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Abstract

Despite the success of Multi-Agent Reinforcement Learning (MARL) algorithms in
cooperative tasks, previous works, unfortunately, face challenges in heterogeneous
scenarios since they simply disable parameter sharing for agent specialization.
Sequential updating scheme was thus proposed, naturally diversifying agents by en-
couraging agents to learn from preceding ones. However, the exploration strategy in
sequential scheme has not been investigated. Benefiting from updating one-by-one,
agents have the access to the information from preceding agents. Thus, in this work,
we propose to exploit the preceding information to enhance exploration and het-
erogeneity sequentially. We present Multi-Agent Divergence Policy Optimization
(MADPO), equipped with mutual policy divergence maximization framework. We
quantify the discrepancies between episodes to enhance exploration and between
agents to heterogenize agents, termed intra-agent divergence and inter-agent diver-
gence. To address the issue that traditional divergence measurements lack stability
and directionality, we propose to employ the conditional Cauchy-Schwarz diver-
gence to provide entropy-guided exploration incentives. Extensive experiments
show that the proposed method outperforms state-of-the-art sequential updating ap-
proaches in two challenging multi-agent tasks with various heterogeneous scenarios.
Source code is available at https://github.com/hwdou6677/MADPO.

1 Introduction

Multi-Agent Reinforcement Learning (MARL) plays an increasingly important role in numerous
real-world cooperative problems, such as smart grid management [Zhang et al., 2022b], autonomous
driving [Wang et al., 2023b], unmanned system control [Feng et al., 2023b] and games [Zhang
et al., 2022a]. Centralized and decentralized MARL methods have been investigated as the first two
extensions from single-agent to multi-agent systems. However, challenges have arisen regarding
the curse of dimensionality and non-stationary training as the number of agents increasing [Mao
et al., 2022]. To address this issue, Centralized Training with Decentralized Execution (CTDE) was
developed to disentangle training and execution phases [Foerster et al., 2018]. In the CTDE scheme,
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the centralized critic provides global information, guiding agents during training but not during
execution. CTDE significantly simplifies and stabilizes the training process, providing an effective
and efficient paradigm for policy-gradient cooperative MARL.

In CTDE, agents share parameters for homogeneous tasks, such as multi-particle coordination,
and then take actions sampled from the same policies. For heterogeneous tasks, such as multi-
joint coordination in robotic control, they learn distinct policies without sharing parameters and
exhibit different behaviors. However, in these scenarios, relying solely on the non-parameter-sharing
setting to achieve cooperation is an oversimplification [Bhattacharya et al., 2023]. This is because
agents can never learn optimal policies that depend on trajectories from other agents when updating
simultaneously. To tackle this problem, sequential updating [Bertsekas, 2021] has been proposed to
improve heterogeneity and collaboration. This updating scheme originates from the insight that agents
in one rollout update their policies one-by-one, rather than simultaneously, to retain preceding agent
information. Several sequential methods have been proposed by leveraging the multi-agent advantage
decomposition lemma[Kuba et al., 2022], the multi-agent performance difference lemma [Wang
et al., 2023a], and rollout policy iteration [Bertsekas, 2021], to not only adapt the sequential updating
scheme but also maintain the monotonic improvement property.

Despite the success of sequential policy updating, the exploration towards further heterogeneity
improvement remains unexplored and challenging [Zhang et al., 2022a]. In MARL, agents struggle
to learn globally optimal policy due to the huge exploration space complexity, which is, unfortunately,
further amplified in heterogeneous tasks. Existing multi-agent exploration strategies typically require
parameter sharing in homogeneous scenarios. However, when applied to heterogeneous scenarios,
they suffer from performance degeneration despite employing the non-parameter sharing setting.
This is because these methods fail to fully leverage the main advantage of sequential updating, i.e.
the preceding information. To the best of our knowledge, there is no exploration method that can
adapt to both heterogeneous scenarios with sequential updating and homogeneous scenarios with
simultaneous updating.

To this end, this paper presents a novel sequential MARL framework, termed Multi-Agent Divergence
Policy Optimization (MADPO), where a simple yet efficient exploration strategy is equipped to
enhance sample efficiency, particularly in heterogeneous scenarios. In MADPO, we first propose a
Mutual Policy Divergence Maximization (Mutual PDM) strategy to heterogenize agents. Specifically,
mutual PDM consists of the intra-agent divergence and the inter-agent divergence. The intra-agent
divergence measures the policy discrepancy between episodes, encouraging agents to learn diversified
policies. The inter-agent divergence measures the policy discrepancy between agents, enhancing
heterogeneity and promoting greater diversity. However, simply applying classical divergence
measures to the proposed framework may trap the exploration in local optima due to the lack of
positive incentives. To address this issue, we propose to employ conditional Cauchy-Schwarz (CS)
divergence to provide entropy-guided incentives. Compared to the famous Kullback-Leibler (KL)
divergence, the conditional CS divergence implicitly maximizes the entropy of current policy and is
more stable. The main contributions can be summarized as follows:

1. We develop a novel multi-agent divergence reinforcement learning model equipped with
mutual policy divergence maximization, termed MADPO, to enhance exploration and
heterogenize agents in heterogeneous scenarios. To the best of our knowledge, we are the
first to demonstrate the efficacy of policy divergence maximization in sequential MARL.

