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Abstract

Text-to-image diffusion models have achieved tremendous success in the field of
controllable image generation, while also coming along with issues of privacy
leakage and data copyrights. Membership inference arises in these contexts as a po-
tential auditing method for detecting unauthorized data usage. While some efforts
have been made on diffusion models, they are not applicable to text-to-image diffu-
sion models due to the high computation overhead and enhanced generalization
capabilities. In this paper, we first identify a conditional overfitting phenomenon
in text-to-image diffusion models, indicating that these models tend to overfit
the conditional distribution of images given the corresponding text rather than
the marginal distribution of images only. Based on this observation, we derive
an analytical indicator, namely Conditional Likelihood Discrepancy (CLiD), to
perform membership inference, which reduces the stochasticity in estimating mem-
orization of individual samples. Experimental results demonstrate that our method
significantly outperforms previous methods across various data distributions and
dataset scales. Additionally, our method shows superior resistance to overfitting
mitigation strategies, such as early stopping and data augmentation.

1 Introduction

Text-to-image diffusion models have achieved remarkable success in the guided generation of diverse,
high-quality images based on text prompts, such as Stable Diffusion [42, 46], DALLE-2 [43],
Imagen [49], and DeepFloyd-IF [31]. These models are increasingly adopted by users to create
photorealistic images that align with desired semantics. Moreover, they can generate images of
specific concepts [32] or styles [61] when fine-tuned on relevant datasets. However, the impressive
generative capabilities of these models depend heavily on high-quality image-text datasets, which
involve collecting image-text data from the web. This practice raises significant privacy and copyright
concerns in the community [5, 18]. The pretraining and fine-tuning processes of text-to-image
diffusion models can cause copyright infringement, as they utilize unauthorized datasets published by
human artists or stock-image websites [2, 10, 44, 45, 58].
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Membership inference (also known as the membership inference attack) is widely used for auditing
privacy leakage of training data [4, 53], defined as determining whether a given data point has been
used to train the target model. Dataset owners can thus leverage membership inference to determine
if their data is being used without authorization [14, 39].

Previous works [5, 15–17, 28, 38] have attempted membership inference on diffusion models. Carlini
et al. [5] employ LiRA (Likelihood Ratio Attack) [4] to perform membership inference on diffusion
models. LiRA requires training multiple shadow models to estimate the likelihood ratios of a data
point from different models, which incurs high training overhead (e.g., 16 shadow models for DDPM
[22] on CIFAR-10 [30]), making it neither scalable nor applicable to text-to-image diffusion models.
Other query-based membership inference methods [15, 17, 28, 38] design and compute indicators
to evaluate whether a given data point belongs to the member set. These methods require only a
few or even a single shadow model, making them scalable to larger text-to-image diffusion models.
However, these methods mainly estimate model memorization for data points and do not fully
utilize the conditional distribution of image-text pairs. Consequently, they achieve limited success
only under excessively high training steps and fail under real steps or common data augmentation
methods (Tab. 2), which do not reflect real training scenarios. Text-to-image diffusion models have
demonstrated excellent performance in zero-shot image generation [1, 42, 46], indicating their strong
generalization, which makes it difficult to distinguish membership by directly measuring overfitting
to data points. And due to the stochasticity of diffusion training loss [22, 46], this kind of measuring
becomes more challenging.

To address the challenges, we firstly identify a Conditional Overfitting phenomenon of text-to-image
diffusion models with empirical validation, where the models exhibit more significant overfitting to
the conditional distribution of the images given the corresponding text than the marginal distribution
of the images only. It inspires the revealing of membership by leveraging the overfitting difference.
Based on it, we propose to perform membership inference on text-to-image diffusion models via
Conditional Likelihood Discrepancy (CLiD). Specifically, CLiD quantifies overfitting difference
analytically by utilizing Kullback-Leibler (KL) divergence as the distance metric and derives a
membership inference indicator that estimates the discrepancy between the conditional likelihood of
image-text pairs and the likelihood of images only. We approximate the likelihoods by employing
Monte Carlo sampling on their ELBOs (Evidence Lower Bounds), and design two membership
inference methods: a threshold-based method CLiDth and a feature vector-based method CLiDvec.

We conduct extensive experiments on three text-to-image datasets [32, 35, 66] with various data
distributions and dataset scales, using the mainstream open-sourced text-to-image diffusion models
[11, 47] under both fine-tuning and pretraining settings. First, our methods consistently outperform
existing baselines across various data distributions and training scenarios, including fine-tuning
settings and the pretraining setting. Second, our experiments on fine-tuning settings with different
training steps (Sec. 4.2) reveal that excessively high step/image ratios cause overfitting, leading to
hallucination success; and we develop a more realistic pretraining setting following [13, 16], where
our experiments reveal the insufficient effect of existing membership inference works [15, 17, 28,
38]. Third, our comparison experiment with varying training steps (Sec. 4.3) indicates that the
effectiveness of membership inference grows with higher step/image ratios and should be evaluated
under reasonable settings for realistic results. Next, ablation studies further demonstrate the effect
of our CLiD indicator, even with fewer query count, our method still outperforms baseline methods
(Fig. 3). Last, experiments show that our methods exhibit stronger resistance to data augmentation,
and exhibit resistance to even adaptive defenses.

