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Abstract

Performance on popular ML benchmarks is highly correlated with model scale,
suggesting that most benchmarks tend to measure a similar underlying factor of
general model capabilities. However, substantial research effort remains devoted to
designing new benchmarks, many of which claim to measure novel phenomena.
In the spirit of the Bitter Lesson, we leverage spectral analysis to measure an
underlying capabilities component, the direction in benchmark-performance-space
which explains most variation in model performance. In an extensive analysis
of existing safety benchmarks, we find that variance in model performance on
many safety benchmarks is largely explained by the capabilities component. In
response, we argue that safety research should prioritize metrics which are not
highly correlated with scale. Our work provides a lens to analyze both novel safety
benchmarks and novel safety methods, which we hope will enable future work to
make differential progress on safety.

1 Introduction

Benchmarks serve as crucial standards, providing metrics by which models and techniques are evalu-
ated. The AI safety community has invested extensively in creating benchmarks aimed at measuring
distinct safety-relevant properties [89, 60, 51, 12, 76, 28, 82]. While these benchmarks have driven
significant advancements, there is a critical oversight: the performance on safety benchmarks intended
to measure bias, ethics, adversarial robustness, or fairness is often strongly correlated with general
capabilities benchmarks such as MMLU [29], MATH [30], and GSM8K [17]. This correlation means
that simply enhancing the upstream general capabilities of models, such as by scaling parameters and
increasing training data, often boosts performance across all benchmarks indiscriminately [41, 52].

This oversight is problematic because safety benchmarks have seldom been scrutinized for this
correlation [103]. Consequently, this lack of scrutiny obscures the development of techniques that

∗Equal Contribution.

38th Conference on Neural Information Processing Systems (NeurIPS 2024) Track on Datasets and Benchmarks.



Safety Evaluation

Improves with Scale Improves with Tuning Unsolved by Scaling

Adversarial robustness Malicious use Sycophancy
Machine ethics
Truthfulness

Power-seeking
Jailbreaking

Stereotypes & discrimination

Unlearning

Capabilities Score

Be
nc

hm
ar

k 
Sc

or
e

Capabilities Score

Be
nc

hm
ar

k 
Sc

or
e

Capabilities Score

Be
nc

hm
ar

k 
Sc

or
e

Chat

Base

Figure 1: Our analysis identifies three classes of safety tasks according to the correlation between their
scores and the capabilities scores. Tasks whose scores improve with scale have a positive correlation
between benchmark scores and capabilities score. Tasks whose scores improve with tuning show
a safer correlation on specific model classes, e.g., chat/instruct-tuned models. Finally, tasks whose
scores do not improve naturally with model scale show no correlation between benchmark scores and
capabilities scores.

specifically and differentially improve safety. Without clear and distinct metrics and goals, efforts
to advance AI safety are hindered [97, 71]. The conflation of general capability improvements
with safety-specific advancements not only misleads progress assessments but also undermines the
incentive to develop targeted safety solutions [4]. To address this issue effectively, it is crucial to
distinguish and prioritize safety-specific goals within the broader context of AI development.

Given this context, a pivotal question arises: how should the AI safety community allocate its efforts
to differentially improve model safety? We can derive some insight from the “Bitter Lesson” [81],
which observes that compute is becoming exponentially more available over time, and that AI research
methodologies which optimize performance at a constant level of compute are subsumed by new
paradigms that effectively leverage greater compute. Rather than over-indexing on the strengths and
weaknesses of present-day models, this framework suggests that effective safety research should
anticipate and address the flaws that will emerge or remain in future generations of models, and
deemphasize issues likely to be resolved through general model scaling or the default trajectory of
capabilities improvements.

Similarly, success in new safety methods should be measured not only by improvements in safety
benchmark scores, but also by how much these methods make desired safety properties more
correlated with scale. For example, Reinforcement Learning from Human Feedback (RLHF) [8, 58]
has successfully associated toxicity reduction with model scale, an achievement that basic pretraining
and instruction fine-tuning struggled to attain. By concentrating on properties and methods that
specifically enhance safety independently of capabilities advancements, the safety community can
make more effective use of its resources and significantly contribute to the development of safer AI
systems.

2 Related Work

Safety vs. capabilities. One paradigm of measuring AI progress is a decomposition into datasets that
measure “safety” vs datasets that measure “capabilities” [27]. While the distinction between safety and
capabilities is sometimes blurred, safety research tends to study empirical phenomena that are negative
side effects of model deployment [96, 66, 68, 74, 61], are malicious use of models [93, 105, 44], or
do not improve with scale [11, 52]. In particular, a popular debate (e.g., between McKenzie et al. [52]
and Wei et al. [94]) is whether a given safety dataset is in fact tightly correlated with scale. Our work
addresses this debate through a meta-analysis of safety datasets, quantifying the degree to which
safety datasets are entangled with capabilities.
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Figure 2: Illustration of the safety task identification pipeline. We first produce a matrix of scores
for a set of language models evaluated on a set of capabilities benchmarks (first step). We extract
the first principal component and use it to compute a capabilities score for each model (second step).
We perform analysis of base and chat/instruct-tuned models on a variety of tasks representing major
areas of AI safety (third step). Finally, we identify tasks whose scores are correlated with scale, tasks
whose scores improve with scale only with chat/instruct-tuning, and tasks which are uncorrelated
with scale (fourth step).

Scaling laws and the Bitter Lesson. The Bitter Lesson [81] argues that the main technique to
improving ML models has consistently been scale. NLP has seen the biggest embrace of this trend,
with developers focused on scaling the Transformer [88] with more data and compute [87, 85, 14,
1, 15, 83, 5, 6]. To aid in such engineering effort, there has been an extensive body of literature
on quantitatively modeling scaling laws for loss, mapping out model performance as a function of
compute and data [32, 41, 55, 33] or even hyperparameter choice [100]. Similar trends have taken
hold in vision [24, 102, 26, 65] and robotics [86].

Scaling tends to improve not only training loss, but also downstream task performance [90]. A
common finding is that models with lower pretraining loss also have higher accuracy on downstream
tasks [95, 99, 35, 25, 23, 22, 19, 42]. Importantly, most prior work examines scaling laws from a
model perspective (i.e., how does performance improve with scale), whereas our work examines
scaling laws from a dataset perspective (i.e., how do benchmarks saturate with scale).

