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Abstract

Recent works have extended notions of feature importance to semantic concepts
that are inherently interpretable to the users interacting with a black-box predictive
model. Yet, precise statistical guarantees such as false positive rate and false
discovery rate control are needed to communicate findings transparently, and to
avoid unintended consequences in real-world scenarios. In this paper, we formalize
the global (i.e., over a population) and local (i.e., for a sample) statistical importance
of semantic concepts for the predictions of opaque models by means of conditional
independence, which allows for rigorous testing. We use recent ideas of sequential
kernelized independence testing to induce a rank of importance across concepts,
and we showcase the effectiveness and flexibility of our framework on synthetic
datasets as well as on image classification using several vision-language models.

1 Introduction

Providing guarantees on the decision-making processes of autonomous systems, often based on
complex black-box machine learning models, is paramount for their safe deployment. This need
motivates efforts towards responsible artificial intelligence, which broadly entails questions of
reliability, robustness, fairness, and interpretability. One popular approach to the latter is to use
post-hoc explanation methods to identify the features that contribute the most towards the predictions
of a model. Several alternatives have been proposed over the past few years, drawing from various
definitions of features (e.g., pixels—or groups thereof—for vision tasks [41], words for language
tasks [21], or nodes and edges for graphs [84]) and of importance (e.g, gradients for Grad-CAM
[57], Shapley values for SHAP [7, 15, 42, 70], or information-theoretic quantities [43]). While most
explanation methods highlight important features in the input space of the predictor, users may care
more about their meaning. For example, a radiologist may want to know whether a model considered
the size and spiculation of a lung nodule to quantify its malignancy, and not just its raw pixel values.

To decouple importance from input features, Kim et al. [34] showed how to learn the vector repre-
sentation of semantic concepts that are inherently interpretable to users (e.g., “stripes”, “sky”, or
“sand”) and how to study their gradient importance for model predictions. Recent vision-language
(VL) models that jointly learn an image and text encoder, such as CLIP [16, 52], have made these
representations—commonly referred to as concept activation vectors (CAVs)—more easily acces-
sible. With these models, obtaining the representation of a concept boils down to a forward pass
of the pretrained text encoder, which alleviates the need of a dataset comprising images annotated
with their concepts. Several recent works have defined semantic importance—both with CAVs and
VL models—by means of concept bottleneck models (e.g., CBM [36], PCBM [85], LaBo [83]),
information-theoretic quantities (e.g., V-IP [37]), sparse coding (e.g., CLIP-IP-OMP [13], SpLiCe
[6]), network dissection [2] (e.g., CLIP-DISSECT [47], TextSpan [26], INViTE [14]), or causal
inference (e.g., DiConStruct [44], Sani et al. [55]).

On the other hand, it is important to communicate findings of important features precisely and
transparently in order to avoid unintended consequences in downstream decision tasks. Going back
to the example of a radiologist diagnosing lung cancer, how should they interpret two concepts with
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different importance scores? Does their difference in importance carry any statistical meaning? To
start addressing similar questions [10, 71] introduced statistical tests for the local (i.e., on a sample)
conditional independence structure of a model’s predictions. Framing importance by means of
conditional independence allows for rigorous testing with false positive rate control. That is, for a
user-defined significance level α ∈ (0, 1), the probability of wrongly deeming a feature important
is no greater than α, which directly conveys the uncertainty in an explanation. Yet these methods
consider features as coordinates in the input space, and it is unclear how to extend these ideas to
abstract, semantic concepts.

In this work, we formalize semantic importance at three distinct levels of statistical independence with
null hypotheses of increasing granularity: (i) marginally over a population (i.e., global importance),
(ii) conditionally over a population (i.e., global conditional importance), and (iii) for a sample
(i.e., local conditional importance).1 Each of these notions will allow us to inquire the extent to
which the output of a model depends on specific concepts—both over a population and on specific
samples—and thus deem them important. To test for these notions of semantic importance, instead
of classical (or offline [58]) independence testing techniques [5, 10, 11, 28, 29, 69, 86], which are
based on p-values and informally follow the rule “reject if p ≤ α”, we propose to use principles of
testing by betting (or sequential testing) [59], which are based on e-values [76] and follow the “reject
when e ≥ 1/α” rule. As we will expand on, this choice is motivated by the fact that sequential tests
are data-efficient and adaptive to the hardness of the problem—which naturally induces a rank of
importance. We will couple principles of conditional randomization testing (CRT) [11] with recent
advances in sequential kernelized independence testing (SKIT) [51, 62], and introduce two novel
procedures to test for our definitions of semantic importance: the conditional randomization SKIT
(C-SKIT) to study global conditional importance, and—following the explanation randomization test
(XRT) framework [71]—the explanation randomization SKIT (X-SKIT) to study local conditional
importance. We will illustrate the validity of our proposed tests on synthetic datasets, and showcase
their flexibility on zero-shot image classification on real-world datasets across several and diverse VL
models.

