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Abstract

Disease grading is a crucial task in medical image analysis. Due to the continuous
progression of diseases, i.e., the variability within the same level and the similarity
between adjacent stages, accurate grading is highly challenging. Furthermore, in
real-world scenarios, models trained on limited source domain datasets should also
be capable of handling data from unseen target domains. Due to the cross-domain
variants, the feature distribution between source and unseen target domains can be
dramatically different, leading to a substantial decrease in model performance. To
address these challenges in cross-domain disease grading, we propose a Severity-
aware Recurrent Modeling (Samba) method in this paper. As the core objective of
most staging tasks is to identify the most severe lesions, which may only occupy a
small portion of the image, we propose to encode image patches in a sequential and
recurrent manner. Specifically, a state space model is tailored to store and transport
the severity information by hidden states. Moreover, to mitigate the impact of
cross-domain variants, an Expectation-Maximization (EM) based state recalibration
mechanism is designed to map the patch embeddings into a more compact space.
We model the feature distributions of different lesions through the Gaussian Mixture
Model (GMM) and reconstruct the intermediate features based on learnable severity
bases. Extensive experiments show the proposed Samba outperforms the VMamba
baseline by an average accuracy of 23.5%, 5.6% and 4.1% on the cross-domain
grading of fatigue fracture, breast cancer and diabetic retinopathy, respectively.
Source code is available at https://github.com/BiQiWHU/Samba.

1 Introduction

Disease grading aims to assess the severity level of a disease or a pathological region from a medical
image [46, 31, 52, 50, 6]. It is more challenging than conventional deterministic classification with
distinctive categories (e.g., cat vs. dog), owing to the inherent severity ambiguity within and between
levels. This ambiguity arises because the progression of a certain disease or a pathological region
is a transitional, continuous and time-growing process (illustrated in Fig. 1a). On the one hand,
different medical images within a same severity level can have rather different disease or pathological
developments (shown in Fig. 1b). On the other hand, medical images among different severity levels
can share similar patterns, as low-level lesions may persist throughout the disease’s progression.
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Figure 1: (a) The development of a disease or a pathological region is a continuous progress; (b) The
continuous development apart from individual differences and style variation poses both within-level
discrepancy (top) and cross-level similarity (bottom) on the medical image appearance; (c) These
challenges can make the medical images from the same unseen domain, instead of those from the
same grade level, to be clustered in the feature space.

The past decade has witnessed the rapid development of disease grading methods [30, 34, 45] owing
to the deep learning techniques [25, 24, 28, 26, 57]. However, most of these methods were developed
by experts from a specific clinic field (ophthalmology, gynecology, etc.). Furthermore, these models
usually assume that the medical images used for training and inference are independently and
identically distributed (i.i.d.). In practical clinical scenarios, a grading model trained on a number of
medical images (source domain) is often required to handle images it has not encountered before
(unseen target domains). Due to variations between patients, scanners, imaging parameters, clinic
centers, etc., the feature distributions of the source domain and unseen target domains can be
dramatically different [32, 68, 23, 8]. When the severity level of a disease is measured by the
distribution of lesions, this cross-domain variance can lead to the misdetection of crucial lesions,
resulting in grading errors [4, 11]. Especially when the appearance of lesions is significantly affected
by the style change, it may be observed that medical images from the same domain instead of from
the same grade are clustered in the feature space (illustrated in Fig. 1c). This suggests that the model
has learned features with limited generalization ability.

Domain generalized disease grading learns models from only a source domain, but is expected to be
applicable to unseen target domains. The key to addressing this problem is accurately identifying the
lesions that have a decisive impact on grading [49, 45]. As the disease progresses, multiple lesions
may coexist in the image, and the critical aspect of grading is identifying the most severe one among
them. However, the most severe lesion may be localized in a small region in the image, exhibiting
variable shapes, and being influenced by cross-domain style changes [4, 11]. To overcome these
challenges, this paper proposes a severity-aware recurrent modeling method (Samba). Samba encodes
image patches in a recurrent manner and recalibrates the state distributions based on learnable bases.

In many disease grading scenarios, the decisive lesions only occupy a small portion of the total area.
For instance, in retinal photographs, the affected blood vessels may only involve a small section at
the distal. Similarly, in computed tomography (CT) or magnetic resonance imaging (MRI) scans,
malignant tumors can also present as small lesions with a diameter less than 3 mm. These small
lesions are easily influenced by style variations, which can lead to incorrect grading. Therefore,
the model needs to pay sufficient attention to these detailed patches to classify them accurately. To
address this issue, we treat the image patches as sequential data and encode them in a recurrent
manner. This approach allows the information of decisive lesions to be stored in the hidden states
and propagated to subsequent sequences. Furthermore, we adopt bidirectional encoding, enabling
critical local information to influence the overall representation. More specifically, we incorporate a
bidirectional Mamba [17] layer into the Samba, which supports sequence-to-sequence transformation
and efficiently selects data in an input-dependent manner.

The Mamba model achieves its selection mechanism by parameterizing the State Space Model (SSM)
based on the input. While this selection mechanism [17, 69, 35] aids in identifying decisive lesions
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and propagating critical information, these input-dependent parameters are also vulnerable to the
influence of image style transformations. When the feature distribution is affected by cross-domain
variations, both the update of hidden states and the gating mechanism are disrupted. To resolve this
problem, we utilize learnable tokens to capture the lesion representations, which are then used as bases
to map the feature embeddings into a more compact space. To preserve the semantic information
within this process, we further employ the Expectation-Maximum (EM) algorithm [14] initialized
by these bases to estimate the lesion feature distribution for each image and reconstruct the features
accordingly. We refer to this process as EM-based state recalibration in this paper.

