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Abstract

Open-World Object Detection (OWOD) is a challenging task that requires the
detector to identify unlabeled objects and continuously demands the detector to
learn new knowledge based on existing ones. Existing methods primarily focus
on recalling unknown objects, neglecting to explore the reasons behind them.
This paper aims to understand the model’s behavior in predicting the unknown
category. First, we model the text attribute and the positive sample probability,
obtaining their empirical probability, which can be seen as the detector’s estimation
of the likelihood of the target with certain known attributes being predicted as
the foreground. Then, we jointly decide whether the current object should be
categorized in the unknown category based on the empirical, the in-distribution,
and the out-of-distribution probability. Finally, based on the decision-making
process, we can infer the similarity of an unknown object to known classes and
identify the attribute with the most significant impact on the decision-making
process. This additional information can help us understand the behavior of the
model’s prediction in the unknown class. The evaluation results on the Real-World
Object Detection (RWD) benchmark, which consists of five real-world application
datasets, show that we surpassed the previous state-of-the-art (SOTA) with an
absolute gain of 5.3 mAP for unknown classes, reaching 20.5 mAP. Our code is
available at https://github.com/xxyzll/UMB.

1 Introduction

As a fundamental task in computer vision, object detection has always been the focus of extensive
attention[1, 2, 3]. Traditional object detection methods are trained on closed datasets, assuming all de-
tected objects have already been annotated in the training set. However, the real-world environment’s
complexity means it is impossible to annotate all objects. As a result, the application of traditional
detection methods is limited. Open World Object Detection (OWOD) has been introduced to address
the issue. OWOD can be divided into two subtasks: mining potential objects and incremental learning.
The former requires the model to detect categories in the test set that have not been annotated in
the training set. These newly discovered objects are then handed over to annotators, who select the
categories of interest. Subsequently, the model is required to fine-tune its existing knowledge to
detect these newly added categories (incremental learning).

Existing works primarily focus on generating pseudo-labels for potential objects in the training set,
treating these pseudo-labels as annotations for unknown categories. For instance, ORE[4] labels
samples with high objectness predicted as background as potential objects. CAT[5] and RE-OWOD[6]
utilize selective search to provide annotations for unknown categories. OW-DETR[7] proposes an
attention-driven pseudo-label strategy to mine potential positive samples. However, despite these
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Figure 1: An illustration of our UMB and other methods. Previous OWOD methods only detected
unknown objects (left), while our method further understands the model’s behaviour (right).

heuristic methods being able to recall potential objects, they share a common flaw. As shown in
Figure 1 (left), existing methods can only detect unknown objects and then provide these labels to
annotators. However, the reason the model would predict these objects remains unknown to the
annotators. Therefore, this paper attempts to understand the model’s prediction of potential objects,
establish connections between unknown and known categories, and then provide this additional
information to annotators.

To achieve this, we propose a novel model (UMB) that uses textual attributes to mine potential
unknown objects. Specifically, we first define targets that share similar attributes with known
categories but are predicted as background as potential objects. Then, to find these potential objects,
we build a distribution that associates attribute similarity with the probability of positive samples,
which can be seen as the empirical probability of an object possessing a particular attribute being
classified as a positive sample. If a sample predicted as background has a high empirical probability
and attribute similarity, we regard it as an unknown object. Finally, based on the decision-making
process, we infer the most similar known classes with the unknown object and calculate the most
significant impact attribute. As shown in Figure 1 (right), our method can identify the unknown and
provide information about their connections with known categories and the influence of attributes on
decision-making.

We evaluated our method on the Real-World Object Detection (RWD) benchmark composed of
datasets from five practical applications, and our method achieved significant improvements. We
improved almost all datasets, surpassing the OVC (GT) that uses real class names. Significantly,
in the Surgery[36] dataset, we achieved the 213% performance in unknown category. The main
contributions of this paper are as follows:

• To the best of our knowledge, we are the first to notice the limitations of models on unknown
predictions and attempt to understand the predictive behaviour of models.

• To achieve this, we propose a new model framework (UMB) that can detect unknown cate-
gories and understand model behavior utilizing the textual description of known categories.

• We model the textual attributes and the probability of positive samples to obtain the empirical
probability. By combining the empirical probability, the in-distribution probability, and the
out-of-distribution probability, we are able to discover unknown categories.

• The evaluation results on the RWD benchmark show that our method achieved significant
performance improvements, establishing a new state-of-the-art (SOTA) with 5.3 mAP
advantages in both known and unknown category performance.

2 Related Works

2.1 Open Vocabulary Object Detection

Open Vocabulary Object Detection (OVD), as a subset of open-world perception, was initially
introduced by OVR-CNN[8]. OVD employs the text encoder to transform classes needing detection
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into text embeddings, determining the current object’s class by calculating the similarity between all
text and visual embeddings. Subsequent works further have enhanced OVD’s performance, including
knowledge transfer from pre-trained models through distillation[9, 10, 11], the addition of high-
quality object candidates[12, 13], and alignment of text-visual regions[14, 15, 16, 17, 18]. However,
in the setting of OWOD, these methods fail to detect the unknown class due to the uncertainty of
object categories. Our approach, based on OWL-ViT[19], broadens OVD to OWOD by modelling
the correlation between text attributes and the probability of positive samples.

2.2 Open-World Object Detection

Open World Object Detection (OWOD), distinct from OVD, presents stricter settings and is a more
challenging task, as proposed by ORE[4]. OWOD requires the detector not only to detect potential
unknown objects without any information of unknown classes (including category names) but also to
fine-tune the detector on newly introduced classes for continuous learning of new knowledge. Existing
research focuses on heuristic assumptions for potential targets. ORE considers background samples
with high objectness in RPN as potential unknowns, OW-DETR[7] calculates the average score
of feature regions to determine positive samples, and PROB[20] proposes the use of Mahalanobis
distance to discover the potential positive samples. Some other methods use additional pseudo-label
generation mechanisms to generate annotations for potential objects, including selective search[5, 21,
22], random sample generation[23], and large model knowledge transfer [24, 25, 26]. However, these
OWOD methods focus on detecting potential objects and ignore investigation into underlying reasons.
Our method attempts to understand the behaviour of the model’s unknown prediction, establishing a
relationship between unknown objects and known classes.

3 Our Approach

Our method, named UMB, is built upon OWL-ViT[19], with the overall process illustrated in Figure2.
First, what characteristics should of an unknown target possess? We posit that if an object is predicted
as background but exhibits attributes of known classes, it should be considered an unknown target.
Therefore, we model the attributes of known classes and the probability of positive samples to build
distribution of the empirical probability (Sec. 3.2). The distribution represents the detector’s empirical
confidence in predicting objects with known class attributes as positive samples. If a background
sample’s empirical confidence and similarity to known class attributes (In-Distribution Probability
Sec. 3.3) are both high, we consider it a potential object.

Then, since predictions for known and unknown classes are based on text attributes, we can infer the
most similar known class based on the attribute similarity of the unknown object (eqn. 16). Finally,
we can calculate the contribution of each attribute based on the decision-making process of unknown
predictions, thereby identifying the attributes that have the greatest impact on decision-making (eqn.
17). This additional information can aid in understanding the model’s behaviour in unknown classes.

3.1 Background

To obtain text that describe objects, we use the following template[28, 29] to request the Large
Language Model (LLM) to list all attributes related to known classes:

Template(C,Z) = I am using a language− vision model to identify {C}. List the
{Z} attributes of {C}, which will be used for detection.