1.1 Summary of Contributions and Related Works

In this paper, we will rigorously define notions of statistical importance of semantic concepts for
the predictions of black-box models via conditional independence—both globally over a population
and locally for individual samples. For any set of concepts, and for each level of independence, we
introduce novel sequential testing procedures that induce a rank of importance. Before presenting the
details of our methodology, we briefly expand on a few distinctive features of our work.

Explaining nonlinear predictors. Compared to recent methods based on concept bottleneck models
[36, 83, 84], our framework does not require training a surrogate linear classifier because we study
the semantic importance structure of any given, potentially nonlinear and randomized model. This
distinction is not minor—training concept bottleneck models results on explanations that pertain to
the surrogate (linear) model instead of the original (complex, nonlinear) predictor, and these simpler
surrogate models typically reduce performance [48, 85]. In contrast, we provide statistical guarantees
directly on the original predictor that would be deployed in the wild.

Flexible choice of concepts. Furthermore, our framework does not rely on the presence of a large
concept bank (but it can use one if it is available). Instead, we allow users to directly specify which
concepts they want to test. This feature is important in settings that involve diverse stakeholders.
In medicine, for example, there are physicians, patients, model developers, and members of the
regulatory agency tasked with auditing the model—each of whom might prefer different semantics
for their explanations. Current explanation methods cannot account for these differences off-the-self.

Local semantic explanations. Our framework entails explanations for specific (fixed) inputs,
whereas prior approaches that rely on the weights of a linear model only inform on global notions
of importance. Recently, Shukla et al. [64] and Pham et al. [50] set forth ideas of local semantic
importance by combining LIME [54] with T-CAV [34], and by leveraging prototypical part networks
[46], respectively. Our work differs in that it does not apply to images only, it considers formal notions
of statistical importance rather than heuristics of gradient importance, and it provides guarantees such
as Type I error and false discovery rate (FDR) control.

1We adopt the distinction between global and local importance as presented in [18].
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Sequential kernelized testing. Motivated by the statistical properties of kernelized independence
tests [62], we will employ the maximum mean discrepancy (MMD) [29] as the test statistic in our
proposed procedures. The recent related work in Shaer et al. [58] introduces the sequential version of
the conditional randomization test (CRT) [11], dubbed e-CRT because of the use of e-values. Unlike
our work, Shaer et al. [58] employ residuals of a predictor as test statistic, they do so in the context of
global tests only, and unrelated to questions of semantic interpretability.

2 Background

In this section, we briefly introduce the necessary notation and general background. Throughout this
work, we will denote random variables with capital letters, and their realizations with lowercase. For
example, X ∼ PX is a random variable sampled from PX , and x indicates an observation of X .

Problem setup. We consider k-fold classification problems such that (X,Y ) ∼ PXY is a random
sample X ∈ X with its one-hot label Y ∈ {0, 1}k, and (x, y) denotes a particular observation. We
assume we are given a fixed predictive model, consisting of an encoder f : X → Rd and a classifier
g : Rd → Rk such that h = f(x) is a d-dimensional representation of x, and ŷk′ = g(h)k′ =
g(f(x))k′ is the prediction of the model for a particular class k′ (e.g., ŷk′ is the output, or score, for
class “dog”). Naturally, H, Ŷ denote the random counterparts of h and ŷ. Although our contributions
do not make any assumptions on the performance of the model, f and g can be thought of as good
predictors, e.g. those that approximate the conditional expectation of Y given X .

Concept bottleneck models (CBMs). Let c = [c1, . . . , cm] ∈ Rd×m be a dictionary of m concepts
such that ∀j ∈ [m] := {1, . . . ,m}, cj ∈ Rd is the representation of the jth concept—either obtained
via CAVs [34] or a VL model’s text encoder. Then, z = ⟨c, h⟩ is the projection of the embedding h
onto the concepts c, and, with appropriate normalization, zj ∈ [−1, 1] is the amount of concept cj
in h. Intuitively, CBMs project dense representations onto the subspace of interpretable semantic
concepts [36], and their performance strongly depends on the size of the dictionary [48]. For example,
it is common for m to be as large as the embedding size (e.g., d = 768 for CLIP:ViT-L/14). In this
work, instead, we let concepts be user-defined, allowing for cases where m≪ d (e.g., m = 20). This
is by design as (i) the contributions of this paper apply to any set of concepts, and (ii) it has been
shown that humans can only gain valuable information if semantic explanations are succinct [53].
However, we remark that the construction of informative concept banks—especially for domain-
specific applications—is subject of ongoing complementary research [20, 48, 78, 80, 81].