Metrics and capabilities correlations. Recent advances in observational scaling laws have provided
a methodology that allows researchers to gain a deeper understanding of the underlying capabilities
of machine learning models [41, 55]. Previous studies, such as those by [32, 15], have demonstrated
that these scaling laws can predict model performance across various tasks. This body of work has
established a foundation for using observational scaling laws as a powerful method for enhancing
model training and evaluation processes by predicting performance trends based on scaling behavior.
Recent research further supports the utility of these scaling laws, for extrapolating model performance,
enabling a more nuanced assessment of model capabilities [75, 37].

However, while significant progress has been made in identifying and leveraging these underlying
factors for general capabilities, there has been a noticeable gap in exploring how these scaling laws
correlate with safety properties of deep learning systems. Although the identification of fundamental
scaling relationships has been beneficial, there is a lack of research focusing on the implications of
these relationships for safety datasets. Understanding how scaling impacts safety properties is crucial
for developing datasets and benchmarks that can properly measure the intended effects and not by a
“third variable” (i.e. capabilities). This paper aims to bridge this gap by examining the correlation
between scaling laws and safety-specific characteristics, thereby providing insights that can guide the
development of safer AI systems and future AI Safety datasets.

3 Capabilities Correlations for Evaluating Differential Progress on Safety

Estimating capabilities using benchmark scores. Inspired by prior work which applied factor
analysis to matrices of model-benchmark scores [37], and concurrent to Ruan et al. [75], we apply
spectral analysis of benchmark scores to identify a unified underlying capabilities score for models
in terms of their performance on a range of benchmarks. Given a set of n models and a suite of
m capabilities benchmarks (e.g. MMLU [29], Winogrande [77], GSM8K [17], etc.) we construct
a matrix of scores A ∈ Rn×m, such that Aij is the score of the i-th model on the j-th benchmark,
normalized so that columns have mean 0 and variance 1.
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Figure 3: We observe a strong correlation between train-
ing FLOPs and relative capabilities score.

Spectral analysis of capabilities scores.
Naive composite benchmarks usually
weight their component tests equally, av-
eraging test scores. A more principled
approach can involve weighting compo-
nent benchmarks according to the strength
of their association with each other, with
higher weight placed on benchmarks that
account for greater variance in model per-
formance across benchmarks. To achieve
this, we compute a correlation matrix C ∈
Rm×m associated with A, such that Cab is
the correlation between task a and task b
performance across all models. We extract
the largest eigenvalue λ of C and its associ-
ated unit eigenvector v. The components of
v act as the weights of the composite bench-
mark, and Av ∈ Rn gives the capabilities
scores of each model.

When C is the Pearson correlation matrix ATA [64],
√
λ is the largest singular value of A, and v

is its associated top principal component [21]. λ/m then represents the proportion of total variance
in normalized model scores explained by the principal component vector. Additionally, the outer
product of the capabilities scores and benchmark weights (Av)vT is the best rank-1 approximation
of A [20]. However, using Pearson correlation can be sensitive to outliers, which becomes relevant
when dealing with large model sets and a heterogeneous collection of benchmarks. For that reason,
our analysis takes C to be the Spearman correlation matrix [79], in which case λ/m represents the
explained variance in rank scores.

Using capabilities scores to measure capabilities correlations. To evaluate the relationship between
a new benchmark and general capabilities, which we call the capabilities correlation of the benchmark,
we can evaluate a set of models with known capability scores on the new benchmark and measure
the correlation between capability scores and benchmark scores (we use Spearman correlation for
these calculations as well). These general ability components allow for quantitative, intuitive, and
principled evaluations of task relationship to general model abilities. Ultimately, however, these
correlations depend on the set of models used, as well as the benchmarks chosen to produce their
capabilities scores. In the Appendix, we perform a sensitivity analysis to explore the robustness of
this methodology to different choices of models and benchmarks.

Safety techniques can alter capabilities correlations. In our analysis, we categorize models
into distinct classes—base models and instruct (including chat) models—to better understand how
different training paradigms impact performance on safety tasks. Base models, RLHF’ed models,
light adversarial training, and future safety techniques could all be considered different model classes,
with different profiles of capabilities correlations. Ideally, we should develop training regimens which
produce high capabilities correlations with all relevant safety properties. By running separate analyses
for each model class, we can identify the relative strengths of these techniques as models scale.

4 Results

We come to our central question: which tasks or datasets are correlated with capabilities? Towards
answering this question, we analyze the overall capabilities scores as captured by tasks in 4.1, the
tasks of Adversarial Robustness in 4.2, Bias and Toxicity in 4.3, Machine Ethics in 4.4, Malicious
Use in 4.5, and Rogue AI Risk in 4.6.

To provide ease of understanding, we define a positive capabilities coefficient as yielding a safer
system with scale, while a negative capabilities coefficient indicates less safe systems with scale.
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Figure 4: Observed correlations between capabilities scores and models’ performance. Top left: safety
task positively correlated with capabilities score. Top right: safety task not correlated with capabilities
score. Bottom left: safety task negatively correlated with capabilities score. Bottom right: safety
task where chat models are not correlated with capabilities score while base models are negatively
correlated. Parentheses include the capabilities correlation of the corresponding benchmark.

4.1 General Capabilities and Overview of Model Class Correlations

Most variance in capabilities datasets is explained by a capabilities component. We run analyses
for base and chat models, finding that 72% and 71% of variance is captured by the capabilities
component respectively. We calculate the capabilities component from the following benchmarks:
LogiQA [46], PIQA [13], Hellaswag [101], Winogrande [77], COPA [73], MedQA [40], ARC
Challenge [16], MMLU [29], MATH [30], LAMBADA [62], Wikitext [53], GSM8K [17], GPQA
[72], and BBH [9]. We also use a diverse set of model classes and derivatives to ensure robustness in
results, as results can be skewed if they come from a derivative of one model (e.g. Llama-2 [87]); we
list the 24 base models and 22 instruct/chat used for our analysis in the Appendix.

The capabilities component is strongly correlated with scale. We quantify the correlation of model
capabilities scores with log FLOP for base (r=0.96) and chat (r=0.96) models, and plot chat models n
in Figure 5. We calculate training FLOP via the approximation of 6 * params * train_tokens described
in [41].

Observed properties of capabilities correlations. In our experiments, we observe three high-level
categories of result:

a.) Some safety benchmarks [103] are already highly correlated with capabilities, obeying
“scaling laws" (top left).

b.) Some safety benchmarks are not aligned with scale (top right) or are negatively correlated
with scale (bottom left), obtaining worse safety properties as capabilities increase. At times,
these problems are not solved by any type of model class.
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c.) Some correlations are strengthened or weakened through safety techniques; for example,
chat models exhibit on a higher correlation on CybersecEval2 MITRE [12], a task for
measuring refusal to assist in malicious cyberattacks, than base models (bottom right).