2. We propose to maximize conditional Cauchy-Shwarz policy divergence to provide entropy-
guided incentive and stabilize multi-agent sequential exploration.

3. We evaluate the proposed method through extensive experiments. The results show that
MADPO outperforms state-of-the-art sequential methods in two multi-joint coordination
tasks with various heterogeneous scenarios.

2 Related Works

2.1 Multi-Agent Reinforcement Learning with CTDE

Benefiting from the CTDE framework, multi-agent policy gradient algorithms have paved a promising
path for cooperative games [Chai et al., 2021, Qiu et al., 2021, Li et al., 2021]. For example, Wu et al.
[2021] proposed CoPPO which guarantees the joint policy improvement by adapting the step size
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dynamically. Yu et al. [2022] proposed Multi-Agent Proximal Policy Optimization (MAPPO) which
applies PPO to multi-agent scenarios without violating the guarantee of monotonic improvement in
the individual policy level. Policy entropy incentive in MAPPO is one of the most related parts to
our method, providing diversified policy learning from an information theory perspective. Li and He
[2023] proposed MATRPO to extend Trust Region Policy Optimization (TRPO) to multi-agent tasks
through a fully decentralized setting and distributed optimization. However, when the number of
agents becomes large, MATRPO may encounter the challenge of the connecting link dimension curse.
This is because it relies on communication rather than global information to facilitate cooperation.
Guo et al. [2024] proposed MASPG, a trust region-based MARL algorithm in the off-policy manner, to
enhance the sample efficiency of trust region methods. However, these methods require homogeneity
of agents, i.e. parameter sharing, to ensure monotonic improvement. This homogeneity assumption
can impose significant restrictions on agents, limiting their ability to explore the joint policy space
adequately [Ding et al., 2022]. Consequently, if the sharing of parameters is canceled, it can lead to
violations of the monotonicity guarantee and result in performance degradation [Zhan et al., 2023].

2.2 Sequential Updating MARL

The sequential updating scheme originates from single-agent rollout and policy iteration [Bertsekas,
2021], aiming to update policies of agents one by one, as shown in Fig. 1a. This structure encourages
agents to learn different policies based on information from preceding ones, thereby naturally
generalizing the homogeneous MARL to heterogeneous MARL. To build the multi-agent sequential
updating scheme, attempts have been addressed from both joint and individual policy perspectives.
For example, Bertsekas [2021] proposed rollout and policy iteration method, which was the first
to consider sequential updating in MARL. Kuba et al. [2022] observed the multi-agent advantage
decomposition lemma and proposed HAPPO. Leveraging this powerful lemma, HAPPO estimates
and decomposes the joint advantage function to implement sequential updating and ensure the
joint monotonic improvement. On the other hand, A2PO proposed by Wang et al. [2023a] focuses
on individual policy improvement by leveraging the multi-agent policy difference lemma. A2PO
maintains distribution invariance during each agent’s advantage estimation process and consider a
more refined updating order. Zhao et al. [2023] introduced a localized action value function as the
surrogate optimization objective, offering a provable convergence guarantee for multi-agent PPO.

2.3 Information Theory Induced RL

Information-theoretic principles serve as a powerful regularization technique for providing valuable
guidance in intrinsic reward-driven RL [Liu and Zhang, 2023, Subramanian et al., 2022, Russo and
Proutiere, 2024], including both policy and state exploration [Cen et al., 2021, Jacob et al., 2022].
For example, the Soft Actor-Critic (SAC) is the first to maximize the Shannon entropy of policies,
promoting randomness and encouraging exploration [Haarnoja et al., 2018]. On-policy methods, such
as PPO, MAPPO and HAPPO, embrace the same concept by incorporating entropy regularization into
the optimization objective. Additionally, recent advancements have explored the utilization of various
entropy forms, such as encoder estimated stable entropy [Liu and Abbeel, 2021], value conditional
entropy [Kim et al., 2023] and Rényi entropy [Yuan et al., 2023] to model environmental dynamics
and accelerate novel state discovery. However, maximizing entropy only introduces stochasticity
for measuring uncertain dynamics. To address this limitation, policy divergence regularization
between episodes [Su and Lu, 2022, Xu et al., 2023] has been proposed. This regularization method
calculates the policy divergence based on a fixed policy and offers more directed guidance compared
to entropy alone. Furthermore, the efficacy of state divergence in combating local optima and
fostering state novelty has been demonstrated [Hong et al., 2018, Yang et al., 2021]. However, the
existing divergence RL methods cannot be effectively extended to the sequential updating paradigm.

