered attractor-like dynamics to future work.

G Numerical methods and supplemental figures

All of our numerical simulations are implemented in Python 3.9.18 using NumPy 1.26.2 [68],
SciPy [69], and PyTorch [70]. They were not computationally-intensive, and required less than
12 hours in total to run on a consumer Dell XPS laptop equipped with an Intel Core™ i7-13700H
processor. Code to reproduce all experiments is available at https://github.com/wqian0/
DataConstrainedRNNs/.

For simplicity, we use τ = 1 in all numerical simulations. Unless stated otherwise, we use a teacher
network size of D = 500 in all numerical experiments.

We integrate the student and teacher RNN dynamics via Euler integration with a timestep ∆t = 0.01.
Under the discretization scheme of B.4, in all experiments, we select the noise parameters of the
student and teacher dynamics as ση = σξ = 0.02√

2
.

In the examples of Fig. 1, we generate ground truth network activity by iterating the dynamics for a
duration T = 5000×∆t.

In the purely noise-driven experiments with finite observation time windows, we fit student networks
to ground truth teacher activity generated over a duration T = 30000×∆t.

For MAP inference, we use a regularization parameter ρ = 0.001 in all experiments. In experiments
involving the long time limit T →∞, we use SciPy [69]’s built-in Lyapunov solver to compute the
stationary covariance of the teacher activity.

For all LDS models, we run the fitting procedure for 200 iterations using the implementation provided
by the authors of [18] under an MIT License on GitHub.2 For the experiments in Fig. 1, the input

2https://github.com/lindermanlab/ssm
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signal was explicitly passed to the fitting procedure. For the purely noise-driven teacher setting of
Fig. G.5, no input signal was provided.

Fig. 5: We note that CORNN is applicable only for fitting RNNs that obey slightly different dynamics
(leaky-rate instead of leaky-current), of the form

τ ẋ = −x+ ϕ(Ax) + η(t)

We thus modify student and teacher accordingly in experiments involving CORNN [14]. We run the
CORNN fitting procedure for 1000 iterations using the implementation provided by the authors as
free software on GitHub.3

For backpropagation-through-time, we train student network dynamics matrices on observed teacher
activity via truncated BPTT, splitting the observed 30000 timepoints into segments of 500 contiguous
timepoints. Student networks were then trained for 100 epochs at a learning rate 0.01, batch size of
16, and a teacher forcing ratio of 0.5.

For experiments with FORCE, we train student networks for 1000 iterations with parameters g = 1.5,
P0 = 0.01. We adapt the implementation provided by the authors of [17] under a GNU GPL license
on Github.4 To increase agreement of the fitted activity, we restricted the observation window of
the fitted network to the first 5000 timepoints; fitting to the full observation window yielded fits that
failed to capture prominent initial transients of the observed activity.

For experiments involving low-rank teacher networks with null overlap, we use γ2 = 0.2 D√
r

for the

linear networks (Fig. 4) and γ2 = 0.4 D√
r

for the nonlinear networks (Fig. G.6). This scaling ensures
elements of B are order-1 (see E.2). For low-rank teacher networks with nontrivial eigenspectra (Fig.
5), see E.3.

3https://github.com/schnitzer-lab/CORNN-public
4https://github.com/rajanlab/CURBD
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Figure G.1: Finite time effects for learning from low-rank teachers with null overlap connectivity. The
top ten largest learned eigenvalues are shown for students learning from teachers of rank 2 ≤ r ≤ 5
and null overlap connectivity (all 0 eigenspectrum). All plots correspond to connectivity parameter
γ2 = D/

√
r with a teacher size D = 500 and 5% partial observation. Each point indicates an

average over 20 randomly selected teacher networks. Error bars are ±1 standard error of the mean,
but are mostly too small to see.

BPTTMAP BPTT + hidden

10%

GT

10% 10%

Figure G.2: Eigenvalue estimation under partial observation extends more generally to unstructured
non-normal teacher connectivity, and occurs even when hidden neurons are added during training.
Each column corresponds to an inference method (MAP, BPTT, BPTT with 200 additional hidden
neurons) at 10% partial observability. Top row: ground truth teacher (red) and learned student (blue)
dynamics matrix eigenvalues. Middle row: Activity traces for the teacher (red) and student (blue)
networks. Bottom row: Example student network dynamics, as shown by randomly sampled initial
conditions. Right: Ground truth dynamics.
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Figure G.3: Properties of learned student dynamics matrices for functionally feedforward teachers
in the long time limit T → ∞. Each row corresponds to a functional skip connection strength
β ∈ {0.25, 0.5, 1}. Left: Line attractor score versus subsampling fraction (d/D). The green line
indicates a line attractor score of 1. Middle: Top two singular values of the learned (student) and
true (teacher) dynamics matrices as a function of subsampling fraction. Right: Normalized overlap
(absolute cosine similarity) of the learned left and right singular vectors corresponding to the largest
learned singular value (û1, v̂1, respectively) with the truncated top left and right singular vectors of
the true network ([u1]1:d, [v1]1:d, respectively). The red curve shows how the expected overlap would
approximately scale for arguments with randomly selected entries. All plots show averages over 20
randomly selected teacher networks. The shaded regions indicate ±1 standard error of the mean, and
is in some cases too small to see.
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Figure G.4: Properties of learned student dynamics matrices for rank-1 teachers with null overlap
connectivity in the long time limit T → ∞. Each row corresponds to a different value of γ2

