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Abstract

Uncertainty is introduced in optimized DNNs through stochastic algorithms, form-
ing specific distributions. Training models can be seen as random sampling from
this distribution of optimized models. In this work, we study the distribution of
optimized DNNs as a family of functions by leveraging a pointwise approach.
We focus on the input saliency maps, as the input gradient field is decisive to
the models’ mathematical essence. Our investigation of saliency maps reveals
a counter-intuitive trend: two stochastically optimized models tend to resemble
each other more as either of their capacities increases. Therefore, we hypothesize
several properties of these distributions, suggesting that (1) Within the same model
architecture (e.g., CNNs, ResNets), different family variants (e.g., varying capaci-
ties) tend to align in terms of their population mean directions of the input salience.
And (2) the distributions of optimized models follow a convergence trend to their
shared population mean as the capacity increases. Furthermore, we also propose
semi-parametric distributions based on the Saw distribution to model the conver-
gence trend, satisfying all the counter-intuitive observations. Our experiments
shed light on the significant implications of our hypotheses in various application
domains, including black-box attacks, deep ensembles, etc. These findings not
only enhance our understanding of DNN behaviors but also offer valuable insights
for their practical application in diverse areas of deep learning.

1 Introduction

The advancement in computational power has significantly enhanced the capabilities of Deep Neural
Networks (DNNs), leading to their unparalleled expressiveness and success in a multitude of applica-
tions across various fields (Krizhevsky et al., 2012; He et al., 2016; Rajkomar et al., 2018; Berner
et al., 2019; Rombach et al., 2022; Padmaja et al., 2023; Thirunavukarasu et al., 2023). Despite these
achievements, DNNs remain enigmatic, not only to end-users but also to researchers and practitioners
(Ribeiro et al., 2016; Rudin, 2018; Preece et al., 2018). Due to the over-parameterization nature of
modern DNNs, they are capable of reaching zero loss in the training distribution (Goodfellow et al.,
2014b; Allen-Zhu et al., 2019; Du et al., 2019). Furthermore, the inherent stochastic nature of training
algorithms means that even when using the same training data, DNNs tend to converge to various
minima (Huang et al., 2017; Liu et al., 2020). Thus even though these models may exhibit comparable
performance in terms of metrics like testing loss or accuracy, their underlying mechanisms can still
differ significantly. Because of the stochastic nature of the training procedure, optimized DNNs
collectively form a distribution over the functional space C1(X ), and training DNNs from scratch
is thereby equivalent to randomly sampling from such a distribution without any guarantee. This
inherent opacity, combined with the high dimensionality and nonlinearity, limits our understanding
of the internal mechanisms of DNNs.

38th Conference on Neural Information Processing Systems (NeurIPS 2024).



(a) Random Distribution (b) Convergent Distribution

Figure 1: A synthetic illustration of the distribution of the directional gradients of stochastically
optimized models of the same input data. The subfigures demonstrate (a) an intuitive, stochastic
scenario, where the distributions of different model families are not closely dependent. and (b) the
converging distribution trend introduced by our hypothesis. Different colors represent different model
families, and points represent different optimized models.

In response to these challenges, we study the aforementioned distributions. By adopting a pointwise
approach, our focus is on the distribution of input salience (Simonyan et al., 2013) from the context
of eXplainable Artificial Intelligence (XAI), which aims to demystify the inner workings of these
complex models (Gunning and Aha, 2019; Arrieta et al., 2020; Van der Velden et al., 2022). Saliency
maps, particularly in the form of input gradients, represent the data points within the gradient fields
of DNNs. Thus the study of gradients can offer a deterministic view of the landscape of model
predictions. This approach allows us to examine the intricate nuances of DNNs in a more structured
and analytical manner.

For clarity, in the following context, we distinguish between the term model architecture (e.g.
skip/direct connections) from the term model family. The latter refers to a specific collection of
models F , that differ only in capacity as determined by width and depth. Two models are said
to be in the same family if they differ only in parameter values. Given an input, varying model
families result in distinct distributions. A synthetic visualization of such distributions is shown in
Figure 1(a). Different models are depicted by the points. However, the relationship between different
model families, represented by various colors, remains elusive. In this work, we introduce and verify
several hypotheses to uncover a striking pattern. (1) Within the same model architecture (e.g., CNNs,
ResNets), different family variants (e.g., varying capacities) tend to align in terms of their population
mean direction. (2) As the model capacities increase, the variance within the distribution of the
same family diminishes. This leads to a converging trend of the distributions. Both hypotheses are
illustrated in Figure 1(b). Additionally, we introduce a semi-parametric approach to model these
distributions, providing detailed quantification of the convergence.

The similarities observed in input salience have direct implications for understanding the important
vulnerability of DNNs regarding gradient attacks (Szegedy et al., 2013; Goodfellow et al., 2014a). In
particular, in black-box attack settings, the gradients of the target model are not directly accessible. A
higher degree of salience similarity naturally enhances transferability (Chen et al., 2023). Our findings
elucidate why models with larger capacity consistently exhibit superiority in terms of adversarial
robustness compared to smaller models (Madry et al., 2017; Gustafsson et al., 2020; Li et al., 2020;
Bubeck and Sellke, 2021). Moreover, given that the mean direction is aligned across different models,
it is possible to approximate this mean direction by randomly sampling from a set of independently
optimized models. We demonstrate that these estimated mean directions can attain a near-perfect
cosine similarity of almost 1.0, even between completely independent models or ensembles, in a
high-dimensional space. Moreover, note that deep ensembles essentially calculate this population
mean direction (Lee et al., 2015; Lakshminarayanan et al., 2017; Fort et al., 2019; Kondratyuk et al.,
2020), where the mean of a group of independently trained models can improve the performance. As
a consequence, the insights of our hypotheses also shed light on this phenomenon which, although
empirically successful, has been somewhat enigmatic in terms of their source of capability (Lobacheva
et al., 2020; Deng and Shi, 2021; Abe et al., 2022; Theisen et al., 2023). Furthermore, since deep
ensembles approximate the aligned mean directions much faster than scaling up single models, this
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also demystifies the significant black-box attack transferability of deep ensembles (Yang et al., 2021;
Chen et al., 2023). Our research thus not only advances the understanding of model behavior in
practical applications but also contributes to the broader field of AI trustworthiness and efficiency.
Our main contributions can be summarized as follows:

• We reveal an appealing phenomenon where the mean distribution directions of input salience
across different model families have extremely high resemblance.

• We empirically demonstrate the distribution converges towards the mean direction as model
capacity increases.

• Incorporating both empirical observations and theoretical analysis, we hypothesize distribu-
tional properties of optimized models, quantifying the aforementioned phenomena.

• The hypotheses effectively explain many hitherto unclear phenomena such as black-box
attack transferability, the efficacy of deep ensemble methods, etc.

2 The Convergence of Input Saliency

2.1 Salience Similarities

Notation. Let X × Y = D denote the dataset, where X ⊂ Rd is the input set and Y = [c] is the
set of labels and c ∈ N+ is the number of classes. Following the benign overfitting phenomenon
(Bartlett et al., 2020; Papyan et al., 2020; Cao et al., 2022), we let F = {f |L(f ;Xtrain,Ytrain) <
10−3} denote a family of optimized models, distinguished by different architectures, such as vanilla
sequential CNNs, skipping blocks, etc. L denotes the expected cross-entropy loss for the training
distribution. For simplicity, we focus on f : Rd → R, which predicts the logit specifically for the
targeted class. This is to stay consistent with XAI methods. We demonstrate in Appendix A that
the difference between logit and probability (Wang and Wang, 2022) does not affect the observed
phenomena. Unless otherwise indicated, experiments are carried out over the test set X = Xtest,Y =
Ytest. Within the same architecture, model capacity is determined by both the width and the depth.
Since it is more difficult to model depth as a single variable, we model varying depth as different
families F but model varying width k as a parameter of the family, F(k).