(1)

Where C and Z denote the class name and predefined attribute type (e.g., shape), respectively. These
attributes are filled into the prompt template[27]:

Prompt(Z,A) = object which (is/has/etc) < Z > is < A >, (2)

where A is the attribute text generated in eqn. 1, e.g., blue. Then, those prompts are fed into the trained
text encoder to generate text attribute embeddings Eatt = [eatt1 , eatt2 , ..., eattn ]

⊤ ∈ Rn×d, where d
is the hidden dimension, e.g, 512. n denotes the number of the text attributes. The image is fed into
the trained visual encoder to generate visual embeddings Evis = [evis1 , evis2 , ..., evism ]⊤ ∈ Rm×d,
where m represents the number of patch. In order to establish a connection between these class-
agnostic attributes and known categories, we use additional weights W ∈ Rm×n trained in known
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Eqn. 15

Zohar O, Lozano A, Goel S, et al. Open World Object Detection in the Era of Foundation Models[J]. arXiv preprint 
arXiv:2312.05745, 2023. （FOMO ）
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Figure 2: Overall structure of our UMB. It begins by populating prompt template with known class
names and employing large language model (LLM) to generate attributes (Sec. 3.1). These attributes
are then filled into template and encoded by text encoder to generate attribute embeddings (Eatt).
We model the attributes and their corresponding positive sample probabilities to build empirical
probability (Sec. 3.2). We utilize the empirical, in-distribution and out-of-distribution probability to
ascertain whether an object pertains to an unknown category (Sec. 3.3).

categories to linearly combine similarities. Therefore, given a visual embedding evisi , the probability
of its corresponding known category j is:

p (Cj |evisi) = Sigmoid (wj,1 · sim (evisi , eatt1) + ...+ wj,n · sim (evisi , eattn))

= Sigmoid(

n∑
k=1

wj,k · sim(evisi , eattk)),
(3)

where Sigmoid is the Sigmoid activation function, and sim denotes the Cosine Similarity. The
pseudocode for known class prediction and attribute generation can be found in Algorithm 1.

3.2 Text Attribute Modeling (TAM)

3.2.1 Attribute Modeling

We model the attribute similarities in the training set with category confidence as the positive sample
probability to build an empirical probability distribution. However, as shown in eqn. 3, the score is the
linear combination of all attribute similarities, so it is influenced by all attributes simultaneously. Thus,
we weigh confidence with linear combination weights (W ∈ Rm×n) to balance the contributions
of different attributes. Specifically, given visual embedding evisk , positive sample probability of
attribute i for category j can be represented as:

p̃ (eatti , Cj |evisk) = w1−β
j,i · p (Cj |evisk)

β
, wj,i = W [j, i] (4)

where β is a hyperparameter used to balance the contributions of weights and scores. For simplicity,
we use the geometric weighted average. We incorporate all similarities in the training set and their
corresponding probabilities of positive samples, establishing a mapping fi,j : sim(eatti , evisk)→
p̃ (eatti , Cj |evisk). However, during training, the model cannot utilize the annotations of any unknown
classes. Therefore, we define the positive sample probability of attribute i for the unknown class as
the maximum of its probability to all known classes. Specifically, the probability of attribute i for the
unknown class Cu can be represented as:

p̃ (eatti , Cu|evisk) =max (p̃ (eatti , C1|evisk) , ..., p̃ (eatti , Cm|evisk))
= argmax

j∈[1,m]

( p̃ (eatti , Cj |evisk) ) (5)
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Figure 3: An illustration of the Probability Mixture Model. To establish a continuous probability
distribution, we use linear interpolation on the original distribution (left) to estimate missing points
and employ the sliding window to eliminate noise within the distribution (middle). Finally, we use
the probabilistic mixture model to fit the optimized distribution (right).

3.2.2 Distribution Optimization and Fitting

To establish a continuous probability distribution, we need to optimize and fit the original distribution.
First, contrary to the OWOD benchmark that heavily relies on extensive COCO[30] and VOC[31]
data, RWD pays more attention to real-world application and is specifically designed for the few-shot
setting. This results in the model not having sufficient samples to establish the probability distribution.
Consequently, there are some undefined points in the mapping function fi,j . To mitigate this, we
employ the linear interpolation to estimate the values of these missing points x:

fi,j(x) = k(x− xl) + fi,j(xl), k = (fi,j(xr)− fi,j(xl))/(xr − xl), (6)

where, xl and xr respectively represent the points to the left and right of x that are closest in the
mapping fi,j .

Then, we utilize the sliding window to filter the noise present in the distribution. With a predetermined
window size, we calculate the maximum positive sample probability across the entire window to
substitute the current value:

fi,j(sim(evisk , eatti)) = argmax
a∈[0,Wsz−1]

fi,j(sim(evisk , eatti) + a), (7)

where Wsz denotes the window size. As depicted in Figure 3, the employment of linear interpolation
and the sliding window ensures the original shape of the probability distribution remains intact,
concurrently minimizing the noise inherent in the distribution.

Finally, as shown in Figure 3 (middle), the optimized probability distribution fi,u demonstrates the
multi-peak characteristic. Consequently, we postulate that the original distribution is composed of
multiple basic probability distributions (e.g., Gaussian Distribution). As a result, we employ the
mixture probability distribution to fit the initial distribution. Specifically, we construct the model
using the linear combination of multiple Gaussian distributions:

fi,u(sim(evisk , eatti)) =

A∑
a=1

Gm(sim(evisk , eatti)|wa, σa, µa),

Gm(x|w, σ, µ) =w · 1

σ
√
2π

e
(x−µ)2

2σ2 ,

(8)

where A is the number of the Gaussian distribution. Additionally, we observed that certain attributes
demonstrate the skewed distribution, suggesting that fitting with the Gaussian model may not be the
optimal choice. Consequently, we utilize the asymmetric Weibull distribution as a substitute for the
Gaussian distribution:

Wb(x|w, λ, k) = w · k
λ

(x
λ

)(k−1)

e−( x
λ )k . (9)

In order to ascertain the parameters of these distributions, we designate them as learnable parameters
and employ Mean Squared Error (MSE) as the loss function for optimization. The pseudocode for
text attribute modeling can be found in Algorithm 2.
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3.3 Unknown Inference

Following FOMO[27], we calculate the weighted mean of all attribute embeddings as the embedding
for the unknown class:

eattu =
1

m

m∑
j=1

(
n∑

i=1

eatti · wj,i

)
∈ Rd. (10)

Following this, we utilize the pre-trained scale layer (Rd → R1) and shift layer (Rd → R1) for the
purpose of scaling the similarity[19]:

T (sim(evisk , eattu)) = (sim(evisk , eattu) + shift(evisk)) · scale(evisk). (11)

Finally, we adjust the similarity of the average embedding. This adjustment is segmented into three
components: empirical probability, in-distribution probability, and out-of-distribution probability.

Empirical Probability (Empirical Prob). For known categories, each attribute contributes unevenly
to the category score (eqn. 6). Hence, for the unknown class, merely using the summation of the
empirical probability to ascertain category confidence is suboptimal. We utilize the maximum weight
from the known class to balance the contributions from various attributes of the unknown class.
Specifically, for the visual embedding evisk , its corresponding empirical probability is:

f̂u(evisk) =

n∑
i=1

fi,u(sim(evisk , eatti)) · w̄i, w̄i = argmax
j∈[1,m]

wj,i. (12)

Herein, fi,u denotes the positive sample probability of attribute i towards the unknown class, as
established earlier.