(γ2 = {0.1, 0.2, 0.4}D). Left: Line attractor score versus subsampling fraction (d/D). The green
line indicates a line attractor score of 1. Middle: Top two singular values of the learned (student) and
true (teacher) dynamics matrices as a function of subsampling fraction. Right: Normalized overlap
(absolute cosine similarity) of the learned left and right singular vectors corresponding to the largest
learned singular value (û1, v̂1, respectively) with the truncated top left and right singular vectors of
the true network ([u1]1:d, [v1]1:d, respectively). The red curve shows how the expected overlap would
approximately scale for arguments with randomly selected entries. All plots show averages over 20
randomly selected teacher networks. The shaded regions indicate ±1 standard error of the mean, and
is in some cases too small to see.

a b

Figure G.5: LDS fits to the low-rank linear teacher networks considered in Fig. 4 (a. rank 2 and b.
rank 3, respectively). Left: A schematic of teacher connectivity. Middle: The top five time constants
of the ground truth teacher connectivity. Right: The time constants learned by an LDS model fit to
the teacher activity. All fits were performed at 5% partial observability.
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Figure G.6: Spurious or missed stable fixed points learned from rank-3 teachers with null overlap
connectivity in the nonlinear setting. a. i). Ground truth teacher (red) and learned student (blue)
dynamics matrix eigenvalues at 5% subsampling. ii). Activity traces for the teacher (red) and student
(blue) networks at 5% subsampling. iii). Example student network dynamics for 5% and 50%
subsampling compared to the ground truth (GT).b. As in a, but for another example teacher network
with rank 3 null overlap connectivity.
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Figure G.7: Delay embeddings for integrator circuits performing the integration task of Fig. 1. a. Top
two PCs of delay-embedded observed activity from the line attractor performing the integration task.
Each row corresponds to a different number of delays {5, 10, 20}, and each column corresponds to a
delay interval in {5, 10, 20}∆t. b. As in a, but for the functionally feedforward chain.
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Figure G.8: Sweep of LDS models fit to a functionally feedforward chain performing the integration
task of Fig. 1. a. Line attractor score versus subsampling fraction for LDS models fit with maximal
latent dimension d − 1. b. Line attractor score versus LDS latent dimension at full observability
(d = D). In both plots, each point represents an average over ten fits.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: The abstract and introduction clearly state the claims we make in our paper,
and its limitations.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We emphasize the limitations of the settings of our experiments and theoretical
results throughout, as well as the fact that many of our theoretical results are asymptotic or
approximate. We test finite-size deviations from those approximations in our experiments.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

38



3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [Yes]
Justification: We provide complete derivations of our results in Appendices B, C, D, and E.
We note that many of our analytical results are approximate, as we emphasize throughout.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main
experimental results of the paper to the extent that it affects the main claims and/or conclu-
sions of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: We describe our numerical results in detail in Appendix G. Moreover, we
include code to reproduce all results with the initial submission.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
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In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [Yes]
Justification: For initial submission, we include code to reproduce all experiments as a ZIP
file. For publication, we will make code available on GitHub.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyperpa-
rameters, how they were chosen, type of optimizer, etc.) necessary to understand the results?
Answer: [Yes]
Justification: We provide details in Appendix G and in the code included with our submis-
sion.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: For plots showing average metrics over multiple instantiations, we include
either shaded regions or error bars denoting one standard error of the mean. In some cases,
the error bars are too small to see. For other results, we do not make claims of statistical
significance, so we do not include error bars. Our empirical results are proofs of concept
rather than claims regarding frequency.
Guidelines:
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• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: We provide details in Appendix G.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: Yes, we affirm that our research conforms with the NeurIPS Code of Ethics.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [NA]
Justification: We do not anticipate our work will have societal impact.
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Guidelines:
• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: Our paper involves neither data nor models that have a risk of misuse.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: We provide citations and license information for all code used in Appendix G.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
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• For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

• If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: We do not release new assets.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: Our paper does not involve crowdsourcing or research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: Our paper does not involve crowdsourcing or research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.
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• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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