(a) CNN, CIFAR-10 (b) ResNet, CIFAR-10 (c) CNN, CIFAR-100 (d) ResNet, CIFAR-100

Figure 2: The individual similarity ρind(f
(1), f (2)) = Ex∈X [CosSim(∇xf

(1)(x),∇xf
(2)(x))],

where f (1) ∈ F(k1), f
(2) ∈ F(k2). CIFAR-10/100 and CNN & ResNets are tested here.

(a) CNN, CIFAR-10 (b) ResNet, CIFAR-10 (c) CNN, CIFAR-100 (d) ResNet, CIFAR-100

Figure 3: The expected similarity ρ(k1, k2) between model families of varying capacities k1, k2.
Here the datasets are CIFAR-10/100, and the models are CNN and ResNets.
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The Increasing Similarity. Let CosSim : Rd × Rd → [−1, 1] denote the cosine similarity
metric, then the individual similarity between the input salience of two given models f (1) ∈
F(k1), f

(2) ∈ F(k2) given input x is ρind(f (1), f (2);x) = CosSim(∇xf
(1)(x),∇xf

(2)(x)). Tak-
ing the entire testing set into consideration, denote ρind(f (1), f (2)) = Ex∈X [ρind(f

(1), f (2);x)]. In
Figure 2, the expectations over the testing set Ex∈XCosSim(∇xf

(1)(x),∇xf
(2)(x)) with vary-

ing k1, k2 ∈ K are illustrated. Here, we define K = {j2i : 4 ≤ j ≤ 7, 1 ≤ i ≤ 6} =
{8, 10, 12, 14, 16, 20, · · · , 384, 448} to balance between finer linear scaling and coarser exponential
scaling. It can be observed that the similarity between two stochastically optimized models f (1), f (2)
has an increasing trend with respect to both k1, k2. Two different architectures CNN and ResNet are
included. To rule out the influence of any single model, we define the similarity between families
F(k1),F(k2) for a given input x by taking the expectation of the two models:

ρ(k1, k2;x) :=Ef(1)∈F(k1),f(2)∈F(k2)CosSim(∇xf
(1)(x),∇xf

(2)(x)) (1)

The global similarity between models of widths k1, k2 is then denoted by ρ(k1, k2) =
Ex∈Xρ(k1, k2;x). Note that estimating this value requires training numerous f ∈ F(k) for each
k ∈ K. Therefore, we carry out the experiments over K ′ = {j2i : j = 5i = 1, 2, 3, 4, 5} =
{10, 20, 40, 80, 160} ⊂ K. For each k1, k2 ∈ K ′, 100 models are sampled respectively to em-
pirically estimate the expectation over F(k1),F(k2). As observed in Figure 3, ρ(k1, k2) has an
increasing trend w.r.t. both k1, k2. Compared with Figure 3, the average similarity over the model
families is similar to the individual cosine similarity for the same k values. As a result, studying
the similarity of two randomly sampled models instead of the expectation over Fs can significantly
alleviate the computational burden. This is further discussed in detail in Section 3.2. Besides, It
trivially follows that ∀k1 > k2, ρ(k1, k1) > ρ(k1, k2) > ρ(k2, k2), which suggests that larger models
tend to resemble smaller models even more than smaller models themselves. – Even if the two smaller
models only differ in the random seeds during training. Please refer to Appendix A for the results of
more datasets, where such increasing trends still exist.

2.2 The Spherical Distribution of the Salience

Since the cosine similarity can be written as the inner product between ∇xf
(1)(x)

∥∇xf(1)(x)∥ and ∇xf
(2)(x)

∥∇xf(2)(x)∥ ,
which are high-dimensional unit vectors, we explore the properties and potential distributions of F
through the perspective of spherical statistics. Given an input x ∈ X , we denote by Gk(x) the set of
all possible gradient directions of input x regarding the models f in F(k). Formally, let

Gk(x) =
{
u = ∇xf(x)

/
∥∇xf(x)∥

∣∣∀f ∈ F(k)
}
,∀x ∈ X (2)

Then the similarity is re-written as the inner product ρ(k1, k2;x) = Eu1∈Gk1
(x),u2∈Gk2

(x)[u
T
1 u2].

The Intra-Family vs. Cross-Family Paradox. An interesting paradox is raised as ρ(·, ·) increases
with both inputs. Naturally, one would reasonably deduce that two models f (1), f (2) ∈ F(k1) should
resemble each other since they are from the same family (i.e. having the exact same structure and only
differ in training seeds). However, since ρ(k2, k1) > ρ(k1, k1), the cross-model family similarity
becomes greater than the intra-model family similarity. To uncover the mystery of the observations,
we present the intuitive understanding and the rigorously analyzed hypotheses as follows.

The Intra-Family Hypothesis. Note that for intra-family scenario, u,v ∈ Gk(x) are i.i.d., the
similarity can be written as ρ(k, k;x) = (EGk(x)[u])

T (EGk(x)[v]) = ∥EGk(x)[u]∥22, which denotes
the square of the population mean resultant length (Mardia et al., 2000) of Gk(x). The population
mean resultant length

√
ρ(k, k;x) quantifies the degree of dispersion of Gk(x), where a larger length

suggests a more concentrated distribution. In directional statistics, the degree of dispersion is usually
quantified by the spherical variance 2(1−

√
ρ(k, k;x)) or the total variation 1− ρ(k, k;x). Since

ρ(k, k;x) also increases w.r.t. k, this suggests an increasing concentration of input salience of models
as the width k of the model increases. In conclusion, the larger the models are, the smaller the
spherical variance of the salience is. Formally, we propose the following hypothesis.

• Hypothesis I (H1): Let k denote the width (capacity) of the model and Gk(x) =
{
u =

∇xf(x)
∥∇xf(x)∥

∣∣∀f ∈ F(k)
}

denote the set of input gradient directions regarding x. Then
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EGk(x)[u] =
√
ρ(k, k;x)µ(k;x) and ρ(k, k;x) increases with k. Here µ(k,x) =

EGk(x)[u]

∥EGk(x)[u]∥ denotes the unit mean direction of Gk(x).

Note that H1 also holds for the change of model depths, which is positively related to the dispersion
degree of the distribution. However, the change in model depth inevitably affects model width. Thus,
we only provide empirical verification in Section 3 but do not include it as a part of H2.

The Cross-Family Hypothesis. Unlike the intra-family similarity, the increasing cross-family
similarity is where the phenomenon becomes counter-intuitive. Then due to the increasing intra-family
similarities, when k1, k2 increase, u1 ∈ Gk1(x) becomes closer to µ(k1;x), u2 ∈ Gk2(x) becomes
closer to µ(k2;x). However, the cross-familty similarities suggest that as u1,u2 approach their
respective mean directions, their similarity increases as well. This indicates that the mean directions
µ(k1;x),µ(k2;x) are similar, too. Formally, this intuition is considered as follows. For k1 > k2,
when µ(k1;x) and µ(k2;x) are sufficiently similar, µ(k1;x)Tµ(k2;x) ≈ ∥µ(k1;x)∥∥µ(k1;x)∥.
Thus we have

ρ(k1, k2;x) =Eu1∈Gk1
(x),u2∈Gk2

(x)[u
T
1 u2] = Eu1∈Gk1

(x)[u1]
TEu2∈Gk1

(x)[u2]

≈∥Eu1∈Gk1
(x)[u1]∥∥Eu2∈Gk1

(x)[u2]∥ =
√
ρ(k1, k1;x)ρ(k2, k2;x),

(3)

which is monotonic w.r.t. both k1, k2. Formally, this is summarized as

• Hypothesis II (H2): Let Gk1(x),Gk2(x) denote the input gradient directions of two model
families where k1 ̸= k2. Then µ(k1;x) ≈ µ(k2;x) regardless of k1, k2.

