
A Additional Notation

Definition A.1. Let A 2 Rm⇥n and B 2 Rp⇥q then the Kronecker product, A⌦ B 2 Rmp⇥nq is
defined by

A⌦B =

2

664

a11B a12B . . . a1nB
a21B a22B . . . a2nB

...
...

. . .
...

am1B am2B . . . amnB

3

775

Definition A.2. Let A 2 Rm⇥R and B 2 Rn⇥R then the Khatri-Rao product, A�B 2 Rmn⇥R is
defined by

A�B =

"
a1 ⌦ b1 a2 ⌦ b2 . . . aR ⌦ bR

#

where a1, . . . , aR 2 Rm are the columns of A, b1, . . . , bR 2 Rn are the columns of B and the
columns of A � B is the subset of the Kronecker product. In the corresponding tensor network
diagram, the copy tensor captures the fact that the second indices are the same.

A.1 Details about Orthogonalization of the TT Decomposition

Figure 6 illustrates the single-site TT-ALS method, which begins with a TT decomposition in
canonical form initialized by a crude guess. Core A1 of the decomposition is non-orthogonal; in
sweeps from left-to-right and right-to-left, the algorithm holds all but one core constant and solves
for the optimal value for the remaining core. After updating each core, by a QR decomposition the
non-orthonormal part is merged to the left or right (depending on the direction of the sweep), a step
which is called core orthogonalization.

A1

i1

A2

i2

A3

i3

A4

i4

A5

i5

R1 R2 R3 R4 step: 1

A1

i1

A2

i2

A3

i3

A4

i4

A5

i5

R1 R2 R3 R4 QR

A1

i1

A2

i2

A3

i3

A4

i4

A5

i5

R1 R2 R3 R4 step: 2

A1

i1

A2

i2

A3

i3

A4

i4

A5

i5

R1 R2 R3 R4 QR

A1

i1

A2

i2

A3

i3

A4

i4

A5

i5

R1 R2 R3 R4 step: 3

Figure 6: Half-sweep of TT-ALS. In each non-QR step the fully colored core is optimized and in
each QR step the non-orthogonal component (depicted by black circle) is absorbed to the next core.
This procedure repeats until reaching the right side of the decomposition then the same procedure is
repeated from right until reaching to the left side (not demonstrated in this figure.)

16

B Proofs

B.1 Proof of Lemma 4.1

Noting that Aj [s1 . . . sj , :] is a row vector, we write

p(ŝk = sk | ŝ>k = s>k)

=
X

s1,...,sk�1

p(ŝ1 = s1 ^ ... ^ ŝj = sj)

=
X

s1,...,sk�1

1

Rj

⇣
Aj [s1 . . . sj , :] ·Aj [s1 . . . sj , :]

>
⌘

=
X

s1,...,sk�1

1

Rj
Tr
h
Aj [s1 . . . sj , :]

> ·Aj [s1 . . . sj , :]
i

=
1

Rj

X

s1,...,sk�1

Tr
h
Aj [:, sj , :]

> · ... · A1 [:, s1, :]
> · A1 [:, s1, :] · ... · Aj [:, sj , :]

i

=
1

Rj

X

s2,...,sk�1

Tr

"
Aj [:, sj , :]

> · ... ·

X

s1

A1 [:, s1, :]
> · A1 [:, s1, :]

!
· ... · Aj [:, sj , :]

#

=
1

Rj

X

s2,...,sk�1

Tr
h
Aj [:, sj , :]

> · ... · A2 [:, s2, :]
> · I · A2 [:, s2, :] · ... · Aj [:, sj , :]

i
.

(7)

In the expressions above, the summation over each variable st, 1  t  k, is taken over the range [It].
The first step follows by marginalizing over random variables ŝ1, ..., ŝk�1. The second step follows
from Equation (4). The third step rewrites an inner product of two vectors as the trace of their outer
product. The fourth step follows from the definition of Aj . The fifth step follows from the linearity
of the trace by moving the summation over s1 into the product expression. The last step follows
from the definition of the left-orthonormality property on A1; that is,

P
s1
A1 [:, s1, :]

> · A [:, s1, :] =

AL>
1 AL

1 = I . By successively moving summation operators into the product expression to repeat the
last step (exploiting the left-orthonormality of each core in the process), we find

p(ŝk = sk | ŝ>k = s>k)

=
1

Rj
Tr
h
Aj [:, sj , :]

> · ... · Ak [:, sk, :]
> · Ak [:, sk, :] · ... · Aj [:, sj , :]

i

=
1

Rj
Tr
h
H>

>k · Ak [:, sk, :]
> · Ak [:, sk, :] ·H>k

i
,

(8)

where the last line follows from the definition of H>k.