In Figure 4, we examples of these scenarios. In the following sections, we continue to explore how
instruction tuning affects models and highlight the need for alternative directions to be pursued across
safety areas.

4.2 Adversarial Robustness
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Figure 5: For many of the benchmarks we evaluate, capabil-
ities correlations are higher (or less negative) among Chat
models. This demonstrates that evaluating correlations for
multiple model classes is crucial for understanding whether
a benchmark will be solved as general capabilities improve.

Adversarial robustness evaluates mod-
els’ ability to maintain performance
when faced with adversarial exam-
ples. In the vision domain, adversar-
ial robustness is known to have differ-
ent properties from general capabili-
ties [92, 104]. However, the relation
between general capabilities and ad-
versarial robustness is less clear for
LLMs. Many different adversarial ro-
bustness benchmarks have been de-
veloped to assess different aspects of
their robustness [91, 77]. We now an-
alyze whether these benchmarks mea-
sure novel properties or are highly cor-
related with general capabilities.

We compute the correlation between
the capability score and safety scores
on the following benchmarks: Ad-
vGLUE [91], AdvGLUE++ [34],
AdvDemonstration [34], and Harm-
Bench [51]. Full results on all datasets
and model classes are in the Ap-
pendix.

Some robustness benchmarks are correlated with general capabilities. We find that some adver-
sarial robustness benchmarks are moderately correlated with general capabilities, while others have
low or even negative correlation. For example, AdvGLUE, AdvGLUE++, and AdvDemonstration
have respective capabilities correlations of 0.68, 0.58, and 0.75 for the instruct/chat model class. On
the other hand, general capabilities are anti-correlated with robustness on HarmBench. The dynamic
adversarial robustness benchmarks tested tend to have lower correlation, static adversarial benchmarks
tend to have higher correlation. In other words, some robustness properties are likely to be solved as
general capabilities improve, while others are not yet strongly correlated with capabilities.

Different model classes have different scaling properties. Just as adversarial training significantly
alters the robustness properties of vision models, different classes of general-purpose AI models
can yield different scaling properties for safety benchmarks. In Figure 5, we show how some LLM
adversarial robustness benchmarks have higher capabilities correlations when using instruct/chat
models. This demonstrates that improving the capabilities correlation of a safety benchmark is
possible. Once the correlation reaches a high enough value, additional work on the benchmark is
unnecessary, as it will be solved automatically as general capabilities improve.

4.3 Bias

We investigate bias datasets aimed at quantifying language models’ propagation of social stereotypes
and harmful preconceptions. It is well-known that pretraining on internet data introduces bias, and
one might expect that training larger models on more data would increase the amount of bias present.
We test this hypothesis by measuring the capabilities coefficient of different LLM bias benchmarks.
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Figure 6: Left: We find that for several common bias benchmarks, bias is not reduced by general
capabilities improvements, indicated by low capabilities correlations. Right: However, on BBQ
Disambiguated capabilities score is strongly correlated with reducing bias.

Bias is often weakly correlated with capabilities, but not always. Our findings reveal that for
some bias measures, the capabilities correlation is weak as expected. For example, in Figure 6 (left)
we show that BBQ Ambiguated [63], Anthropic Discrimination Evaluation [82], and CrowS-Pairs
English [56] display this pattern across both base and instruct/chat models.

However, for other measures, improvements to general capabilities can actually reduce bias. In
Figure 6 (right), we plot the capabilities score against accuracy on BBQ Disambiguated [63] and
find that bias reduction is highly correlated with general capabilities. This observation contrasts with
conventional wisdom, which suggests that scaling up models exacerbates bias due to associations in
the training data [10].

4.4 Machine Ethics

Table 1: Capabilities correlations for various
machine ethics datasets. For brevity, we show
instruct/chat models only, although correla-
tions are also high for base models.

Ethics Evaluation Capabilities
Correlation

ETHICS (Average) 0.80
ETHICS Commonsense 0.72
ETHICS Deontology 0.41
ETHICS Justice 0.49
ETHICS Utilitarianism 0.74
ETHICS Virtue 0.77
STEER Rationality 0.54

Machine ethics benchmarks probe models’ under-
standing of moral concepts. There are several bench-
marks that analyze machine ethics, such as ETHICS
[28] and STEER Rationality [70]. We report the ca-
pabilities correlation of these benchmarks in Table 1.

High capabilities correlation. We find that machine
ethics benchmarks tend to be highly correlated with
general capabilities. Many subsets of ETHICS have
an extremely high capabilities coefficient for both
base and instruct/chat models. These findings corrob-
orate isolated observations of scale improving perfor-
mance on machine ethics benchmarks [41, 50], indi-
cating that internet-scale pretraining imbues LLMs
with an understanding of ethics and morality. How-
ever, our results also show that this correlation is not
identical across all areas of machine ethics. Some topics improve much more slowly with general
capabilities, suggesting a need to ensure a balanced understanding of different ethical perspectives is
present in models.

4.5 Malicious Use

Malicious use evaluations test whether models can resist being exploited for harmful ends, including
spreading misinformation or enabling cybercrime. Benchmarks like HarmBench [51], CyberSe-
cEval2 [12], and WMDP [44] are used to assess the susceptibility of models to malicious use. To
bypass refusal training, many of these evaluations also employ adversarial prompts. We analyze the
capabilities coefficients of resistance to malicious use benchmarks under current models and present
results in Table 2.
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Figure 7: Left: Capabilities correlations on instruct/chat models on Rogue AI evaluations. Right:
Capabilities correlations on instruct/chat models with accuracy on MACHIAVELLI Power.

General capabilities exacerbate malicious use. Many base models cause more harmful responses
as their capabilities increase, as indicated by negative capabilities correlations. This includes many
splits of HarmBench and CyberSecEval2, as well as WMDP (an unlearning dataset that penalizes
high performance).

We find that instruction tuning weakens many capabilities correlations, indicating that models no
longer become less safe with scale. In the MITRE task of CyberSecEval2, which measures refusal to
participate in cyberattacks, the effect is even stronger, with the capabilities correlation changing from
negative to positive.

These results demonstrate that instruct/chat models have improved over base models in their ability
to leverage general capabilities to reduce malicious use risk. However, in most cases the correlations
remain negative or weak, suggesting there is still considerable work to be done on this problem.