Conditional randomization tests. Recall that two random variables A,B are conditionally indepen-
dent if, and only if, given a third random variable C, it holds that PA|B,C = PA|C (i.e., A⊥⊥B | C).
That is, B does not provide any more information about A with C present. Candes et al. [11]
introduced the conditional randomization test (CRT), based on the observation that if A⊥⊥B | C, then
the triplets (A,B,C) and (A, B̃, C) with B̃ ∼ PB|C , are exchangeable. That is, PABC = PAB̃C and
one can essentially mask B without changing the joint distribution. Opposite to classical methods,
the CRT assumes the conditional distribution of the covariates is known (i.e., PB|C), which lends
itself to settings with ample unlabeled data.

With this general background, we now present the main technical contributions of this paper.

3 Testing Semantic Importance via Betting

Our objective is to test the statistical importance of semantic concepts for the predictions of a fixed,
potentially nonlinear model, while inducing a rank of importance. Fig. 1 depicts the problem setup—a
fixed model, composed of the encoder f and classifier g, is probed via a set of concepts c. This figure
also illustrates the key difference with post-hoc concept bottleneck models (PCBMs) [85], in that we
do not train a sparse linear layer to approximate E[Y | Z]. Instead, we focus on characterizing the
dependence structure between Ŷ and Z. Herein, we will drop the ŷk′ notation and simply write ŷ, Ŷ
because we always consider the output of the model for a particular class individually.

3.1 Formalizing Statistical Importance of Semantic Concepts

We start by defining global semantic importance as marginal dependence between Ŷ and Zj , j ∈ [m].
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Figure 1: Overview of the problem setup and our contribution.

Definition 1 (Global semantic importance). For a concept j ∈ [m],

HG
0,j : Ŷ⊥⊥Zj (1)

is the global semantic independence null hypothesis.

Rejecting HG
0,j means that we have observed enough evidence to believe the response of the model

depends on concept j, i.e. concept j is globally important over the population. Note that both Ŷ and
Zj are fixed functions of the same random variable H , i.e. Ŷ = g(H) and Zj = ⟨cj , H⟩. Then, it is
reasonable to wonder whether there is any point in testing HG

0,j at all—can we obtain two independent
random variables from the same one? For example, let g be a linear classifier such that Ŷ = ⟨w,H⟩,
w ∈ Rd. Intuition might suggest that if ⟨w, cj⟩ = 0 then Ŷ⊥⊥Zj , i.e. if the classifier is orthogonal to
a concept, then the concept cannot be important. We show in the short lemma below (whose proof
is in Appendix C.1) that this is false, and that, arguably unsurprisingly, statistical independence is
different from orthogonality between vectors, which motivates the need for our testing procedures.

Lemma 1. Let Ŷ = ⟨w,H⟩, w ∈ Rd. If d ≥ 3, then HG
0,j is true ⇍⇒ ⟨w, cj⟩ = 0.

The null hypothesis HG
0,j above precisely defines the global importance of a concept, but it ignores the

information contained in the rest of them, and concepts may be correlated. For example, predictions
for class “dog” may be independent of “stick” given “tail” and “paws”, although “stick” is marginally
important. To address this, and inspired by [11], we define global conditional semantic importance.
Definition 2 (Global conditional semantic importance). For a concept j ∈ [m], let −j := [m] \ {j}
denote all but the jth concept. Then,

HGC
0,j : Ŷ⊥⊥Zj | Z−j (2)

is the global conditional semantic independence null hypothesis.

Analogous to Definition 1, rejecting HGC
0,j means that we have accumulated enough evidence to believe

the response of the model depends on concept j even in the presence of the remaining concepts, i.e.
there is information about Ŷ in concept j that is missing from the rest.

We stress an important distinction between Definition 2 and PCBMs: the latter approximate E[Y | Z]
with a sparse linear layer, which is inherently interpretable because the regression coefficients directly
inform on the global conditional independence structure of the predictions, i.e. if Ŷ = ⟨β, Z⟩,
β ∈ Rm then Ŷ⊥⊥Zj | Z−j ⇐⇒ βj = 0. In this work, however, we do not assume any
parametrization between the concepts and the labels because we want to provide guarantees on the
original, fixed classifier g that acts directly on an embedding h. From this conditional independence
perspective, PCBMs can be interpreted as a (parametric) test of true linear independence (i.e.,
HPCBM

0,j : Y⊥⊥Zj | Z−j) between the concepts and the labels (note that HPCBM
0,j has the true label Y

and not the prediction Ŷ ), whereas we study the semantic structure of the predictions of a complex
model, which may have learned spurious, non-linear correlations of these concepts from data.

Akin to the CRT [11], we assume we can sample from the conditional distribution of the concepts,
i.e. PZj |Z−j

. Within the scope of this work, m is small (m ≈ 20) and we will show how to
effectively approximate this distribution with nonparametric methods that do not require prohibitive
computational resources. This is an advantage of testing a few semantic concepts compared to input
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features, especially for imaging tasks where the number of pixels is large (≳ 105) and learning a
conditional generative model (e.g., a diffusion model [67]) may be expensive.