The two hypotheses are both empirically verified. For a smoother flow of the presentation, we defer
the detailed experiments to Section 3. The basic ideas of H1 and H2 are illustrated in Figure 4 (a).

2.3 The Directional Distribution of Gradients

Given the analysis and hypothesis above, one can have an overview of the models’ internal mech-
anisms. As the model capacity increases, models are distributed in a more concentrated manner,
while the mean direction stays almost invariant. To better understand the models’ behavior with the
stochasticity, we delve into the distribution of Gk(x) and present a semi-parametric analysis with
experimental verification. A general form of centralized symmetric distribution over hypersphere
is known as the Saw distribution (Fisher et al., 1993) p(u;µ) = ψ(uTµ)

Z , where µ is the mean
direction with ∥µ∥ = 1, ψ ∈ C([−1, 1]), and Z =

∫
Sd−1 ψ(u

Tµ)du is the normalization term for
distributions. Due to the symmetry assumption, the shape of the distribution is solely determined by
ψ. For example, a monotonically increasing ψ suggests that u is distributed more densely near the
mean direction and sparsely distant from the mean direction. Considering the concentration trend of
gradients, we hypothesize that ψk(·) of Gk(x) not only monotonically increases with the input, but
also increases faster with greater k values.

Marginalization. For ∀u ∈ Gk(x), it can be decomposed to u = t · µ(x) +
√
1− t2 · µ(x)⊥,

where µ(x)⊥ is a unit tangent to Sd−1 at µ. Then t = uTµ(x). This is shown in Figure 4 (b). Note
that µ(x)⊥ is independent from t, then the distribution of t is the marginal distribution over the
intersection between Sd−1 and the hyperplane spanned by µ(x)⊥, which is a (d− 2)-dimensional
hypersphere. According to the symmetry assumption of Saw distribution, conditioned on a fixed
similarity t, the distribution of u|t over the dashed Sd−2 does not affect ψ. Therefore, we focus
on the marginalized distribution of t. Note that the radius of the intersection Sd−2 is

√
1− t2, we

thus have du = 2π(d−1)/2(1−t2)(d−3)/2

Γ((d−1)/2) dt, where the density of t is observed by the integral over the
corresponding (d− 2)-hypersphere. As a result, the marginal distribution of t has the PDF

pk(t;x) = ψk(t;x)(1− t2)(d−3)/2/Z ′ (4)

where Z ′ is a constant normalization term. Note that (1 − t2)(d−3)/2 is a symmetric bell curve
centered at t = 0. Equation (4) can thus be viewed as using ψk(t;x) to reweight its PDF porigin(t) =

(1− t2)(d−3)/2 Γ(d/2)√
πΓ((d−1)/2)

. Note that here pk(t;x) is the distribution of t = uTµ(k;x), which can
be empirically estimated, the shape of the function ψk becomes empirically accessible with varying k
values. The empirical studies and verification are provided in Section 3.3.
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Figure 4: (a) presents an illustration of H1 and H2. Blue and green caps represent u1 ∈ Gk1(x)
(green) and u2 ∈ Gk2(x) (blue) regions 2. H1: larger ks lead to smaller spherical variances; H2:
the mean directions are extremely similar. (b) illustrates (left) the decomposition of u to the mean
direction and the orthogonal direction; and (right) the marginalization of the distribution from u to t.

3 Empirical Verification of Hypotheses

In this section, we provide comprehensive experimental results to verify the aforementioned hypothe-
ses. First, we introduce the detailed setups of our experiments. They are carried out on Intel(R)
Core(TM) i9-9960X CPU @ 3.10GHz with Quadro RTX 6000 GPUs.

Datasets & Models. Due to the massive size of experiments, here we mainly follow the setups of
the benign overfitting (Nakkiran et al., 2021), which also present a comprehensive study of optimized
DNNs through CIFAR-10 and CIFAR-100 (Krizhevsky et al., 2009). Besides, we also include
TinyImagenet-200 (Le and Yang, 2015) as a compromise between the computational efficiency and
the dataset complexity. As for models, we include CNNs and ResNets as in (Nakkiran et al., 2021).
These two models represent the two typical architectures – the direction connection and the skip
connection. We also notice a striking capacity gap between them in the original implementation.
Therefore, we term them CNNSmall (CS) and ResNetLarge (RL), respectively, and include CNNLarge
(CL), and ResNetSmall (RS) to fill the gap. The comparison between the small and large families
also shows the influence of depths. As for the training process, following Nakkiran et al. (2021), we
use stochastic gradient descent (SGD) as the solver, with a batch size of 128. The input data are
normalized, but not augmented. We start with the initial learning rate γ0 = 0.1 and update it with
γt = γ0/

√
1 + t, where t is the epoch. Please refer to Appendix B for more experimental details.

3.1 The Mean Direction Similarity (H2)

H2 can be verified independently from H1 and can provide simplifications and insights to verifying
H1. We hence focus on H2 first. As stated in H2, the mean directions of different model families
are consistently aligned, i.e., µ(k1;x) ≈ µ(k2;x). For each family F(k) where k ∈ K ′, M = 100
models with different random seeds are trained. The population mean is then estimated through

µ̃(k;x) =
( 1

M

M∑
i=1

∇xfi(x)

∥∇xfi(x)∥

)/∥∥∥ 1

M

M∑
i=1

∇xfi(x)

∥∇xfi(x)∥

∥∥∥ ≈ µ(k;x), fi ∈ F(k). (5)

Then the similarity of mean directions are naturally (µ̃(k1;x))
T µ̃(k2;x). Note that when k1 = k2,

the 100 models are partitioned by the seeds to avoid overlapping. The results of the expectation
over X are visualized in Figure 5. It can be found that the mean directions have extremely high
resemblance within each architecture, as proved by the high cosine similarities. It should be noted
that with high dimensionality (e.g. d = 3072 for CIFAR), a cosine similarity close to 1 is an
extremely significant result. We demonstrate this with the uniform distribution on the hypersphere in
Appendix D. The observations verify the hypothesis all Gk(x) almost share the same mean direction
within the model architecture. This not only hold across different widths determined by k, but also
holds across different depths (i.e. CS vs. CL, RS vs. RL). Therefore, the mean direction is mostly
related to the certain model architecture instead of any single model f ∈ F , making it an intrinsic

2The caps are to illustrate the variance differences. Actual distributions are over the entire hypersphere.
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(a) CIFAR-10 (b) CIFAR-100 (c) TinyImagenet

Figure 5: The heatmap visualization between the estimated population mean directions from different
model families. Each entry is computed by Ex∈XCosSim(µ̃j(x;F), µ̃j′(x;F ′)) The results are
generated from CIFAR-10/100 and TinyImagenet datasets. F ∈{CS, CL, RS, RL}.

Figure 6: Illustration of (red) ρind(f (1), f (2)), f (1), f (2) ∈ F(k) and (blue) ρ(k, k) on CIFAR-10.

property of the model architecture. With this property, how different model architectures differ in
mechanisms can be studied by looking deeper into the population mean direction of saliency maps.
For instance, it can be observed that the ResNet architecture admits a closer relation between models
of different depths, compared with the CNN architecture.

3.2 The Decreasing Spherical Variance with k (H1)

Expectation over F vs. Conditioned on f ∈ F . As previously discussed, the spherical variance
of distributions over the hypersphere can be measured by the population mean resultant length√
ρ(k, k;x), which, unfortunately, requires an estimation of the mean directions. This can be

expensive to study for a comprehensive set K of k values. The experiments on a subset K ′ =
{10, 20, 40, 80, 160} are already carried out in Figure 3, shown as the diagonal elements. As k
increases, the resultant length increases monotonically, indicating a decreasing spherical variance and
a more concentrated distribution around the mean directions.