In-Distribution Probability (ID Prob). We aspire for the model to observe the known attribute of
the current object. Consequently, we incorporate the weighted sum of the scaled attribute similarities:

fID(evisk) =

n∑
i=1

Sigmoid(T (evisk , eatti)) · w̄i. (13)

Out-of-Distribution Probability (OOD Prob). Both empirical probability and in-distribution
probability are based on the model’s prediction on known classes. Therefore, inevitably, the model
predicts high empirical probabilities and in-distribution probabilities for known categories. To
counteract this, we employ out-of-distribution probability to offset their influence:

fOOD(evisk) = argmax
j∈[1,m]

(1− Softmax
j∈[1,m]

(T (sim(evisk , eatti)) · wj,i)). (14)

Ultimately, given the visual embedding evisk , the corresponding confidence for the unknown class is
denoted as:

p(Cu|evisk) = Sigmoid((f̂u(evisk) · (1− α)︸ ︷︷ ︸
Empirical Prob

+ fID(evisk) · α︸ ︷︷ ︸
ID Prob

) · fOOD(evisk)︸ ︷︷ ︸
OOD Prob

)

·Sigmoid(T (sim(evisk , eattu))︸ ︷︷ ︸
Average Similarity

),
(15)

where α is used to balance the contribution form in-distribution and empirical probability.

3.4 Additional Information

Similarity between known and unknown classes. Predictions for both unknown and known classes
are determined by attribute similarity. Hence, we can compute its similarity with known classes based
on the visual embedding of objects classified as unknown. Similar to unknown inference, we take
into account the empirical probability of the current object and its confidence in being predicted as
a known class. Specifically, for the visual embedding evisk of objects predicted as unknown, the
corresponding similarity to known classes is:

Su(evisk) = softmax
j∈[1,m]

(
n∑

i=1

fi,j(sim(evisk , eatti)) + p(Cj |evisk)

)
(16)
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Aquatic Aerial Game Medical Surgery Overall

Task1 Task2 Task1 Task2 Task1 Task2 Task1 Task2 Task1 Task2 Task1 Task2
Task IDs(->)

U K PK CK U K PK CK U K PK CK U K PK CK U K PK CK U K PK CK

Base+GT-B 29.8 45.0 45.0 36.7 1.3 5.7 5.7 1.4 15.0 0.4 0.4 0.1 0.5 0.0 0.0 0.1 5.6 1.5 1.4 0.3 10.4 10.5 10.5 7.7

Base-FS-B 7.1 41.1 41.1 31.9 1.2 10.4 10.1 4.0 16.0 4.6 4.8 3.9 0.6 6.1 6.1 3.3 1.3 11.9 11.3 10.9 5.2 14.8 14.7 10.8

FOMO-B 3.5 43.8 44.1 40.8 0.9 12.0 12.6 5.4 13.3 3.8 4.4 4.1 2.1 6.4 5.5 11.5 6.1 12.7 12.9 11.0 5.2 15.7 15.9 14.6

Base+GT-L 34.8 36.0 36.0 42.3 1.0 7.9 7.2 0.8 12.4 0.9 0.8 0.3 2.4 0.2 0.2 0.3 2.4 0.2 2.6 1.3 10.6 9.0 9.4 9.0

Base-FS-L 2.4 43.6 42.9 42.8 9.7 23.7 21.9 13.0 8.2 10.4 10.2 13.4 1.1 23.2 21.7 24.2 3.6 26.0 25.0 7.4 5.0 25.4 24.3 20.2

FOMO-L 18.2 50.1 48.1 47.1 6.0 25.3 23.7 16.0 30.4 10.7 9.9 11.2 9.4 21.8 19.9 34.6 12.0 29.0 28.9 8.5 15.2 27.4 26.1 23.5

Ours:

UMB-Gm-B 13.3 43.8 43.0 39.7 1.5 18.8 19.0 5.9 15.2 4.1 4.7 4.3 2.3 5.4 3.5 11.8 10.1 13.9 14.3 11.1 8.5 17.2 16.9 14.6

UMB-Wb-B 13.5 43.8 43.0 39.7 1.4 18.8 19.0 5.9 16.3 4.1 4.7 4.3 2.3 5.4 3.5 11.8 14.5 13.9 14.3 11.1 9.6 17.2 16.9 14.6

UMB-Gm-L 18.6 50.7 50.5 50.4 11.2 42.7 40.4 22.6 35.1 11.1 10.7 10.5 13.2 22.2 19.1 34.5 24.5 36.6 39.0 17.4 20.5 32.7 31.9 27.1

UMB-Wb-L 18.6 50.8 50.5 50.4 11.1 42.8 40.4 22.5 32.7 11.1 10.7 10.5 8.6 22.3 17.3 33.2 25.6 36.6 39.0 17.4 19.3 32.7 31.6 26.8

Table 1: Comparison with previous SOTA methods on the RWD benchmark. Base+GT represents
the standard OVC setting using all class names including unknown label. Base-FS indicates the
baseline of fine-tuning the benchmark model with the same supervision received[27]. B and L
respectively represent two different sizes of the OWL-ViT model, B/14 and L/14. U, K, PK, and
CK respectively represent unknown categories, known categories, previously known categories, and
currently introduced categories. Overall indicates the average performance of the model on 5 datasets.
Wb and Gm respectively represent use of Weibull and Gaussian distribution during the fitting stage.

Maximal attribute contribution. Attributes are used to compute the similarity with visual embed-
dings, and then the model makes predictions based on this similarity. Therefore, the contribution
of each similarity can be calculated to determine the impact of a particular attribute in the decision-
making process. For a visual embedding evisk that is predicted as an unknown class, the influence of
attribute i on the current decision is denoted as:

Ctr(eatti) = wi · (Sigmoid(T (evisk , eatti)) · α+ fi,u(sim(evisk , eatti)) · (1− α)) (17)

4 Experiments

4.1 More Details and Experiments

In our supplemental material, we provide detailed information about our experiments, including:
comprehensive descriptions of the datasets (sec A.2), definition of OWOD (sec A.1), evaluation met-
rics (sec A.3), details (sec A.4), more extensive ablation studies (sec A.5), analysis and visualization
of PMM training (sec A.6), similarity evaluation(sec A.7), attribute study (sec A.8), discussion of the
limitations (sec A.10) and broad impact(sec A.9).

4.2 Datasets

The OWOD benchmark is established on the VOC[31] and COCO[30] datasets. In the era of
foundation models, the zero-shot capability of detectors on such datasets has reached its limit, for
instance, OWL-ViT[19] unknown recall is 79.0. Therefore, following FOMO, we have shifted the
benchmark for evaluating detector performance to the more practically applicable RWD benchmark.