In this work, we pursue an on-policy method to enhance exploration and heterogenize agents in a
sequential updating paradigm, termed Multi-Agent Divergence Policy Optimization (MADPO). In
contrast to the aforementioned policy divergence-based methods, we introduce a novel approach that
maximizes inter- and intra-agent policy divergence, thereby incorporating policy information. To
further address the deficiency of exploration direction in the traditional divergence RL, we propose to
employ the conditional Cauchy-Schwarz divergence to provide an entropy-guided incentive.
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(a) Sequential Updating MARL (b) Multi-Agent Divergence Policy Optimization

Figure 1: A three-agent example of traditional sequential updating MARL and our MADPO. The
white boxes represent the policies to be updated πi, and the orange boxes represent the updated
policies π̄i. The white boxes with dashed lines represent the joint policies to be updated π, and the
orange ones represent the updated joint policy π̄. Compared to the traditional sequential updating
MARL, our method takes the intra-agent and inter-agent divergence into account, as shown in the
blue boxes. The intra-agent divergence directs agents to explore novel policies based on their former
policies, while the inter-agent divergence heterogenizes agents sequentially.

3 Preliminaries

3.1 MARL Porblem Formulation

In this paper, we consider a multi-agent sequential decision-making problem, which can be described
as a decentralized Markov decision process (DEC-MDP). A DEC-MDP with n agents can be
formulated as the tuple: ⟨S,A, r, T , γ⟩, where S represents the state space. We denote N =
{1, . . . , n} as the set of finite agents. A = A1 × · · · × An is the joint action space by taking the
product of actions spaces of n agents. T : S × A × S 7→ [0, 1] is the state transition function
of the environment dynamics. r : S × A 7→ R is the reward function. γ is the discount factor.
At time step t, to interact with the environment, each agent at state st ∈ S takes an action ait
from its own policy πi(·|st) to form a joint action at = {a1t , . . . , ant } and a joint policy π(·|st) =
π1 × . . .× πn. The agents then receive a joint reward r(st,at) and step to the new state st+1 with
the probability T (st+1|st,at). The objective is to learn an optimal joint policy by maximizing
the expected cumulative reward: π̄ = argmax

π

∑∞
t=0 Est∼ρπ,at∼π [γtr(st,at)], where ρπ is the

marginal state distribution. Following Bellman Equations, the state-action value function and the
state function of state st are defined as Qπ(st,at) = r(st,at)+

∑∞
i>t Esi∼ρπ,ai∼π

[
γi−tr(si,ai)

]
,

and V π(st) =
∑∞

i>t Esi∼ρπ,ai∼π

[
γi−tr(si,ai)|s0 = st

]
. And the advantage function is defined

as Aπ(st,at) = Qπ(st,at)− V π(st).

3.2 Multi-Agent Sequential Policy Updating Paradigm

Sequential updating paradigm was introduced to alleviate homogeneity in multi-agent reinforcement
learning. The overview of sequential updating with a three-agent setting is shown in Fig. 1a. For
instance, Heterogeneous-Agent Proximal Policy Optimisation (HAPPO) takes preceding agent
information into account by employing the multi-agent advantage decomposition lemma and the joint
advantage estimator [Kuba et al., 2022]. At episode k, agent m in HAPPO maximizes the extrinsic
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multi-agent clipping objective as formulated in Eq. 1,

rE = Es∼ρπθk
,a∼πk

[
min

(
πim(ai|s)
π̄im
k (ai|s)

)
M i1:m(s,a), clip

(
πim(ai|s)
π̄im
k (ai|s)

, 1± ϵ

)
M i1:m(s,a)

]
,

(1)
where π̄im

k (ai|s) is the policy of the mth agent updated at episode k − 1, the superscript of rE

represents Extrinsic, and M i1:m(s,a) is the joint advantage estimator of the first to mth agents,
which is defined as follows,

M i1:m =
π̄i1:m−1

πi1:m−1
Â(s,a), (2)

where πi1:m−1 =
m−1∏
p=1

πip is the joint policy of the first to mth agents, and Â(s,a) is an individual

advantage estimator, such as Generalized Advantage Estimation (GAE). Additionally, Eq. 1 is also
incorporated with an intrinsic reward term, i.e. the policy entropy, defined as rI = H(πim(ai|s)).

4 Method

4.1 Mutual Policy Divergence Maximization

Most existing divergence RL methods only consider state or policy divergence between episodes in a
simultaneous updating scheme, which lacks practicality in heterogeneous scenarios. To address this
issue, We introduce the main framework of MADPO in this section, i.e. Mutual Policy Divergence
Maximization (Mutual PDM), and the framework is shown in Fig 1b. Specifically, we consider a
mutual intrinsic reward which consists of two types of policy divergence: inter-agent and intra-agent
policy divergence. At episode k, agent i maximize mutual policy divergence as follows,

rImutual = λDiv(πi
k|π̄i−1

k ) + (1− λ)Div(πi
k|π̄i

k−1), (3)

where Div(·) is one divergence measurement, λ is the coefficient to control the influence of the two
divergence, and the superscript I represents Intrinsic.

The first term in Eq. 3 is the inter-agent policy divergence, quantifying the discrepancy between
policies of the current agent and the preceding agent. In heterogeneous tasks, such as multi-joint
control in robotics, each agent has its own specialization. Hence, learning diversified policies for
different agents is more desirable in these scenarios. By maximizing the inter-agent divergence,
agents are provided with a novel optimization direction towards heterogeneity, resulting in significant
diversification. Note that in the simultaneous updating manner, the inter-agent divergence maximiza-
tion becomes theoretically challenging, since these methods lack access to the information from the
preceding agents.