4.6 Rogue AI Table 2: Malicious Use Evaluations and
Metrics

Malicious Use
Evaluation

Capabilities
Correlation
Base Chat

HarmBench DR
Biochemical -0.54 -0.04
Cybercrime -0.50 -0.07
Harassment -0.45 -0.16
Harmful -0.42 0.24
Illegal -0.41 0.09
Misinfo -0.44 -0.37

WMDP
WMDP Bio -0.91 -0.87
WMDP Chem -0.88 -0.86
WMDP Cyber -0.86 -0.87

CybersecEval2
Autocomplete -0.74 -0.77
Exploit -0.31 -0.49
Instruct -0.43 -0.90
MITRE -0.25 0.55
Prompt Injection -0.02 -0.17

Rogue AI risk evaluations probe risks related to deceptive
model behavior, dishonesty, and power-seeking tendencies.
Previously, it was unknown whether models become more
power-seeking as they scale. We report the capabilities
correlations of these benchmarks in Figure 7 (left).

Power-seeking tendencies decrease with scale, but syco-
phancy does not. On the MACHIAVELLI dataset [60],
we find that measures of power-seeking tendencies and
ethical violations decrease as general capabilities improve,
with moderate capabilities correlations ranging from 0.46
to 0.55. On the other hand, sycophancy [67] becomes
worse as models become more capable, with a capabilities
correlation of −0.73. This highlights how different aspects
of rogue AI risk are correlated with general capabilities to
different extents.

Unlike power-seeking and sycophancy, we find that Truth-
fulQA MC1 variance is strongly correlated with general
capabilities. This could be explained by training leakages
or may indicate that models are able to discern fact from
human falsehood as capabilities advance. Regardless, we
find that TruthfulQA does not seem to measure a meaning-
fully different metric from capabilities benchmarks.
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5 Discussion

As our experiments show, safety and capabilities metrics can be intertwined, with some safety metrics
improving naturally as a consequence of general capabilities advancements. We first summarize
high-level patterns in the results, then discuss several implications of our findings.

Patterns across safety areas. Our capabilities correlation analysis reveals varied dependencies
on model scaling across safety areas. Adversarial robustness exhibits mixed results, with some
perturbation robustness tasks improving with general capabilities while jailbreak robustness remains
uncorrelated with general capabilities. Bias measures show some improvement with capabilities, but
many biases are unaffected, suggesting that scaling alone may not mitigate all bias issues. Machine
ethics generally correlates positively with capabilities, though further refinement is needed for
balanced ethical understanding. In malicious use and rogue AI risk domains, we observe negative
correlations, indicating a tendency for these risks to worsen with scale unless mitigated by specific
interventions. These insights guide safety research toward areas where scaling alone is insufficient
for safety progress.

The importance of low capabilities correlation. While many datasets measure interesting aspects
of safety, these aspects are often not unique and instead are highly correlated with general capabilities.
We argue researcher time for developing methods should be allocated toward solving benchmarks
that won’t be solved with scale and general capabilities advancements. Thus, capabilities correlation
can be used as a metric for identifying which problems to spend research effort making progress
on. If capabilities correlation for a benchmark is low, this means it will likely require additional
algorithmic effort to make progress on.

Measuring properties that improve with scale is still valuable. Even if an evaluation is expected to
be solved with scale, it is still useful to measure it. For instance, knowing the dangerous capabilities
that emerge with scale is crucial. Reporting how evaluations scale with model size can help predict
future risks, particularly with dangerous capabilities. This information is highly relevant, as it can
indicate which problems may worsen with scale. The goal is not to measure the usefulness of a safety
dataset, but to understand how to allocate research efforts efficiently. Evaluations showing strong
correlation or anti-correlation with capabilities are valuable for tracking the evolution of dangerous
capabilities and ensuring precise measurement of safety metrics, even if they are eventually solved
with scale. Furthermore, there are some cases in our evaluations where tasks with high capabilities
correlations will be improved but not completely “solved” as general capabilities improve. However,
in some cases, safety-related benchmarks may act a jangle for capabilities; jangle fallacy is the
erroneous belief that two constructs are different because they have the different names, when in
practice they measure the same latent factor.

Improving capabilities correlation as a goal for safety research. If a meaningful safety metric is
strongly correlated with general capabilities, this is a good outcome, because it means the problem
may be largely addressed by scaling even if present-day models struggle. As a corollary, safety
research should seek to develop new methods and model classes that cause safety metrics to correlate
more strongly with capabilities. However, this should not be taken too far. Past a certain threshold,
further efforts to align safety metrics with general capabilities are unnecessary. Once this is achieved,
research efforts can be re-allocated elsewhere. Moreover, our results show that in some cases a high
capabilities correlation may not be sufficient to ensure that a safety property is fully achieved. In
these cases, continued effort on developing differential safety improvements is warranted.

New safety evaluations should report their correlation with capabilities. This practice can ensure
that evaluations initially measure a meaningful safety property that requires research effort to improve,
rather than simply increased scale. This is notably done in some past papers, such as RuLES [54] and
EQ Bench [59]. For example, it can be useful to know if a malicious use benchmark worsens with
scale. A low correlation does not necessarily imply that the safety metric is irrelevant; it may indicate
flaws in the dataset, such as insufficient data to detect small changes in progress, or that the dataset
measures a different aspect entirely.

Broad application of correlation analysis. This analysis can be applied in a broad range of scenarios
when determining whether an evaluation measures a meaningfully different property. In a broad range
of scenarios, it may be the case that a confounding variable that better explains performance, rather
than what a benchmark claims it measures. Future investigations can also investigate correlations of
safety with various types of capabilities; while previous research already shows that performance
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on different categories of capabilities (such as reasoning, knowledge, coding, or mathematics) seem
to be tied to scale, other papers have found that reasoning and knowledge can represent different
components of a PCA analysis [21].

Recommendations. Our recommendations are as follows:

1. For benchmark selection (and broadly, research problem selection), researchers should
allocate more time toward creating and climbing safety benchmarks with low correlation
and thus represent problems that will not be solved with general capabilities advancements
using current methods.

2. For technique development, a fruitful research direction is to develop new safety methods
that increase the capabilities correlation, ensuring that the safety benchmarks will improve
in the future as general capabilities improve.