2 Diffusion Model Preliminaries

Denoising Diffusion Probabilistic Model (DDPM) [22] learns the data distribution x0 ∼ q(x)
by reversing the forward noise-adding process. For the forward process, DDPM defines a Markov
process of adding Gaussian noise step by step:

q(xt|xt−1) := N (xt;
√

1− βtxt−1, βtI), (1)
where βt ∈ (0, 1) is the hyperparameter controlling the variance. For the reverse process, DDPM
defines a learnable Markov chain starting at p(xT ) = N (xT ;0, I) to generate x0:

pθ(x0) =

∫
x1:T

p(xT )

T∏
t=1

pθ(xt−1|xt) dx1:T , pθ(xt−1|xt) = N (xt−1;µθ(xt, t), σ
2
t ), (2)
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where σ2
t is the untrained time-dependent constant. θ represents the trainable parameters. To maximize

pθ(x0), DDPM optimizes the Evidence Lower Bound (ELBO) of the log-likelihood [22, 33]:

log pθ(x0) ≥ Eq(x1:T |x0)

[
log

pθ(x0:T )

q(x1:T | x0)

]
= −Eϵ,t

[
||ϵθ(xt, t)− ϵ||2

]
+ C, (3)

where ϵ ∼ N (0, I), t ∼ Uniform(1, ..., T ) and C is a constant. xt is obtained from Eq. (1), and ϵθ
is a function approximator intended to predict the noise ϵ from xt. Omitting the untrainable constant
in Eq. (3) and taking its negative yields the loss function of training DDPM.

Conditional diffusion models [21, 40, 46]. To achieve controllable generation ability, text-to-image
diffusion models incorporate the conditioning mechanism into the model, which are also known as
conditional diffusion models, enabling them to learn conditional probability as:

pθ(x0|c) =
∫
x1:T

p(xT )

T∏
t=1

pθ(xt−1|xt, c) dx1:T , (4)

where c denotes the embedding of condition. For text-to-image synthesis, c := T (y), where y and
T denote the text input and the text encoder, respectively. Similar to Eq. (3), through derivation [33],
we can obtain the ELBO of the conditional log-likelihood:

log pθ(x0|c) ≥ −Eϵ,t

[
||ϵθ(xt, t, c)− ϵ||2

]
+ C. (5)

3 Methodology

In this section, we detail the proposed Conditional Likelihood Discrepancy (CLiD) method. We first
introduce the threat model of query-based membership inference in Sec. 3.1. We then identify the
conditional overfitting phenomenon with experimental validation in Sec. 3.2. We further drive the
membership inference indicator based on CLiD in Sec. 3.3 and design two practical membership
inference methods in Sec. 3.4. We finally provide the implementation details in Sec. 3.5.

3.1 Threat Model

We use the standard security game of membership inference on image-text data following previous
work [4, 5, 38, 48]. We define a challenger C and an adversaryAwho performs membership inference.
C samples a member set Dmem ← D and trains or fine-tunes a text-to-image diffusion model fθ (i.e.,
target model) with Dmem. The rest of D is denoted by hold-out set Dout = D \Dmem. For a given data
point (x, c) ∈ D, A designs an algorithmM to yield a membership prediction:

M(x, c, fθ) = 1 [M′(x, c, fθ) > τ ] , (6)

where M′ denotes an indicator function that reflects membership information, and τ denotes a
tunable decision threshold of query-based membership inference [15, 17, 28, 38].

We consider a grey-box setting 2 consistent with previous query-based methods [15, 17, 28, 38].
This setting assumes that A has access to the intermediate outputs of models without knowledge of
specific model parameters. For the given image-text data point (x, c), we assume that x and c always
correspond within the dataset D. This assumption is evident in scenarios where dataset copyright
owners perform membership inference to audit usage. And we also consider a weaker assumption of
conducting membership inference without the groundtruth text in Sec. 4.6.

Conversely, challenger C can mitigate the effectiveness of membership inference during training
by utilizing data augmentation or even adaptive defense methods, which we discuss in Sec. 4.5.
Our work primarily focuses on fine-tuning scenarios because the weights of pretrained models are
readily available, making this scenario more prone to copyright risks [41, 56]. Numerous projects are
implemented by fine-tuning open-source models on specific datasets [3, 24, 60, 64]. We also conduct
experiments on pretrained text-to-image diffusion models (Tab. 3) to demonstrate the effectiveness of
our method even in pretraining scenarios.

2Note that in most real-world scenarios, the requirements for A in gray-box and white-box settings are nearly
identical. We use this terminology here for consistency with previous works [15, 28].
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3.2 Conditional Overfitting Phenomenon

The rationale behind previous studies primarily hinges on the overfitting of diffusion models to
training data (usually image data x) [7, 8, 15, 28, 38]. This overfitting tends to result in lower
estimation errors for images in the member set (training data) compared to those in the hold-out
set during the diffusion process. Various indicators [15, 28, 38] are designed based on this to
expose membership information. Specifically, let qmem and qout represent the image distributions
of the member set and the hold-out set, respectively. p represents the diffusion models’ estimated
distribution, and D denotes a distance metric (which will be specified later). This rationale can be
formulated as:

D(qmem(x), p(x)) ≤ D(qout(x), p(x)). (7)
However, if considering the membership inference on text-to-image diffusion models with image-text
data (x, c), we emphasize the following assumption:
Assumption 3.1 (Conditional overfitting phenomenon). The overfitting of text-to-image diffusion
models to the conditional distribution of (x, c) is more salient than to the marginal distribution of x:

Ec[D(qout(x|c), p(x|c))−D(qmem(x|c), p(x|c))]︸ ︷︷ ︸
overfitting to conditional distribution

≥ D(qout(x), p(x))−D(qmem(x), p(x))︸ ︷︷ ︸
overfitting to marginal distribution

. (8)

Figure 1: FID values and the FID differences of syn-
thetic images (2500/2500 samples for member/hold-
out set) under different conditions of member set and
hold-out set.

Empirically, we validate this assumption by
using Fréchet Inception Distance (FID) [20]
as the metric D, i.e., DFID. We calcu-
late DFID(q(x|c), p(x|c)) using the MS-
COCO [35] dataset on a fine-tuned Sta-
ble Diffusion [46] model. Then by gradu-
ally truncating the original condition text to
{2

/
3, 1

/
3, Null} to obtain c∗, we calculate

DFID(q(x|c∗), p(x|c∗)) as a stepwise ap-
proximation of DFID(q(x), p(x)). In Fig. 1,
we report the FID scores of synthetic images
under different conditions of member set and
hold-out set. A smaller FID value indicates
a closer match between model distributions
and dataset distributions. From Fig. 1 (a), it
can be observed that for the full condition, the FID difference between the member set and the hold-
out set is consistently higher than that for the truncated conditions, which validates our assumptions.
We also demonstrate the validation utilizing other metrics in Appendix A.

