
1 Algorithm

Here we first detail the mixed latent training strategy and then provide the pseudocode for a single
loss computation step.

The mixed latent strategy contains two types of latents in the fine-tuning procedure, i.e., the latent
starting from the pure noise and the noisy latent from the GT Images.

Latent starting from the pure noise This serves as the main branch in our pipeline. Our fine-tuning
process shares the same procedure to generate an image as the diffusion model does in the inference
time. We uniformly sample K steps from all the inference steps to enable the gradient. Therefore,
the latent is sampled from the pure noise N (0, I). We iteratively denoise it to obtain the generated
image. The image is then used to calculate the Li2t and Ladv loss. It is also sent to the segmentation
model to provide the object mask for computing the Lpos and Lneg . The latent starting from the pure
noise corresponds to the upper left part in Fig. ??. Please refer to [34] for how to receive the gradient
from the loss.

Noisy latent from the GT Images We also aim to inject information from the GT images to stabilize
the fine-tuning process. We randomly sample a timestamp τ from a pre-defined range [T1, T2]. Then
we obtain xτ by adding the timestamped noise ϵτ on the latent of the GT Image x0. We also iteratively
denoise this noisy GT latent to get x̂0 as we do for the latents starting from the pure noise. This x̂0 is
only used to calculate the Li2t loss. The latent starting from the noisy GT corresponds to the bottom
left part in Fig. ??.

The pseudocode for a single loss computation step for the online T2I-Model is described below.

Algorithm 1 A single loss computation step for the online T2I-Model during fine-tuning
Input: Text prompt P , GT Image Ig , GT Prompt Pg , original T2I-Model ϵpre, online T2I-Model ϵθ,
pre-trained I2T-Model C, discriminator Dϕ, segmentation model S , timestep range [T1, T2], timestep
τ , attention map A, scaler λ; [; ] denotes concatenate

1: xT , ξ ∼ N (0, I)
2: τ ∼ Uniform[T1, T2]
3: xτ = AddNoise(Ig, ξ, τ)
4: Î, A = GenerateImage(ϵθ, xT ,P)

5: Îg, = GenerateImage(ϵθ, xτ ,Pg)

6: Li2t = ComputeI2TLoss(C,
[
Î; Îg

]
, [P;Pg])

7: Îpre, = GenerateImage(ϵpre, xT ,P)

8: Ladv = ComputeAdvLoss(Dϕ, Î, Îpre)
9: Lpos,Lneg = ComputeAttrLoss(S, Î,P, A)

10: L = Li2t + Lpos + Lneg + λLadv

Output: Training loss for the online T2I-Model L

2 Additional Results and Analysis

2.1 User preference study

We randomly select 100 prompts from DSG1K [6] and use them to generate images with SDXL [26]
and our method (CoMat-SDXL). We ask 5 participants to assess both the image quality and text-image
alignment. Human raters are asked to select the superior respectively from the given two synthesized
images, one from SDXL, and another from our CoMat-SDXL. For fairness, we use the same random
seed for generating both images. The voting results are summarised in Fig. 1. Our CoMat-SDXL
greatly enhances the alignment between the prompt and the image without sacrificing the image
quality.
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Figure 1: User preference study results.

2.2 Composability with planning-based methods

Since our method is an end-to-end fine-tuning strategy, we demonstrate its flexibility in the integration
with other planning-based methods, where combining our method also yields superior performance.
RPG [35] is a planning-based method utilizing Large Language Model (LLM) to generate the
description and subregion for each object in the prompt. We refer the reader to the original paper for
details. We employ SDXL and our CoMat-SDXL as the base model used in [35] respectively. As
shown in Fig. 2, even though the layout for the generated image is designed by LLM, SDXL still
fails to faithfully generate the single object aligned with its description, e.g., the wrong mat color
and the missing candle. Although the planning-based method generates the layout for each object,
it is still bounded by the base model’s condition following capability. Combining our method can
therefore perfectly address this issue and further enhance alignment.

Close-up of the brown dog as it 
lounges, capturing its plush fur, 
serene expression, and relaxed 

posture.