6 Conclusion

We have shown that a wide variety of safety benchmarks are tightly correlated with general model
capabilities, calling their importance into question. By considering the Bitter Lesson and the continued
scaling of deep learning, we argued that research in AI safety should anticipate the possibility of
safety metrics being correlated with general capabilities, such that they are naturally solved with
scale. To quantify this, we developed a methodology to measure the correlation of safety metrics
with general capabilities via spectral analysis of accuracy on capabilities datasets. In experiments, we
measured the capabilities correlation of a wide variety of safety benchmarks and datasets, finding
that many prior datasets are strongly correlated with general capabilities. We make two specific
recommendations: future safety benchmarks should aim for low correlation with general capabilities,
while future safety methods should aim to increase correlation between relevant safety metrics and
general capabilities.
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A Appendix

A.1 List of Models

A.1.1 List of Language Models

The following list are all of the base models we used for our evaluations.

1. gemma-2B [84]
2. gemma-7B [84]
3. Llama-2-7B [87]
4. Llama-2-13B [87]
5. Llama-2-70B [87]
6. Llama-3-8B [85]
7. Llama-3-70B [85]
8. Mistral-7B-v0.1 [38]
9. Mixtral-8x7B-v0.1 [39]

10. falcon-7B [3]
11. falcon-40B [3]
12. falcon-180B [3]

13. Yi-6B [2]
14. Yi-9B [2]
15. Yi-34B [2]
16. Qwen1.5-0.5B [7]
17. Qwen1.5-1.8B [7]
18. Qwen1.5-4B [7]
19. Qwen1.5-7B [7]
20. Qwen1.5-14B [7]
21. Qwen1.5-32B [7]
22. Qwen1.5-72B [7]
23. deepseek-llm-7B-base [18]
24. deepseek-llm-67B-base [18]

The following list are all of the chat or instruct models we used for our evaluations.

1. gemma-1.1-2B-it [84]
2. gemma-1.1-7B-it [84]
3. Llama-2-7B-Chat [87]
4. Llama-2-13B-Chat [87]
5. Llama-2-70B-Chat [87]
6. Llama-3-8B-Instruct [85]
7. Llama-3-70B-Instruct [85]
8. Mistral-7B-Instruct-v0.2 [38]
9. Mixtral-8x7B-Instruct-v0.1 [39]

10. falcon-7B-Instruct [3]
11. falcon-40B-Instruct [3]

12. Yi-6B-Chat [2]
13. Yi-34B-Chat [2]
14. Qwen1.5-1.8B-Chat [7]
15. Qwen1.5-4B-Chat [7]
16. Qwen1.5-7B-Chat [7]
17. Qwen1.5-14B-Chat [7]
18. Qwen1.5-32B-Chat [7]
19. Qwen1.5-72B-Chat [7]
20. Qwen1.5-110B-Chat [7]
21. deepseek-llm-7B-Chat [18]
22. deepseek-llm-67B-Chat [18]

Note that all of the model names above are as you would find them on HuggingFace.

A.1.2 List of Vision Models

The following is the list of vision models used in our evaluations in appendix A.4.

1. ResNet50 [78]

2. ResNet50 + L2 0.01 [78]

3. ResNet50 + L2 0.03 [78]

4. ResNet50 + L2 0.05 [78]

5. ResNet50 + L2 0.1 [78]

6. ResNet50 + L2 0.25 [78]

7. ResNet50 + L2 0.5 [78]

8. ResNet50 + L2 1 [78]

9. ResNet50 + L2 3 [78]

10. ResNet50 + L2 5 [78]

11. ResNet50 + L∞ 0.5/255 [78]

12. ResNet50 + L∞ 1.0/255 [78]

13. ResNet50 + L∞ 2.0/255 [78]

14. ResNet50 + L∞ 4.0/255 [78]
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15. ResNet50 + L∞ 8.0/255 [78]
16. WideResNet-50-2 [78]
17. WideResNet-50-2 + L2 0.01 [78]
18. WideResNet-50-2 + L2 0.03 [78]
19. WideResNet-50-2 + L2 0.05 [78]
20. WideResNet-50-2 + L2 0.1 [78]
21. WideResNet-50-2 + L2 0.25 [78]
22. WideResNet-50-2 + L2 0.5 [78]
23. WideResNet-50-2 + L2 1 [78]
24. WideResNet-50-2 + L2 3 [78]
25. WideResNet-50-2 + L2 5 [78]
26. WideResNet-50-2 + L∞ 0.5/255 [78]
27. WideResNet-50-2 + L∞ 1.0/255 [78]
28. WideResNet-50-2 + L∞ 2.0/255 [78]
29. WideResNet-50-2 + L∞ 4.0/255 [78]
30. WideResNet-50-2 + L∞ 8.0/255 [78]
31. WideResNet-50-4 [78]
32. WideResNet-50-4 + L2 0.01 [78]
33. WideResNet-50-4 + L2 0.03 [78]
34. WideResNet-50-4 + L2 0.05 [78]
35. WideResNet-50-4 + L2 0.1 [78]
36. WideResNet-50-4 + L2 0.25 [78]
37. WideResNet-50-4 + L2 0.5 [78]
38. WideResNet-50-4 + L2 1 [78]
39. WideResNet-50-4 + L2 3 [78]
40. WideResNet-50-4 + L2 5 [78]
41. ResNet18 [78]
42. ResNet18 + L2 0.01 [78]
43. ResNet18 + L2 0.03 [78]
44. ResNet18 + L2 0.05 [78]
45. ResNet18 + L2 0.1 [78]
46. ResNet18 + L2 0.25 [78]
47. ResNet18 + L2 0.5 [78]
48. ResNet18 + L2 1 [78]
49. ResNet18 + L2 3 [78]
50. ResNet18 + L2 5 [78]
51. ResNet18 + L∞ 0.5/255 [78]
52. ResNet18 + L∞ 1.0/255 [78]
53. ResNet18 + L∞ 2.0/255 [78]
54. ResNet18 + L∞ 4.0/255 [78]
55. ResNet18 + L∞ 8.0/255 [78]
56. ResNeXt-50 32x4d [78]
57. ResNeXt-50 32x4d + L2 3 [78]
58. DenseNet [78]

59. DenseNet + L2 3 [78]
60. ShuffleNet [78]
61. ShuffleNet + L2 3 [78]
62. VGG16BN [78]
63. VGG16BN + L2 3 [78]
64. MnasNet [78]
65. MnasNet + L2 3 [78]
66. MobileNet [78]
67. MobileNet + L2 3 [78]
68. DINOv2 ViT-large Patch14 [57]
69. ConvNeXt-V2-large ImageNet1K+22K