The computational burden of taking the expectation over F can be alleviated by considering
randomly picked f . In order to compare ρ and ρind, we consider the model-dependent set
S(f) = {ρind(f, f ;x) : x ∈ X} for each f ∈ F . Here we compute the expected Wasser-
stein distance Ef(1),f(2)∈F(k)WD(S(f (1)),S(f (2))). This is estimated by the

(
M
2

)
distinct pairs of

models. The distances of all 60 (dataset, model family) pairs lie below 0.035. Such observation
suggests that after taking the expectation over X , the differences across individual models can be
mitigated. Please refer to Table 1 for comprehensive results on all model families and datasets.
As a consequence, it suffices to use ρind(f, f) for some f ∈ F(k) to approximate ρ(k, k). This
is in fact the diagonal elements of Figure 2. A comparison between the diagonal elements ρk,k
and ρind(f (1), f (2)), f (1), f (2) ∈ F(k) over CIFAR-10 is presented in Figure 6. Please refer to the
appendix for other datasets. ρind is evaluated over k ∈ K, while ρ is evaluated over k ∈ K ′ ⊂ K.
It can be found that after taking the average over X , even though ρ is a little smoother than ρind,
they are very consistent. This verifies that the resultant length increases with k ∈ K in a much more
comprehensive set of models. Thus H1 is empirically verified.
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Figure 8: (left) The illustration of the frequency of
the mixture Tk, where k ∈ {10, 20, 40, 80, 160}.
Specifically, the black histogram represents the
distribution porigin. The dashed curves are the
approximated PDF pk obtained by KDE. The re-
sults are generated using CNNSmall and CIFAR-
10. (right) The illustration of log pk

porigin
, which is

linearly related to logψk.

Figure 9: The illustration of the relation be-
tween the expected testing loss EX [L] and the
marginal expectation EX [t], where models are
from (a) single models with varying capacities (b)
deep ensembles with varying member #. Each
color represents a model family. In particular,
in (b), different marker shapes indicate different
k ∈ [10, 20, 40, 80] of the ensembles.

3.3 The Shape of the Saw Distribution

Given Gk(x), the marginalized distribution pk(t;x) can be approximated by Tk(x) = {t̃ =
uT µ̃(k;x)|u ∈ Gk(x)}. In order to obtain the global results over test dataset X , consider the
unions of different input samples Tk = ∪x∈XTk(x). This is an approximation to the mixture distri-
butions pk(t) = 1

|X |
∑

x∈X pk(t;x). We plot the histogram of Tk with k ∈ K ′ for CNNSmall and
CIFAR-10 in Figure 8. The left figure shows porigin and the estimated pk, visualized by different
colors. Qualitatively, pk(t) has higher means with greater k values. The reason why the density of pk
is not centered at t = 1 (i.e. u = µ) is because as t increases, the size of the (d− 2)-hypershpere
decreases with porigin(t) = (1− t2)(d−3)/2 Γ(d/2)√

πΓ((d−1)/2)
, which is shown as black histograms. This is

much faster than the increase of ψk. The shape of ψk is determined by pk/porigin with normalization.
From the right figure, by comparing pk with pPDF, it can be empirically verified that ψk(t) is increasing
vastly. It is also observed that larger ks lead to a faster increase of ψk and higher E[t]. This also
provides a quantitative understanding of H1 and H2. The results of other model architectures and
datasets can be found in the appendix.

Figure 7: The marginal distribu-
tion of t of the first test sample of
CIFAR-10. Red dashed lines parti-
tion the range of t every 10 percent
of the frequency.

Verification of the Symmetry. Saw distributions study the
marginalized value t = uTµ to directly focus on the degree
of concentration of the gradients. This naturally leads to ro-
tationally symmetric distributions since the distribution on the
intersection between Sd−1 and the hyperplane does not affect
the distribution of t. We thus carry out an empirical study of the
distribution on the intersection (i.e. conditioned on t). Specif-
ically, we train 1000 CNN models with K = 40 and seeds
1-1000 on CIFAR-10 and compute t regarding each test sample.
The distribution of the first sample is visualized in Figure 7. We
partition the range of t into 10 intervals by every 10 percent
of the frequency, and inspect the direction of the mean of the
gradients in each interval, each direction is estimated by 100
models. If these conditional mean directions are consistent with
the population mean direction, then the gradients are symmet-
rically distributed on each Sd−2 hypersphere (R7(right)), thus
verifying the rotational symmetry. We investigate the cosine similarities between the conditional
and unconditional mean directions on the first 1000 samples. The 10× 1000 similarity values have
a mean and std at approximately 0.970 and 0.013 respectively. Thus the rotational symmetry is
empirically verified.

8



(a) CIFAR-10, CS (b) CIFAR-10, CL (c) CIFAR-10, RS (d) CIFAR-10, RL

Figure 10: The results of single model black-box attack. The value of each entry is α(k1, k2) for
different model capacities, where k1 is the width parameter of the source model and k2 is the width
parameter of the target model.

(a) CIFAR-10, CS (b) CIFAR-10, CL (c) CIFAR-10, RS (d) CIFAR-10, RL

Figure 11: The comparison between the single-model attack from the largest model (red), the single-
model attack from the very same capacity (green) and the attack by the mean direction (blue).

4 Applications of Hypotheses

4.1 Deep Ensemble: Why Does It Work?

After verifying the hypotheses, we explore possible applications and implications of the discovered
phenomena. The deep ensemble method makes use of the stochasticity to of models by incorporating
the predictions from m members. While deep ensembles have been verified to be effective in
improving performance, the source of such capability remains mysterious. Note that ensemble
members are i.i.d. optimized models with SGD, which correspond to the population mean of our
hypothesis. We thus provide another perspective in understanding the capability of deep ensembles.

For single models, as the model capacity increases, benign overfitting suggests that the testing loss
decreases, too. We deduce that this is because the distribution of larger models becomes more
concentrated, and combined with H2, the closeness to the aligned population mean is highly related
to the models’ testing performance. As shown in Figure 9(a), it can be observed that the expected
loss EX [L] and the marginal expectation EX [t] are highly correlated. Similarly, deep ensemble
approximates the population mean much more effectively by increasing the number m of members
than scaling up a single model by k. We thus scale up the deep ensemble by changing the number of
ensemble members. The results are shown in Figure 9(b). It can be found that (1) the correlation
between EX [L] and EX [t] is not only significant, and (2) the correlation pattern is shared between
two completely different scaling mechanisms, single model scaling and model ensembles.

4.2 Black-Box Attack via Saliency Similarity

The understanding of adversarial attacks can benefit from the behaviors of the input salience of
optimized models given their close relation to input gradients. We verify the aforementioned
similarities through the black-box attacks, where the adversarial samples are generated from the
gradients of source models while the gradients of the target models are not available. Let f (1) ∈ F(k1)
denote the source model and f (2) ∈ F(k2) denote the target model. We define the attack rate from
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f (1) to f (2) similar to ρind as

α(f (1), f (2)) = E
x∈X

[
f (2)

(
x− ϵ · sign(∇xf

(1)(x))
)/
f (2)(x)

]
(6)

which is the performance decay of f (2) when attacked by model f (1). Small α(k1, k2) values suggest
successful attack from f (1) to f (2). The results are shown in Figure 10, where the attack step is set to
ϵ = 0.05. In each heatmap figure, the y-axis represents the width of the source models, while the
x-axis represents the width of the target models. It can be observed that larger models succeed in
attacking smaller models, but the opposite is not true. To attack a large model, the gradient needs to
be generated from a model of a comparable level in terms of capacity.