Our contributions can be summarized as follows.

• We develop a Severity-aware Recurrent Modeling, dubbed as Samba, for general disease
grading within- and cross-domain medical images.

• We propose to encode the image patches in a recurrent manner to accurately capture the
decisive lesions and transport the critical information from local to global.

• An EM-based state recalibration mechanism is designed to reduce the impacts of cross-
domain variants by mapping the feature embeddings into a compact space.

• Extensive experiments on three cross-domain disease grading benchmarks show the effec-
tiveness of the Samba against the baseline.

2 Related Work

Domain generalization aims to learn a model that can be generalized to unseen target domains when
only trained by the source domain, where the cross-domain feature distribution is usually not identical
[65]. A variety of machine learning techniques (e.g., discrepancy minimization [47, 13], knowledge
ensemble [12], uncertainty quantification [39, 53], optimal transport [16, 60], self-learning [51, 43],
frequency decoupling [59, 9, 10] and casual inference [37, 38]) have been proposed. In the medical
imaging community, the effort of bridging the domain gap between training data and unseen inference
data is so far mainly focused on medical image segmentation [32, 68, 23, 8, 58] and classification
[66, 54]. These methods usually rely on either learning shape-invariant representation or reaching
pixel-wise consensus among the source domains. However, they are not especially devised to tackle
the key challenge in cross-domain medical image grading, where the medical images from the same
severity level instead of the same domain tend to cluster together.

Medical grading has also been studied. For Diabetic Retinopathy (DR) grading, many works
highlight the subtle local pathological regions to better discern different severity levels [30, 34, 44,
6, 45, 7]. Similarly, grading models have also been developed for pulmonary nodules [46], fatigue
fracture [31], glioma [52], acne vulgaris [50], etc. However, most of the existing grading methods
are task-specific and assume the training and inference medical images are i.i.d., which is far from
reality. Practically, a medical grading model is supposed to show reliable inference on unseen target
domains that have different feature distribution from the source domain. To the best of our knowledge,
only [4] and [11] made an initial investigation on learning domain generalized DR grading.

State Space Model (SSM) [27] contributes to a variety of fields such as robotics, navigation, and
control theory, which is a foundational scientific model. In the past few years, SSM has been
adapted in the context of deep representation learning, and has shown great success in sequence
modeling [19, 20]. More advanced SSM, exemplified by Mamba [17], not only shows stronger
representation ability in long sequence modeling, but also exhibits linear scaling ability for long-
sequence data. Built upon this, multiple Mamba variations (e.g., Vim [35] and VMamba [69]) have
shown effectiveness in the computer vision field. However, these methods mainly focus on enhancing
the context representation from the image by exploiting the long-range dependencies. Instead, how to
model the cross-level severity development from the medical image by SSM remains unexplored.

3 Methodology

3.1 Problem Definition & Framework Overview

For a given disease grading task, assume we have a number of medical images x and the corresponding
severity-level labels y from K different domains, which is denoted as D1 = {(x(1)

n , y
(1)
n )}N1

n=1,
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Figure 2: Framework of the proposed Severity-aware Recurrent Modeling (Samba) method. The
patch embeddings pass through four encoding stages consisting of different number of severity-aware
recurrent layers. Within each Samba block, the embeddings are first input to the bidirectional Mamba
layers to store and transport the information about decisive lesions. After that, an EM-based state
recalibration module models the feature distribution of lesions via a Gaussian Mixture Model with
learnable severity bases. Moreover, the bases are re-estimated by the EM algorithm for each image
and reconstruct the features finally.

D2 = {(x(2)
n , y

(2)
n )}N2

n=1, · · · , DK = {(x(K)
n , y

(K)
n )}NK

n=1. Here Nk denotes the number of images in
domain k. For the cross-domain disease grading problem, the objective is to learn a grading model
Fθ : x→ y using images only from a source domain D1, which is supposed to generalize well on
other unseen target domains D2, · · · , DK . Following prior domain generalization works, each dataset
is regarded as a domain Dk, as the samples in a certain dataset are usually collected from the same
clinical center by the same scanners and therefore share more similar feature distribution.

The overview of the proposed method is illustrated in Fig. 2. The input image is first encoded into
patch embeddings through a stem unit with 4×4 convolutional kernels, where the stem unit partitions
the input image into patches. The patch embeddings further pass through four encoding stages. Each
Samba block involves a certain number of severity-aware recurrent layers and there are downsampling
layers between two consecutive blocks. Finally, a grading head consisting of an average pooling layer
and a linear layer generates the final prediction. Within the Samba block, the patch embeddings are
first input to the bidirectional Mamba layers to extract the information about decisive lesions. After
that, EM-based state recalibration is applied to map the lesion representation into a compact space by
learnable bases.

3.2 Recurrent Patch Modeling by State Space Model

The core issue in most medical image disease grading scenarios is to identify the most severe lesion.
However, due to the presence of lesions from different stages of the disease in the image, accurately
capturing the most severe lesion is highly challenging. When the lesion occupies a large proportion
of the image, the model only needs to extract stage-related features. In contrast, when the area of
the critical lesion is small, the model needs to simultaneously locate the lesion and extract relevant
features. This places higher demands on the model’s ability to handle local information. To address
this issue, in this paper, we propose to encode the image patches in a recurrent manner. Specifically,
the state space model is used to process the sequential patch embeddings.