[98]
70. DINOv2 ViT-base Patch14 [57]
71. ViT-base Patch16 + L∞ 4/255 [80]
72. Swin-large ImageNet1K [47]
73. ConvNeXt-V2-huge ImageNet1K [98]
74. Swin-base ImageNet1K [47]
75. ConvNeXt-V2-base ImageNet1K+22K

[98]
76. ConvNeXt-xlarge ImageNet1K+22K

[48]
77. ConvNeXt-V2-large ImageNet1K [98]
78. MAE ViT-large Patch16 [26]
79. ConvNeXt-base + L∞ 4/255 [48]
80. ViT-small Patch16 + L∞ 4/255 [80]
81. ConvNeXt-large ImageNet1K+22K

[48]
82. Swin-base ImageNet1K + L∞ 4/255

[47]
83. ConvNeXt-small + L∞ 4/255 [48]
84. ViT-base Patch8 ImageNet1K+22K [80]
85. Swin-small ImageNet1K + L∞ 4/255

[47]
86. ConvNeXt-base ImageNet1K+22K [48]
87. ConvNeXt-V2-base ImageNet1K [98]
88. ViT-large Patch16 ImageNet1K+22K

[80]
89. ConvNeXt-large ImageNet1K [48]
90. Swin-small ImageNet1K [47]
91. ConvNeXt-V2-tiny ImageNet1K+22K

[98]
92. ConvNeXt-small ImageNet1K+22K

[48]
93. ConvNeXt-base ImageNet1K [48]
94. CLIP (ViT-L/14) [69]
95. ConvNeXt-V2-tiny ImageNet1K [98]
96. MAE ViT-base Patch16 [26]
97. ConvNeXt-small ImageNet1K [48]
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98. ResNet50 + L∞ 8/255 [78]

99. ConvNeXt-V2-nano ImageNet1K [98]

100. ConvNeXt-V2-nano ImageNet1K+22K
[98]

101. Reversible-ViT-base multiscale [49]

102. ViT-base Patch16 ImageNet1K+22K
[80]

103. ConvNeXt-tiny ImageNet1K+22K [48]

104. ConvNeXt-tiny ImageNet1K [48]

105. Swin-tiny ImageNet1K [47]

106. ResNet50 + PixMix [78]

107. ResNet50 + Moex [78]

108. Reversible-ViT-base [49]

109. ResNet50 + CutMix [78]

110. Reversible-ViT-small [49]

111. ConvNeXt-V2-pico ImageNet1K [98]

112. ConvNeXt-V2-atto ImageNet1K [98]

113. ResNet50 + L∞ 4/255 [78]

114. ResNet50 + DeepAug+AugMix [78]

115. ResNet50 + Mixup [78]
116. ResNet50 + Deepaugment [78]
117. ResNet50 + L∞ 2/255 [78]
118. ViT-base Patch16 ImageNet1K [80]
119. ConvNeXt-V2-femto ImageNet1K [98]
120. ResNet50 + L∞ 1/255 [78]
121. ViT-small Patch16 ImageNet1K [80]
122. ViT-small Patch16 ImageNet1K+22K

[80]
123. ViT-base Patch32 ImageNet1K+22K

[80]
124. ViT-base Patch32 ImageNet1K [80]
125. ResNet50 + AugMix [78]
126. ResNet50 + Stylised ImageNet [78]
127. ResNet50 + ANT [78]
128. ResNet50 + RandAug [78]
129. ViT-small Patch32 ImageNet1K+22K

[80]
130. ViT-tiny Patch16 ImageNet1K+22K

[80]
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A.2 Closed Source Model Evaluations
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Figure 8: Capabilities scores for all the open source instruction-tuned and chat models we evaluated,
plus GPT-4o.

In this section we compare the capabilities score of GPT-4o, today one of the most capable closed
source models, with other open source LLMs we evaluated. We compute the capabilities scores by
evaluating the models on the full capabilities set. The correlation analysis is then performed on this
matrix of scores. Table 3 contains the scores of GPT-4o on the capabilities tasks, while in Figure 8
we can observe that the capabilities scores roughly grow with the training FLOP of a language model,
with a clear gap between GPT-4o and the current open source models.

Table 3: Evaluation of GPT-4o on different capabilities tasks. Columns report the relevant metric (in
percentages) on the corresponding dataset.

GPT-4o
MMLU (full) 84

HellaSwag 92
ARC-Challenge 94

LogiQA 58
PIQA 96

WinoGrande 84
SuperGLUE (copa) 100
MedQA (4 options) 87

MATH 83
GMS8K 69

BBH 83
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A.3 Calibration
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Figure 9: We observe a slightly positive correlation between the Brier score and that of capabilities
score across chat models indicating that models tend to be less calibrated as capabilities increases.
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Figure 10: We observe that there exists no correlation between chat models’ capabilities and calibra-
tion error. Temperature tuning beneficially acts to improve RMSCE regardless of model capability.

Calibration in machine learning models refers to how well the predicted probabilities of a model
align with the actual probabilities of the observed outcomes. A well-calibrated model will produce
predictions where the confidence levels correspond accurately to the likelihood of correctness. There
exist a variety of methods such as temperature tuning, platt scaling, and isotonic regression to better
calibrate models.

Overall, we observe that calibration as a research direction is generally uncorrelated with model
capabilities. Figure 10 illustrates this lack of correlation, showing that advancements in model
capabilities do not necessarily lead to improvements in calibration. This indicates that even as models
become more sophisticated and accurate, their ability to produce well-calibrated probabilities does
not automatically improve. We can also observe that techniques such as temperature tuning help
calibrate all models roughly equally by dropping the mean error rate from 39% to 18%.

In some cases, particularly when considering the Brier score, calibration can even worsen as model
capabilities increase. Figure 9 presents a slightly positive trend line, suggesting that as models
become more capable, their calibration might deteriorate. This phenomenon can be attributed to
overconfidence in predictions, where highly capable models assign higher probabilities to their
predictions, which do not always correspond to the actual frequencies of the outcomes. As a result,
despite improved accuracy, the reliability of the predicted probabilities may suffer, highlighting the
need for continued research and development in the calibration of advanced models.
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A.4 Adversarial Robustness in Vision Models

Adversarial robustness remains a significant challenge in the realm of computer vision. Models
trained on standard datasets often exhibit vulnerabilities to adversarial inputs—carefully crafted
perturbations that, while imperceptible to humans, can lead to substantial misclassification errors and
degradation in model performance. These adversarial examples exploit the weaknesses in the models’
decision boundaries, revealing a gap in their ability to generalize beyond the training distribution.
Robustness in this context refers to a model’s ability to maintain high accuracy despite the presence
of such adversarial perturbations.
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Figure 11: Capabilities correlations on stan-
dard/adversarially robust vision models (see
Appendix A.1 for the full list of vision mod-
els; the adversarially trained models only con-
sists of models trained with L∞ 4/255 or L∞
8/255). The capability scores are computed
from two benchmarks: ImageNet-A [31] and
ImageNet-O [31].