Mean Direction Attack. According to the verified hypothesis H2, for any two individual models
f (1) ∈ F(k1), f

(2) ∈ F(k2) the mean directions µ(k;x) is closer to both of them than themselves,
regardless of k, k1, k2. It is then suggested that using the mean gradient can perform more successful
black-box attacks. We employ the mean direction µ̃(160,x) to attack models of different capacities,
and compare the results with the attack from the largest single model (red) and the attack from the
models of the identical structure (green). The results are shown in Figure 11, where it can be observed
that the mean direction of salience transfers much more successfully than single models.

5 Conclusions

In this paper, we introduce hypotheses to explain the observations on the input salience convergence
w.r.t. the model capacities. Under the same model architecture, stochastic algorithms such as SGD,
result in certain distributions of optimized models. We hypothesize and use pointwise methods to
verify that such distribution follows a Saw distribution with aligned population means, which is
invariant from the model families. Besides, the variance of the distribution decreases as the model
capacity increases, suggesting a convergence trend of the models’ internal mechanism – the larger
the models are, the less variant they tend to be affected by the randomness from the stochastic
algorithm during the training phase. Furthermore, since the distributions converge towards the
aligned population mean direction, the limiting points can be estimated by the population mean of
models. Based on this, we present comprehensive experiments on the properties of the limiting
model and demonstrate its capability in various domains, such as the black-box attack transferability,
and the explanation of the effectiveness of deep ensembles. However, it is admitted that, due to the
high computational burden, although improved from CIFAR-10/100 to TinyImagenet compared to
(Nakkiran et al., 2021), our experiments are limited to rather small datasets.

Our introduced hypotheses also lead to various interesting topics. Note that the aligned mean direction
stays invariant to the model families, which indicates such population mean is more related to the
essence of the dataset itself rather than any single model. Leveraging this property can bring a deeper
and more comprehensive understanding of the relation between data distributions and models.

6 Related Work

In terms of the convergence trend of DNNs, existing works focus on the convergence of single models
throughout the training process. The parameters of DNNs have been demonstrated to converge to
global minima throughout the training progress (Goodfellow et al., 2014b; Li et al., 2018; Allen-Zhu
et al., 2019; Liu et al., 2020; Damian et al., 2021; Refinetti et al., 2023; Suh and Cheng, 2024). Recent
years, the studies of benign overfitting also suggest that increasing model capacities can improve
the performance instead of exacerbating the overfitting issue (Bartlett et al., 2020; Nakkiran et al.,
2021; Cao et al., 2022). While the studies of input gradients span into an abundant but extremely
complicated spectrum. Among them, the area that is the most related to our work is the XAI domain,
where the input gradient and its variants are crucial in revealing the models’ internal mechanisms
(Simonyan et al., 2013; Springenberg et al., 2014; Selvaraju et al., 2017; Sundararajan et al., 2017;
Adebayo et al., 2018; Shah et al., 2021). On the other hand, the studies of the distribution of optimized
models have received little attention. Such topics are slightly dipped in the efforts to demystify
the source of capability of deep ensembles (Lee et al., 2015; Fort et al., 2019; Allen-Zhu and Li,
2020; Kobayashi et al., 2021; Abe et al., 2022; Ganaie et al., 2022; Theisen et al., 2023) and their
implications (Lakshminarayanan et al., 2017; Geiger et al., 2020; Yang et al., 2021; Chen et al., 2023).
Thus, to our knowledge, the studies on the distribution of optimized models remain a novel topic.
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A Additional Results of the Similarities

The illustration of CIFAR-100 & TinyImagenet. In addition to the cosine similarity ρind(k1, k2)
shown in Figure 2, we include more sophisticated datasets such as CIFAR-100 and TinyImagenet
in Figure 12. It is observed that the observed phenomena, where ρind(k1, k2) tend to increase w.r.t.
both k1, k2, hold across different datasets. It is also worth noticing that compared with the results of
CIFAR-10 shown in Figure 2, the resulting ρind(k1, k2) of CIFAR-100 and TinyImagnet (Figure 12)
shows another peak at around k ≈ 10 (see Figure 12(e)). This is related to the deep double descent
phenomenon (Nakkiran et al., 2021), where when the complexities of the model and the dataset are
comparable, the overfitting issue is at peak. For smaller such as CIFAR-10 or larger models such
as ResNet, this issue becomes much less significant, as a very small k value is already sufficient for
the data distribution. Also, as the complexity of the data distribution increases, the cosine similarity
decreases inevitably for the same model complexity. This suggests a less concentrated distribution of
the optimized models of the same capacity compared with less complex dataset. Correspondingly,
the results of the expectation over the model sets for k ∈ K ′ = [10, 20, 40, 80, 160] are shown in
Figure 13.

(a) CS, CIFAR-10 (b) CL, CIFAR-10 (c) RS, CIFAR-10 (d) RL, CIFAR-10

(e) CS, CIFAR-100 (f) CL, CIFAR-100 (g) RS, CIFAR-100 (h) RL, CIFAR-100

(i) CS, TinyImagenet (j) CL, TinyImagenet (k) RS, TinyImagenet (l) RL, TinyImagenet

Figure 12: The expected similarity ρ(k1, k2) between models of varying widths k1, k2. Here we
include CNNSmall, CNNLarge, ResNetSmall, and ResNetLarge as F . The values of k1, k2 determine
the widths in each layer. Here the datasets are CIFAR-10 (top), CIFAR-100 (middle) and tinyImagenet
(bottom).

The Ablation of the Training Process. To verify that the observed increasing trends of ρind(k1, k2)
with model capacities are caused by the training process of DNNs instead of some normalization
issue, we compare the similarity for models with initialized parameters. The results are shown in
Figure 14. All three datasets and four model families are included. It can be clearly observed that,
when the model parameters are initialized, the similarity between input saliency maps of different
models are distributed randomly. The cosine similarity values are very concentrated around 0, which
is the mean of random distribution. This verifies that the aforementioned increasing trends are caused
by the optimization of models instead of normalization process.
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(a) CS, CIFAR-10 (b) CL, CIFAR-10 (c) RS, CIFAR-10 (d) RL, CIFAR-10

(e) CS, CIFAR-100 (f) CL, CIFAR-100 (g) RS, CIFAR-100 (h) RL, CIFAR-100

(i) CS, TinyImagenet (j) CL, TinyImagenet (k) RS, TinyImagenet (l) RL, TinyImagenet

Figure 13: The expected similarity ρ(k1, k2) between models of varying widths k1, k2. Here we
include CNNSmall, CNNLarge, ResNetSmall, and ResNetLarge as F . The values of k1, k2 ∈
[10, 20, 40, 80, 160] determine the widths in each layer. Here the datasets are CIFAR-10 (top),
CIFAR-100 (middle), and tinyImagenet (bottom).

Softmax Activations. Apart from the normalization concern, recent work in (Wang and Wang, 2022)
demonstrate the difference between the input salience of the predicted logits and probabilities. As a
result, we clarify that, although we define f as the predicted logit (before softmax activations), this
choice does not affect the observed increasing trend, no matter when the input salience is generated
concerning the logit, probability, or the loss. The results of ρind(k1, k2), generated from the saliency
maps w.r.t. the predicted probability (after softmax activations), are shown in Figure 15. It can be
found that ρind(k1, k2) still increases with both k1 and k2.