4.3 Comparison with Other State-of-the-art Models

Table 1 presents the comparison of our UMB method and previous SOTA methods established on
the RWD benchmark. Overall, our method achieved comprehensive leadership, surpassing previous
methods with the unknown performance advantage of 4.4 mAP (Wb-B) and 5.3 mAP (Gm-L),
demonstrating the effectiveness of our method. In addition, although Base+GT uses the name of
unknown categories, it performs poorly in the Aerial, Game, Medical, and Surgery datasets. Our
method does not rely on unknown class names and significantly outperforms Base+GT (e.g., Surgery:
2.4 (Base+GT-L) vs 25.6 (UMB-Wb-L)). When compared with Base-FS, which received the same
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Aquatic Aerial Game Medical Surgery Overall
Setting

UAP URE Avg/Std UAP URE Avg/Std UAP URE Avg/Std UAP URE Avg/Std UAP URE Avg/Std UAP URE Avg/Std

Mean Embedding+OOD 4.2 76.8 - 4.8 16.9 - 22.4 80.6 - 0.3 2.8 - 17.0 95.5 - 9.7 54.5 -

+ID Probability 17.7 93.3 - 3.8 61.0 - 32.2 90.9 - 7.4 47.4 - 16.3 96.3 - 15.5 77.8 -

+Gaussian (UMB-Gm) 18.6 93.3 93.3/0 11.2 40.2 55.6/6.5 35.1 90.7 90.8/0.2 13.2 47.4 42.8/9.2 24.5 96.3 96.3/0 20.5 73.4 75.6/3.2

/Weibull (UMB-Wb) 18.6 93.3 93.3/0.1 11.1 41.3 55.9/6.1 32.7 90.7 90.8/0.2 8.6 47.4 42.2/10.2 25.6 96.3 96.3/0 19.3 73.8 75.7/3.3

Table 2: Ablation study of UMB on RWD. We provide incremental results of model performance.
UAP and URE represent the model’s mean Average Precision (mAP) and corresponding recall rate
on unknown category. Avg and Std denote the mean and variance of the recall rate distribution for
unknown classes under different α settings (eqn. 15). In A.5, we provide more analysis.

supervision, FOMO did not achieve comprehensive leadership and even lagged behind by 3.6 mAP
in Aquatic. Our method leads whether compared with Base-FS or FOMO, and in the Surgery dataset,
we doubled the performance of FOMO (12.0 (FOMO-L) vs 25.6 (UMB-Wb-L)). Gm and Wb exhibit
different strengths in various OWL-ViT models. UMB-Wb shows an advantage on the B/16 model
(+1.1 mAP), while the trend is reversed on the L/14 base (-1.2 mAP). Therefore, we provide two
different types of probability distributions (Gm and Wb) as interchangeable options.

4.4 Ablation Study

Table 2 provides the incremental results of our UMB. The initial performance uses the average
category embedding (eqn. 10) and out-of-distribution probability (eqn. 14). When the in-distribution
probability is introduced, which is used to capture the known attributes of the current target, the
performance improves by 5.8 mAP. However, in the Aerial dataset, UAP only reaches 3.8 mAP,
reducing by 1 mAP, replaced by a significant increase in recall rate (+44.1), which means that the
detector erroneously treats many background samples as unknown objects. Such a result also proves
the limitations of the unknown recall as the detection metric previously used in the OWOD benchmark.
Finally, by adding the empirical distribution, our UMB achieves a comprehensive lead (Gm +5.0, Wb
+3.8). In addition, the effect of balance parameter α on the recall rate is not obvious. In fact, in the
Aquatic and Surgery datasets, the variance of the recall rate distribution reaches 0, which means that
alpha correctly suppresses the background samples erroneously predicted by the detector. Overall,
our UMB can provide a higher unknown recall rate (UMB-Gm 73.4, UMB-Wb 73.8) while ensuring
detection accuracy.

4.5 Visualization

In figure 4, we provide the qualitative analysis of FOMO and our UMB. The visual analysis is divided
into three parts: the recall ability of the unknown category, recall precision, and analysis of additional
information. UMB shows superior performance in recalling unknown objects. UMB successfully
recalled tools in the Surgery dataset (fifth row, Wb ID 3) and accurately recalled playgrounds and
roofs in the Aerial dataset (second row, Wb ID 1, 2), while FOMO failed to recall these objects.
Regarding recall precision, FOMO predicts multiple results to an object and incorrectly classifies
unknown classified objects as known classes, such as the hero characters in the Game dataset (third
row) and the misclassification of four objects in the Aquatic dataset (first row). In contrast, our UMB
shows higher precision. Regarding additional information, the misclassification of FOMO in the
Aquatic dataset reflects the defects of OWL-ViT in classifying these objects. With the help of formula
n, UMB can infer the category most similar to the current object, and these categories correspond
to the categories misclassified by FOMO. In addition, for the same object (ID 3,4), UMB identifies
that the attribute with the greatest impact on the entire decision is consistent. These results prove the
accuracy of our method in inferring the connection between unknown and known and discovering the
attributes that have the greatest impact on decision-making.

5 Conclusion

This paper attempts to understand the detector’s behaviour in predicting unknown objects. To achieve
this, we propose a novel detection framework, UMB, which employs class-agnostic textual attributes
to unearth potential objects in the background. Given that the model’s detection process for known
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and unknown classes hinges on textual attributes, our UMB can use the textual attributes of unknown
objects to infer the most similar known category. In addition, we can calculate the attributes that have
the most significant impact on the entire decision-making process. This supplementary information
aids annotators in understanding the model’s behaviour in predicting unknowns. We hope that UMB
can promote the application of Open-World Object Detection in real-world scenarios.

Zohar O, Lozano A, Goel S, et al. Open World Object Detection in the Era of Foundation Models[J]. arXiv preprint 
arXiv:2312.05745, 2023. （FOMO ）

FOMO

shark 0.371
Texture: feathers 0.180

shark 0.371
Texture is feathers 0.211

Shark 90.1%

UMB-Wb

UMB-Gm

sim: shark 0.3063769042491913, att: object which (is/has/etc) Texture is 
feathers 0.16327056288719177
unknown 0.883
sim: shark 0.35102635622024536, att: object which (is/has/etc) Appearance 
is suckers 0.17112213373184204
unknown 0.877
sim: penguin 0.3429868221282959, att: object which (is/has/etc) Context is 
sand-colored 0.16713036596775055
unknown 0.715
sim: penguin 0.36054378747940063, att: object which (is/has/etc) Context is 
sand-colored 0.1750366985797882
unknown 0.678

sim: shark 0.30496668815612793, att: object which (is/has/etc) Texture is 
feathers 0.18248651921749115
unknown 0.883
sim: shark 0.35035333037376404, att: object which (is/has/etc) Appearance 
is suckers 0.20451542735099792
unknown 0.88
sim: penguin 0.3419024348258972, att: object which (is/has/etc) Context is 
sand-colored 0.19474032521247864
unknown 0.72
sim: penguin 0.36075910925865173, att: object which (is/has/etc) Context 
is sand-colored 0.20436137914657593
unknown 0.684

unknown 0.499
unknown 0.287

101-^-IMG_3128_jpeg_jpg.rf.c0f27342bb81a8e84b25c54e9713f545 1: 88.3%

ID Category Attribute Text

1 Shark 
(30.6 %)

Texture is feathers. 
(16.3 %)

2 Shark 
(35.1 %)

 Appearance is suckers.
(17.1 %)

3 Penguin
(34.3 %)

Context is sand-colored.
(16.7 %)

4 Penguin
(36.1 %)

Context is sand-colored.
(17.5 %)

2: 87.7%

3: 71.5%

4: 67.8%

ID Category Attribute Text

1 Shark 
(30.5 %)

Texture is feathers. 
(18.2 %)

2 Shark 
(35.0 %)

 Appearance is suckers.
(20.5 %)

3 Penguin
(34.2 %)

Context is sand-colored.
(19.5 %)

4 Penguin
(36.1 %)

Context is sand-colored.
(20.4 %)

1: 88.3%

2: 88.0%

3: 72.0%

4: 68.4%

ID Category Attribute Text

1 Chimney 
(14.0 %)

Shape is round. 
(23.6 %)

2 Chimney 
(14.6 %)

 Shape is round.
(22.7 %)

3
Expressway-
toll-station
(36.1 %)

Context is concessio
n stands.
(23.0 %)1: 57.9%

2: 56.8%

3: 54.8% 1: 56.7%

ID Category Attribute Text

1 Chimney 
(14.0 %)

Shape is round. 
(23.5 %)

2
Expressway-
toll-station 
(12.2 %)

 Shape is round.
(22.9 %)

3 chimney
(36.1 %)

Shape is round.
(23.2 %)2: 55.2%

3: 55.1%

Ground Thruth ID Category Attribute Text

1 Jhin 
(4.4 %)

object which (is/has/
etc) Features is horns. 