Finally, we define the notion of local conditional semantic importance. That is, we are interested
in finding the most important concepts for the prediction of the model locally on a particular input
x, i.e. ŷ = g(f(x)). Recently, [10, 71] showed how to deploy ideas of conditional randomization
testing for local explanations of machine learning models. Briefly, let B,C be random variables
and η(B,C) a fixed, possibly randomized, real-valued predictor. For an observation (b, c), the
explanation randomization test (XRT) [71] null hypothesis is η(b, c) d

= η(B̃, c), B̃ ∼ PB|C=c. That
is, the observed value of B does not affect the distribution of the response given the observed value
of C. We now generalize these ideas.
Definition 3 (Local conditional semantic importance). For a fixed z ∈ [−1, 1]m and any C ⊆ [m],
denote ŶC = g(H̃C) with H̃C ∼ PH|ZC=zC . Then, for a concept j ∈ [m] and a subset S ⊆ [m]\{j},

HLC
0,j,S : ŶS∪{j}

d
= ŶS (3)

is the local conditional semantic independence null hypothesis.

In words, rejecting HLC
0,j,S means that, given the observed concepts in S, concept j /∈ S affects

the distribution of the response of the model, hence it is important. For this test, we assume we
can sample from the conditional distribution of the embeddings given a subset of concepts (i.e.,
PH|ZC=zC ). This is equivalent to solving an inverse problem stochastically, since z = ⟨c, h⟩ and c is
not invertible (c ∈ Rd×m, m≪ d). Hence, there are several embeddings h that could have generated
the observed zC . We will use nonparametric sampling ideas to achieve this, stressing that it suffices
to sample the embeddings H and not an entire input image X since the classifier g directly acts
on h and the encoder f is deterministic. Finally, we remark that HLC

0,j,S differs from the XRT null
hypothesis in that conditioning is performed in the space of semantic concepts instead of the input’s.

With these precise notions of semantic importance, we now show how to test for each one of them
with principles of sequential kernelized independence testing (SKIT) [51].

3.2 Testing by Betting

A classical approach to hypothesis testing consists of formulating a null hypothesis H0, collecting
data, and then summarizing evidence by means of a p-value. Under the null, the probability of
observing a small p-value is small. Thus, for a significance level α ∈ (0, 1), we can reject H0 if
p ≤ α. In this setting, all data is collected first, and then processed later (i.e., offline).

Alternatively, one can instantiate a game between a bettor and nature [59, 60]. At each turn of the
game, the bettor places a wager against H0, and then nature reveals the truth. If the bettor wins,
they will increase their wealth, otherwise lose some. More formally, and as is commonly done
[51, 58, 62], we define a wealth process {Kt}t∈N0

with K0 = 1 and Kt = Kt−1 · (1 + vtκt) where
vt, κt ∈ [−1, 1] are a betting fraction and the payoff of the bet, respectively. It is now easy to see that
when vtκt ≥ 0 (i.e., the bettor wins) the wealth increases, and the opposite otherwise. If the payoff
κt guarantees the game is fair, i.e. the bettor cannot accumulate wealth under the null, then we can
use the wealth process to reject H0 with Type I error control (details in Appendix A). In particular,
for a significance level α ∈ (0, 1), we denote τ := min{t ≥ 1 : Kt ≥ 1/α} the rejection time of H0.

The choice of using sequential testing is motivated by two fundamental properties. First, sequential
tests are adaptive to the hardness of the problem, sometimes provably [62, Proposition 3]. That is,
the harder it is to reject the null, the longer the test will take, and vice versa. This naturally induces a
rank of importance across concepts—if concept cj rejects faster than cj′ , then cj is more important
(i.e., it is easier to reject the null hypothesis that the predictions do not depend on cj). We stress that
this is not always possible by means of p-values because they do not measure effect sizes: consider
two concepts that reject their respective nulls at the same significance level; one cannot distinguish
which—if any—is more important. As we will show in our experiments, all tests used in this work
are adaptive in practice, but statistical guarantees on their rejection times are currently open questions,
and we consider them as future work. Second, sequential tests are sample-efficient because they only
analyze the data is needed to reject, which is especially important for conditional randomization
tests. In the offline scenario, we would have to resample the entire dataset several times (which is
expensive), but the sequential test would terminate in at most the size of the dataset [24].
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Algorithm 1 Level-α C-SKIT for concept j

Input: Stream (Ŷ (t), Z
(t)
j , Z

(t)
−j) ∼ PŶ ZjZ−j

.
1: K0 ← 1
2: Initialize ONS strategy (Algorithm A.1)
3: for t = 1, . . . do
4: Compute ρt as in Eq. (4)
5: D(t) = (Ŷ (t), Z

(t)
j , Z

(t)
−j)

6: Sample Z̃
(t)
j ∼ P

Zj |Z−j=Z
(t)
−j

7: D̃(t) ← (Ŷ (t), Z̃
(t)
j , Z

(t)
−j)

8: κt ← tanh(ρt(D
(t))− ρt(D̃

(t)))
9: Kt ← Kt−1 · (1 + vtκt)

10: if Kt ≥ 1/α then
11: return t
12: end if
13: vt+1 ← ONS step
14: end for

Algorithm 2 Level-α X-SKIT for concept j
Input: Observation z, subset S ⊆ [m] \ {j}.