We further compute the change in FID after truncating the condition and observe that the change in
FID of the member set is consistently greater than that of the hold-out set (Fig. 1 (b)), which inspires
revealing membership by this overfitting discrepancy. Recalling the aim of text-to-image diffusion
model is to fit a latent space mapping from text to image, image data augmentation is commonly used
to enhance the model generalization. For instance, the official fine-tuning script of Hugging-Face [24]
employs Random-Crop and Random-Flip as the default augmentation [25]. However, few trainers
disturb the text condition as it is discrete and such disturbance would result in a decline of model
utility (Sec. 4.5). Therefore, we believe that leveraging this phenomenon contributes to addressing
the challenges of the strong generalization of text-to-image diffusion models with the resistance to
data augmentation.

3.3 Condition Likelihood Discrepancy

In this section, we derive a membership inference indicator for a given individual sample based on
Assumption 3.1. Calculating FID requires sampling lots of images from the p distribution, which
is impractical under membership inference scenarios. Instead, we employ Kullback-Leibler (KL)
divergence as the distance metric, which is widely used and computationally convenient (the usage of
other metrics is discussed in Appendix C). Then we have the following theorem:
Theorem 3.2. (Proof in Appendix B) When using D = DKL as distance metric, Assumption 3.1 is
equivalent to:

Eqmem(x,c)[log p(x|c)− log p(x)] ≥ Eqout(x,c)[log p(x|c)− log p(x)] + δH , (9)
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where
δH = H(qout(x)) + Ec[H(qmem(x|c))]−H(qmem(x))− Ec[H(qout(x|c))]. (10)

Let us define:
I(x, c) = log p(x|c)− log p(x). (11)

If δH is negligible, then according to Eq. (9), it holds that Eqmem [I(x)] ≥ τ ≥ Eqout [I(x)], where τ is a
constant intermediate between the left-hand side and right-hand side. Membership inference is then
posed as follows: given an input instance (x, c), measuring I(x, c) to predict how probable it is that
the input is a sample from qmem rather than qout. Intuitively, if I(x) exceeds a threshold τ , the instance
is likely from qmem; otherwise, it belongs to qout. In the community of membership inference methods
[4–6, 15, 17, 28, 38, 65] , setting such a threshold τ is a standard practice to differentiate between
the two distributions. Therefore, we can utilize the indicator I(x, c) for membership inference.
Since Eq. (11) actually involves measuring the likelihood discrepancy under different conditions of
diffusion models, we call it Conditional Likelihood Discrepancy (CLiD).

In order to calculate the likelihoods in Eq. (11) for a given data point (x, c), we utilize the ELBOs in
Eq. (3) and Eq. (5) as an approximation of the log-likelihoods:

I(x, c) = Et,ϵ

[
||ϵθ(xt, t, cnull)− ϵ||2

]
− Et,ϵ

[
||ϵθ(xt, t, c)− ϵ||2

]
, (12)

where cnull denotes an empty text condition input used to estimate the approximation of log pθ(x).

3.4 Implementation of CLiD-MI

In practice, calculating Eq. (12) needs a Monte Carlo estimate for data point by sampling N times
using (ti, ϵi) pairs, with ϵi ∼ N (0, I) and ti ∼ [1, 1000]. Performing two Monte Carlo estimations
independently incurs high computational costs, resulting in 2×N query count, where N is typically
a large number to ensure accurate estimation. To simplify computation, we instead perform Monte
Carlo estimation on the difference of the ELBOs inspired by [33]:

I(x, c) = Et,ϵ

[
||ϵθ(xt, t, cnull)− ϵ||2 − ||ϵθ(xt, t, c)− ϵ||2

]
. (13)

In experiments, to further mitigate randomness, we also consider diverse reduced conditions along
with cnull, forming the reduced condition set C = {c∗1, c∗2..., c∗k}, where we set c∗k = cnull. Then we
compute multiple condition likelihood discrepancies:

Dx,c,c∗
i
= Et,ϵ

[
||ϵθ(xt, t, c

∗
i )− ϵ||2 − ||ϵθ(xt, t, c)− ϵ||2

]
, (14)

where c∗i ∈ C. In subsequent parts, we employ their mean or treat them as feature vectors to reveal
membership information. We will introduce how to obtain C in Sec. 3.5.

Combining pθ(x|c) for further enhancement. Recall that the practical significance of sample
likelihood is the probability that a data point originates from the model distribution, which essentially
can also be used to assess membership. Due to the monotonicity of the log function, we can also use
ELBO of Eq. (5) to estimate pθ(x|c):

Lx,c = −Et,ϵ

[
||ϵθ(xt, t, c)− ϵ||2

]
. (15)

Additionally, this estimation can reuse results from estimating Eq. (14), thus obviating any additional
query counts. Next, we consider two strategies to combine Eq. (14) and Eq. (15) to construct the final
membership inference method.

Threshold-based attack–CLiDth. First, we normalize the two indicators to the same feature scale.
Due to the outliers in the data, we use Robust-Scaler: S(ai) = (ai − ã)

/
IQR, where ai denotes the

i-th value, ã denotes the mean and IQR (interquartile range) is defined as the difference between the
third quartile (Q3) and the first quartile (Q1) of the feature. Then we have:

MCLiDth
(x, c) = 1

[
α · S( 1

k

k∑
i

Dx,c,c∗
i
) + (1− α) · S(Lx,c) > τ

]
, (16)

where k denotes the total number of reduced c∗ (i.e., k = |C|), and α is a weight parameter.