The green mat on which the 
dog lies, detailing its texture, 
the richness of the green hue, 
and how it complements the 

dog's brown coat.

1:1

Prompt:
“The brown dog was lying 
on the green mat.”

LLM
Planning

SDXL

CoMat-SDXL

Planning Generation

1:1

Prompt:
“The smooth purple vase 
sat next to the tall white 
candlestick.”

LLM
Planning

SDXL

CoMat-SDXL

Smooth, glossy 
purple vase 
with a sleek 

curvature and 
minimalist 
design 

aesthetic.

Tall, majestic 
white 

candlestick 
standing 

elegantly, with 
a slender form 

and subtle 
details that 

suggest 
refined 

simplicity.

Figure 2: Pipeline for integrating CoMat-SDXL with planning-based method. CoMat-SDXL correctly
generates the green mat in the upper row and the tall white candle in the bottom row.
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2.3 How to choose an image-to-text model?

We provide a further analysis of the varied performance improvements observed with different
image-to-text models, as shown in Table 5 of the main text.

Attribute
Sensitivity

Relation
Sensitivity

Quality
Sensitivity

A blue tulip and a green rose

A green tulip and a blue rose

The computer is above the table

The table is above the computer

A brown cow and blue cups

A brown cow and a blue cup

Figure 3: Examples for the three core sensitivities.
For an image-to-text model to be valid for the concept activation module, it should be able to tell
whether each concept in the prompt appears and appears correctly. We construct a test set to evaluate
this capability of the image-to-text model. Intuitively, given an image, a qualified image-to-text model
should be sensitive enough to the prompts that faithfully describe it against those that are incorrect in
certain aspects. We study three core demands for an image-to-text model:

• Attribute sensitivity. The image-to-text model should distinguish the noun and its corre-
sponding attribute. The corrupted caption is constructed by switching the attributes of the
two nouns in the prompt.

• Relation sensitivity. The image-to-text model should distinguish the subject and object of a
relation. The corrupted caption is constructed by switching the subject and object.

• Quantity sensitivity. The image-to-text model should distinguish the quantity of an object.
Here we only evaluate the model’s ability to tell one from many. The corrupted caption is
constructed by turning singular nouns into plural or otherwise.

We assume that they are the basic requirements for an image-to-text model model to provide valid
guidance for the diffusion model. Besides, we also choose images from two domains: real-world
images and synthetic images. For real-world images, we randomly sample 100 images from the ARO
benchmark [37]. As for the synthetic images, we use the pre-trained SD1.5 [26] and SDXL [23] to
generate 100 images according to the prompts in T2ICompBench [12]. These selections make up for
the 200 images in our test data. We show the examples in Fig. 3.

For the sensitivity score, we compare the difference between the alignment score (i.e., log-likelihood)
of the correct and corrupted captions for an image. Given the correct caption P and corrupted caption
P ′ corresponding to image I, we compute the sensitivity score S as follows:

S =
log(pC(P|I))− log(pC(P ′|I))

|log(pC(P|I))|
. (1)

Then we take the mean value of all the images in the test set. The result is shown in Table 1. The rank
of the sensitivity score aligns with the rank of the gains brought by the image-to-text model model
shown in the main text. Hence, except for the parameters, we argue that sensitivity is also a must for
an image-to-text model to function in the concept activation module.
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Table 1: Statistics of image-to-text models.

Image-to-text Model Parameters Sensitivity Score
BLIP [18] 469M 0.1987
GIT [31] 394M 0.1728

LLaVA [21] 7.2B 0.1483

3 More Related Work

The image-to-text model in the main text refers to the models capable of image captioning. Previous
image captioning models are pre-trained on various vision and language tasks (e.g., image-text
matching, (masked) language modeling) [19, 22, 15, 30], then fine-tuned with image captioning
tasks [5]. Various model architectures have been proposed [32, 36, 17, 18, 31]. BLIP [18] takes a fused
encoder architecture, while GIT [31] adopts a unified transformer architecture. Recently, multimodal
large language models (MLLMs) have been flourishing [21, 43, 1, 44, 28, 14]. Empowered by
the strong language ability of large language models (LLMs) [39], MLLMs are capable of various
vision-language tasks like detailed image captioning [21, 43, 29, 2], visual question answering [20,
41, 42, 3, 13], etc. LLaVA [21, 16, 16] is one of the representative MLLMs. When prompted properly,
it can generate elaborate image captions.