State Space Model. Let x(t) denote a 1-D input signal. SSM maps it to the 1-D output signal y(t)
by an intermediate N -dimensional latent state u(t), given by

u′(t) = Au(t) +Bx(t), y(t) = Cu(t) +Dx(t), (1)
where A ∈ RN×N denotes the state matrix, while B ∈ RN×1, C ∈ RN×1 and D ∈ RN×1 denote
the projection parameters. For deep sequential modeling, A, B, C and D are parameters that can be
learned by gradient descent. The parameter D is omitted for exposition (i.e., D = 0) as Dx(t) can
be regarded as a skip connection and is easy to compute [19, 20].
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Discretization. The structured state space [20] and Mamba [17] discretize the above continuous
system so as to be tailored for deep representation learning. There are usually two ways for dis-
cretization, namely, linear recurrence and discrete convolution. For linear recurrence, instead of a
continuous function x(t), a discrete sequence (x0, x1, · · · ) is taken as input. Conceptually, we have
xk = x(k∆). The state matrix A is approximated as A by the zero-order hold rule. The discrete
SSM is a sequence-to-sequence map xk 7→ yk, given by

uk = Auk−1 +Bxk, A = e∆A,

yk = Cuk, B = ∆B, C = C.
(2)

Selective Scan Mechanism. Prior SSM methods usually focus on the linear time-invariant scenario.
Instead, the selective scan mechanism [17], which is the core of SSM operator in Mamba, learns the
dynamism of weights from the input and is more aware of the context information.

The Mamba model is a suitable structure that aligns with our needs. When encoding the image
patches as sequential data, once important lesion information is discovered, it can be stored in hidden
states and propagated to subsequent sequences. Specifically, after sliding the image x ∈ RH×W×3

into a variety of patches, the input is formed as a sequences of 2-D patches, each of which has a
spatial position of H/4×W/4. Then, in each Samba block, the bi-directional state space modeling
module has both feedforward and backforward SSM, where the selective scan mechanism allows
to handle the patches in a recurrent manner. The input patches are traversed along two different
scanning paths (horizontal and vertical), and each sequence is independently processed by the SSM.
Subsequently, the results are merged to construct a 2D feature map as the final output.

By a bidirectional design, the severity information can be transported to each patch. The local-to-
global transportation of severity information plays a vital role in the whole process, especially in the
selective mechanism. With the guidance of global severity awareness, the update of hidden states can
selectively ignore information about low-level lesions, primarily preserving information about the
most severe lesions. Specifically, to encode the 2D images, we follow the design of vision Mamba
[69] which processes the input features in the forward and backward directions. As illustrated in
Fig. 2, the outputs are gated and added together, while there is a skip connection before input to the
EM-based state recalibration module.

3.3 EM-based State Recalibration

Another core issue in cross-domain disease grading is the domain generalization ability of the model.
Both the intermediate features and the input-dependent parameters in Mamba are affected by the
cross-domain variance. To reduce the impact of domain shift, we aim to map the features into a
more compact space by feature recalibration. Specifically, the feature distribution of background and
grading-related lesions is modeled by a Gaussian Mixture Model (GMM) [42], given by

p(fn) =

K∑
k=1

znkN (fn|µk,Σk), (3)

where K is the total number of the Gaussian models, fn is the feature embedding of the n-th patch
in image x, µk and Σk denote the mean and covariance of the k-th Gaussian basis, respectively. For
simplicity, we set Σk as the identity matrix I . For easy computation, the mixing coefficients of GMM
are left out and the exponential inner dot kernel is used. After that, each Gaussian basis is represented
by µk, which is called severity base in this paper. These bases are learnable parameters to capture the
representation of lesions. In the recalibration process, instead of directly reconstructing the features
based on the bases, we estimate the lesion distribution of each image which is initialized by the
severity bases. This is to prevent the loss of useful information during the compression. Concretely,
we adopt the EM algorithm to estimate the GMM of each image.

Within each iteration, we first estimate znk in the E-step, which denotes the responsibility of the k-th
basis to fn. Here we have 1 ≤ n ≤ N and 1 ≤ k ≤ K. The posterior probability of fn given µk
can be formulated as p(fn|µk) = K(fn,µk) by a kernel function K. Consequently, estimating the
responsibility can be re-formulated into a more general form, given by

znk =
K(fn,µk)∑K
i=1K(fn,µi)

, (4)
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where for simplicity we directly use the exponential inner dot exp(fTµ) as the kernel function.

Given the estimated Zt, the severity base likelihood maximization, functioning as the M-step, is
realized by updating µ. As the bases are supposed to be aligned to the embedding space of each
image, the weighted sum is used to update the bases, given by

µt+1
k =

1∑Np

m=1 z
t
mk

Np∑
n=1

ztnkfn, (5)

where t refers to the t-th iteration and Np denotes the number of patch embeddings.

Assume that the E-step and M-step execute alternately for Tc iterations and the convergence criterion
has been reached [14]. The final µTc and ZTc are used to recalibrate the image feature F , resulting
in F̃ . Here µTc = {µTc

k } and ZTc = {zTc

nk} refer to the Gaussian basis and the responsibilities of all
the patch embeddings from a sample, respectively. This process is mathematically computed as

F̃ = ZTcµTc . (6)

Then, the recalibrated feature F̃ is fed into the next Samba module. During this process, grading-
related features are mapped to a more compact space, while style differences introduced by image
sources are partially removed. Consequently, the critical information transportation within the Mamba
model can be more stable in unseen target domains.