B.2 Proof of Lemma 4.2

We write

p(ŝk = sk | ŝ>k = s>k) =
1

Rj
Tr
h
H>

>k · Ak [:, sk, :]
> Ak [:, sk, :] ·H>k

i

=
1

Rj

RjX

r=1

⇣
e>r ·H>

>k · Ak [:, sk, :]
> · Ak [:, sk, :] ·H>k · er

⌘

=
1

Rj

RjX

r=1

⇣
h>
>k · Ak [:, sk, :]

> · Ak [:, sk, :] · h>k

⌘

=
1

Rj

RjX

r=1

p(t̂k = tk | t̂>k = t>k, r̂ = r).

(9)

The first step follows from Lemma 4.1. The second step follows from the definition of the trace. The
third step follows from the definitions of h>k and H>k. The fourth step follows from the definition
of the variables t̂1, ..., t̂j . Now observe that p(r̂ = r) = 1/Rj for 1  r  Rj , so we can write

17

p(ŝk = sk | ŝ>k = s>k) =

RjX

r=1

p(t̂k = tk | t̂>k = t>k, r̂ = r)p(r̂ = r)

= p(t̂k = tk | t̂>k = t>k),

(10)

which completes the proof.

B.3 Efficient Sampling Data Structure

Lemma 4.3 first appeared as Lemma 3.2 in the original work by Bharadwaj et al. [2023]. We state a
condensed form of the original claim below:

Lemma B.1 (Bharadwaj et al. [2023], Original). Given U 2 RM⇥R, Y 2 RR⇥R with Y p.s.d., there
exists a data structure parameterized by positive integer F that requires O(MR2) time to construct
and additional space space O(R2dM/F e). After construction, the data structure can draw a sample
from the distribution defined elementwise by

qh,U,Y [s] := C�1U [s, :]
�
Y ~ hh>�U [s, :]>

in time O(R2 logdM/F e + FR2). When Y is a rank-1 matrix, the runtime drops to
O(R2 logdM/F e+ FR).

In the statement above, C is an appropriate normalization constant. To prove our adapted lemma,
take Y = [1], a matrix of all ones that is rank-1, and set F = R. Then

qh,U,Y [s] = C�1U [s, :]
�
hh>�U [s, :]> = C�1(U [s, :] · h)2

This is the target probability distribution of Lemma 4.3, and the runtime to draw each sample is
O(R2 log(M/R)+R2) = O(R2 log(M/R)). The choice F = R also induces space usage O(MR),
linear in the size of the input. Our modified claim follows.

B.4 Proof of Theorem 1.1

We provide a short end-to-end proof that shows that Algorithms 1 and 2 correctly draw samples from
Aj (the matricization of the left-orthogonal core chain) according to the distribution of its squared
row norms while meeting the runtime and space guarantees of Theorem 1.1.

Construction Complexity: The cost of Algorithm 1 follows from 4.3 with M = IRk�1, the row
count of AL

k for 1  k  j. Using this lemma, construction of each sampling data structure Zk

requires time O(IkRk�1R2
k). The space required by sampler Zk is O(IkRk�1Rk); summing over

all indices k gives the construction claim in Theorem 1.1.

Sampling Complexity: The complexity to draw samples in Algorithm 2 is dominated by calls to
the RowSample procedure, which as discussed in Section 4 is O(R2

k log(IkRk�1/Rk)) Summing
the complexity over indices 1  k < j yields the cost claimed by Theorem 1.1 to draw a single
sample. The complexity of calling the RowSample procedure repeatedly dominates the complexity to
update the history vector h over all loop iterations, which is O

⇣Pj
k=1 Rk�1Rk

⌘
for each sample.

Correctness: Our task is to show that Algorithm 2 each sample td, 1  d  J , is a multi-index that
follows the squared row norm distribution on the rows of Aj . To do this, we rely on lemmas proven
earlier. For each sample, the variable r̂ is a uniform random draw from [Rj], and h is initialized to the
corresponding basis vector. By Equation (6) and Lemma 4.3, Line 5 from Algorithm 2 draws each
index t̂k correctly according to the probability distribution specified by Equation (5). The history
vector is updated by Line 6 of the algorithm so that subsequent draws past iteration k of the loop
are also drawn correctly according to Equation (5). Lemma 4.2 (relying on Lemma 4.1) shows that
the multi-index t̂1 . . . t̂j drawn according to Equation (5) follows the same distribution as ŝ1 . . . ŝj ,
which was defined to follow the squared norm distribution on the rows of Aj . This completes the
proof.