1: K0 ← 1
2: Initialize ONS strategy (Algorithm A.1)
3: for t = 1, . . . do
4: Compute ρt as in Eq. (5)
5: Sample H̃

(t)
S∪{j} ∼ PH|ZS∪{j}=zS∪{j}

6: Sample H̃
(t)
S ∼ PH|ZS=zS

7: Ŷ
(t)
S∪{j} ← g(H̃

(t)
S∪{j}), Ŷ

(t)
S ← g(H̃

(t)
S )

8: κt ← tanh(ρt(Ŷ
(t)
S∪{j})− ρt(Ŷ

(t)
S ))

9: Kt ← Kt−1 · (1 + vtκt)
10: if Kt ≥ 1/α then
11: return t
12: end if
13: vt+1 ← ONS step
14: end for

3.3 Testing Global Semantic Importance with SKIT

Podkopaev et al. [51] show how to design sequential kernelized tests of independence (i.e., H0 :

A⊥⊥B) by framing them as particular two-sample tests of the form H0 : P = P̃ , with P = PAB and
P̃ = PA × PB . Similarly to [58, 62], they propose to leverage a simple yet powerful observation
about the symmetry of the data under H0 [51, Section 4]. We state here the main result we will use in
this paper (the proof is included in Appendix A.2).

Lemma 2 (See [51, 58, 62]). ∀t ≥ 1, let X ∼ P and X̃ ∼ P̃ , and let ρt : X → R be any fixed
real-valued function on X . Then, κt = tanh(ρt(X)− ρt(X̃)) provides a fair game for H0 : P = P̃ .

That is, Lemma 2 prescribes how to construct valid payoffs for two-samples tests and, consequently,
tests of independence. We note that the choice of tanh provides κt ∈ [−1, 1], but any arbitrary
anti-symmetric function can be used (e.g., sign). Furthermore, any fixed function ρt is valid but, in
general, this function should have a positive value under the alternative in order for the bettor to
increase their wealth and the testing procedure to have good power.

Going back to the problem studied in this work, note that the global semantic importance null
hypothesis HG

0,j in Definition 1 can be directly rewritten as a two-sample test, i.e. HG
0,j : Ŷ⊥⊥Zj is

equivalent to HG
0,j : PŶ Zj

= PŶ × PZj
. We follow [51] and use the maximum mean discrepancy

(MMD) [29] to measure the distance between the joint and the product of marginals. In particular,
let RŶ ,RZj

be two reproducing kernel Hilbert spaces (RKHSs) on the domains of Ŷ and Zj ,
respectively (recall that Ŷ and Zj are univariate). Then, ρSKIT

t is the plug-in estimate of the witness
function of MMD(PŶ Zj

, PŶ × PZj ) at time t.2 We include the SKIT algorithm and technical details
on computing ρSKIT

t and kSKIT
t in Appendix B.1.

Computational complexity of SKIT. Analogous to the original presentation in Shekhar and Ramdas
[62], the computational complexity of Algorithm B.1 is O(τ2), where τ is the random rejection time.

We now move on to presenting two novel testing procedures: the conditional randomization SKIT
(C-SKIT) for HGC

0,j , and the explanation randomization SKIT (X-SKIT) for HLC
0,j,S .

3.4 Testing Global Conditional Semantic Importance with C-SKIT

Analogous to the discussion in the previous section, we rephrase the global conditional null hypothesis
HGC

0,j in Definition 2 as a two sample test HGC
0,j : PŶ ZjZ−j

= PŶ Z̃jZ−j
, Z̃j ∼ PZj |Z−j

. In contrast
with other kernel-based notions of distance between conditional distributions [49, 63, 66]—and akin
to the CRT [11]—we assume we can sample from PZj |Z−j

, which allows us to directly estimate

2Recall that MMD(PAB , PA × PB) is the Hilbert-Schmidt Independence Criterion (HSIC) [28].
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MMD(PŶ ZjZ−j
, PŶ Z̃jZ−j

) in our testing procedure (we will expand on how to sample from this

distribution shortly). LetRŶ ,RZj ,RZ−j be three RKHSs on the domains of Ŷ , Zj , and Z−j (i.e.,
R,R,Rm−1, where m is the number of concepts). Then, at time t, the C-SKIT payoff function is

ρC-SKIT
t := µ̂

(t−1)

Ŷ ZjZ−j
− µ̂

(t−1)

Ŷ Z̃jZ−j
, (4)

where µ̂(t−1)

Ŷ ZjZ−j
, µ̂

(t−1)

Ŷ Z̃jZ−j
are the mean embeddings of their respective distributions inRŶ ⊗RZj ⊗

RZ−j
, and ⊗ is the tensor product (see Appendix B.2 for technical details). Algorithm 1 summarizes

the C-SKIT procedure, which provides Type I error control for HGC
0,j , as we briefly state in the

following proposition (see Appendix C.2 for the proof).