Vector-based attack–CLiDvec. We combine the estimated values of Eq. (14) and Eq. (15) to obtain
the feature vectors corresponding to each data point:

V =
(
Dx,c,c∗

1
,Dx,c,c∗

2
. . .Dx,c,c∗

k
,Lx,c

)
. (17)
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We use a simple classifier to distinguish feature vectors in order to determine the membership of the
samples:

MCLiDvec(x, c) = 1 [FM(V) > τ ] , (18)
where FM denotes the predict confidence of the classifier.

3.5 Practical Considerations

Reducing conditions to obtain c∗. We consider three methods for diverse reduction: (1) Simply
taking the first, middle, and last thirds of the sentences as text inputs. (2) Randomly adding Gaussian
noises with various scales to the text embeddings. (3) Calculating the importance of words in the text
[55, 57] and replacing them with “pad” tokens by varying proportions in descending order. For all
three methods, we additionally use the null text input as c∗k. These methods are all effective and we
use (3) with k = 4 in subsequent experiments (details in Appendix D).

Monte Carlo sampling. Let M and N denote the Monte Carlo sampling numbers of estimating
L(x, c) and Dx,c,c∗

i
, respectively. We set M = N to achieve result reuse between Eq. (14) and

Eq. (15), reducing the number of Monte Carlo sampling. Hence the overall query count of one data
point is M +K ·N . Significant effects can be observed even when M,N = 1 (Fig. 3).

Classifiers of CLiDvec. Due to the simplicity of the feature vectors, we do not need a neural network
as the classifier [15]. Simpler classifiers help to prevent overfitting. In our experiments, we utilize
XGBoost [9] and utilize its predict confidence.

4 Experiments

4.1 Setups

Datasets and models. For the fine-tuning setting, we select 416/417 samples on Pokémon [32],
2500/2500 samples on MS-COCO [35] and 10, 000/10, 000 samples on Flickr [66] as the
member/hold-out dataset, respectively. These three datasets involve diverse data distributions and
dataset scales. We use the most widely used text-to-image diffusion model, Stable Diffusion v1-
43 [11], as the target model to fine-tune it on these three datasets. For the pretraining setting, we
conduct experiments on Stable Diffusion v1-54 [47] using the processed LAION dataset [51] (detailed
in Sec. 4.2) to minimize distribution shift [13, 16].

Fine-tuning setups. For fine-tuning, previous membership inference on text-to-image diffusion
models usually relies on strong overfitting settings. To evaluate the performance more realistically, we
consider the two following setups: (1) Over-training. Following the previous works [15, 17, 28], we
fine-tune 15,000 steps on Pokemon datasets, and 150,000 steps on MS-COCO and Flickr (with only
2500/2500 dataset size). (2) Real-world training. Considering that trainers typically do not train for
such high steps, we recalibrate the steps based on the training steps/dataset size ratio (approximately
20) of official fine-tuning scripts on Huggingface [24]. Thus, we train 7,500 steps, 50,000 steps
and 200,000 steps for the Pokémon, MS-COCO and Flickr datasets, respectively. Additionally, we
employ the default data augmentation (Random-Crop and Random-Flip [25]) in training codes [25]
to simulate real-world scenarios.

Baselines. We broadly consider existing member inference methods applicable to text-to-image
diffusion models as our baselines: Loss-based inference [38], SecMIstats (SecMI) [15], PIA [28],
PFAMIMet (PFAMI) [17] and an additional method of directly conducting Monte Carlo estimation
(M. C.) on Eq. (15) for comparison. For all baselines, we use the parameters recommended in their
papers. We omit some membership inference methods for generative models [6, 19, 36], as they have
been shown ineffective for diffusion models in previous works [15, 17].

Evaluation metrics. We follow the widely used metrics of previous works [4, 5, 15, 17, 28], including
ASR (i.e., the accuracy of membership inference), AUC and the True Positive Rate (TPR) when the
False Positive Rate (FPR) is 1% (i.e., TPR@1%FPR).

Implementation details. Our evaluation follows the setup of representative membership inference
works [4, 5]. It is important to note that some implementations [26, 29] of previous works assume

3https://huggingface.co/CompVis/stable-diffusion-v1-4
4https://huggingface.co/runwayml/stable-diffusion-v1-5
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Table 1: Results under Over-training setting. We mark the best and second-best results for each
metric in bold and underline, respectively. Additionally, the best results from baselines are marked in
blue for comparison.

Method
MS-COCO Flickr Pokemon

Query
ASR AUC TPR@1%FPR ASR AUC TPR@1%FPR ASR AUC TPR@1%FPR

Loss 81.92 89.98 32.28 81.90 90.34 40.80 83.76 91.79 25.77 1
PIA 68.56 75.12 5.08 68.56 75.12 5.08 83.37 90.95 13.31 2
M. C. 82.04 89.77 36.04 83.32 91.37 41.20 79.35 86.78 23.74 3
SecMI 83.00 90.81 50.64 62.96† 89.29 48.52 80.49 90.64 9.36 12
PFAMI 94.48 98.60 78.00 90.64 96.78 50.96 89.86 95.70 65.35 20

CLiDth 99.08 99.94 99.12 91.42 97.39 74.00 97.96 99.28 97.84 15
CLiDvec 99.74 99.31 95.20 91.78 97.52 73.88 97.36 99.46 96.88 15

† When conducting SecMI [15], we observe that the thresholds obtained on the shadow model sometimes do not transfer well to
the target model.

Table 2: Results under Real-world training setting. We also highlight key results according to Tab. 1.