Figure 11 investigates the correlation between an im-
age classification model’s standard accuracy and its
capability, as measured by the model’s robustness
and capability score computed from ImageNet-O
[31] and ImageNet-A [31], which are datasets de-
signed to evaluate how well models generalize to
out-of-distribution samples and handle naturally oc-
curring adversarial examples, respectively. For ro-
bust models, we observe a strong correlation between
the standard accuracy and robust accuracy. Further-
more, for both standard and robust models, there is a
strong correlation between the standard accuracy and
the capability score computed from ImageNet-A and
ImageNet-O. These findings are consistent with the
results obtained from language models, suggesting
that the relationship between standard accuracy and
model capability extends across different domains.
On the other hand, enhancements in model capabil-
ities do not inherently address the problem of adver-
sarial robustness. This is indicated from the fact that
all standard models perform poorly against these ad-
versaries. In addition, in contrast to language models adversaries, the attack space for vision models
might be larger due to the continuous nature of the input, making the problem more challenging.
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Figure 12: Correlation between clean accuracy and capabilities for both standard and adversarially
robust models. In both cases, more capable models also show better accuracy performance.
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A.5 Hallucinations

Hallucinations refer to instances where language models generate content that is plausible-sounding
but factually incorrect or nonsensical. It is mildly well-known that as language models scale up,
they tend to hallucinate less [36, 45]. We further verify this hypothesis by measuring the capabilities
coefficient on a generative benchmark (TruthfulQA Generation [45]) and a discriminative benchmark
(HaluEval [43]). We report the capabilities correlation of these hallucination benchmarks in Table 4.

Table 4: Capabilities correlations for Halluci-
nations and Truthfulness datasets. In general,
instruction-tuned and chat models show lower
correlation with capabilities compared to base
models.

Hallucinations Capabilities
Correlation

Base Chat

HaluEval [43]
HaluEval All 0.70 0.53
HaluEval Summarization 0.41 0.25
HaluEval Dialogue 0.74 0.79
HaluEval QA 0.38 0.20

TruthfulQA [45]
TruthfulQA Generation 0.73 0.55

Hallucinations decrease as capabilities increase.
Our analysis shows that as models’ general capa-
bilities improve, the tendency for hallucinations de-
creases. This correlation is observed in both genera-
tive and classification tasks across both base and chat
models.

Chat models improve overall truthfulness but with
lower capabilities correlation than base models.
Our findings indicate that while instruction-tuned
or chat models generally produce more truthful re-
sponses compared to their base models, the correla-
tion between capabilities and truthfulness is relatively
lower for chat models. As depicted in Figure 13,
although chat models achieve higher accuracy for
TruthfulQA generation, they exhibit a weaker corre-
lation between their capabilities and the generation
of truthful responses compared to base models.
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Figure 13: The capabilities score correlates with hallucination and truthfulness benchmarks for both
base and chat models.
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A.6 Sensitivity analysis
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Figure 14: Leave One Out sensitivity analysis summary. The top row corresponds to base models
and the bottom row to instruction tuned models. The left column figures show the effect size of
removing a benchmark on model capabilities as measured by Cohen’s d value on top five models in
terms of absolute value of relative change in capabilities score. The gray benchmarks correspond
to negligible effect. Green is used signify small and medium effects. The right column shows the
impact (measured by signed percentage change) of removing the benchmark with highest effect on
individual model capabilities scores.

Figure 14 shows a summary of our Leave One Out
analysis. We remove one benchmark at a time and repeat spectral analysis of model capabilities
scores using only the remaining benchmarks. We then compute impacts of this omission on each
model as a signed percentage change in capabilities scores. We also look at the shift in distribution of
model capabilities after removing each benchmark and summarize the it by computing Cohen’s d
– a statistical measure used to quantify the effect size or the magnitude of difference between two
groups’ means in relation to their combined standard deviation. Cohen’s d provides a standardized
way to understand the size of an effect (e.g. the impact of an intervention) beyond the mere statistical
significance of the difference, offering insights into its practical importance. Cohen’s d is calculated as
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the difference between two means divided by the pooled standard deviation of the data. Positive value
indicates that the scores increase in the absence of the chosen task, while negative value indicates
that the scores decrease.

In our Leave One Out sensitivity analysis we are interested in whether the intervention of removing a
particular task has a significant effect on model performance on capabilities in general. We use the
following generally accepted heuristic: benchmarks with effect size score (Cohen’s d) of less than
0.2 are considered to have a negligible effect, those with scores between 0.2 and 0.5 have medium
effect, and those with scores above 0.5 have large effect.

Among base models no task had medium or higher effect. Three tasks: Minerva Math, MMLU,
GPQA had small effect (sorted the order of decreasing score). We also show the impact of removing
the top task (Minerva Math) on each base model as a signed percentage change in capabilities
scores (see the lower left subplot in figure 14). Two models stand out in this comparison as being
disproportionately affected by this task: falcon-40b and gemma-7b.

Chat models seemed more sensitive to removing tasks. Six tasks had small effect: super-glue, medqa,
hellaswag, GPQA, logiqa, winogrande. There was also one task with a medium size (negative) effect:
BBH. Lower right subplot in figure 14 shows the impact of removing the top task (BBH) on each
base model as a signed percentage change in capabilities scores.

A.7 Compute Environment

The experiments were conducted using the BM.GPU4.8 bare metal instance on Oracle Cloud. This
setup includes 8 NVIDIA A100 Tensor Core GPUs, each with 80 GB of memory, interconnected
via NVIDIA NVLink. The instances use an AMD Rome processor with 64 physical cores operating
at 2.9 GHz. It also features 2,048 GB of RAM, 24 TB of NVMe storage, and offers a network
throughput of 1.6 Tbps.