To alleviate the potential unstable issue, moving averaging is adapted to update the bases µ0 during
the training process. After the T -th iteration, the generated µT is first averaged over a mini-batch to
get µT . Then, the update of µ0 with momentum α ∈ [0, 1] is given by

µ0 ←− αµ0 + (1− α)µT . (7)

3.4 Theoretical Analysis

Consider the source domain D1 ∼ P (X̃(1)) and a certain unseen target domain Dk ∼ P (X̃(k)),
where k = 2, · · · ,K. Given a hypothesis h ∈ H, according to the domain adaptation/generalization
bound theory [5, 2], the relation between the target risk ϵDk

(h) and the source risk ϵD1(h) can be
modeled by a relation inequality, given by

ϵDk
(h) ≤ ϵD1

(h) + dH∆H

(
P (X̃(1)), P (X̃(k))

)
+ min

P (X̃)∈P (X̃(1)),P (X̃(k))
E [|hD1

(x)− hDk
(x)|] ,

(8)

where dH∆H

(
P (X̃(1)), P (X̃(k))

)
denotes the distribution gap between the source domain and an

unseen target domain, and the right-most term refers to minimal total risk over both domains. In
other words, the risk of the proposed Samba on the target domain is bounded by the source domain.

4 Experiments

4.1 Datasets & Evaluation Protocols

Cross-domain Fatigue Fracture Grading Benchmark [31] consists of a total number of 1,785
normal X-ray images and 940 X-ray images with fatigue fracture. They are collected from two
hospitals with different types of sensors, which we denote as Domain-1 and Domain-2, respectively.
These fatigue fracture images were graded into four stages by three physicians according to the
severity level. For simplicity, we denote the grades (including the normal grade) from level-1 to
level-5.

Cross-domain Breast Cancer Grading Benchmark consists of a total of 3644 H&E stained breast
invasive ductal carcinoma pathological images from two domains.2 The first domain contains 2,486
images under the 20× magnification (denoted as Domain-1). The second domain contains 1,158
images under the 40× magnification (denoted as Domain-2). Different magnifications make the
image appearance dramatically different. For each experiment setting, one is used as the source

2https://github.com/YANRUI121/Breast-cancer-grading
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Figure 3: Impact of iteration number T (top row) and severity base (bottom row) updating approaches
on generalized medical grading performance. Evaluation metrics AUC, ACC and F1 are presented in
percentage (%), from the first to the third column. Domain-1 and Domain-2 in the Fatigue Fracture
Grading Benchmark are used as the source and unseen target domain, respectively.

domain and the other is used as the unseen target domain. According to the severity of breast invasive
ductal carcinoma, three grades, namely, rare, frequent and abundant, are annotated. For simplicity,
we denote them from level-1 to level-3, respectively.

Cross-domain Diabetic Retinopathy Grading Benchmark consists of six DR retinal image datasets,
namely, DeepDR [33], Messidor [1], IDRID [40], APTOS [3], FGADR [67], and RLDR [49].
Following recent work [11], the single-domain generalization protocol is adapted. Specifically, one
of the above six datasets is used as the source domain, and all the rest datasets are used as unseen
target domains. Following [11], two extra large-scale datasets, DDR [29] and EyePACS [15] are used
to enrich the source domain for each experiment setting. The development of DR is graded into five
levels according to the severity, namely, normal, mild nonproliferative diabetic retinopathy (npdr),
moderate npdr, severe npdr and pdr. For simplicity, we denote them from level-1 to level-5.

Under the single-domain generalization protocol, three most common evaluation metrics for grading
are used, namely, area under the curve (AUC), accuracy (ACC), and F1-score (F1).

4.2 Results on Fatigue Fracture Grading Benchmark

We conduct extensive ablation experiments to study the impact of iteration number T and optimization
of severity basis µ on the unseen target domain. Images from the first clinical center (Domain-1) are
used as the source domain, while images from the second clinical center (Domain-2) are used as the
unseen target domain for testing. The vanilla Mamba [35] under the Empirical Risk Minimization
(ERM) is the baseline.

Iteration Number T . In the EM algorithm, the iteration number T plays an important role, because
it implements the approximation by iteratively conduct the E and M step. Keeping other hyper-
parameters and module designs the same, we report the results when the iteration number T of the EM
algorithm varies from 1 to 8. The top row of Fig. 3 shows how T impacts the AUC, ACC and F1-score
on the unseen target domain. Notice that, the VMamba-ERM baseline does not have EM-based
state recalibration. Therefore, the performance of Vmamba-ERM is consistent to T . A too-small
T does not reach the convergence criterion, and reduces the effectiveness of feature recalibration.
Therefore, a clear performance decline on all the metrics is observed. On the other hand, when T
is too large, the representation ability saturates, resulting in little performance improvement, while
wasting computation resources.

Severity Base Update. We further study how different optimization approaches of the severity base
µk impact the generalization performance on unseen target domain. We study three different settings,
namely, no update, only back propogation, and moving average (Eq. 7). The bottom row of Fig. 3
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Table 1: Effectiveness of the proposed Samba on
recurrent patch modeling. Domain-1 and Domain-
2 in the Fatigue Fracture Grading Benchmark are
used as the source and unseen target domain, re-
spectively. Metrics presented in percentage (%).