Similar to our work, [7] proposes to caption the generated images and optimize the coherence between
the produced captions and text prompts. Although an image-to-text model is also involved, they fail
to provide detailed guidance. It has been shown that the generated captions are prone to omit key
concepts and involve undesired added features [11]. Besides, the method leverages a pre-trained text
encoder to compute the similarity between the prompt and generated caption, which further causes
information to be missed during text encoding. All these designs lead the optimization target to be
vague and sub-optimal.

3.1 vs. Differentiable Reward Method

Similarity: Our method is inspired by the technique introduced in the differentiable reward method
to perform gradient update.

Difference: (1) Reward Model. Our method is the first to leverage an image-to-text model to
perform image captioning on the generated image and compute the loss on the caption. (2) No
fidelity preservation. The current differentiable reward method ignores the aspect of preserving
the generation capability if not training against a reward of image quality. Our method introduces a
novel fidelity preservation module, which utilizes a discriminator with similar knowledge to preserve
the generation capability. This greatly alleviates the reward hacking problem introduced by only
training with the differentiable reward method. (3) No guidance from real-world image. The current
differentiable reward method all starts from pure noise. Since our method is optimizing for alignment,
we can incorporate real-world image-text pairs to guide the optimization process. With our mixed
latent strategy, the latent starting from the noise is conditioned on the difficult prompt to promote
alignment, while the latent starting from the noisy GT image is used to prohibit the diffusion model
from overfitting to the image-to-text model.

3.2 vs. TokenCompose [33]

Similarity: Both [33] and our method incorporates the object mask to guide the attention of the
diffusion model.

Difference: (1) Limited and inferior optimizing target. [33] merely focuses on optimizing the
consistency between the noun mask and the object mask. However, as shown in Fig. ??, the attention
mask of the noun (the ‘bear’ token) has already aligned well with the object mask. Optimizing for
this consistency is inferior. On the other hand, our method focuses on a much broader area, i.e.,
entity tokens, which consist of nouns and their various associated attributes. We also find that the
consistency between the attributes and the object mask bears very little similarity, which should
be paid more attention. (2) No negative concept mapping. Since the training data of [33] is the
real-world image-text pairs, all the nouns in the prompt show up in the image. However, this prohibits
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the model from learning in a negative way, i.e., if the entity is not on the image, none of the pixel
should be activated by this token. Our method leverages images generated by the diffusion model.
The entity missing is common. The model obtains the chance to learn in a negative way. (3) No
difficult training data. Another issue caused by training with image-text pairs is that the training data
may be of a common scenario, which is easier to learn. Since our method does not need real-world
images and only starts from the noise and text prompt, this enables a more efficient training process.

3.3 vs. Class-specific Prior Preservation Loss [27]

Similarity: Both the class-specific prior preservation loss (CPP Loss) [27] and our proposed fidelity
preservation module (FP) share the similar high-level idea of preserving the generation quality while
fine-tuning the diffusion models.

Difference: (1) Target task and preserve domain. [27] seeks to personalize image generation
for specific objects. While the introduced CPP Loss primarily maintains generative capabilities
within a narrow domain—specifically, the object class present in the training data—our proposed FP
module operates within the context of text-image alignment. FP aims to preserve general generative
capabilities by computing adversarial loss across the entire training dataset, encompassing a diverse
range of text prompts. (2) Methodology. Since the training data of [27] finetunes the diffusion
model with the pretraining loss, i.e., the squared error denoising loss on a certain timestamp. CPP
Loss follows its form. In contrast, our fine-tuning procedure simulates the inference process of the
diffusion model to conduct a full-step inference. We aim to directly supervise the generated image
to achieve the training-test alignment. Therefore, we propose the novel FP module to leverage a
discriminator to adversarially preserve its quality. The applied discriminator is also updated along
with the fine-tuning process, enabling finer control of the image quality.