Method
MS-COCO Flickr Pokemon

Query
ASR AUC TPR@1%FPR ASR AUC TPR@1%FPR ASR AUC TPR@1%FPR

Loss 56.28 61.89 1.92 54.91 56.60 1.83 61.03 65.96 2.82 1
PIA 54.10 55.52 1.76 51.96 52.73 1.28 58.34 59.95 2.64 2
M. C. 57.98 61.97 2.64 54.92 56.78 2.16 61.10 66.48 3.84 3
SecMI 60.94 65.40 3.92 55.60 63.85 2.76 61.28 65.56 0.84 12
PFAMI 57.36 60.39 2.72 54.68 56.13 1.80 58.94 63.53 5.76 20

CLiDth 88.88 96.13 67.52 87.12 94.74 53.56 86.79 93.28 61.39 15
CLiDvec 89.52 96.30 66.36 88.86 95.33 53.92 85.47 92.61 59.95 15

access to a portion of the exact member set and the hold-out set to obtain a threshold for calculating
ASR or to train a classification network [26]. This assumption does not align with real-world
scenarios. Therefore, we strictly adhere to the fundamental assumption of membership inference
[4, 17]: knowing only the overall dataset without any knowledge of the member/hold-out split. Hence,
we first train a shadow model to obtain the α for Eq. (16), classifiers for Eq. (18) and the threshold τ
for calculating ASR with auxiliary datasets of the same distribution. Then we perform the test on the
target models. Other implementation details are provided in Appendix D.

4.2 Main Results

Over-training setting (fine-tuning). In Tab. 1, models are trained for excessive steps on all three
datasets, resulting in significant overfitting. We observe that under this over-training scenario, both of
our methods nearly achieve ideal binary classification effectiveness. For instance, CLiDth achieves
over 99% ASR, AUC and TPR@1%FPR value on the MS-COCO dataset [35]. With this training
setup, the metrics for different baselines are very similar. Even the simplest loss-based method [38]
(with the query count of 1) also yields satisfactory results compared with other high query count
methods. Therefore, we emphasize: This unrealistic over-training setting fails to adequately reflect
the effectiveness differences among various membership inference methods.

Real-world training setting (fine-tuning). In Tab. 2, we adjust the training steps simulating real-
word training scenario [24] and utilize default data augmentation [25]. The best value of ASR and
AUC of baseline methods decreases to around 65%, and the best value of TPR@1%FPR decreases to
around 5%, indicating insufficient effectiveness of previous member inference methods in real-world
training scenarios of text-to-image diffusion models. In contrast, our methods maintain ASR above
86% and AUC above 93%, exceeding the best baseline values by about 30%. The TPR@1%FPR of
our methods exceeds the best baseline values by 50%~60%. The results demonstrate the effectiveness
of our methods across various data distributions and scales in real-world training scenarios.

Pretraining setting. For the pretraining setting, we adopt a stringent and realistic membership
inference setting based on previous works [13, 16]. (1) To ensure the distribution consistency between
the member and hold-out set, we respectively select 2500 samples from the LAION-Aesthetics v2
5+ and LAION-2B MultiTranslated [51] as member/hold-out set following [16]; (2) We filter out
samples containing non-English characters to ensure there are no other "distinguishable tails" [13] in
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Method
LAION

Query
ASR AUC TPR@1%FPR

Loss 51.78 50.90 1.75 1
PIA 52.13 52.42 1.25 2
M. C. 53.18 53.96 1.25 3
SecMI 57.43 58.59 2.45 12
PFAMI 59.08 61.11 1.45 20

CLiDth 64.53 67.82 5.01 15

Table 3: The performance of membership
inference methods on Stable Diffusion v1-
5 [47] in pretraining setting. We utilize the
processed LAION dataset to ensure the dis-
tribution consistency between member / hold-
out sets [13, 16]. The best results are high-
lighted in bold.

Figure 2: Effectiveness trajectory on various train-
ing steps.

the dataset5. We conduct membership inference on Stable Diffusion v1-5 [46]. As shown in Tab. 3,
our method consistently outperforms the baselines across all three metrics.

4.3 Performance on Various Training Steps

From Tab. 1 and Tab. 2, we find that the training steps greatly influence the effectiveness of member-
ship inference. All membership inference methods tend to exhibit satisfactory performance when the
model is trained for an excessive number of steps that conflicts with real-world scenarios. Therefore,
we emphasize that the effectiveness trajectory of membership inference across varying training steps
should also be utilized to evaluate different methods. Better membership inference methods should
reveal membership information earlier as training progresses.

To explore this, we fine-tune Stable Diffusion models with the MS-COCO dataset for varying training
steps under real-world training setting and report the AUC values of different membership inference
methods in Fig. 2. It can be observed that as the training progresses, CLiDth exhibits a significantly
faster increase in effectiveness trajectory. By 25, 000 steps, CLiDth effectively exposes membership
information, whereas other baselines achieve similar results only at around 150, 000 steps. This
demonstrates that our method can effectively reveal membership information when the overfitting
degree of the text-to-image diffusion model is much weaker.

4.4 Ablation Study

Figure 3: Performance of CLiDth and SecMI
under various Monte Carlo sampling num-
bers (i.e., query count). The legend labels are
sorted in ascending order by AUC values.

To conduct an ablation study, we vary the Monte
Carlo sampling count in Eq. (14) and Eq. (15), per-
form CLiDth with MS-COCO dataset under real-
world training setting and report the AUC values in
Fig. 3. To further compare the effects of Eq. (14) and
Eq. (15), we discard each term in Eq. (16) and denote
it as M/N = 0. We also include the result of the best
baseline, SecMI [15], as a comparison.

Effect of Dx,c,c∗ . In Fig. 3, results of "M=1, N=0"
and "M=1, N=1" show a significant improvement of
membership inference by including Dx,c,c∗ . Results
of "M=5, N=0" and "M=1, N=1" further show that
the method utilizing Dx,c,c∗ performs much better
under the same sampling numbers. Additionally, the
results of "M=0, N=1" and "M=1, N=1" indicates that
only considering both Eq. (14) and Eq. (15) achieves
the optimal performance.

5Das et al. [13] indicates that MultiTranslated-LAION dataset contains fewer non-English characters than
the LAION dataset due to the use of the translation model.
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Table 4: The performance of different methods under no augmentation and default augmentation.