Proposition 1. ∀t ≥ 1, let (Ŷ , Zj , Z−j) ∼ PŶ ZjZ−j
and (Ŷ , Z̃j , Z−j) ∼ PŶ Z̃jZ−j

, Z̃j ∼ PZj |Z−j
.

Then, κt := tanh(ρC-SKIT
t (Ŷ , Zj , Z−j)− ρC-SKIT

t (Ŷ , Z̃j , Z−j)) provides a fair game for HGC
0,j .

Computational complexity of C-SKIT. First note that Z−j is an (m−1)-dimensional vector (where
m is the number of concepts). So, at each step of the test, the evaluation of the kernel associated with
RZ−j requires an additional sum over O(m) terms. Furthermore, C-SKIT needs access to samples
from PZ|Z−j

, and we conclude that the computational complexity of Algorithm 1 is O(Tnmτ2),
where Tn represents the cost of the sampler on n samples, and it depends on implementation. For
example, in the following, we will use non-parametric samplers with Tn = O(n2). Other choices of
samplers, such as variational-autoencoders, may have constant cost (e.g., they are trained once and
only used for inference).

3.5 Testing Local Conditional Semantic Importance with X-SKIT

Attentive readers will have noticed that the local conditional semantic null hypothesis HLC
0,j,S in

Definition 3 is already a two-sample test where the test statistic P is the distribution of the response of
the model with the observed amount of concept j (i.e., ŶS∪{j} = g(H̃S∪{j})), and the null distribution
P̃ without (i.e., ŶS = g(H̃S)). Herein, we assume we can sample from H̃C ∼ PH|ZC=zC for any
subset C ⊆ [m], i.e. the conditional distribution of dense embeddings with specific concepts, which
we will address via nonparametric methods. Then, for an RKHSRŶ , the X-SKIT payoff function is

ρX-SKIT
t := µ̂

(t−1)

ŶS∪{j}
− µ̂

(t−1)

ŶS
(5)

with µ̂
(t−1)

ŶS∪{j}
, µ̂

(t−1)

ŶS
mean embeddings of the distributions in RŶ . That is, ρX-SKIT

t is the plug-in

estimate of the witness function of MMD(ŶS∪{j}, ŶS)—technical details are in Appendix B.3. Then,
the X-SKIT testing procedure, which is summarized in Algorithm 2, provides Type I error control for
HLC

0,j,S , as the following proposition summarizes (the proof is included in Appendix C.3).

Proposition 2. ∀t ≥ 1, κt := tanh(ρX-SKIT
t (ŶS∪{j})− ρX-SKIT

t (ŶS)) provides a fair game for HLC
0,j,S .

Computational complexity of X-SKIT. Note that Algorithm 2 assumes access to a sampler
PH|ZC=zC , so its computational complexity is O(Tnτ

2), where, similarly to above, Tn is the cost
of the sampler. We briefly remark that, for the nonparametric samplers used in this work, Tn = n2

(compared to τn2 for C-SKIT) because we only need to estimate one conditional distribution.

So far, we have presented our tests for one concept at a time, but we are interested in testing m ≥ 1
concepts. In this setting, it is well-known that multiple hypothesis testing requires appropriate
corrections to avoid inflated significance levels. We use a result of Wang and Ramdas [79] and devise
a greedy post-processor that guarantees false discovery rate control [3] (see Appendix A.4).

4 Results

First, we verify that our tests are valid and that they are adaptive to the hardness of their null
hypotheses on two synthetic experiments in Appendix D. Here, we showcase the flexibility and
effectiveness of our framework on zero-short image classification across several VL models on three
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Table 1: Summary of results for each dataset. Metrics are reported as average across all VL models
used in the experiments. See main text for details about the models and the metrics used.

Method Original
model

Imagenette AwA2 CUB

Accuracy Rank agreement Accuracy Rank agreement f1 Accuracy Rank agreement f1

SKIT ✓
98.99%

0.51
99.50%

0.50 0.65
89.52%

0.82 0.93
C-SKIT ✓ 0.54 0.46 0.57 - -
X-SKIT ✓ 0.59 - - - -

PCBM ✗ 95.85% 0.45 95.11% 0.36 0.53 - - -
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(a) Global importance with SKIT.
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(b) Global conditional importance with C-SKIT.