Method ACC ↑ AUC ↑ F1 ↑
LSTM [22] 39.8 50.2 18.6
UR-LSTM [18] 43.3 61.8 20.9
UR-GRU [18] 45.7 65.1 22.4
ViT [48] 50.0 69.3 26.5
VMamba [69] 52.7 70.4 28.7
Samba 76.2 81.5 45.8

Table 2: Ablation study on each component.
BSSM: Bi-directional State Space Modeling;
ESR: EM-based State Recalibration. Experi-
ments on the Fatigue Fracture Grading Bench-
mark. Domain-1 (×20)/Domain-2 (×40) is
used as source/target domain. Metrics in per-
centage (%).

Components Evaluation Metric
VMamba BSSM ESR ACC AUC F1

✓ 52.7 70.4 28.7
✓ ✓ 57.9 72.1 33.6
✓ ✓ ✓ 76.2 81.5 45.8

Table 3: Category-wise performance and com-
putational cost comparison between VMamba-
ERM and the proposed Samba. Experiments
are conducted on the DG Breast Cancer Grading
Benchmark. Domain-1 (×20)/Domain-2 (×40)
is used as source/target domain. Metrics in per-
centage (%).

Method Backbone Computation Domain-1 as Source
GFLOPs Para. level-1 level-2 level-3 avg.

ERM VMama-T 3.7 32.7 22.1 51.5 36.1 40.4
Samba 5.5 32.7 40.5 70.7 42.0 54.8
ERM VMama-S 7.9 63.4 26.7 60.6 38.1 50.1
Samba 11.3 63.4 47.1 71.5 43.7 56.1
ERM VMama-B 14.0 112.4 27.8 75.4 38.2 54.9
Samba 19.6 112.4 44.8 82.5 45.2 60.5

Table 4: Impact of the number of components K
in GMM. Experiments are conducted on the DG
Breast Cancer Grading Benchmark. Domain-1
(×20)/Domain-2 (×40) is used as source/target
domain. Metrics presented in percentage (%).

K value ACC ↑ AUC ↑ F1 ↑
16 58.6 70.0 56.0
32 59.2 71.1 57.2
48 60.4 72.0 58.9
64 60.5 72.3 59.1
96 60.4 72.2 58.8
128 59.5 71.0 57.9

shows the results of the above three settings under a variety of iteration number T . Using moving
average to update the severity base µk is able to improve the performance substantially. It may be
explained that the proposed state recalibration is differentiable, thereby enabling the application of
back-propagation to update µ0. However, the stability of the update cannot be guaranteed due to the
EM iterations. Moving average can update µ0 to avoid collapse.

Effectiveness on Recurrent Patch Modeling. The proposed Samba realizes the recurrent patch
modeling by harnessing the selective state space model. To demonstrate its effectiveness compared
with other recurrent or long-context based representation learning methods, we compare the proposed
Samba with vanilla VMamba [69], Vision Transformer [48], LSTM [22] and UR-LSTM [18].
Table 1 shows that the proposed Samba has a stronger generalization performance on the unseen
target domain, noticeably outperforming the second-best by 23.5%, 11.1% and 17.1% in terms of
accuracy, AUC and F1-score, respectively.

Ablation Studies on Each Component. On top of the VMamba baseline, two key components,
namely, Bi-directional State Space Modeling (BSSM) and EM-based State Recalibration (ESR),
are evaluated. The experiments are conducted on the DG Fatigue Fracture Grading Benchmark.
Domain-1/Domain-2 is used as the source/target domain, respectively. The results are reported in
Table 2. It is observed that BSSM contributes to an ACC, AUC and F1 improvement of 5.2%, 1.7%
and 4.9%, respectively. ESR contributes to an ACC, AUC and F1 improvement of 18.3%, 9.4% and
12.2%, respectively.

4.3 Results on Breast Cancer Grading Benchmark

Grade-wise Improvement Analysis. We provide a break-down analysis on the grade-wise perfor-
mance of the proposed Samba and the baseline, i.e., VMamba under the empirical risk minimization
(ERM). Table 3 reports the performance. The proposed Samba shows a significant performance
improvement on each grade level. Especially, on level-1, level-2 and level-3, the accuracy improve-
ment over the ERM baseline is 17.0%, 7.1% and 7.0%, respectively. Compared to VMamba-ERM
baseline, the EM-based State Recalibration in Samba models the feature distribution of lesions via
Gaussian Mixture Models with learnable severity bases, and re-estimates by E-M algorithm. The
grading features are mapped to a more compact space, and are more stable on unseen target domains.

Ablation Studies on the number of Gaussian components K. We study how the number of
components K impacts the generalization ability on the unseen target domain. By default K is set
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to 64, and we further test the performance when K is set to 16, 32, 48 and 96, respectively. The
results are reported in Table 4. When K is set to 64, the proposed Samba achieves the best grading
performance, i.e., 60.5%, 72.3% and 59.1% in terms of ACC, AUC and F1-Score, respectively.

Scalability to Clinical Computational Pathology. The domain shift in the Cross-domain Breast
Cancer Grading Benchmark is from a machine learning perspective, and only handles the magnifica-
tion difference. However, from a clinical perspective, the computational pathology has to handle the
domain shift from not only the magnification difference, but also the staining procedure. However,
most existing clinical computational pathology datasets only support the classification task, i.e.,
separating tumor category from normal category, which is not strongly relevant to our grading task.
Appendix A.4 studies the performance of the proposed Samba along with the vanilla VMamba
baseline on the CAMELYON17 dataset 3 for a clinical sanity check.