B Experiment Details

Model Details Throughout the experiments, we use CNNSmall, CNNLarge, ResNetSmall, and
ResNetLarge as model families. Within each family, model width is controlled by the parameter k.
And the model depths are controlled by the “Small" vs. “Large" suffixes. For CNNs, CNNSmall
consists of convolutional layers with channels [k, 2k, 4k, 8k], while CNNLarge repeats each layer
twice: [k, k, 2k, 2k, 4k, 4k, 8k, 8k]. The details of CNNs are shown in Table 2. Additionally, for
TinyImagenet, since the input data is of size 64× 64, we increase the stride of the second MaxPool2d
layer (Layer 10) to 4. As for ResNets, we modify the width of ResNet-10 for ResNetSmall and
ResNet-18 for ResNetLarge. Note that k = 64 ResNetSmall corresponds to ResNet-10, while k = 64
ResNetLarge corresponds to ResNet-18. The sizes of models are illustrated in Figure 16 as the # of
trainable parameters.

It should also be noted that, ideally, CNNSmall and CNNLarge, ResNetSmall and ResNetLarge are
considered as the same families due to the same architecture. However, since widths can be adjusted
independently of the depth, while the adjustment of depth inevitable affects the width, we split them.
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(a) CIFAR-10, CS (b) CIFAR-10, CL (c) CIFAR-10, RS (d) CIFAR-10, RL

(e) CIFAR-100, CS (f) CIFAR-100, CL (g) CIFAR-100, RS (h) CIFAR-100, RL

(i) TinyImagenet, CS (j) TinyImagenet, CL (k) TinyImagenet, RS (l) TinyImagenet, RL

Figure 14: The expected similarity ρ(k1, k2) between models of varying widths k1, k2. Here we
include CNNSmall (CS), CNNLarge (CL), ResNetSmall (RS), and ResNetLarge (RL) as F . The
values of k1, k2 determine the widths in each layer. All the models are initialized to random
values without any optimizations. Here the datasets are CIFAR-10 (top), CIFAR-100 (middle), and
TinyImagenet (bottom).

Table 1: The average Wasserstein distance Ef(1),f(2)∈F(k)WD(S(f (1)),S(f (2))) with the standard
deivation for all model families {CS, CL, RS, RL}×{10, 20, 40, 80, 160} over CIFAR-10/100 and
TinyImagenet datasets. Note that here the baseline should be 2 since the cosine similarity lies in
[−1, 1]. It is observed that deeper models usually have larger distances (CS vs. CL, RS vs. RL). We
deduce that this is because of the training for deeper models is more difficult.

CIFAR-10 k = 10 k = 20 k = 40 k = 80 k = 160

CS 0.0081 ± 0.0051 0.0100 ± 0.0060 0.0106 ± 0.0062 0.0135 ± 0.0094 0.0153 ± 0.0106
CL 0.0143 ± 0.0091 0.0171 ± 0.0144 0.0322 ± 0.0295 0.0334 ± 0.0287 0.0345 ± 0.0271
RS 0.0097 ± 0.0059 0.0092 ± 0.0055 0.0088 ± 0.0052 0.0073 ± 0.0043 0.0061 ± 0.0036
RL 0.0096 ± 0.0054 0.0107 ± 0.0065 0.0090 ± 0.0053 0.0090 ± 0.0057 0.0163 ± 0.0121

CIFAR-100 k = 10 k = 20 k = 40 k = 80 k = 160

CS 0.0078 ± 0.0052 0.0056 ± 0.0034 0.0054 ± 0.0031 0.0060 ± 0.0034 0.0085 ± 0.0056
CL 0.0098 ± 0.0059 0.0099 ± 0.0060 0.0156 ± 0.0106 0.0184 ± 0.0130 0.0222 ± 0.0146
RS 0.0071 ± 0.0034 0.0066 ± 0.0029 0.0062 ± 0.0030 0.0061 ± 0.0029 0.0055 ± 0.0029
RL 0.0087 ± 0.0042 0.0079 ± 0.0037 0.0078 ± 0.0037 0.0065 ± 0.0029 0.0078 ± 0.0044

TinyImagenet k = 10 k = 20 k = 40 k = 80 k = 160

CS 0.0033 ± 0.0018 0.0021 ± 0.0010 0.0018 ± 0.0007 0.0028 ± 0.0013 0.0060 ± 0.0049
CL 0.0032 ± 0.0016 0.0032 ± 0.0014 0.0055 ± 0.0029 0.0129 ± 0.0083 0.0204 ± 0.0155
RS 0.0083 ± 0.0052 0.0058 ± 0.0038 0.0049 ± 0.0025 0.0045 ± 0.0023 0.0041 ± 0.0018
RL 0.0062 ± 0.0040 0.0060 ± 0.0035 0.0055 ± 0.0030 0.0055 ± 0.0031 0.0057 ± 0.0031

But our experiments in Section 3.1 verify that the depths do not affect the population mean of model
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(a) CIFAR-10, CS (b) CIFAR-10, CL (c) CIFAR-10, RS (d) CIFAR-10, RL

(e) CIFAR-100, CS (f) CIFAR-100, CL (g) CIFAR-100, RS (h) CIFAR-100, RL

(i) TinyImagenet, CS (j) TinyImagenet, CL (k) TinyImagenet, RS (l) TinyImagenet, RL

Figure 15: The expected similarity ρ(k1, k2) between models of varying widths k1, k2. Here we
include CNNSmall, CNNLarge, ResNetSmall, and ResNetLarge as F . The values of k1, k2 determine
the widths in each layer. In particular, all the cosine similarities are between the input saliency maps
of the predicted probabilities instead of the predicted logits. Here the datasets are CIFAR-10 (top),
CIFAR-100 (middle) and tinyImagenet (bottom).

Figure 16: The # of trainable parameters of models vs. the width parameter k for each architecture.
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Table 2: CNNSmall Model Details

Layer Type Parameters

0 Conv2d 3 inch, k outch, ks 3, stride 1, padding 1
1 BatchNorm2d -
2 ReLU -
3 Conv2d k inch, 2k outch, ks 3, stride 1, padding 1
4 BatchNorm2d -
5 ReLU -
6 MaxPool2d ks 2, stride 2
7 Conv2d 2k inch, 4k outch, ks 3, stride 1, padding 1
8 BatchNorm2d -
9 ReLU -
10 MaxPool2d ks 2, stride 2
11 Conv2d 4k inch, 8k outch, ks 3, stride 1, padding 1
12 BatchNorm2d -
13 ReLU -
14 MaxPool2d ks 8, stride 8
15 Flatten -

fc Linear in_features=80, out_features n_class

(a) Depth-Wise Similarity (b) Width-Wise Similarity

Figure 17: The cosine similarities between CNN models with different widths (left) and depths (right).
Widths and depths are enumerated in {16, 32, 64, 128, 256} and {1, 2, 3, 4, 5}. Note that to scale the
depths without affecting widths, here we fix the widths of all layers to k instead of [k, 2k, 4k, 8k] as
the manuscript

distributions. In experiments, we set X as the first 1000 samples of the unshuffled testing set of each
dataset (CIFAR-10/100, TinyImagenet).

C Additional Settings

This work aims to reveal the convergence trend of the distribution of model behaviors under the
stochasticity of the training criterion. This does not limit the conclusion to the specific criterion
described above. Distinct training criteria can lead to different distributions of trained models.
However, these different distributions of trained models all satisfy the revealed trend. To verify this,
we present additional experiments to investigate possible variants such as (1) depths and widths; (2)
learning rates; (3) batch sizes; (4) solvers (5) initializations, and (6) other model architectures. Note
that as studied in Figure 6 the manuscript, ρind can be a computationally efficient compromise of ρ.
Therefore, we studied ρind in these additional experiments. Besides, there exists enumerous possible
combinations of different variants of different aspects. As a result, here we only vary these settings
partially since enumerating the entire grid is infeasible. The results as detailed as follows.