(14.8 %)

2 Lissandra
(4.2 %)

 object which (is/has/
etc) Shape is cuboid.

(14.8 %)

3 Jhin
(4.6 %)

object which (is/has/
etc) Texture is fine.

(15.1 %)

UMB-Wb

1: 82.3% 2: 81.6%

3: 80.3%

UMB-Gm ID Category Attribute Text

1 Jhin 
(4.5 %)

object which (is/has/
etc) Features is horns. 

(17.1 %)

2 Lissandra
(4.3 %)

 object which (is/has/
etc) Shape is cuboid.

(16.9 %)

3 Jhin
(4.6 %)

object which (is/has/
etc) Texture is fine.

(17.5 %)

1: 82.5% 2: 81.7%1: 82.5%

FOMO

59.1% 55.7%
55.2%

ID Category Attribute Text

1
Soft Tissue 
Calcination

(19.1 %)

 Material is cortical 
shell. 

(67.8 %)

2
Distal 

Phalanges
(12.2 %)

 Features is
 triquetrum.

(69.5 %)

3
Third Meta-
carpal Bone

(36.1 %)

Context is torso.
(68.9 %)

1: 92.8%

2: 92.7%
3: 92.5%

ID Category Attribute Text

1
Soft Tissue 
Calcination

(19.1 %)

 Material is cortical 
shell. 

(61.0 %)

2
Distal 

Phalanges
(20.1 %)

 Features is
 triquetrum.

(62.2 %)

3
Distal Phal-

anges
(17.7 %)

Context is torso.
(57.4 %)

1: 92.6%

2: 92.5%

3: 92.3%78.2%

77.3%
75.8%

ID Category Attribute Text

1 Scalpel
(20.0 %)

 Behavior is 
repositi-oning.

(6.8 %)

2 Scalpel
(20.0 %)

 Shape is thin.
(6.8 %)

3 Hook
(22.0 %)

Shape is thin.
(6.9 %)1:84.5%

ID Category Attribute Text

1 Scalpel
(20.0 %)

 Behavior is 
operating.

(9.0 %)

2 Scalpel
(19.8  %)

 Shape is spherical.
(9.0 %)

3 Hook
(21.8 %)

Shape is spherical.
(9.0 %)

2:84.5%

3:69.5%

1:85.0%68.8%61.4%

1: 88.3%

77.5%(Shark)

67.1%
(Penguin)

65.7%(Shark)

61.9%
(Penguin)

3: 80.5%

2:84.9%

3:69.4%

57.6%

53.5%

Aquatic

Aerial

Medical

Surgery

Figure 4: Qualitative Analysis. Each row, from left to right, represents: FOMO, UMB-Wb, and
UMB-Gm, respectively. From top to bottom, the results are given for Aquatic, Aerial, Game, Medical,
and Surgery. For fairness and clarity, we only display the TOP-K unknown predictions with a
confidence level greater than 0.5. Unknown predictions are marked in Red, while known classes are
marked in yellow. Each table provides the most similar known category (Category) for each unknown
prediction, and the attribute (Attribute Text) that has the greatest impact on the decision-making
process. In section 7, we provide an evaluation of the accuracy rate of similarity prediction.
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A Appendix / supplemental material

Algorithm 1: Textual Attribute Generation
and Known Class Prediction
/* Predefined attribute types */
A = [Size, Shape, Behavior, . . . , Appearance]
/* known class names (Aquatic) */
C = [Jellyfish, Penguin, . . . , Shark, Starfish]
Attributes = []
/* attribute generation guided by LLM */
for ci in C do

for aj in A do
/* fill in the template (eqn. 1) */
/* e.g. Penguin Size,
Template(Penguin, Size) = I am
using a language-vision model to
identify {Penguin}. List the {Size}
attributes of {Penguin}, which will
be used for detection. */
Template(ci, aj)→ LLM

/* generate attributes, e.g, blue */
LLM → attribute

/* collect attributes and predictions
corresponding to LLM*/
(aj , attribute)→ Attributes

end
end
/* encoding textual attribute to embedding */
Eatt = []
for ai, attributei in Attributes do

/* fill in the template (eqn. 2) */
/* e.g. blue, Prompt(color, blue) = object
which (is/has/etc) <color> is <blue>*/
Prompt(ai, attributei)→
Text_encoder → Eatt

end
/* encoding image to visual embedding */
Evis = []
for patch_img in image do

V ision_encoder(patch_img)→ Evis

end
/* attribute similarity */
Sims = []
for evisk in Evis do

simsi = []
for eatti in Eatt do

/* sim denotes the cosine similarity */
sim(evisk , eatti)→ simsi

end
simsi → Sims

end
/* known class prediction */
output = []
for idx, simsi in Sims do

/* trained attribute weight W*/
W [idx] · simsi →

eqn.3
output

end
return output

Algorithm 2: Text Attribute Modeling (TAM)
Dimg = {image1, ..., imagem}
Known_classes = {C1, ..., Ckn}
f = {C1: {eatt1 : [], ..., eattn : []},

..., Ckn: {...}, Cu: {...}}
for imagei in Dimg do

Vision_encoder(imagei)→ Evis

for evisk in Evis do
for eatti in Eatt do

for Cj in Known_classes do
/* building mapping: fj,i */
(sim(evisk , eatti)︸ ︷︷ ︸
Cosine Similarity

, p(Ci|evisk))︸ ︷︷ ︸
eqn.3

→
eqn.4

f [Cj ][eatti ]

end
end

end
end
/*eqn. 5*/
for x in Range(−1, 1, gap) do

for eatti in Eatt do
Max_val = 0 for Cj in
Known_classes do

for vali in f [Cj ][eatti ] do
if vali in [x, x+ gap] then

max(vali,Max_val)→
Max_val

end
end

end
(x,Max_val)→ f [Cu][eatti ]

end
end
/* eqn. 6, here we set gap to 0.0001 */
for x in Range(−1, 1, gap) do

for eatti in Eatt do
if (x, 0) in f [Cu][eatti ] then

f [Cu][eatti ] del (x, 0)
Linear Interpolation→
(x, estimate)→ f [Cu][eatti ]

end
end

end
/* eqn. 7 */
for x in Range(−1, 1, gap) do

for eatti in Eatt do
f [Cu][eatti ] ←

filter
Sliding Window

end
end
for eatti in Eatt do

PMMi ←
training

(f [Cu][eatti ])

end
return [PMM1, PMM2, ..., PMMn]
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In this section, we supplement the details omitted in the main text.

A.1 Task Formulation

In the context of OWOD, the detection task is divided into a series of subtasks T = {T1, T2, ..., T|T |}
and their corresponding categories K = {K1,K2, ...,K|T |}. Ti includes all known categories from
previous tasks and introduces new categories on this basis: Ki = (

⋃i−1
j=1 Kj) ∪Knew, where Knew

denotes introduced new categories. When the model is trained on Ti, our expectation is that the model
should be able to detect all categories it has encountered so far (i.e., Ki), as well as discover those
unlabelled but interesting categories. For the purpose of evaluation, the interest object is defined as
those that belong to K but not to Ki (i.e., K −Ki).