4.4 Results on Diabetic Retinopathy Grading Benchmark

Comparison with State-of-the-art. We compare the proposed Samba with methods from three
primary categories: 1) generic domain generalization methods, including Mixup [61], MixStyle
[64], DDAIG [63], ATS [55], Fishr [41], and MDLT [56]; 2) state-of-the-art DR grading methods,
which focus on DR grading without explicitly addressing domain generalization, including GREEN
[34], CABNet [21], Swin-Transformer [36] and MIL-ViT [7]; 3) domain-generalized DR grading
methods, including DRGen [4] and GDRNet [11]. Additionally, the vanilla Mamba [35] results under
Empirical Risk Minimization (ERM) are provided as a baseline reference. By default, the results are
cited directly from [11].

Table 5 presents a comparison between Samba and existing methods within the context of single-
domain generalization. Notably, for DG grading tasks, the metric of accuracy and F1-score are more
meaningful than AUC, as the AUC can be made artificially high due to the large amount of negative
samples belonging to other stages. Therefore, we only involve ACC and F1 for comparison.

The proposed Samba achieves a substantial improvement over state-of-the-art domain generalized DR
grading methods. Especially, on APTOS, DeepDR, FGADR, Messidor and RLDR, it outperforms
the second-best in terms of ACC and F1 by 5.2% and 2.2%, 27.2% and 5.7%, 60.7% and 31.3%,
6.7% and 1.3%, 28.3% and 4.7%, respectively. The significant improvement on FGDAR may be
explained that it has a different severity-level sample distribution than other datasets. The samples
without DR (level-1) only occupy only 5.5% among all the training samples, which are far less than
others (e.g., level-1 samples occupy 49.3% in APTOS). Therefore, existing methods may overfit other
severity levels and underfit level-1. In contrast, the selective scan mechanism of the Vmamba-ERM
and Samba is robust to this severity distribution shift. The EM state re-calibration in Samba makes
the feature space more compact, and improves the generalization.

Additionally, Samba shows a marked improvement over the baseline VMamba model under Empirical
Risk Minimization. Especially, on APTOS, DeepDR, FGADR, IDRID, Messidor and RLDR, it
outperforms the VMamba-ERM baseline in terms of ACC and F1 by 1.3% and 1.7%, 2.2% and
2.1%, 3.0% and 1.6%, 3.7% and 2.6%, 7.3% and 2.7%, 7.4% and 3.4%, respectively. These results
demonstrate its effectiveness in handling domain gap.

Understanding Recurrent Patch Modeling. We validate if the proposed recurrent patch modeling
can store and transport the lesion information. An intuitive way is to inspect the correlation between
the patch embeddings before and after the recurrent patch modeling. Therefore, we extract the
patch embeddings before and after the fourth block. We compute the correlation matrix between
the patch-wise embeddings and visualize the results in Fig. 4. After processed by the Recurrent
Patch Modeling module, more regions in the correlation matrix have higher responses. Specifically,
after passing through certain high-response positions, the relevant information is transmitted to the
subsequent patches in the forward direction. The high-response patches have grade-related lesions
and the information is transported in the recurrent process.

t-SNE Visualization. To assess the generalization capacity of the proposed Samba, we analyze
the feature distribution across the source and unseen target domains using t-SNE visualization in
Fig. 5, which compares the t-SNE plots of the ERM baseline (left) and the proposed Samba (right).
The results indicate that, after the EM-based state feature calibration, the proposed Samba enables

3https://camelyon17.grand-challenge.org/
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Table 5: Performance comparison of the proposed Samba and existing domain generalized DR grading
methods under the single-domain generalization protocol. Evaluation metrics include ACC and F1
(in percentage %). Top three results are highlighted as best , second and third , respectively.

Method APTOS DeepDR FGADR IDRID Messidor RLDR Average
ACC↑ F1↑ ACC↑ F1↑ ACC↑ F1↑ ACC↑ F1↑ ACC↑ F1↑ ACC↑ F1↑ ACC↑ F1↑

ResNet-50 based:
Mixup [61] 49.4 30.2 49.7 33.3 5.8 7.4 64.0 32.6 63.0 32.6 27.7 27.0 43.3 27.2

MixStyle [64] 48.8 25.0 32.0 14.6 7.0 7.9 53.5 19.4 57.6 16.8 18.3 6.4 36.2 15.0
GREEN [34] 52.6 33.3 44.6 31.1 5.7 6.9 60.7 33.0 54.5 33.1 31.9 27.8 41.7 27.5
CABNet [21] 52.2 30.8 55.4 32.0 6.1 7.5 62.7 31.7 63.8 35.3 23.0 25.4 43.8 27.2
DDAIG [63] 48.7 31.6 38.5 29.7 5.0 5.5 60.2 33.4 69.1 35.6 25.4 23.5 41.2 26.7

ATS [55] 51.7 32.4 52.4 33.5 5.3 5.7 66.6 30.6 64.8 32.4 24.2 23.9 44.2 26.4
Fishr [41] 61.7 31.0 61.0 30.1 6.0 7.2 48.0 30.6 52.0 33.8 19.3 21.3 41.3 25.7