The second term in Eq. 3 is the intra-agent policy divergence, which measures the difference between
the current policy and the former policy of an agent. The intra-agent policy divergence encourages
agents to learn new and diverse policies based on their previous policies. Consequently, we provide
agents an optimization direction towards policy novelty, greatly enhancing exploration.

4.2 Conditional Cauchy-Schwarz Policy Divergence

To measure the discrepancy between policies, a natural idea is to use the KL-divergence. At episode
k, agent i optimizes the KL-divergence between the current policy πi

k and a fixed policy π̄, which
can be defined as follows,

DKL(π
i
k||π̄) = Esj∼ρπθk

,aj∼πi
k

∑
j

πi
k(aj |sj) log

πi
k(aj |sj)
π̄(aj |sj)

 (4)

= H(πi
k, π̄)−H(πi

k), (5)

where H(πi
k, π̄) is the cross entropy between πi

k and π̄, H(πi
k) is the policy entropy. However,

optimizing KL-divergence between policies raises problems regarding instability and inhibition of
exploration in MARL. Specifically, when approaching 0, the fixed policy π̄(aj |sj) in Eq. 4 may
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lead to uncontrollability and unreliability of the log term, which is common in initialization and
converged phrase of MARL. Moreover, the second term in Eq. 5 minimizes the entropy of the current
policy, which brings an opposite optimization direction, thus adversely affecting exploration. To
address these issues, we introduce Conditional Cauchy-Schwarz Divergence for policy divergence
maximization.

The Conditional CS divergence, recently proposed by Yu et al. [2023], is an extension from classic
CS divergence for quantifying the discrepancy between two conditional distributions. Formally, given
random variable A and S with a finite data set, the CS inequality is defined as follows,∣∣∣∣∫ p(a)q(a)da

∣∣∣∣2 ≤
∫

|p(a)|2da
∫

|q(a)|2da, (6)

where p(a) and q(a) are the probability density functions. By leveraging Eq. 6, we can obtain the CS

divergence, defined as DCS = − 1
2 log

(
∫
p(a)q(a))2∫

p2(a)
∫
q2(a)

. Similarly, we can derive the conditional CS
divergence of two policies, i.e. the action distributions conditioned by the states, defined as follows,

DCS(π(a|s)||π̄(a|s))

= −1

2
log

(
(∫

S

∫
A
π(a|s)π̄(a|s)dτ

)2(∫
S

∫
A
π̄2(a|s)dτ

) (∫
S

∫
A
π2(a|s)dτ

)
= −2 log

(∫
S

∫
A

π(a|s)π̄(a|s)dτ
)
+ log

(∫
S

∫
A

π2(a|s)dτ
)
+ log

(∫
S

∫
A

π̄2(a|s)dτ
)
.

(7)

We then present some desirable properties of Eq 7.

Proposition 1. Given a policy to be updated π and a fixed policy π̄, and α-order Rényi policy entropy
Hα(π) =

1
1−α log

∫
A
πα(a|s)da = 1

1−αEa∼π log π
α−1(a|s), then we have:

1

2
H2(π) +

1

2
H2(π̄) ≥ DCS (π|π̄) . (8)

Proofs can be found in Appendix A.1. Proposition. 1 is motivated by [Li et al.] and indicates that the
CS divergence between distributions is a lower bound of the sum of 2nd-Rényi entropy of distributions.
Consequently, in MARL, maximizing the CS divergence between a target policy and a fixed policy
behaves like maximizing the 2nd-Rényi entropy of the target policy, which is a generalized form of
Shannon policy entropy [Yuan et al., 2023]. In this way, by taking the conditional CS divergence into
account, agents are encouraged to enhance their policy entropy while diversifying their policies. Thus,
maximizing the CS policy divergence can provide agents with 2nd-Rényi entropy-guided exploration
incentives.

Proposition 2. Given a policy to be updated π and a fixed policy π̄ with a finite action set A =
{a0, ..., an} at state s, then the CS divergence is lower bounded by:

DCS(π||π̄) ≥ − log n. (9)

Proofs can be found in Appendix A.2. Recall that in Eq. 4, it is obvious that the KL-divergence
is unstable when the probability of one action approaching 0, a common occurrence in MARL.
In contrast, Proposition. 2 demonstrates that the CS divergence has a deterministic lower bound
unless the number of actions approaches infinity, which is not feasible in practical MARL. Even if in
continuous action tasks, the trajectories sampled from policies have finite actions. Thus, maximizing
the CS divergence can provide a more stable guidance for policy optimization.