A.2 Datasets

The OWOD benchmark is a combination of COCO[30] and VOC[31] datasets. In the era of foundation
models, the zero-shot capabilities of detectors on OWOD benchmark have even reached their limits.
Therefore, consistent with FOMO[27], we will switch the evaluation benchmark to RWD. The RWD
benchmark consists of five typical application scenarios for object detection, including underwater
scenes, representing visual blurring caused by the environment (Aquatic[32]); aerial scenes, where
the targets are small and difficult to distinguish (Aerial[33]); scenarios using synthetic data when data
is lacking (Game[34]); medical X-ray scenes, where it is difficult to distinguish between categories
and professional knowledge is required(Medical[35]); and human surgery scenes, where the field of
view is blurred by blood (Surgery[36]). The detailed division of the RWD benchmark is shown in
Table 3. We divide RWD into two subtasks according to a 50% category ratio. When training in Task
1, all categories in the test set that belong to Task 2 are treated as unknown classes, and when training
in Task 2, the categories of Task 1 are considered as previously seen classes.

A.3 Metric

For known categories, we adopt the widely used mean Average Precision (mAP) as the evaluation
metric for object detection. For unknown classes, previous OWOD methods[5, 4] used the recall
rate of unknown classes as the evaluation metric. However, such a metric leads to models greedily
treating all background objects as potential samples. Therefore, we adopt mAP, consistent with the
evaluation metric for known classes, which simultaneously assesses the detector’s recall ability for
unknown classes and the precision of the predictions.

A.4 Details

All experiments were conducted using a single NVIDIA GeForce RTX 4090 GPU. Following
FOMO, we initialized with the frozen OWL-ViT[19] (L/14 and B/16), which was trained on a mixed
dataset composed of Object 365[37] and Visual Genome[38], demonstrating strong generalization
capabilities. The large language model used for attribute generation is GPT-3.5. These attributes were
matched with all predictions in the dataset, and the corresponding visual embeddings were collected
if the IOU exceeded the threshold (0.8). The average of these visual embeddings was calculated to
obtain the average embedding of the attributes. Following FOMO, we adopted attribute selection,
attribute adaptation, and attribute refinement to train the linear combination weight.

All optimizers used AdamW. During the attribute selection phase, BCE was the loss function, and
the learning rate remained constant without decreasing with iterations. The attribute selection phase
reduced the number of attributes. Based on the ranking of weights after training, only the top 25
attributes per attribute type were retained. Attribute adaptation was used to narrow the distance
between the text attributes and the average embedding of the dataset. This phase used MSE as the
loss function, with a maximum of 1000 iterations. Attribute refinement took the text embedding as
the parameter to be optimized, with BCE as the loss function. Attribute refinement narrowed the
distance between the text embedding and the visual embedding. During the attribute selection and
attribute refinement phases, the learning rate and maximum number of iterations for training were set
to three values ([1e-5, 5e-5, 1e-4], [1, 10, 100]), iterating over these settings during each training to
select the optimal setting.

14



Dataset Task1 known And Task2 Previous known Task2 known And Task1 unknown

Aquatic
Fish(100, 100, 1372), Jellyfish(93, 93, 398)

Shark(100, 100, 179), Penguin(100, 100, 306)

Puffin(100, 172), Stingray(68, 85),

Starfish(43, 57)

Aerial

Vehicle(100, 100, 8350), Storagetank(100, 100, 6229)

Stadium(100, 100, 277), Ship(100, 100, 12420),

Groundtrackfield(100, 100, 641), Golffield(100, 100, 222)

Dam(100, 100, 225), Basketballcourt(100, 100, 617)

Airport(100, 100, 287), Airplane(100, 100, 2423)

Expressway-Service-area(100, 464)

Expressway-toll-station(100, 302)

Baseballfield(100, 1192), Windmill(100, 1078)

Bridge(100, 809), Chimney(100, 334)

Harbor(100, 1072), Overpass(100, 684)

Tenniscourt(100, 2583), Trainstation(100, 207)

Game

Gankplank(31, 31, 30), Poppy(21, 21, 32)

Blitzcrank(28, 28, 28), Illaoi(24, 24, 23)

Singed(35, 35, 37), Zac(25, 25, 27)

Janna(39, 39, 33), Ezreal(38, 38, 32)

Twitch(25, 25, 25), Camille(29, 29, 17)

Twisted Fate(18, 18, 31), Jayce(29, 29, 24)

Swain(33, 33, 24), Caitlyn(22, 22, 24)

Lulu(21, 21, 28), Trundle(25, 25, 33)

Warwick(29, 29, 28), Zilean(30, 30, 25)

Katarina(25, 25, 26), Vex(23, 23, 32)

Ziggs(29, 29, 29), Braum(26, 26, 25)

Darius(16, 16, 37), Cho-Gath(22, 22, 29)

Tristana(28, 28, 36), Kassadin(22, 22, 23)

Malzahar(23, 23, 24), Heimerdinger(26, 26, 30)
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Jinx(16, 19), Yone(19, 20)

Quinn(22, 18), Miss Fortune(23, 21)

Sion(22, 15), Kog-Maw(23, 22)

Garen(21, 20), Graves(17, 19)

Urgot(23, 24), Galio(24, 18)

Shaco(14, 28), Zyra(18, 20)

Tahm Kench(23, 14)

Surgery

BipolarForcepsUpSkeleton(100, 100, 361)

SuctionTubeSkeleton(100, 100, 812)

Retractors(100, 100, 259)

BipolarForcepsUp(100, 100, 508)

BipolarForcepsDown(100, 100, 496)

SuctionTube(100, 100, 872)

Curette(59, 57), Hook(100, 123)

PliersDown(92, 94), Scissors(38, 30)

Scalpel(95, 90), PliersUp(98, 98)

BipolarForcepsDOwn(1, 0)

Medical

Second metacarpal bone(86, 86, 96)

Fifth metacarpal bone(82, 82, 95)

Distal phalanges(100, 100, 481)

Third metacarpal bone(80, 80, 95)

Proximal phalanges(100, 100, 475)

Intermediate phalanges(96, 96, 376)

Soft tissue calcination(38, 50), Ulna(78, 90)

Fourth metacarpal bone(83, 95), Artefact(2, 3)

First metacarpal bone(80, 94), Radius(76, 92)

Table 3: Detailed explanation of the dataset split. Each dataset is split into two subtasks, each
maintaining a category proportion of 50%. When training on Task 1, the categories of Task 2
are treated as unknown classes. During training in Task 2, the classes from Task 1 are labeled as
previously seen categories, and new classes divided into Task 2 are introduced. The numbers (num1,
num2, num3) following each category in Task 1 represent the number of training instances in Task 1,
Task 2, and the test set, respectively. The numbers (num1, num2) in Task 2 represent the number of
training and test instances for this category in Task 2.
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Upon completion of training, the detector could detect known classes. To detect unknowns, we
established the empirical probability for each attribute. In the distribution optimization phase, we set
the window value to 10. In the distribution fitting phase, we used two different probability models
(Gaussian and Weibull). During training, Adam was used as the optimizer, the learning rate was set
to 0.01, the maximum number of iterations was 10000, and the maximum number of probability
models was set to 5. Since the purpose of fitting was to capture the shape of the empirical probability
distribution and establish a continuous probability distribution, we set an interval of 0.0001 between
-1 and 1. This setting was used to sparsify the data of the original distribution. Then, distribution
optimization and fitting were performed in the sparsified distribution.