MDLT [56] 53.3 32.4 50.2 33.7 7.1 7.8 61.7 32.4 58.9 34.1 29.0 30.0 43.4 28.4
DRGen [4] 60.7 35.7 39.4 31.6 6.8 8.4 67.7 30.6 64.5 37.4 19.0 21.2 43.0 27.5

GDRNet [11] 52.8 35.2 40.0 35.0 7.5 9.2 70.0 35.1 65.7 40.5 44.3 37.9 46.7 32.2
ViT based:

MIL-ViT [7] 61.8 36.8 38.2 36.3 8.7 9.3 68.6 31.1 67.7 40.7 28.1 34.5 45.5 31.5
Swin-T [36] 64.0 36.7 31.0 32.7 6.0 7.8 70.4 38.1 65.6 39.8 27.5 34.5 44.1 31.6

VMamba based:
ERM 64.6 36.2 65.0 38.6 65.2 38.9 65.2 39.1 65.1 39.1 65.2 39.2 65.1 38.5

Samba (Ours) 65.9 37.9 67.2 40.7 68.2 40.5 68.9 41.7 72.4 41.8 72.6 42.6 69.2 40.9

Before After

Figure 4: The correlation matrix of each patch
embedding before and after processed by the re-
current patch modeling in the forward direction,
denoted as ‘Before’ and ‘After’ respectively. The
higher correlation, the more red a cell is.

Baseline Ours

green/yellow/pink/red/purple:  normal/ mild npdr / moderate npdr / severe npdr / pdr

× / ○ / □ / △/ ◇/ ⎔: APTOS/DeepDR/FGADR/IDRID/Messidor/RLDR

Figure 5: T-SNE visualization of the feature space
from the ERM baseline (left), and the proposed
Samba (right). APTOS is chosen as the source
domain and the rest datasets are used for as target
domains.

feature embeddings from different domains to achieve a more uniform distribution, thereby reducing
the domain gap. This improved uniformity in the feature space suggests that Samba can enhance
generalization, contributing to better performance on unseen domains.

5 Conclusion

In this paper, we aimed to tackle a practical but challenging task, learning domain generalized medical
image grading. We mainly focused on two issues: the identification of decisive lesions and the impact
caused by inter-domain differences. The proposed severity-aware recurrent modeling adopts a state
space model to store and transport the severity information from local to global. To further mitigate
the impact of cross-domain variants, an EM-based state recalibration was designed to map the patch
embeddings into a compact space. The proposed method can be used in a variety of disease grading
scenarios, providing an effective tool for automatic medical image analysis.

Limitation Discussion & Broader Societal Impact. The feature distribution of lesions is modeled
by the Gaussian mixture model and estimated by the Expectation-Maximization algorithm. However,
when the training source domain has severe class imbalance, the estimated probability distribution by
the proposed Samba may not necessarily reflect the domain-agnostic lesion distribution. Nevertheless,
the proposed method can be combined with other techniques specifically designed for addressing
class imbalance. The proposed method advances the versatility of automatic disease diagnosis, which
benefits the human well beings. We do not envision negative societal impact.
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A Appendix / supplemental material

A.1 Severity Base Normalization

During the iteration steps t = 1, · · · , T , the severity base µ(1),t
k may not deviate too much from each

other, which otherwise can lead to collapse when back propagation. We study the scenarios when
no normalization, L-1 normalization and L-2 normalization are used on these severity basis. Fig. 6
shows the results of the above three settings when under a variety of iteration number T on the unseen
target domain. L-2 normalization achieves the best performance on all the metrics, especially when
T becomes larger.
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Figure 6: Impact of severity base normalization on generalized medical grading performance. Evalu-
ation metrics AUC, ACC and F1 are presented in percentage (%). Domain-1 and Domain-2 in the
Fatigue Fracture Grading Benchmark are used as the source and unseen target domain, respectively.
Better zoom in to view.

A.2 Understanding Recurrent Patch Modeling

Fig. 4 in the main text only visualizes the correlation between the patch embeddings before and after
the recurrent patch modeling when trained on the APTOS dataset. Here we further demonstrate
the results from FGADR, IDRID, Messidor and RLDR. They are visualized in Fig. 7a, b, c and
d, respectively. On all these datasets, we can observe a common pattern. After processed by the
Recurrent Patch Modeling module, more cells in the correlation matrix have higher response. Usually,
a handful of the patches inside the image have grade-related lesions. After the processing of our
module, the information of these grade-related lesions is transported to other patches. It allows the
model to perceive a more global-wise representation. Consequently, more patches that contain the
grade-related lesion information are activated, and more cells are highly responded in the correlation
matrix.

A.3 Visualize and Understand the Severity Level

We model the relation between patch embedding from SSM and severity level by drawing inspiration
from the class activation map (CAM) mechanism [62]. Specifically, we take the patch embeddings
from the last Samba block as input to generate the per-level severity activation patterns. Then, the
activated severity patterns are displayed on the original images. We use FGADR as the unseen target
domain. The results are shown in Fig. 8, where the activated patches are highlighted in blue boxes.
From the first to the fifth row, the samples from level-1 to level-5 are provided accordingly. From
the first to the fifth column, the patch activation maps from level-1 to level-5 are displayed. Notice
that, as level-1 refers to the normal scenario, each sample has activations on level-1, meaning some
patches are normal.