Depths and widths. The scale of depths is not as straightforward as the width since modifying
depths may change widths as well. Therefore, in the manuscript we study the influence of depth
by setting -small and -large variations. Here we present additional results that study the influence
of depths continuously, with 1-5 layers, each of which is followed by a max-pooling layer with
stride 2. Finally, an adaptive pooling layer is appended at the end. To rule out the influence of
widths (channels), all layers have the same width, determined by k. e.g., For the 4-layer scenario, the
intermediate layers have widths [k, k, k, k] instead of [k, 2k, 4k, 8k] in the manuscript. The results
are shown in Figure 17. It can be found that (1) Given a fixed depth or width, the influence of the
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(a) The cosine similarity between CNNs

(b) The cosine similarity between ResNets

(c) The Loss of Models (d) The Accuracy of Models

Figure 18: (a) and (b) illustrate the cosine similarity between (a) CNNs and (b) ResNets with different
batch sizes in {64, 128, 256, 512}. (c) shows the loss and (d) shows the accuracy of trained models.

other factor is similar when scaled up. (2) Depths are slightly different from widths. Larger widths
lead to higher similarities, while closer structures in depths have higher similarities. For widths (left),
the similarity always increases left-to-right and top-to-bottom. But for depths (right), pairs near the
diagonal have higher similarities.

Batch Sizes. We investigate the influence of batch sizes, varying in {64, 128, 256, 512} The results
are shown in Figure 18. It can be observed that although different batch sizes lead to different
performance (e.g. testing accuracy), the convergence trend holds in all scenarios.

Learning Rates. We test different learning rates on how they affect the results. We include 1e-1,
1e-2, default, where “default" refers to the criterion used in the manuscript. As shown in
Figure 19, the revealed trend is preserved in all learning rates. It is also worth noticing that learning
rates affect ResNets more than CNNs.

Solvers. Apart from SGD, we include Adam, AdamW, and SGD w/ momentum. For Adam and
AdamW we set the learning rate to 1e-3, while SGD w/ momentum uses a learning rate of 1e-1 with
a momentum of 0.9. The results are shown in Figure 20. Although different solvers lead to models of
different performances, they all preserve the same convergence trend.

Table 3: The comparison between the similarities between single models of different criteria.

(a) Diff. Init.;
Same Order

(b) Diff. Init.;
Diff. Order

(c) Same Init. θ0;
Diff Order

(d) Same Init. θ1;
Diff Order

# of pairs 100 4095 4095 4095
mean of ρind 0.0758 0.0753 0.0879 0.0855
std. of ρint 0.0038 0.0037 0.0042 0.0048

Initializations. Given a training scheme and model family F(k), the training procedure leads to a
distribution of trained models p(f). When the initialization is fixed to θ, the training procedure is
essentially sampling from the conditional distribution p(f |θ) instead of the unconditional distribution
p(f). We then studied the difference between the unconditional distribution p(f) and the conditional
distribution p(f |θ0). We focus on two conditional distributions p(f |θ0) and p(f |θ1), where θ1
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(a) The cosine similarity between CNNs

(b) The cosine similarity between ResNets

(c) The Loss of Models (d) The Accuracy of Models

Figure 19: (a) and (b) illustrate the cosine similarity between (a) CNNs and (b) ResNets with different
batch sizes in {64, 128, 256, 512}. (c) shows the loss and (d) shows the accuracy of trained models.

(a) Cosine Similarity

(b) Performance

Figure 20: (a) The cosine similarity between CNN models with different solvers in {SGD, Adam,
AdamW, SGD w/ Momentum}. (b): The accuracy and loss of trained models.
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Figure 21: The cosine similarity between Vision Transformers (ViTs) on CIFAR-10. The capacity is
controlled by k ∈ {10, 20, 40, 80}, where the embedding dimension is 4k, separated to k/2 heads.
The left subfigure shows the mean of the similarity. The right subfigure shows the similarity of the
population mean.

represents the initializations under seed=1 and θ0 represents those under seed=0. Other settings
are identical. We thus have f01 , · · · , f0100 ∼ p(f |θ0) and f11 , · · · , f1100 ∼ p(f |θ1). The superscript
indicates the initialization seeds and the subscript indicates the training seeds.

First, we notice immediately that the training seeds for both θ0 and θ1 are 1 100. This means that
∀i, f0i , f1i differ only in initializations. We inspect (a) ρind(f0i , f

1
i ) (100 pairs) to see if they have

exceptional similarity compared with (b) ρind(f0i , f
1
j ), i ̸= j (

(
100
2

)
= 4950 pairs). Besides, within

the same condition, all models only differ in terms of the orders of the training batch. We thus
also inspect the similarity of all models of the same condition: (c) ρind(f0i , f

0
j ), i ̸= j and (d)

ρind(f
1
i , f

1
j ), i ̸= j. Each of them has

(
100
2

)
= 4950 pairs.

As demonstrated in Table 3, (i) the comparison between (a) and (b) indicates that with different
initializations, the same order of batches in the training procedure does not contribute to higher
similarities. (ii) The comparison among (b)(c)(d) indicates that the same initialization indeed leads to
higher similarity even though the order of batches is distinct. It should be noted that the contributions
of batch orders and initializations are also affected by the number of epochs. Intuitively, more training
epochs should lead to smaller contributions from the initializations but greater contributions from the
batch orders.

Vision Transformers. Vision Transformers (ViT) have risen in recent years as another powerful
architecture for CV tasks. Here we include a brief study of ViTs to demonstrate that the discovered
phenomenon holds across different architectures.

Specifically, we train vision transformer (ViT) models on CIFAR-10 with varying capacities controlled
by k ∈ {10, 20, 40, 80}. CIFAR-10 has an input size of 32× 32 pixels, thus the patch size is set as
4× 4, resulting in 8× 8 patches. The embedding size is set to 4k, divided by k/2 heads, and we set
the depth to 8. The seeds vary in 1-100 and results in 100 trained models of each k. We study the
mean of the similarity ρ(k1, k2) (i.e. the same experiments as Figure 3 in the manuscript) and the
similarity of the population mean (i.e. the same as Figure 5 in the manuscript). The results are shown
in Figure 21. It can be observed that although distinct from convolutional layers, the transformer
structure also has the discovered convergence trend. It can also be noted that the degree of dispersion
of ViTs is much higher than CNN-based models.

In conclusion, although training schemes can affect the resulting distributions of models, the influence
of the model capacity stays invariant across different criteria.

D Uniform Distributions on the Hypersphere

According to (Muller, 1959), due to the spherical symmetry property of the zero-mean Gaussian
distribution, the cosine similarity between two Gaussian variables are actually uniformly distributed
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over the hypersphere Sd−1 in Rd.3 Therefore, the cosine similarity between two i.i.d. multivari-
ate Gaussian tensors is essentially the inner product between two i.i.d. uniform tensors over the
hypersphere. Formally, suppose X,Y to be high-dimensional i.i.d. random variables of dimen-
sion d that follow the Gaussian distribution N (0, Id×d). The cosine similarity is Z = XTY

∥X∥·∥Y ∥ .
WLOG, it suffices to consider the scenario where Y

∥Y ∥ = e1 = (1, 0, · · · , 0). And it is written as

Z = eTi
X

∥X∥ = X1

∥X∥ = X1√∑d
i=1X

2
i

=

√
X2

1

X2
1

∑d
i=1X

2
i

. Note thatX2
1 ∼ χ2(1),

∑d
i=2X

2
i ∼ χ2(d−1).