A.5 Comprehensive Ablation Experiments
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Gm-Known Gm-Unknown

Wb (β = 0.1): Known Unknown

Gm (β = 0.2): Known Unknown

Aerial

Wb (β = 0.1)

Gm (β = 0.2)
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Wb (β = 0.1)

Gm (β = 0.3)
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Wb (β = 0.8)

Gm (β = 0.9)

MeanAbnormal Value    Mean +/- 1.5 SE

Figure 5: Subfigures 1 through 5 present the performance variations of the model under different
settings of α (eqn. 15). For clarity, we only display the performance changes corresponding to the
optimal β (eqn. 4). Subfigure 6 provides the statistics of the recall rates corresponding to these five
figures as α varies. Here, Mean represents the average, while SE denotes the standard deviation.

Figure 5 illustrates the model’s performance under different α settings with the optimal β. In addition,
subfigure 6 provides the statistics of the recall rates corresponding to subfigures 1 through 5. In
the Aquatic and Game datasets, the performance of UMB is not sensitive to the changes in α,
showing minor performance differences. This is because Aquatic is consistent with the training data
of OWL-ViT, and Game is synthetic data, neither of which poses additional challenges (such as
target size). However, in the remaining datasets, the performance of UMB shows significant changes.
For example, the performance of the Aerial dataset drops from 11.1 mAP (wb) to 3.6 mAP. These
datasets have significant differences from the OWL-ViT training dataset, and their environmental
characteristics (such as small objects in Aerial, similar objects in Medical, and blood-contaminated
backgrounds in Surgery) pose additional challenges to the model. These constraints make UMB
sensitive to changes in α. Nevertheless, a reasonable α can balance in-distribution and empirical
probability contributions to achieve better detection performance.

For the recall rate of unknown categories, except for the Aerial and Medical datasets, UMB maintains
a high value (93.3% in Aquatic) and remains stable in the remaining datasets. This indicates that
our method does not predict more objects under different α settings but predicts potential objects
more accurately. In the Aerial and Medical datasets, the model’s recall rate is almost half that of other
datasets, and these recall rates show significant fluctuations with the change of α. Therefore, we infer
that when the model’s recall rate for a specific dataset is high, the balance between intra-division
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AquaticAquatic Wb Gm

Aerial AerialWb Gm

Game GameWb Gm

Wb GmMedical Medical

GmSurgeryWbSurgery

Figure 6: Training result for the Probabilistic Mixture Model. The training results for Aquatic, Aerial,
Game, Medical, and Surgery are represented from top to bottom. We only display the fitting process
corresponding to the optimal β setting for clarity. The settings for β can be found in figure 5. Each
original distribution is first filtered for noise using distribution optimization (linear interpolation
and sliding window) and then fitted with the basic probability model (Weibull or Gaussian) to the
optimized distribution. The first and third images in each row show the MSE loss distribution
corresponding to convergence, while the second and fourth images present the best-fitting results
across all attributes. In the best-fitting result, the yellow line represents the original distribution, and
the green line represents the result after fitting the probability model.

probability and empirical probability has a relatively small impact on the recall rate; when the recall
rate is low, this balance has a more significant impact on the recall rate.

A.6 Probabilistic Mixture Model

Figure 6 presents the fitting results of the probabilistic mixture model. When the original probability
distribution exhibits multiple peaks, the MSE loss of the probability fitting may stabilize at a relatively
high value. For instance, in the first column of the second row, the original probability distribution is
composed of more than three elemental probability distributions. Upon completion of training, the
MSE value stabilizes around 7.3, indicating that the model faces challenges when fitting distributions
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with multiple peaks. However, when the original probability distribution exhibits a single peak, the
MSE loss approaches zero, demonstrating the model’s advantage in fitting unimodal distributions. For
example, in the Game dataset, the MSE value of the Gaussian model stabilizes around 0.015. Despite
the possibility of multiple peaks in the original distribution, both the Weibull and Gaussian distribution
can capture its essential shape characteristics. For instance, in the Aerial dataset, the Gaussian model
can fit two smooth peaks to represent the original distribution. Similarly, the Weibull model can
fit a smooth curve when facing distributions with multiple peak features. However, in the case of
unimodal distribution, both the Gaussian and Weibull models can capture the original distribution’s
unimodal feature and fit a smooth curve with a single peak. For example, in the Surgery dataset, the
Weibull and Gaussian models in the Game datasets demonstrate this ability.

A.7 Similarity Evaluation
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Figure 7: Evaluation of similarity. The left figure represents the number
of predictions where unknown and known categories overlap. The
right figure shows the accuracy of the model’s inference among these
numbers.

In order to understand the
behavior of the model, we
provide the known class
most similar to the un-
known object and the at-
tribute with the most sig-
nificant impact on decision-
making. Through visualiza-
tion, we observe that many
known predictions overlap
with unknown objects in
the detector’s predictions.
These known predictions
represent that the detector
considers the current ob-
ject to belong to a known
category. Therefore, we
estimate the model’s accu-
racy in similar inference by
whether the inferred known class is consistent with these overlapping known predictions. Specifically,
if their IoU exceeds 0.95, we consider these two predictions overlapping. Then, if the known class
inferred by the detector is consistent with the known prediction, we consider the model inference
correct. Otherwise, it indicates an inference error. As shown in Figure 7 (left), the detector has
many duplicate predictions for unknown and known classes. Among these duplicate predictions, the
proportion of correctly inferred predictions is large, more than 80% (Figure 7). Compared with Wb,
Gm’s accuracy rate is always lower. In the Aquatic dataset, Gm lags behind Wb by 0.1 percentage
points in accuracy, and in Medical, it lags by 0.6 percentage points. Overall, both Gm and Wb show
high inference accuracy (about 90%), and compared with Gm, Wb shows a higher accuracy rate
(about 2%).

A.8 Attribute Study

Figure 8 and Figure 9 present the results of attribute analysis. For clarity, we have selected only the
top three categories with the highest prediction counts from the detector and the top five attributes that
have the most significant impact on them. In each row, the top part shows the prediction counts for
these categories. For instance, Puffin (252) in Aquatic indicates that the detector gave 252 predictions
for the Puffin category. The left side shows the number of times these attributes have been identified
as having the most significant impact. Moreover, the right side represents the attributes with the
highest average inference scores from the model.