A.4 Application to Computational Pathology Classification

It is important to note that the domain shift in the Breast Cancer Grading Benchmark is technically
from a machine learning perspective, and only handles the domain shift from the magnification
difference. However, from a clinical perspective, the computational pathology has to handle the
domain shift not only from the magnification difference, but also from the staining procedure.
Therefore, it is beneficial to test if the hypothesis works in a real-world computational pathology
scenario. However, a bottleneck is that, most clinical computational pathology dataset so far conducts
the classification task, i.e., separating tumor category from normal category. Therefore, in this
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Before After Before After

Before After Before After

(a) FGADR (b) IDRID

(c) Messidor (d) RLDR

Figure 7: The correlation matrix of each patch embedding before and after processed by the recurrent
patch modeling in the forward direction, denoted as ’Before’ and ’After’, respectively. The higher
correlation, the more red a cell is.

Table 6: Impact of the number of components K in GMM on tumor classification performance from
unseen target domains. Experiments are conducted on the CAMELYON17. Domain-1 is used as
source domain. The rest four are used as unseen target domains. Metrics presented in percentage (%).
K value Domain-2 Domain-3 Domain-4 Domain-5

ACC AUC F1 ACC AUC F1 ACC AUC F1 ACC AUC F1
16 81.80 92.09 79.96 79.45 88.96 76.60 83.92 95.38 82.10 75.84 81.99 74.16
32 82.68 93.81 80.95 80.39 91.28 77.97 84.38 96.20 82.96 76.53 82.46 74.92
48 84.06 94.25 81.83 81.84 92.60 78.49 85.87 97.16 83.87 77.69 83.85 75.04
64 84.59 95.67 83.10 82.48 93.32 79.85 86.50 97.82 85.13 78.64 84.70 75.32
96 84.27 95.48 82.53 82.06 92.90 79.44 86.16 97.45 84.80 78.15 84.28 74.86
128 83.65 94.70 81.97 81.50 92.41 78.36 85.47 96.90 84.62 77.38 83.66 74.14

subsection, the proposed Samba along with the vanilla VMamba baseline are benchmarked on the
CAMELYON17 dataset 4 for the cross-domain computational pathology classification task.

The first experiment is the impact of the number of components K in GMM, where ACC, AUC and
F1 are used as evaluation metric. The results are reported in Table 6. By default K is set to 64, and
we further test the performance when K is set to 16, 32, 48 and 96, respectively. When K is set to
64, the proposed Samba achieves the best grading performance. This observation is consistent to the
performance on Cross-domain Breast Cancer Grading Benchmark, where a number of 64 Gaussians
achieves the optimal performance.

The second experiment is to analyze the trade off between the classification performance and the
baseline model. Both the VMamba-ERM and the proposed Samba are tested, where only accuracy is
used as the evaluation metric. The results are reported in Table 7. The trend is the same as the trend
on the Breast Cancer Grading Benchmark. Using Samba on each type of the VMamba backbone
shows a clear performance improvement on unseen domains.

A.5 Attention Maps on Unseen Domains by Samba

Fig. 9 and Fig. 10 show some attention maps of the Samba on unseen retinal images. The proposed
Samba is able to model the recurrent relation among patches. Therefore, the activation regions can
general cover the lesions and are more robust to the domain shift.

4https://camelyon17.grand-challenge.org/
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Level-1 Level-2 Level-3 Level-4 Level-5

Level-1
Level-2

Level -3
Level -4

Level -5
Figure 8: Per-severity activation map of the proposed Samba. From the first to fifth column are the
activated patches from level-1 to level-5, highlighted in blue boxes. From the first to the fifth row are
the samples with an annotation from level-1 to level-5. FGADR is the unseen target domain.

Table 7: Classification performance comparison between VMamba-ERM and the proposed Samba.
Experiments are conducted on the CAMELYON17 dataset for cross-domain tumor classification.
Domain-1 is used as the source domain, while the rest four are used as unseen target domains. Metrics
in percentage (%).

Method Backbone Domain-1 as Source
Domain-2 Domain-3 Domain-4 Domain-5 avg.

ERM VMama-T 70.08 67.29 72.96 63.16 68.37
Samba 78.74 76.15 80.06 71.05 76.50
ERM VMama-S 72.86 69.50 75.08 65.72 70.79
Samba 81.01 78.96 82.75 73.88 79.15
ERM VMama-B 76.23 74.17 79.53 69.87 74.95
Samba 84.59 82.48 86.50 78.64 83.05
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Figure 9: Attention maps of the proposed Samba on retinal images from unseen domains.

Figure 10: Attention maps of the proposed Samba on retinal images from unseen domains.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: This paper propose a Severity-aware Recurrent Modeling (Samba) for medical
image grading problems on unseen target domains.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: At the end of the conclusion section, the limitation of the proposed method
has been discussed.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
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Answer: [Yes]

Justification: The theory assumptions are in the methodology section.

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental Result Reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: The model realization and implementation details are provided in the experi-
mental section.

Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [Yes]
Justification: The datasets are public. The source code will be publicly available up on
publication.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: The experimental settings and details are provided in the experiment section.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [No]
Justification: The evaluation protocols of these grading datasets do not require report the
error bars.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).
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• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: The computation resources and details are discussed in experiment section.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: The authors have read the code of ethics. The experiments are all on public
datasets without obeying the code of ethics.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader Impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: At the end of the conclusion section, the broader impacts have been discussed.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
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• Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: This work does not have such risks.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: The asserts used in this paper are all public available for academic researches.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

23

paperswithcode.com/datasets


• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: This paper does not release new assets.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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