4.3 Multi-Agent Divergence Policy Optimization

We first present the overall optimization objective of MADPO in this section. At episode k, agent i in
MADPO maximizes the practical objective as follows,

J (πi(ai|s)) = rE(πi
k(a

i|s)) + λ

σ
D̂CS(π

i
k||π̄i−1

k ;σ) +
1− λ

σ
D̂CS(π

i
k||π̄i

k−1;σ), (10)
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where D̂CS(·||·) is the estimator of the conditional CS divergence, and σ is the parameter of the
estimator. Given trajectories τ π̄ = {sπ̄1 , aπ̄1 , ..., sπ̄n, aπ̄n} and τπ = {sπ0 , aπ0 , ..., sπn, aπn} sampled from
a fixed policy π̄ and the current policy π. The empirical estimator of Eq. 7 can be formulated by
using kernel density estimation:

D̂CS(π(a|s)||π̄(a|s)) = log

(
n∑

i=1

(∑n
j=1 S

π̄
ijA

π̄
ij

(
∑n

j=1 S
π̄
ij)

2

))
+ log

(
n∑

i=1

(∑n
j=1 S

π
ijA

π
ij

(
∑n

j=1 S
π
ij)

2

))

− log

(
n∑

i=1

( ∑n
j=1 S

π̄→π
ij Aπ̄→π

ij∑n
j=1 S

π
ij

∑n
j=1 S

π̄→π
ij

))
− log

(
n∑

i=1

( ∑n
j=1 S

π→π̄
ij Aπ→π̄

ij∑n
j=1 S

π
ij

∑n
j=1 S

π→π̄
ij

))
, (11)

where Sπ and Aπ represent the Gram matrices of states and actions sampled from the policy π:
Sπ
ij = κ(sπi −sπj ), A

π
ij = κ(aπi −aπj ), where κ(·) is a Gaussian kernel denoted as κ(·) = exp(− ||·||2

2σ2 ),
and σ is the parameter of κ(·). Moreover, Sπ→π̄ and Aπ→π̄ represent the Gram matrices from
distribution (i.e. policy) π to distribution π̄, formulated as Sπ→π̄

ij = κ(sπi − sπ̄j ). Detailed proofs can
be found in Yu et al. [2023].

In contrast to existing sequential methods, starting from the second agent in the first episode, MADPO
maintains the buffer data for more time. Specifically, for mutual policy divergence maximization,
when finished training in episode k, MADPO maintains the minibatch of the updated k-th policies
for one more episode. We summarize the whole algorithm in Algo. 1.

Algorithm 1 Multi-Agent Divergence Policy Optimization

Input: Initial joint policy π0 = π1
0 × ...× πn

0 , parameters of Mutual PDM, σ and λ.
1: for iteration k = 1, ...,K do
2: Collection trajectories Tk = {τ 1

k , ..., τ
n
k } by running π̄k = π̄1

k × ...× π̄n
k .

3: Restore Tk into the buffer.
4: Compute the advantage Â(s,a) by using the V network.
5: for agent i = 1, ..., n do
6: if not i = 1 then
7: Compute the inter-agent divergence 1−λ

σ D̂CS(π
i
k||π̄

i−1
k ;σ) via trajectories τ i−1

k , τ i
k and

Eq. 11.
8: end if
9: Compute the intra-agent divergence λ

σ D̂CS(π
i
k||π̄i

k−1;σ) via trajectories τ i
k−1, τ i

k and
Eq. 11.

10: Compute J = rE + rImutual and update the actor network by maximizing Eq. 10.
11: Compute the joint advantage via Eq. 2.
12: end for
13: Update the V network.
14: Delete Tk−1 from the buffer.
15: end for

5 Experiments

We evaluate the proposed MADPO on two challenging multi-agent heterogeneous environments,
Multi-Agent Mujoco (MA-Mujoco) [de Witt et al., 2020] and Bi-DexHands [Chen et al., 2022].
Multi-Agent Mujoco is a complex and widely used task which necessitates up to 17 different joints of
one robot to coordinate for human-like behavior imitation, such as running and walking. Bi-DexHands
is a bimanual dexterous manipulation environment, where agents are in control of fingers, hands or
joints. Sub-scenarios in Bi-DexHands require agents to collaborate for more complex bimanual tasks,
such as opening a door inward and outward, passing an item from one hand to another. We compare
MADPO with state-of-the-art MARL algorithms, including one simultaneous method MAPPO [Yu
et al., 2022] and sequential methods, such as HATRPO [Kuba et al., 2022], HAPPO [Kuba et al.,
2022] and A2PO[Wang et al., 2023a]. Clearly, different agents in the two benchmarks should learn
diversified policies. Hence, we switch off the parameter sharing setting for HAPPO, HATRPO, A2PO
and our MADPO, and keep sharing parameter in MAPPO. In this work, we conduct experiments of 5
random seeds on 10 scenarios of MA-Mujoco and 10 scenarios of Bi-DexHands.
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We also conduct statistical testing experiments by using rliable [Agarwal et al., 2021]. Since
the environments we used in this work do not have a round end score, we choose the aggregate
interquartile mean (IQM) sample efficiency test of rliable for evaluation. The interquartile mean
(IQM) computes the mean scores of the middle 50% runs, while discarding the bottom and top 25%.
Here, we evaluate the performance across multiple tasks, and the total number of runs is n × m,
where n is the number of trials for one task, and n = 5 in this paper. m is the number of tasks. IQM
test is more robust than the mean and has less bias than the median. The experimental details can be
found in Appendix B.