UMB demonstrates a strong ability to capture object attributes. In the Surgery dataset, the attribute
(Behavior is repositioning) dominated UMB-Wb’s 127 predictions (total 274) for the Hook category,
and this number rose to 134 (total 273) in UMB-Gm, accounting for nearly half. This implies that
when an object exhibits such an attribute, the detector will likely predict it as the Hook category. UMB
exhibits precise attribute discrimination capabilities. Since the right side of each row presents the
average score of the attribute’s impact on all detector predictions, their differences are insignificant.
Nevertheless, in the Aquatic dataset, UMB-Gm still distinguished these attributes. For instance, the
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Aquatic: Puffin(252), Stingray(192), Starfish(134)
 

Texture is feathers

Texture is feathers

Size is asymmetric

Context is seagulls

Context is tropical

Context is deep sea

Material is collagen

Context is sand-colored

Shape is flexible 

Environment is bird

Appearance is 
presence of benches

Context is yachts

Shape is paper

Appearance is pillars

Shape is round

Appearance is 
presence of benches

Behavior is 
changing direction

Shape is chunky

Shape is paper

Appearance is pillars

Aerial: Baseballfield(1020),  Chimney(635), Tenniscourt(606)

Shape is smooth

Context is elbows

Shape is bent 

Context is connective 
tissue

Shape is cuboid

Context is 
connective tissue

Context is 
wrist bones

Features is horns

Material is endosteum

Texture is coarse
Game: Taric(81),  Urgot(74), Samira(71)

Shape is rounded
Shape is spherical

Behavior is operating

Context is 
cautery device

Environment is medical 
simulation center

Behavior is operating

Context iswrist bones

Features is horns

Material is endosteum

Texture is coarse
Surgery: Hook(274),  Scalpel(210), PliersDown(204)

Features is 
cortical bone

Features is swollen 
joints

Texture is fissured
Material is

 cortical shell
Appearance is 

visible joints

Features is paws

Material is brittle

Features is proximity

Appearance is visible 
joints between bones

Features is scaphoid

Medical: Fourth metacarpal bone(183),  First metacarpal bone(161), Ulna(16)

Figure 8: Cross-category attribute analysis (Gm). Each row from top to bottom presents the results
for Aquatic, Aerial, Game, Surgery, and Medical. The left in each row represents the number of times
the attribute influences the decision, while the right side indicates the average score of the attribute.
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Texture is feathers

Size is asymmetric

Context is seagulls

Features is nostril

Context is tropical

Shape is flexible

Appearance is suckers

Shape is swimming

Size is large

Material is collagen

Aquatic: Puffin(252), Stingray(192), Starfish(134)
 

Aerial: Baseballfield(1043),  Chimney(657), Tenniscourt(642)
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Figure 9: Cross-category attribute analysis (Wb). Each row from top to bottom presents the results
for Aquatic, Aerial, Game, Surgery, and Medical. The left in each row represents the number of times
the attribute influences the decision, while the right side indicates the average score of the attribute.
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attribute (Context is the deep sea) had an average score of 0.2 in Puff but dropped to 0 in Starfish. A
similar scenario occurred in UMB-Wb, where the attribute (Shape is flexible) had an impact of 0.16
on Starfish, but it dropped to 0 for Puffin. Overall, both UMB-Gm and UMB-Wb can capture and
distinguish object attributes and make corresponding predictions based on these attributes.

Setting Aquatic Aerial Game Medical Surgery

ME+OOD 4.2 4.8 22.4 0.3 17.0
+ID 17.7 3.8 32.2 7.4 16.3

PMM(OD) 18.0 4.1 32.3 7.5 18.3
PMM(LI) 18.0 4.1 32.3 7.7 18.4

PMM(SW) 17.8 5.0 32.3 7.1 18.4
PMM(Gm) 18.6 11.2 35.1 13.2 24.5
PMM(Wb) 18.6 11.1 32.7 8.6 25.6

Table 4: Ablation Studies. ME is Mean Embedding, OOD
is Out-of-Distribution. PMM(OD) uses original distribution,
LI, SW use Linear Interpolation, Sliding Window. Gm, Wb
are filtered models, denoting Gaussian, Weibull distribution.

We conducted additional comparative
experiments on Linear Interpolation
(LI) and Sliding Window (SW), as
detailed in Table 4 of the attached
document. The results indicate that
employing LI or SW independently
does not lead to significant perfor-
mance improvements. Both methods
exhibit only marginal enhancements
compared to the original approach,
suggesting that LI and SW, when used
in isolation, are insufficient for accu-
rately modeling the data distribution.

A.9 Broad Impact

In this paper, we focus on the perfor-
mance of detectors in open-world ob-
ject detection and attempt to under-
stand the model’s behavior when predicting unknown categories. Our approach can help annotators
gain a deep understanding of the model’s decision-making process, thereby guiding subsequent
optimization work and improving the overall performance of the detector. At the same time, under-
standing the model’s behavior may expose potential flaws malicious actors could exploit for illegal
activities. For this reason, we choose to open-source our code, both to promote the development of the
current field and to identify and prevent these potential issues through the power of the community.

A.10 Limitations

Our focus is on understanding the behaviour of model predictions. Hence, we attempt to migrate
the OVC detector to the OWOD task. As our method does not directly train the weights of the OVC
detector but merely processes its output, the performance ceiling of our method will be constrained
by the inherent performance of the OVC detector itself. Furthermore, due to the visual-text alignment
relationships of the OVC requiring extensive data training, fine-tuning on actual application datasets
could lead to additional annotation costs.

A.11 Failure Cases

We present typical cases of detection failures from each dataset, focusing on recall capability and
detection accuracy. For instance, in the Aquatic dataset, UMB failed to detect small orange fish,
while in the Aerial dataset, it did not successfully recall vehicles. These instances reveal the
detector’s shortcomings in recall capability. Moreover, in the Game and Surgery datasets, UMB
displayed occurrences of repeated predictions. Nevertheless, UMB still outperformed FOMO in
overall performance. Specifically, in the Aquatic dataset, UMB accurately located the contours of
the fish, whereas FOMO showed deviations in contour localization and even missed similar objects.
Furthermore, FOMO incorrectly identified the reflection of the photographer’s shoes in the glass as
an unknown object, demonstrating lower precision. Similar issues were observed in the Aerial and
Game datasets, where FOMO often confused objects with the background, resulting in new erroneous
predictions, such as misidentifying rooftops as a single object in the Aerial dataset. However, UMB
did not commit the same errors in these cases. In summary, although UMB also exhibited some false
detections in certain scenarios, it outperformed FOMO in both detection accuracy and the ability to
recall potential objects.
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FOMO UMB-Wb UMB-Gm

Figure 10: Qualitative Results (Failure Cases). From top to bottom, the datasets are Aquatic,
Aerial, Game, Medical, and Surgery. To ensure clarity and fairness in comparison, we only display
predictions for unknown, selecting those with a confidence score greater than 0.5 and ranked within
the top K unknown category predictions. The results indicate that the UMB method demonstrates
higher precision and recall in addressing the FOMO problem.
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NeurIPS Paper Checklist
1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: In the introduction, we discuss the problems that existing research focuses on
(first paragraph of the introduction), as well as the emphasis and shortcomings of current
studies (second paragraph of the introduction). We also detail our methods and the results
we have achieved (third and fourth paragraphs of the introduction).
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: In section A.10, we provide the limitation.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
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Answer: [Yes]
Justification: In section 3.2, we provide the full set of assumption. In section 4.4, we discuss
the impact of empirical probability on model performance. Additionally, in section A.6, we
present the detailed analysis and visualization.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: In the supplemental material, we provide detailed experimental configuration
(A.4) and pseudocode (1, 2), environments, and all other settings. Furthermore, we will
release all the training code and weights.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.
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5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: Our code is available at https://anonymous.4open.science/r/UMB-B61C/.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.
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Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: In the supplemental material, we provide all the training and test details,
including: experimental configuration (A.4), data split (A.2) and hyperparameters (A.5).
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• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: We provide the experiments that support the main claims of the paper (sec 4.3)
and detailed ablation study (sec A.5).
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• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

25

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
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than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).
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NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: We affirm that all research presented in this paper adheres to the NeurIPS Code
of Ethics.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [Yes]
Justification: In section A.9, we provide the societal impacts of the work performed.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
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• If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

• Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: The paper poses no such risks.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: All assets in the paper have been properly credited, and we adhere to the
corresponding licenses and terms of use.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
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• If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: Our code is available at https://github.com/xxyzll/UMB.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: The paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: The paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.
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• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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