Figure 2: Importance results with CLIP:ViT-L/14 on 2 classes in the AwA2 dataset. Concepts are
annotated with (p) if they are present in the class, or with (a) otherwise.

real-world datasets: Animal with Attributes 2 (AwA2) [82], CUB-200-2011 (CUB) [77], and the
Imagenette subset of ImageNet [22].3. We compare performance and transferability of the ranks of
importance provided by each method across 8 VL models (see Appendix E for details) and, for all
experiments, f is the image encoder of the model and g is the (linear) zero-shot classifier constructed
by encoding “A photo of a <CLASS_NAME>” with the text encoder. Herein, we will always use RBF
kernels to compute payoffs, and we repeat each test 100 times on independent draws of τmax samples
to estimate each concept’s expected rejection time and expected rejection rate at a significance level of
α = 0.05 with the FDR post-processor described in Appendix A.4. That is, a (normalized) rejection
time of 1 means failing to reject in τmax steps. Finally, recall that C-SKIT and X-SKIT need access
to PZj |Z−j

and PH|ZC=zC , and that these distributions are not known in general. Since m is small,
we use nonparametric methods to estimate them (see Appendix E.1).

Table 1 summarizes the results of all experiments, which we now present and discuss individually.

4.1 AwA2 Dataset

Given the presence of global (i.e., class-level) annotations, we use SKIT and C-SKIT to test the
global (and global conditional) semantic importance structure of the predictions for the top-10 best
classified animal categories across all models (we describe the dataset, the concepts used, and the
hyperparameters of the tests in Appendix E.2). We classify the top-10 concepts reported by each
method as important, and we compute the f1 score with the ground-truth annotations. We briefly
remark that this choice is informed by the fact that most concepts have rejection rates larger than
the significance level of α. When comparing with PCBM—since we use different concepts for each
class—we train 100 independent linear models for each class, and we rank concepts based on their
average absolute weights (instead of signed ones) because the null hypotheses presented in this
work are two-sided, i.e. a concept is important both if it increases the prediction for a class or if it
decreases it. Table 1 shows that both SKIT and C-SKIT outperform PCBM across all three metrics,
with SKIT providing the best average rank agreement across different models and importance f1
score (0.50 and 0.65, respectively). The fact that ranks provided by our tests have higher average
agreement compared to PCBM suggests that VL models may share a similar semantic independence
structure notwithstanding their embedding size or training strategy, i.e. semantic importance may be
transferable across models (all individual pairwise agreements are included in Fig. E.4).

Finally, Fig. 2 shows ranks of importance with CLIP:ViT-L/14 on 2 animal categories (see Figs. E.5
and E.6 for all classes). In general, concepts are globally important (rejection rates are greater than α),

3Code to reproduce all experiments is available at https://github.com/Sulam-Group/IBYDMT.
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Figure 3: Importance results with X-SKIT and CLIP:ViT-L/14 on 4 images in the CUB dataset.
Concepts with (p) are present in the image according to human annotations, and (a) otherwise.

and it is harder to reject the global conditional null hypothesis (rejection rates are lower and rejection
times larger), naturally reflecting the fact that conditional independence is a stronger condition.

4.2 CUB Dataset

This dataset (differently from AwA2) provides per-image annotations of semantic attributes. So, we
use X-SKIT to test the semantic importance structure of VL models locally on particular images
and validate its performance against such annotations (we include details about this experiment and
extended results in Appendix E.3). The purpose of this experiment is to validate the performance of
X-SKIT, hence we use the ground-truth binary semantic annotations as an oracle instead of predicting
the presence of concepts. In practical scenarios where ground-truth is not available, one could—as
done by previous works [12]—use LLMs to answer binary questions (e.g., “Does this bird have an
orange bill? Yes/No”). Furthermore, note that for each concept j ∈ [m] there are exponentially
many tests with null hypothesis HLC

0,j,S—one for each subset S ⊆ [m] \ {j}—which are intractable
to compute. Thus, we report average results over 100 tests with random subsets with fixed size s.

Fig. 3 depicts prototypical results with CLIP:ViT-L/14 (Fig. E.9 includes results for all models
on the same images). After running X-SKIT, we classify concepts as important by thresholding
their rejection rates at level α—which is a statistically-valid way of selecting important concepts.
Results are included in Table 1, and we conclude that X-SKIT provides ranks of importance that are
well-aligned both across models (0.82 rank agreement) and with ground-truth annotations (f1 score
of 0.93). We remark that X-SKIT is the first method to provide local semantic explanations, hence
why we cannot compare with alternatives.

4.3 Imagenette Dataset

Lastly, we use both SKIT, C-SKIT, and X-SKIT on the Imagenette subset of ImageNet [22]—which
does not provide ground-truth semantic annotations to evaluate performance with. So, we use SpLiCe
[6] to select which concepts to test (see Appendix E.4 for details), but we stress that any user-defined
set of concepts would be valid—a unique feature of our proposed framework.