5.1 Results on MA-Mujoco and Bi-DexHands

Fig. 2 and Fig. 3 show the results on MA-Mujoco and Bi-DexHands. The shaded areas represent
the 95% confidence interval. we observe that MADPO consistently outperforms all baselines in
MA-Mujoco, especially when the number of agents is large, indicating its efficiency in highly
complex scenarios. Additionally, MADPO shows superior in challenging bimanual coordination
tasks in Bi-DexHands, while other methods like HAPPO suffer from local optima due to insufficient
exploration.

Figure 2: Performance comparison against baseline methods on Multi-Agent Mujoco. Benefiting
from the heterogeneity and exploration enhanced by mutual policy divergence maximization, the
proposed MADPO consistently outperforms all baselines.

Fig. 4 shows the IQM rewards comparison against other baselines. The lines in the figures represent
the IQM, while the shaded areas indicate the confidence intervals. The 10 tasks in MA-Mujoco include
all the tasks of MA-Mujoco used and 10 tasks in Bi-Dexhands include all the tasks of Bi-Dexhands
used. The 3 tasks of MA-Mujoco Ant include Ant-v2-2x4, 4x2, and 8x1. The 3 tasks of MA-Mujoco
Halfcheetah include Halfcheetah-v2-2x3, 3x2, and 6x1. The 3 tasks of MA-Mujoco Walker2d include
Walker2d-v2-2x3, 3x2, and 6x1. The results in Fig 4 indicates that the proposed MADPO consistently
outperforms the state-of-the-art MARL methods in terms of best episodic reward across multiple
tasks. The results also show that, MADPO has higher sample efficiency compared to other methods
and achieves an improvement gap in most tasks.

5.2 Ablation Study

We also investigate the efficiency of conditional CS policy divergence compared to other widely
used exploration incentives as shown in Fig. 5a and Fig 5b. Here, no incentive presents disabling the
intrinsic reward for training. We can clearly observe in Fig. 5a that the conditional CS policy diver-
gence and KL-divergence achieve significant improvements compared to the popular policy entropy.
These results indicate the effectiveness of mutual PDM framework, which takes the information
from preceding agent into account. Additionally, the conditional CS policy divergence outperforms
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Figure 3: Performance comparison against baseline methods on Bi-DexHands. The proposed
MADPO achieves superior performance compared to other MARL methods.

Figure 4: IQM performance comparison against baseline methods on 10 tasks of Bi-DexHands and 9
tasks of MA-mujoco.

the famous KL-divergence empirically, particularly in MA-Mujoco tasks. This is because the KL-
divergence implicitly minimizes the entropy of the current policy when maximizing the divergence,
which can be detrimental to exploration. In contrast, the CS policy divergence maximizes policies’
novelty and, more importantly, the Rényi entropy for efficient exploration. Fig. 5b demonstrates that
in the aggregate evaluation, the CS-divergence outperforms other incentives with narrower confidence
interval, indicating its better stability than KL-divergence.

Fig. 6 shows the experiments of parameter sensitivity. In this experiment, λ controls the influences
of inter- and intra-agent policy divergence. When λ = 0, the inter-agent policy divergence is
disabled, and when λ = 1, the intra-agent policy divergence is disabled. We can observe a consistent
degradation in performance when any one aspect of the mutual policy divergence is turned off, thus
confirming the significance of our method. When λ = 0.2, the proposed method achieves the highest
reward, whereas excessive influence from inter-agent divergence with λ = 0.5 is harmful. Parameter
σ controls the kernel width in Cauchy-Schwarz divergence, impacting the influence of the mutual
PDM. We find that MADPO is slightly sensitive to σ, behaving similarly to the entropy coefficient in
MAPPO.

6 Conclusion

In this work, we present MADPO, a sequential updating MARL method equipped with mutual policy
divergence maximization for efficient exploration in heterogeneous tasks. By leveraging the sequential
updating paradigm, MADPO maximizes intra-agent policy divergence to enhance exploration and
inter-agent policy divergence to promote heterogeneity. However, maximizing traditional divergence
measurements can lead to instability and lack of direction in MARL. To tackle this issue, we propose
conditional Cauchy-Schwarz policy divergence to quantify the distance between policies. The
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(a)

(b)

Figure 5: Performance comparison against other exploration incentives.