Method
No Augmentation Defaut Augmentation

ASR AUC TPR@1%FPR ASR (∆) AUC (∆) TPR@1%FPR (∆)

Loss 66.54 72.73 7.72 56.28 (-10.26) 61.89 (-10.84) 1.92 (-5.80)
PIA† 56.56 59.28 2.00 54.10 (-2.46) 55.52 (-3.76) 1.76 (-0.24)
SecMI 72.02 81.07 13.72 60.94 (-11.08) 65.40 (-15.08) 3.92 (-9.80)
PFAMI 79.20 87.05 18.44 57.36 (-21.84) 60.39 (-26.66) 2.72 (-15.72)

CLiDth 96.76 99.47 91.72 88.88 (-7.88) 96.13 (-3.34) 67.52 (-24.20)‡

†We omit the discussion of PIA as it shows no effectiveness at this training steps, with the metrics consistently
approximating random guessing.
‡The TPR@1%FPR value changes significantly here because its ROC curve is very sharp when FPR close to 0.

Monte Carlo sampling numbers. In Fig. 3, we observe that when setting M = N , the performance
improves as the number of Monte Carlo sampling increases. And the performance is improved
slightly when M,N > 3. Hence, we set M,N = 3 to ensure the balance between a low query
count and satisfied performance. Moreover, the experiment results of "M=1, N=1" and "SecMI" also
demonstrate: CLiDth outperforms previous works even with a much fewer query count.

4.5 Resistance to Defense

Table 5: Effectiveness of CLiDth in adap-
tive defense. We calculate the FID [20] with
10, 000 unseen MS-COCO samples to assess
the model utility.

Defense
CLiDth on MS-COCO

FID ↓ / ∆
ASR AUC TPR@1%FPR

None 88.88 96.13 67.52 13.17

Reph 85.32 93.83 55.67 13.58 / +0.41
Del-1 86.40 93.59 59.52 13.18 / -0.01
Del-3 83.91 91.52 52.03 12.92 / -0.25
Shuffle 65.89 67.37 0.15 18.26 / +5.09†

†Compared to other methods, the increase in FID
caused by shuffling is unacceptable for generative
models.

Since data augmentation is commonly used in train-
ing and can mitigate the effectiveness of membership
inference [15], we use it to evaluate the performance
of methods under defense. As the baseline methods
already exhibit weak performance under real-world
training setting, we opt not to incorporate additional
data augmentation. Instead, we remove the default
data augmentation from training scripts [25] to ob-
serve the effectiveness change of different methods.
We fine-tune Stable Diffusion models for 50,000 steps
with MS-COCO, report the metrics, and calculate
the metrics changes in Tab. 4. We observe that the
effectiveness of all membership inference methods
declines after data augmentation is introduced during
training. Note that PFAMI [17] exhibits the highest
sensitivity to data augmentation since it infers membership by probability fluctuation after images
are perturbed, which also explains its significant performance decline between Tab. 1 and Tab. 2.
Compared to the baselines, our method exhibits the smallest decrease, which indicates its stronger
resistance to data augmentation.

Adaptive defense. We further consider adaptive defense: assuming the trainers are aware of our
methods and perturb the text of image-text datasets before training. We consider the following
adaptive defense methods: (1) rephrasing the original text6, (2) randomly deleting 10%, 30% words
in text, and (3) shuffling 50% of the image-text mappings in the dataset. In Tab. 5, we observe that
except for shuffling, the other adaptive defense methods have almost no effect on CLiDth. And
shuffling damages the model utility (too high FID values), rendering this defense meaningless.

4.6 Weaker Assumption

Although in Sec. 3.1 we assume that the adversary can access the entire image-text pairs based on the
real-world data usage auditing scenario, we also consider a weaker assumption: the adversary can
only access the image without the corresponding text.

In this scenario, we first generate pseudo-text corresponding to the images using an image captioning
model (BLIP [34] in our experiments), and then conduct CLiD-MI based on the image-pseudo_text
pairs. In Tab. 6, we observe that our method still broadly outperforms baselines. We believe this is
because the pseudo-text preserves the image’s key semantics, keeping our methods effective.

6We utilize ChatGPT-3.5 with the following prompt: "Please rewrite the following sentences while keeping
the key semantics."
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Table 6: Results without access to the corresponding text under Over-training setting and Real-world
training setting. We fine-tune MS-COCO on SDv1-4. Key results are highlighted as Tab. 1.

Method
Over-training (Pseudo-Text) Real-world training (Pseudo-Text)

Query
ASR AUC TPR@1%FPR ASR AUC TPR@1%FPR

Loss 73.80 81.01 9.71 56.08 58.47 1.60 1
PIA 61.40 65.75 1.20 53.44 54.38 1.52 2
M. C. 74.36 81.55 11.28 56.68 60.00 1.28 3
SecMI 82.04 88.97 40.80 60.48 64.04 3.28 12
PFAMI 91.56 95.16 68.16 58.12 59.77 2.64 20

CLiDth 92.84 95.43 72.36 76.16 83.27 19.76 15
CLiDvec 93.26 96.59 71.73 77.76 84.48 18.06 15

5 Related Works

Copyright protection in text-to-image synthesis. To protect the copyright of text-to-image models,
several works [67, 68] propose inserting backdoors to embed watermarks in text-to-image models.
To protect the copyright of image-text datasets, some works [50, 52, 69] incorporate imperceptible
perturbations to render the released datasets unusable. Other works [12, 56] utilize the backdoor or
watermark to track the usage of image-text datasets. In contrast, our method indicates the possibility of
auditing the unauthorized usage of individual image-text data points utilizing membership inference.

Membership inference on diffusion models. In the grey-box or white-box setting, Carlini et al.
[5] firstly conduct membership inference on unconditional diffusion models by conducting LiRA
(Likelihood Ratio Attack) [4], with the requirement of training multiple shadow models. Matsumoto
et al. [38] make the first step by utilizing diffusion loss to conduct query-based membership inference.
Some works [15, 28] leverage the DDIM [54] deterministic forward process [27] to access the
posterior estimation errors of diffusion models. And Fu et al. [17] leverage the probability fluctuations
by perturbing image samples. Few works consider the black-box settings [41, 62]. However, these
studies either assume partial knowledge of member set data [62] or assume extensive fine-tuning
steps [41] (100 ∼ 500 epochs), both of which do not align with real-world scenarios.