As a result, Z2 =
X2

1

X2
1+

∑d
i=2X

2
i

follows a beta distribution Z2 ∼ Beta( 12 ,
d−1
2 ). The pdf is thus

fZ2(x) = x−1/2(1−x)(d−3)/2

B(1/2,(d−1)/2) . And then when Z > 0,

fZ(x) =fZ2(x2)|2x| (7)

=
(x2)−1/2(1− x2)(d−3)/2

B(1/2, (d− 1)/2)
|2x| (8)

=
2

B( 12 ,
d−1
2 )

(1− x2)(d−3)/2 (9)

According to (Smith et al., 2023), let u = (1+x)/2,then x2 = (2u−1)2. Then this can be simplified
to

fU (u) =
2

B( 12 ,
d−1
2 )

(1− (2u− 1)2)(d−3)/2 · dx
du

(10)

=
1

B( 12 ,
d−1
2 )

2d−2u(d−1)/2−1(1− u)(d−1)/2−1 (11)

=
1

B( 12 ,
d−1
2 )22−d

u(d−1)/2−1(1− u)(d−1)/2−1 (12)

=Beta(
d− 1

2
,
d− 1

2
) (13)

This is because

B(
d− 1

2
,
d− 1

2
) =B(

d− 1

2
,
d+ 1

2
) · 2 (14)

=
Γ(d−1

2 )Γ(d+1
2 )

Γ(d)
· 2 (15)

=
Γ(d−1

2 )Γ(d+1
2 )

2d−1π−1/2Γ(d−1
2 )Γ(d+1

2 )
· 2 (16)

=22−d
Γ(d−1

2 )Γ( 12 )

Γ(d2 )
= B(

1

2
,
d− 1

2
)22−d (17)

Finally, we are able to conclude that 1+Z
2 ∼ Beta(d−1

2 , d−1
2 ), where Z is the cosine similarity

between two i.i.d. d-dimensional Gaussian vectors. This result suggests that the distribution of Z
will become very concentrated around 0. And this concentration exacerbates exponentially with
the dimension d. Given a cosine similarity level ρ, the probability P(Z > ρ) can be extremely
small, and also deceases exponentially with ρ, too. We visualize the relation between the probability
P(Z > ρ) and ρ with varying dimensions d in Figure 22. In the low-dimensional space such as d = 3,
the distribution of the cosine similarity is close to uniform as humans’ intuition. However, as the
dimension increases, the cosine similarity is very unlikely to maintain high, as demonstrated by the
curves of d = 3× 8× 8 = 48 (orange) and d = 3× 32× 32 = 3072 (green).

3This is because of the rotation-invariance. Let O ∈ Rd×d be any orthonormal matrix, then after the rotation
we obtain OX

∥X∥ = OX
∥OX∥ . Since OX ∼ N (0, I), too, we know that OX

∥X∥ and X
∥X∥ are from the identical

distribution.
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Figure 22: The relation between the probability P(Z > ρ) and the cosine similarity value ρ.

E Supplementary Experiment Results

Note that all the experiments are carried across three datasets CIFAR-10/100 and TinyImagenet,
along with four model families CNNSmall, CNNLarge, ResNetSmall, and ResNetLarge. Due to the
space limit, only part of the selected results can be put in the manuscript. Therefore, we defer the
results with different models/datasets into this section for the audience’ reference. All the conclusions
drawn from the experiment results shown in the manuscript hold for the results demonstrated here.

In Figure 23, we present the complementary results of Figure 6 on CIFAR-100 and TinyImagenet. It
can be clearly observed that ρind and ρ have very similar values, after taking the expectation over X .

Figure 25 shows the results of black-box attack results between different models. All other settings
are identical to the results shown in Figure 10, but with CIFAR-100 and TinyImagenet instead
of CIFAR-10. It is observed that the capacity of models has significant influence to the models’
robustness and black-box attack transferability. And this trend is highly correlated to the similarity
ρind, ρ as demonstrated in Figures 2, 3, 12, 13 and 15.

Similarly, Figure 26 shows supplementary results of Figure 11. All settings are identical except for
the datasets. CIFAR-100 and TinyImagenet are tested instead of CIFAR-10. It can be observed that
using the estimated mean gradient direction (blue), the performance drops much more significantly
than the attack from single models of either the exact same family as the target model (green) or the
largest single model tested (k = 448, red). Note that due to the complexity of TinyImagenet, in the
overfitting phase (i.e. when the target models’ capacities are comparable to the dataset (Nakkiran
et al., 2021)), the single-model black-box attack results in opposite effect – the prediction actually
increases.

In Figure 24, we present CIFAR-100 and TinyImagenet results as supplementary of Figure 9. It
can be observed that the testing loss is highly correlated to the expectation of t = uTµ(x). Such
phenomena are also consistent across different model families and datasets. For both single models
and ensembles, the closer they are to the convergent limiting point (i.e. larger E[t]), the higher testing
performance they have. Note that here for the sake of consistency, we approximate µ(x) through
µ̃(160;x). Therefore, in the ensemble experiments (left of each subfigure), k = 160 is omitted.
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(a) CIFAR-100

(b) TinyImagenet

Figure 23: Illustration of (red) ρind(f (1), f (2)), f (1), f (2) ∈ F(k) and (blue) ρ(k, k) on (a) CIFAR-
100 and (b) TinyImagenet.

(a) CIFAR-100 (b) TinyImagenet

Figure 24: The illustration of the relation between the expected testing loss EX [L] and the marginal
expectation EX [t]. Both (a) CIFAR-100 and (b) TinyImagenet results are shown as supplementary to
Figure 9. Models are from (i) single models with varying structure; and (ii) deep ensembles with
varying members. Each color represents a model family.
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(a) CIFAR100, CS (b) CIFAR100, CL (c) CIFAR100, RS (d) CIFAR100, RL

(e) TinyImagenet, CS (f) TinyImagenet, CL (g) TinyImagenet, RS (h) TinyImagenet, RL

Figure 25: The results of single model black-box attack. The value of each entry is α(f (1), f (2)),
f (1) ∈ F(k1), f

(2) ∈ F(k2) for different model capacities. Here k1 is the width parameter of the
source model and k2 is the width parameter of the target model.

(a) CIFAR100, CS (b) CIFAR100, CL (c) CIFAR100, RS (d) CIFAR100, RL

(e) TinyImagenet, CS (f) TinyImagenet, CL (g) TinyImagenet, RS (h) TinyImagenet, RL

Figure 26: The comparison between the single-model attack from the largest model (red), the single-
model attack from the very same structure (green), and the attack by the mean direction (blue). The
top row shows the results of CIFAR-100, and the bottom row shows the results of TinyImagenet.
Some figures’ y-axis are set to logarithm for clarity.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: The abstract mainly points out the hypotheses made in this work. They are all
properly discussed and empirically verified in the manuscript.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: Please refer to the conclusion section for the limitations.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [Yes]
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Justification: The theoretical analysis in this paper is rigorous. Hypothesis are both theoreti-
cally explained and empirically verified.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in the appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: The information needed to reproduce the experiments is discussed in both the
manuscript and the appendix. The code is also provided in the supplementary materials. The
repository will be publicized upon acceptance.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: The code is provided as the supplementary material in the submission. The
repository will be publicized upon acceptance.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: Details of the experiments are discussed in both the manuscript and the
appendix. The code is also provided in the supplementary materials.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: The potential statistical significance lies in the variance among different
ensemble members. This is studied in Table 1.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.
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• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: Please refer to the first paragraph of Section 3
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: The authors have reviewed the code of ethics and this work conforms with the
code of ethics of NeurIPS.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [NA]
Justification: Focusing on fundamental, theoretical and general topics, this works does not
have societal impact.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
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• If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

• Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: There is no such risk of this work.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [NA]
Justification: This work only uses general packages such as Numpy, PyTorch, torchvision,
etc.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
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• If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]

Justification: This work does not release new assets.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: This work does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: This paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.
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• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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