Figure 6: Parameter sensitivity studies for MADPO.

conditional Cauchy-Schwarz policy divergence possesses favorable properties and provides a stable
entropy-guided incentive for sequential exploration. We evaluate the performance of MADPO on
two challenging heterogeneous tasks, MA-Mujoco and Bi-Dexhands. We observe that the proposed
Mutual PDM outperforms entropy-based methods since it consider both previous and preceding
information. Moreover, we verify the efficiency of the conditional Cauchy-Schwarz policy divergence
in terms of stabilizing and guiding the exploration. Totally, the results demonstrate the effectiveness
of MADPO, achieving state-of-the-art performance in complex multi-agent scenarios. The main
limitation of this work is that when the number of agent increases, the proposed method may require
more ram to restore previous information. We will investigate effective representation methods for
previous information in the future.
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A Theoretical Analysis

A.1 Proofs of the Proposition 1

Proposition 1. Given a policy to be updated π and a fixed policy π̄, and their α-order Rényi entropy
Hα(π) =

1
1−α log

∫
A
πα(a|s)da = 1

1−αEa∼π log π
α−1(a|s), then we have:

1

2
H2(π) +

1

2
H2(π̄) ≥ DCS (π|π̄) . (12)

Proof. At state s, consider A as the action set, a is the random variable, we can rewrite the right side
of Eq. 12 as follows,

DCS (π|π̄) = −1

2
log

(
∫
A
π(a = a|s)π̄(a = a|s)da)2

(
∫
A
π2(a = a|s)da)(

∫
A
π̄2(a = a|s)da)

(13)

= − log(

∫
A

π(a = a|s)π̄(a = a|s)da)− 1

2
H2(π)−

1

2
H2(π̄), (14)

where the first term in Eq. 14 is the 2nd-order Rényi cross entropy between π and π̄. Thus, using
Gibbs inequality, we have

H2(π) +H2(π̄) ≥ − log(

∫
A

π(a = a|s)π̄(a = a|s)da), (15)

1

2
H2(π) +

1

2
H2(π̄) ≥ − log(

∫
A

π(a = a|s)π̄(a = a|s)da)− 1

2
H2(π)−

1

2
H2(π̄), (16)

1

2
H2(π) +

1

2
H2(π̄) ≥ DCS (π|π̄) , (17)

which finish the proof.
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A.2 Proofs of the Proposition 2

Proposition 2. Given a policy to be updated π and a fixed policy π̄ with a finite action set A =
{s0, ..., sn} at state s, then the CS divergence of is lower bounded by:

DCS(π||π̄) ≥ − log n. (18)

Proof. For two policies represented by the trajectories, the CS divergence between them at state s is
defined as follows,

DCS(π||π̄) = − log

 ∑A
π(a = a|s)π̄(a = a|s)√∑A

π(a = a|s)2
√∑A

π̄(a = a|s)2

 . (19)

Consider the quadratic mean of the π(a = a|s),∑A
π(a|s)2

n
≥

(∑A
π(a|s)
n

)2

=
1

n2
. (20)

Hence, √
A∑

π(a|s)2 ≥
√

1

n
. (21)

We also have
∑A

π(a = a|s)π̄(a = a|s) ≤ 1, and then

DCS(π||π̄) ≥ − log

(
1

1/n

)
= − log n, (22)

which complete the proof.

B Experimental Results

B.1 Detailed experimental Settings

Table 1: Common hypermeters in MA-Mujoco
hyperparameters MA-Mujoco

activation ReLu
batch size 4000
gamma 0.99
gain 0.01
PPO epoch 5
episode length 200
n rollout threads 20

Table 2: Different hyperparameters in MA-Mujoco
Tasks hidden layer actor lr critic lr clip λ σ

Ant-v2-2x4 [64,64] 5e-4 5e-4 0.2 0.5 1e3
Ant-v2-4x2 [64,64] 5e-4 5e-4 0.2 0.5 1e3
Ant-v2-8x1 [64,64] 5e-4 5e-4 0.2 0.5 1e3
HalfCheetah-v2-2x3 [64,64] 5e-4 5e-4 0.2 0.2 1e3
HalfCheetah-v2-3x2 [64,64] 5e-4 5e-4 0.2 0.2 1e3
HalfCheetah-v2-6x1 [64,64] 5e-4 5e-4 0.2 0.1 1e3
Walker2d-v2-2x3 [256,256] 1e-3 1e-3 0.05 0.1 2e3
Walker2d-v2-3x2 [256,256] 1e-3 1e-3 0.05 0.1 2e3
Walker2d-v2-6x1 [256,256] 1e-3 1e-3 0.05 0.1 2e3
Humanoid-v2-17x1 [256,256] 5e-4 5e-4 0.1 0.5 1e3
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Table 3: Common hypermeters in Bi-DexHands
hyperparameters BiDexHands

activation ReLu
batch size 4000
gamma 0.99
gain 0.01
PPO epoch 5
episode length 75
n rollout threads 128
hidden layers [256,256,256]
clip 0.2
actor lr 5e-4
critic lr 5e-4

Table 4: Different hyperparameters in Bi-DexHands
Tasks λ σ

ShadowHandBlockStack 0.2 5e2
ShadowHandOver 0.2 5e2
ShadowHandPen 0.2 5e2
ShadowHandDoorCloseInward 0.5 5e2
ShadowHandDoorOpenInward 0.5 5e2
ShadowHandCatchOver2Underarm 0.2 1e3
ShadowHandCatchUnderarm 0.2 1e3
ShadowHandCatchAbreast 0.2 1e3
ShadowHandDoorCloseOutward 0.5 1e3
ShadowHandDoorOpenOutward 0.5 1e3

In this experiment, we follow the official implement and hyperparameter settings of HAPPO and
HATRPO1 [Kuba et al., 2022], MAPPO2 [Yu et al., 2022], and A2PO3 [Wang et al., 2023a]. We
compare the proposed method with baselines on two popular heterogeneous environments, MA-
Mujoco 4, and Bi-DexHands5. For MA-Mujoco, the commom hyperparameter are listed in Tab. 1, and
the different hyperparameters in each scenarios are listed in Tab. 2. For Bi-DexHands, the commom
hyperparameter are listed in Tab. 3, and the different hyperparameters in each scenarios are listed in
Tab. 4. The experiments were conducted on a PC with NVIDIA RTX3090 GPU, Intel Xeon 64-core
CPU, and 64GB Ram.