4 Future Work

We believe our work can also be applied in the text-to-video diffusion models. With the introduction
of various MLLMs handling videos [38, 4] and video segmentation models [24, 8], both our concept
activation and attribute concentration modules could be used for text-video-alignment training.
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5 Experimental Setup

5.1 Implementation Details

Training Details. In our method, we inject LoRA [10] layers into the UNet of the online training
model and discriminator and keep all other components frozen. For both SDXL and SD1.5, we train
2,000 iters on 8 NVIDIA A100 GPUS. We use a local batch size of 6 for SDXL and 4 for SD1.5.
We choose Grounded-SAM [25] from other open-vocabulary segmentation models [40, 45]. The
DDPM [9] sampler with 50 steps is used to generate the image for both the online training model and
the original model. In particular, we follow [34] and only enable gradients in 5 steps out of those
50 steps, where the attribute concentration module would also be operated. Besides, to speed up
training, we use training prompts to generate and save the generated latents of the pre-trained model
in advance, which are later input to the discriminator during fine-tuning.

Training Resolutions. We observe that training SDXL is very slow due to the large memory overhead
at 1024× 1024. However, SDXL is known to generate low-quality images at resolution 512× 512.
This largely affects the image understanding of the image-to-text model. So we first equip the training
model with better image generation capability at 512× 512. We use our training prompts to generate
1024× 1024 images with pre-trained SDXL. Then we resize these images to 512× 512 and use them
to fine-tune the UNet of SDXL for 100 steps, after which the model can already generate high-quality
512× 512 images. We continue to implement our method on the fine-tuned UNet.

Training Layers for Attribute Concentration. Following [33], only cross-attention maps in the
middle blocks and decoder blocks are used to compute the loss.

Hyperparameters Settings. We provide the detailed training hyperparameters in Table 2.

Table 2: CoMat training hyperparameters for SD1.5 and SDXL.

Name SD1.5 SDXL
Online training model
Learning rate 5e-5 2e-5
Learning rate scheduler Constant Constant
LR warmup steps 0 0
Optimizer AdamW AdamW
AdamW - β1 0.9 0.9
AdamW - β2 0.999 0.999
Gradient clipping 0.1 0.1

Discriminator
Learning rate 5e-5 5e-5
Optimizer AdamW AdamW
AdamW - β1 0 0
AdamW - β2 0.999 0.999
Gradient clipping 1.0 1.0

Token loss weight α 1e-3 1e-3
Pixel loss weight β 5e-5 5e-5
Adversarial loss weight λ 1 5e-1
Gradient enable steps 5 5
Attribute concentration steps r 2 2
LoRA rank 128 128
Classifier-free guidance scale 7.5 7.5
Resolution 512× 512 512× 512
Training steps 2,000 2,000
Local batch size 4 6
Local GT batch size 2 2
Mixed Precision FP16 FP16
GPUs for Training 8 × NVIDIA A100 8 × NVIDIA A100
Training Time ∼ 10 Hours ∼ 24 Hours
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6 More Qualitative Results

6.1 Effectiveness of the Fidelity Preservation module (FP) and Mixed Latent (ML) strategy

We visualize the effectiveness of how we preserve the generation capability of the diffusion model in
Fig. ??. As shown in the figure, without any preservation technique, the diffusion model generates
misshaped envelopes and swans. With the FP and ML applied, the diffusion model generates images
aligned with the prompt and without artifacts.

6.2 Comparison with the baseline model

We showcase more comparison results between our method with the baseline model in Fig. 4 to
7. Fig. 4 shows the generation results with long and complex prompts. Fig. 5 to 7 shows that
our method solves various problems of misalignment, including object missing, incorrect attribute
binding, incorrect relationship, inferior prompt understanding.
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In the middle of a cozy room with a vintage charm, a circular wooden 
dining table takes the stage, its surface adorned with a decorative vase 
and a few scattered books. The room's warmth is maintained by an old-
fashioned radiator humming steadily in the corner, a testament to its long 
service. As dusk approaches, the waning sunlight softly permeates the 
space through a window with a delicate frost pattern, casting a gentle 

glow that enhances the room's rustic ambiance.