Memorization detection in text-to-image models. A similar work [59] detects token memorization
by inspecting the magnitude of text-conditional predictions, but differs from ours by lacking in-depth
rationale analysis and a rigorous membership inference setup with randomly selected member/hold-
out sets.

6 Conclusion

In this paper, we identify the phenomenon of conditional overfitting in text-to-image models and
propose CLiD-MI, the membership inference framework on text-to-image diffusion models utilizing
the derived indicator, conditional likelihood discrepancy. Experimental results demonstrate the
superiority of our method and its resistance against early stopping and data augmentation. Our
method aims to inspire a new direction for the community regarding unauthorized usage auditing.

Limitations: Due to the limited availability of open-source text-to-image diffusion models, eval-
uations under the pretraining setting are not sufficient. Considering fine-tuning setting involves a
multi step/image ratio, we acknowledge that the superiority of CLiD-MI over the baselines in the
pretraining setting is not as evident compared to fine-tuning setting. We emphasize our experiments
under pretraining setting (Tab. 3) reveal the hallucination success of existing works and encourage
future research to focus on this more challenging and practical scenario.
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A Validation of Assumption 3.1

1. 1. 2. 2.

3. 3. 4. 4.

Figure A.1: Metric values and the metric differences of synthetic images, with the same setting as
Sec. 3.2.

To extensively validate the effectiveness of Assumption 3.1, we utilize additional metrics as the
distances metric D in Eq. (8), including Wasserstein Distance [63], Kernel MMD (Maximum Mean
Discrepancy) [63] and 1-Nearest Neighbor Classifier (1-NN) [37], in addition to FID [20]. As
observed in Fig. A.1, regardless of the metric used for D, Assumption 3.1 consistently holds, thereby
confirming the broad applicability of Conditional Overfitting phenomenon.

B Proof of Theorem 3.2

Proof. Eq. (8) is equivalent to:

Ec[D(qout(x|c), p(x|c))]−D(qout(x), p(x))

≥Ec[D(qmem(x|c), p(x|c))]−D(qmem(x), p(x)).
(B.1)

Given that both the member set and the hold-out set are mixtures of Dirac distributions:

q(x) =
1

|Dset|
∑

xi∈Dset

δ(x− xi), (B.2)

where Dset denotes the set of images in the corresponding dataset. We can derive the analytical form
for the Kullback-Leibler (KL) KL divergence when using DKL as the distance metric:

DKL(q(x), p(x)) =

∫
q(x) log

q(x)

p(x)
dx

= −
∫

(
1

|Dset|
∑

xi∈Dset

δ(x− xi)) log p(x)dx+H(q(x))

= − 1

|Dset|
∑

xi∈Dset

∫
δ(x− xi) log p(x)dx+H(q(x))

= − 1

|Dset|
∑

xi∈Dset

log p(xi) +H(q(x)).

(B.3)

where H is the entropy functional. Therefore, we have:

Ec[DKL(q(x|c), p(x|c))]−DKL(q(x), p(x))

=− 1

|Dset|
∑

x,c∈Dset

[log p(x|c)− log p(x)] + Ec[H(q(x|c))]−H(q(x)), (B.4)

15



where Dset is the corresponding dataset (member set or hold-out set). Substituting Eq. (B.4) into
Eq. (B.1), we can get:

− 1

|Dout|
∑

x,c∈Dout

[log p(x|c)− log p(x)] + Ec[H(qout(x|c))]−H(qout(x))

≥− 1

|Dmem|
∑

x,c∈Dmem

[log p(x|c)− log p(x)] + Ec[H(qmem(x|c))]−H(qmem(x)).

(B.5)

Eq. (B.5) is equivalent to:

− Eqout(x,c)[log p(x|c)− log p(x)] + Ec[H(qout(x|c))]−H(qout(x))

≥− Eqmem(x,c)[log p(x|c)− log p(x)] + Ec[H(qmem(x|c))]−H(qmem(x)).
(B.6)

Finally, we can get:

Eqmem(x,c)[log p(x|c)− log p(x)] ≥ Eqout(x)[log p(x|c)− log p(x)] + δH , (B.7)

where
δH = H(qout(x)) + Ec[H(qmem(x|c))]−H(qmem(x))− Ec[H(qout(x|c))]. (B.8)

C Metrics Discussion of Sec. 3.3

In the derivation of Sec. 3.3, we also consider other metrics besides KL divergence. The results
show that KL divergence yields the most easily computable analytical form. For instance, we briefly
discuss Jensen–Shannon (JS) divergence as follows:

Recall the expression for Jensen-Shannon divergence:

DJS(q, p) = DKL(q,
1

2
(q + p)) +DKL(p,

1

2
(q + p). (C.1)

The first parameter of the KL divergence should be a simple distribution that is easy to compute;
otherwise, deriving the analytical form for such divergence is typically difficult. In Eq (8), JS
divergence cannot be efficiently computed because it includes DKL(p,

1
2 (q + p)), where p denotes

the model distribution. It needs to use the Monte Carlo method, which involves sampling images
from both q and p to make an approximation. As a result, this process is extremely time-consuming.

D Experiment Details

D.1 Monte Carlo Sampling

In our method, the key to accurate membership inference lies in estimating ELBO with fewer sampling
steps for better precision. To achieve this, firstly, we reduce the number of Monte Carlo samples
by directly estimating the ELBO difference (Eq. (13)). Secondly, recalling Monte Carlo sampling
using (ti, ϵi) pairs with ϵi ∼ N (0, I) and ti ∼ [1, 1000], we explore the effect of the sampling time
ti. We conduct a single Monte Carlo sampling test using MS-COCO on real-word training setting
and report the AUC values in Fig. D.1.