B.2 Additional Results

Full results of 10 scenarios in MA-Mujoco and 10 scenarios in Bi-DexHands are shown in Fig. 7 and
Fig. 8. We can make two observations on results of MA-Mujoco tasks. First, MADPO demonstrates
superiority in terms of both reward maximum and learning speed, highlighting its effectiveness in
exploring novel policies. Second, MADPO exhibits the lowest variance compared to other methods
in most scenarios, indicating its training stability. In the more challenging Bi-DexHands tasks, we
find MADPO outperforms baselines in most scenarios, confirming the effectiveness of MADPO in
complex coordination tasks.

We also conduct the experiments of different updating orders in Ma-Mujoco, as indicated in Fig 9.
Here, each agent controls one joint of one leg, and the joints in the same position on the legs have the
same specilization. The Rand. order represents updating agents randomly. The Def. order represents
updating agents in the default order in Ma-Mujoco, where agents are grouped according to the legs

1https://github.com/PKU-MARL/HARL
2https://github.com/marlbenchmark/on-policy
3https://github.com/xihuai18/A2PO-ICLR2023
4https://github.com/schroederdewitt/multiagent_mujoco
5https://github.com/PKU-MARL/DexterousHands
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Figure 7: Performance comparison on against baseline methods on 10 Multi-Agent Mujoco scenarios.

they belong to. For example, the default updating order can be: right thigh joint, right leg joint,
right foot joint, left thigh joint, · · · . The Spec. order represents updating agents according to their
specilization, and can be: right thigh joint, left thigh joint, right foot joint, left foot joint, · · · . We can
observe that the random updating order outperforms the other orders. We believe that this is because
our framework can benefit from various updating orders. For example, if the current agent share
the same specilization as the preceding agent, maximizing the inter-agent divergence can enhance
exploration. On the other hand, if the current agent differs from the preceding agent, maximizing the
inter-agent divergence can promote heterogeneity.

In Fig 10, we compare the performance between different parameter settings using IQM aggregate
test. We can observe that MADPO is a little sensitive to parameter σ. However, it outperforms
HAPPO in a reasonable range of σ. Additionally, we can also individually tune σ for special task for
further performance improvement. We also observe that MAPDO is a little sensitive to the parameter
λ, yet it consistently shows better performance than HAPPO.

Tab. 5 shows the running time of MADPO and other methods. Compared to MARL baselines,
MADPO only introduces a negligible extra time cost.

C Social Impacts

We do not foresee an obvious negative impart by conducting the experiments included in this
work, since we evaluate methods in a controlled simulation environment. However, We are also
aware that recent works [Radosavovic et al., 2024, Handa et al., 2023] tested RL algorithms on
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Figure 8: Performance comparison on against baseline methods on 10 Bi-DexHands scenarios.

Figure 9: Performance comparison of different updating orders on Ma-Mujoco scenarios.

Figure 10: Aggregate parameter sensitivity study.
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Table 5: Wall time comparison.
Task training steps A2PO HAPPO HATRPO MAPPO MADPO

Ant-v2-2x4 1e7 1h2m 1h3m 1h16m 1h10m 1h17m
Walker2d-v2-6x1 1e7 1h57m 2h1m 2h35m 1h49m 2h13m
HalfCheetah-v2-6x1 1e7 2h3m 1h56m 2h22m 1h40m 2h27m
Humanoid-v2-17x1 1e7 6h20m 6h8m 6h51m 6h16m 7h3m
ShadowHandDoorOpenInward 2e7 - 1h48m 1h39m 2h27m 2h45m
ShadowHandDoorOpenOutward 2e7 - 1h50m 2h4m 2h7m 3h12m

real-world environments. This may raise concerns regarding the potential personal hazards caused
by agent exploration in real world. To address this issue, one possible approach is to define safety
behaviours to restrict the actions of agents [Feng et al., 2023a] or perform evaluation in safe simulation
environments [Ji et al., 2023] preliminarily.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: We confirm that we accurately and clearly claim the contributions and the
scope of this work in the abstract.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We discuss the main limitation of this work in Conclusion 6.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [Yes]
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Justification: We have provided the detailed proofs in Appendix A.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: We have described the detailed steps of the proposed method in Algo. 1, and
the experiment settings in Appendix B.1.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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Answer: [Yes]

Justification: The code is available at https://github.com/hwdou6677/MADPO.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
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• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
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