A.8 Limitations

While our work provides valuable insights into the correlation between scaling laws and safety-specific
properties, it is not without limitations. Our work does not discuss all issues that safety evaluations
face. For example, data diversity and biases can affect the generalizability of results, which are
separate concerns from correlation of a safety metric with general capabilities. Another limitation
is that our analysis does not encompass all possible safety benchmarks or capabilities metrics,
potentially overlooking certain nuances specific to individual datasets or models. Additionally,
while we emphasize the importance of distinguishing safety improvements from general capabilities
enhancements, this should not discourage research in areas where these aspects are correlated.
Understanding and documenting these correlations can still yield significant insights and advance the
field by making these connections more explicit such as in WMDP [44]. Thus, while our findings
highlight the need for targeted safety evaluations, they also underscore the broader relevance of
exploring how safety and capability factors interplay in AI development.

A.9 Broader Impacts

The broader impacts of this work are significant, as it addresses critical gaps in understanding the
relationship between model scaling and safety. By elucidating how scaling laws correlate with
safety-specific properties, this research provides a framework for developing AI systems that are not
only more capable but also inherently safer. This dual focus on capability and safety is essential
for the responsible deployment of AI technologies in various high-stakes environments, including
healthcare, autonomous driving, and finance. Enhancing the robustness and reliability of AI systems
through targeted safety improvements can help mitigate risks associated with AI deployment, thereby
protecting users and stakeholders from potential harms.

Furthermore, this work has implications for the future design and evaluation of AI benchmarks. By
proposing a more nuanced approach to weighting benchmark components based on their variance in
model performance, we encourage a shift towards more comprehensive and meaningful evaluations
of AI systems. This could lead to the development of new benchmarks that better capture the
multifaceted nature of AI capabilities and safety, driving innovation in both areas. Additionally, our
findings could influence regulatory and policy frameworks, providing evidence-based guidelines for
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assessing and ensuring AI safety. In the long term, this research contributes to the broader goal of
creating AI systems that are not only powerful but also aligned with human values and societal needs.

A.10 Size Is Not Always Correlated with Capabilities

To further investigate the relationship between model size and capabilities, we conducted experiments
with the Llama 3.1 model series. Our experiments revealed instances where size did not correlate
positively with performance on certain benchmarks.
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Llama-3.1 8B and 70B are marked in red.

Figure 15: Performance of Llama 3.1 Models Across Capabilities Benchmarks.

We evaluated multiple versions of the Llama 3.1 models, varying in parameter count and training
configurations. The models were assessed on a range of capabilities and safety benchmarks to
determine how changes in size impacted their performance.

Our experiments demonstrated that increasing model size does not guarantee improved performance
across all tasks. In some cases, smaller models outperformed their larger counterparts on specific
safety benchmarks. This suggests that factors other than size, such as training data diversity, optimiza-
tion techniques, and architectural choices, play crucial roles in determining a model’s capabilities.
We also found that training FLOP still remained highly correlated with capabilities.

A.11 Capabilities Correlations for Knowledge, Reasoning, and Math

Building upon our primary analysis, we explored how the correlations between safety benchmarks and
model capabilities change when focusing on specific types of capabilities: mathematical reasoning,
general knowledge, and common sense.

We recalculated the capabilities component scores using subsets of benchmarks corresponding to
each capability type:

• Math Capabilities Component: MATH [30], GSM8K [17]

• Knowledge Capabilities Component: MMLU [29], MedQA [40], ARC Challenge [16]

• Common-Sense Capabilities Component: LogiQA [46], PIQA [13], HellaSwag [101],
Winogrande [77], COPA [73], LAMBADA [62], Big Bench Hard [9]

Using these components, we calculated the correlation coefficients between the safety benchmarks
and each capability type.

The results, as shown in Table 5, indicate that while general patterns persist, the correlations be-
tween safety benchmarks and capabilities can vary significantly depending on the type of capability
considered. For example:

• Knowledge Component: Exhibited the highest positive correlations with safety benchmarks
like AdvGLUE, AdvDemonstration, ETHICS, and TruthfulQA MC1.

• Math Component: Showed moderate correlations, suggesting that mathematical reasoning
contributes differently to safety benchmark performance.
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Table 5: Correlation Coefficients Between Safety Benchmarks and Capabilities Components
Evaluation Math Knowledge Common Sense
AdvGLUE 37.0 70.8 59.9
AdvGLUE++ 35.5 65.2 37.8
AdvDemonstration 47.8 80.0 54.8
HarmBench Human -22.4 -37.8 -29.6
HarmBench TAP-T -31.5 -37.9 -41.5
HarmBench GCG-T -18.8 -33.9 -23.8
CrowS-Pairs English 31.1 -2.3 36.3
Discrim-Eval 43.2 45.6 26.0
ETHICS 61.8 83.1 85.0
Sycophancy -66.8 -68.6 -57.5
TruthfulQA MC1 61.1 86.0 77.0
WMDP Bio -68.9 -95.0 -78.7
WMDP Chem -65.4 -93.3 -71.0
WMDP Cyber -64.8 -96.1 -77.1
RuLES 36.6 40.7 39.7

• Common Sense Component: Correlations were generally positive but varied more than the
knowledge component.

• Negative Correlations: Benchmarks like HarmBench and WMDP showed strong negative
correlations across all capability types, indicating that increased capabilities in these areas
might exacerbate certain safety risks.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: Our claims are presented and discussed thoroughly in the results and appendix.

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: We cover this in the discussion section but also in the appendix.

Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [N/A]
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Justification: No theoretical results presented.

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental Result Reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: The method as described in the paper, in addition to the datasets and models
listed, should be sufficient to reproduce the work. We will also be releasing all relevant
code.

Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: We will release all of our code. All of the data sources are public. We will
work to provide an anonymized evaluation script that evaluates on the data.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: All of the evaluations used the default parameters from their respective
repositories such as lm-eval-harness or from RULES etc.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: The plots report the error bars all of the other data is derived from primary
sources and therefore have their own internal noise.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.
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• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: We include this in the appendix but all experiments were run on A100-80 GB
DGX boxes.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: The paper does not cause any harms directly or indirectly to people. It also has
proper attribution.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader Impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: The paper broadly discusses the impacts that this work has on evaluation of AI
Safety benchmarks and datasets. It also discusses the monetary implications briefly.

Guidelines:
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• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [N/A]

Justification: We do not release any new models or datasets along with this paper.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: All of the datasets we use are open-source and cited. We also create forks of
the repositories used to be able to recreate the work.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
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• For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

• If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [N/A]

Justification: We do not present any new datasets or assets and instead repurpose existing
datasets into a benchmark.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [N/A]

Justification: We do not use human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [N/A]

Justification: We do not use human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.
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• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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