18

B.5 Proof of Corollary 4.4

Since A 6=j 2 R
QN

k 6=j Ik⇥Rj�1Rj and X(j) 2 R
QN

k 6=j Ik⇥Ij , we draw Õ(R2/"�) samples to achieve
the error bound (1 + ") with probability (1� �) for each least squares solve in the down-sampled
problem (3.5). By Theorem 1.1, the complexity of drawing J samples with our data structure is

O

0

@
X

k 6=j

J log IkR
2

1

A = Õ

0

@
X

k 6=j

R4/("�) log Ik

1

A

where we suppose that R1 = R2 = · · · = RN�1 and I1 = · · · = IN . The cost of sampling a
corresponding subset of X(j) is O(JIj) = Õ

�
R2/("�)Ij

�
. Solving the downsampled least squares

problem also costs O(JR2Ij) = Õ
�
IjR4/("�)

�
. Summing them all together for 1  j  N gives

Õ

0

@1/"�

0

@
NX

j=1

0

@
X

k 6=j

R4 log Ik

1

A+R4Ij

1

A

1

A

= Õ

0

@R4/"� ·
NX

j=1

(N � 1) log Ij + Ij

1

A

= Õ

0

@R4/"� ·
NX

j=1

N log Ij + Ij

1

A

where we wrote the last equation considering the fact that N dominates (N � 1).

C Details about Datasets & Experiments

C.1 Datasets

For the real dense datasets experiment, we truncated and reshaped the original data tensors in to the
fourth order tensors as follows.

• Pavia University dataset: The original has dimensions (610, 340, 103). We truncate it to
(600, 320, 100), permute the modes to dimensions (100, 320, 600) tensor and reshape it into
a tensor of dimensions (100, 320, 24, 25). It is available at
http://lesun.weebly.com/hyperspectral-data-set.html

• Tabby Cat dataset is permuted to (286, 720, 1280) and reshaped to a tensor of size
(286, 720, 40, 32). The video is in color and converted to grayscale by averaging the three
color channels. It is available at
https://www.pexels.com/video/video-of-a-tabby-cat-854982/.

• The MNIST dataset was reshaped into a tensor of size (280, 600, 28, 10) and is available
at https://www.kaggle.com/datasets/hojjatk/mnist-dataset

• The Washington DC Mall dataset was truncated to dimensions (1280, 306, 190) before
reshaping into a tensor of size (1280, 306, 10, 19). It is available at
https://engineering.purdue.edu/Ëœbiehl/MultiSpec/hyperspectral.html.

The sparse tensors Uber, Enron, and NELL-2 were downloaded from the FROSTT collection
[Smith et al., 2017]. The dimensions of these tensors were unchanged from the versions available
online. Consistent with established practice [Larsen and Kolda, 2022], we computed the logarithm
of the tensor values in the Enron and NELL-2 datasets before performing our experiments.

C.2 Computing Resources

The dense data experiments were conducted on MILA cluster nodes with 4 CPUs and 16GB of RAM
each. Sparse tensor decomposition experiments were conducted on NERSC Perlmutter nodes with 2
CPUs and 512 GB of RAM each.

19

http://lesun.weebly.com/hyperspectral-data-set.html
https://www.pexels.com/video/video-of-a-tabby-cat-854982/
https://www.kaggle.com/datasets/hojjatk/mnist-dataset
https://engineering.purdue.edu/%C3%8B%C2%9Cbiehl/MultiSpec/hyperspectral.html.

	Introduction
	Related work
	Preliminaries
	Tensor Train Decomposition
	Alternating Least Squares with Tensor Train Structure.
	Sketching and Leverage Score Sampling

	Sampling-based Tensor Train Decomposition
	Efficient Core Chain Leverage Score Sampling

	Experiments
	Decomposition of Synthetic and Real Dense Datasets
	Approximate Sparse Tensor Train Decomposition

	Conclusion
	NeurIPS paper checklist
	Additional Notation
	Details about Orthogonalization of the TT Decomposition

	Proofs
	Proof of Lemma 4.1
	Proof of Lemma 4.2
	Efficient Sampling Data Structure
	Proof of Theorem 1.1
	Proof of Corollary 4.4

	Details about Datasets & Experiments
	Datasets
	Computing Resources