In Fig. D.1, we observe that the single Monte Carlo estimation achieves optimal accuracy when
ti ∈ [400, 500]. Similar results are shown in [33]. Therefore, consistent with [33], we sample at
intervals of 10 centered around the timestep 450. In our experiments, M,N in Eq (14) are both
uniformly set to 3 (i.e., the estimation number is 3), and we use the time list of [440, 450, 460],
resulting in the query count of 15. Note that [5, 15] indicate that for DDPM of Cifar-10 [30], the best
estimation timestep is around 100. This difference may arise from the different signal-to-noise ratios
of images with various resolution [23]. This finding suggests that the Monte Carlo sampling timestep
should be designed differently for diffusion models of different scales.
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Figure D.1: Effectiveness of single Monte Carlo estimation of various timesteps. Small ti corresponds
to less noise added, and large ti corresponds to significant noise. AUC value is highest when the
timestep is around 450.

Table D.1: The membership inference performance with different reduction methods. "Null" denotes
employing null text solely to compute Eq. (14) without reduction methods.

Reduction Methods
CLiDth on MS-COCO

Query
ASR AUC TPR@1%FPR

Null (K=1) 85.10 93.60 42.96 6
Simply Clipping (K=4) 88.02 95.90 66.53 15
Gaussian Noise (K=4) 86.58 94.79 56.78 15
Importance Clipping (K=4) 88.88 96.13 67.52 15

D.2 Reduction Methods

In implementation, we actually diversely reduce the condition c to c∗ and calculate pθ(x|c∗) to
approximate pθ(x). In this part, we evaluate the effectiveness of different reduction methods. We
consider three methods in Sec. 3.5: (1) Simply Clipping. We simply use the first, middle, and
last thirds of the sentences as text inputs. (2) Gaussian Noise. We add Gaussian noises with the
scales of 50%, 70%, 90% to the overall text embeddings. (3) Importance Clipping. We calculate the
importance of words in the text7 [55, 57] and replace them with “pad” tokens in descending order by
varying proportions of 30%, 50%, 70%. For all three methods, we additionally use the null text as a
c∗. The experiments are conducted on the real-world training setting with MS-COCO dataset. And
we also employ null text solely to compute Eq. (14) without reduction methods for comparison.

In Tab. D.1, we observe that Importance Clipping achieves the best results due to its more deterministic
reduction. So we adopt it as the reduction method used in our experiments. Additionally, we note
that all three reduction methods exhibit satisfactory results, demonstrating the general applicability of
our method. Comparing the results without the usage of reduction methods, the results validate the
effectiveness of reduction methods in Sec. 3.5.

E Compute Overhead and Resources

Computational Overhead. As a query-based member inference method, the computational efficiency
of our method primarily depends on the number of queries. A lower query count signifies a more
efficient member inference method. Our method significantly outperforms the baselines when the
query count are about the same (such as SecMI and PFAMI in Sec. 4.2). Furthermore, even with a
much lower query count such as M = 1, N = 1(Q = 5) (Fig. 3), our method exhibits a noticeable
improvement compared to the baselines.

Compute Resources. Our experiments are divided into two main parts: training (fine-tuning) and
inference, both conducted on a single RTX A6000 GPU. The time of execution in the training phase
depends on the training steps. For example, we perform 7, 500, 50, 000, and 200, 000 steps for
Pokemon [32], MS-COCO [35] and Flickr [66] dataset, which take about 2 hours, 12 hours, and 48

7https://github.com/ma-labo/PromptCharm
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hours, respectively. The time of execution in inference time depends on the methods’ query count.
For example, with the query count of 15, our membership inference method on a dataset of size
2500/2500 takes approximately 80 minutes per run for all data points. Typically, we perform this
inference once on the shadow model and once on the target model, resulting in a total time cost of
160 minutes.

F Ethics Statements

Although the current threat models for membership inference methods include privacy attack scenarios
and data auditing scenarios, we emphasize that for text-to-image diffusion models, the potential
application of membership inference lies more in unauthorized data usage auditing than in data
privacy leakage. This is because most training data is obtained by scraping open-source image-
text pairs, which are more likely to pose copyright threats rather than privacy violations. So we
emphasize that our method can make a positive societal impact for inspiring unauthorized usage
auditing technologies of text-image datasets in the community.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: In the abstract and introduction, we state that we focus on the membership
inference on text-to-image diffusion models in the scenario of auditing unauthorized usage.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: See Sec. 6
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [Yes]
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Justification: Our Assumption is provided in Sec. 3.2. The Proof is provided in Appendix B.

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental Result Reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We provide all the implementation details and the hyper-parameters. We also
provide the code. All the models and utilized datasets are open-soured which make it easy
to reproduce.

Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [Yes]
Justification: All the models and utilized datasets are open-soured in this paper. And we
provide the code in supplemental material.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: See Sec. 4.1. When training models, we utilize the open-sourced official
training scripts by Huggingface with the default hyperparameters, type of optimizer, etc.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [No]
Justification: In our main experiments, due to the high computational cost of repeatedly
fine-tuning diffusion models, we fine-tune only once under different settings for the MS-
COCO and Flickr datasets and then evaluate various member inference methods. Given
the large dataset sizes, the variance between multiple runs is minimal, and even single-run
training introduces negligible errors, thereby reducing carbon emissions. For the smaller
Pokemon dataset, we conducted experiments three times and reported the average results in
Tab. 1 and Tab. 2
Guidelines:

• The answer NA means that the paper does not include experiments.
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• The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: We provide extensive discussion in Appendix E.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: See Appendix F.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [Yes]
Justification: See Appendix F.
Guidelines:
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• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: We utilize only open-source models and datasets. Additionally, the current
text-to-image diffusion models are also trained on open-source datasets. Therefore, our
method is solely applicable for detecting unauthorized dataset usage and does not pose a
high risk for misuse.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: We correctly cite the utilized models and datasets in the paper.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
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• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]

Justification: The paper does not release new assets.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: The paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: The paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.
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• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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