A dining room setting showcasing an unusually large red bell pepper 
with a shiny, slightly wrinkled texture, prominently placed beside a 
diminutive golden medal with a red ribbon on a polished wooden 
dining table. The pepper's vibrant hue contrasts with the medal's 

gleaming surface. The scene is composed in natural light, highlighting the 
intricate details of the pepper's surface and the reflective quality of the 

medal.

A giant golden spider is weaving an intricate web made of silk threads 
and pearls.

SDXL CoMat-SDXL SDXL CoMat-SDXL

Inside a dimly lit room, the low luminance emanates from a bedside
lamp casting a soft glow upon the nightstand. There lies a travel magazine,

its pages open to a vivid illustration of a car driving along a
picturesque landscape. Positioned next to the image is a light pink
toothbrush, its bristles glistening in the ambient light. Beside the

magazine, the textured fabric of the bedspread is just discernible,
contributing to the composed and quiet scene.

A brightly colored hot air balloon with vibrant stripes of red, yellow, and
blue hangs in the clear sky, its large round shape contrasting against the
fluffy white clouds. Below it, a sleek black scooter with red accents
speeds along a concrete pathway, its rider leaning forward in a hurry.

The balloon moves at a leisurely pace, starkly contrasting with the
frenetic energy of the scooter's rapid movement on the ground.

On a reflective metallic table, there is a brightly colored handbag
featuring a floral pattern next to a freshly sliced avocado, its green flesh
and brown pit providing a natural contrast to the industrial surface. The
table is set for lunch, with silverware and a clear glass water bottle
positioned neatly beside the avocado. The juxtaposition of the colorful
fashion accessory and the rich texture of the avocado creates a striking

visual amidst the midday meal setting.

A deep red rose with plush petals sits elegantly coiled atop an ivory,
intricately patterned lace napkin. The napkin rests on a rustic wooden

table that contributes to the charming garden setting. As the late
evening sun casts a warm golden hue over the area, the shadows of
surrounding foliage dance gently around the rose, enhancing the
romantic ambiance. Nearby, the green leaves of the garden plants

provide a fresh and verdant backdrop to the scene.

Figure 4: More Comparisons between SDXL and CoMat-SDXL on complex prompts. All pairs are
generated with the same random seed.
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A lighthouse casting beams of rainbow light into a stormy sea. A post-apocalyptic landscape with a lone tree growing out of an old, 
rusted car.

A giant golden spider is weaving an intricate web made of silk threads 
and pearls.

A group of ants are building a castle made of sugar cubes. A stop-motion animation of a garden where the flowers and insects are 
made of gemstones.

A cozy cabin made out of books, nestled in a snowy forest. A black jacket and a brown hat

SDXL CoMat-SDXL SDXL CoMat-SDXL

A thoughtful man sitting alone in a cozy coffee shop, staring out the 
window with a melancholic expression as he sips his coffee.

Figure 5: More Comparisons between SDXL and CoMat-SDXL. All pairs are generated with the
same random seed.
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SDXL CoMat-SDXL

A tiny gnome using a leaf as an umbrella, walking through a mushroom
forest.

A pen that writes in ink made from starlight.

A mystical deer with antlers that glow, guiding lost travellers through a
snowy forest at night.

A frozen city where the buildings are made of ice and the citizens ski
or sled to get around.

A circular clock and a triangular bookshelf A blue backpack and a red train

SDXL CoMat-SDXL

A bird on the top of a person A mouse on the left of the train

Figure 6: More Comparisons between SDXL and CoMat-SDXL. All pairs are generated with the
same random seed.
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SDXL CoMat-SDXL

A big tiger and a small kitten An underwater scene with a castle made of coral and seashells.

A chessboard with pieces made of ice and fire, with smoke and steam 

rising
A slice of pizza with toppings forming a map of the world, on a 

wooden cutting board.

A dog on the right of a wallet A rabbit on the top of a candle

SDXL CoMat-SDXL

The flickering candle illuminated the cozy room and the dark corner.A little fox exploring a hidden cave, discovering a treasure chest filled 

with glowing crystals.

Figure 7: More Comparisons between SDXL and CoMat-SDXL. All pairs are generated with the
same random seed.
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