Figs. 4a and 4b show SKIT and C-SKIT results with CLIP:ViT-L/14 on 2 classes in the dataset
(Fig. E.11 includes all classes). We use SpLiCe to encode the entire dataset and test the top-20
concepts. Analogous to the experiment on AwA2, we can see that rejection rates are lower for
C-SKIT (i.e., conditional dependence) compared to SKIT (i.e., marginal dependence). We evaluate
rank agreement across all models and compare with PCBM in Table 1. These results confirm that not
only are the ranks produced by our tests more transferable across models (rank agreement of 0.51 for
SKIT, 0.54 or C-SKIT, 0.59 for X-SKIT, and 0.45 for PCBM), but also they retain the performance
of the original classifier (98.99% for our methods vs 95.55% for PCBM). We refer interested readers
to Fig. E.12 for all pairwise comparisons. Furthermore, we qualitatively study the stability of our tests
as a function of τmax in Fig. E.13. This is important because τmax represents the sample complexity
of the tests. Our findings indicate that important concepts tend to exhibit greater stability in their
ranks compared to less important ones, with SKIT showing overall more stability than C-SKIT.

To conclude, Fig. 4c shows X-SKIT results with CLIP:ViT-L/14 on three random images from the
dataset (see Figs. E.15 and E.16 for all models and more images). We use SpLiCe to encode each
image and obtain its top-10 concepts, and then add the bottom-4 according to PCBM, for a total of 14
attributes per image. The choice of combining concepts both from SpLiCe and PCBM will highlight
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(a) Global importance with SKIT.
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(c) Local importance with X-SKIT. The bottom-4 concepts according to PCBM are annotated with (*).

Figure 4: Results with CLIP:ViT-L/14 on Imagenette.

the differences between these methods and our notion of local statistical importance, as we will
shortly expand on. Recall that we use nonparametric samplers to approximate PH|ZC=zC , so the cost
of using image-specific concepts boils down to projecting the feature embeddings with a different
matrix c, which is negligible compared to running the tests. We note that parametric generative
models—such as variational autoencoders or diffusion models—would have required retraining for
each set of concepts, which is expensive. Overall, we find that ranks are well-aligned across models
(0.71 rank agreement, see Table 1). We can appreciate how the bottom-4 concepts from PCBM,
which are annotated with an asterisk, are not always last, i.e. a concept may be locally important
even if it is not globally important. For example, concept “fishing” may not be globally important
for class “English springer”, but it is locally important for an image of a dog in water. Conversely, a
concept having a high weight according to SpLiCe does not imply it will be statistically important for
the predictions of the model, and these distinctions are important in order to communicate findings
transparently.

5 Conclusions

There exist an increasing interest in explaining modern, unintelligible predictors and, in particular,
doing so with inherently interpretable concepts that convey specific meaning to users. This work
is the first to formalize precise statistical notions of semantic importance in terms of global (i.e.,
over a population) and local (i.e., on a sample) conditional hypothesis testing. We propose novel,
valid tests for each notion of importance while providing a rank of importance by deploying ideas of
sequential testing. Importantly, by approaching importance via conditional independence (and by
developing appropriate valid tests), we are able to provide Type I error and FDR control, a feature
that is unique to our framework compared to existing alternatives. Furthermore, our tests allow to
explain the original—potentially nonlinear—classifier that would be used in the wild, as opposed to
training surrogate linear models as has been the standard so far.

Naturally, our work has limitations. First and foremost, the procedures introduced in this work
require access to samplers, and there might be settings were learning these models is hard; we used
nonparametric estimators in our experiments, but modern generative models could be employed, too.
Second, kernel-based tests rely on the assumption that the kernels used are characteristic for the
space of distributions considered. Although these assumptions are usually satisfied in Rd for RBF
kernels, there may exist data modalities where this is not true (e.g., discrete data, graphs), which
would compromise the power of the test. Finally, although we grant full flexibility to users to specify
the concepts they care about, there is no guarantee that these are well-represented in the feature space
of the model, nor that they are the most informative ones for a specific task. All these points are a
matter of ongoing and future work.
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A Testing by Betting

In this appendix, we include additional background information on testing by betting that was omitted
from the main text for the sake of conciseness of presentation. Recall that the wealth process
{Kt}t∈N0

with N0 := N ∪ {0} is defined as

K0 = 1 and Kt = Kt−1 · (1 + vtκt) (6)

where vt ∈ [−1, 1] is the betting fraction and κt ∈ [−1, 1] the payoff of the bet.

A.1 Test Martingales

We start by introducing the definition of a test martingale (see, for example, Shaer et al. [58]).

Definition A.1 (Test martingale). A nonnegative stochastic process {St}t∈N0
is a test martingale if

S0 = 1 and, under a null hypothesis H0, it is a supermartingale, i.e.

EH0
[St | Ft−1] ≤ St−1, (7)

where Ft−1 is the filtration (i.e., the smallest σ-algebra) of all previous observations.

In the following, we will use Ville’s inequality, which we include for the sake of completeness.

Lemma A.1 (Ville’s inequality [75]). If the stochastic process {St}t∈N0 is a nonnegative super-
martingale,

P[∃t ≥ 0 : St ≥ η] ≤ E[S0]/η, ∀η > 0. (8)

With this, we state a condition under which we can use the wealth process to reject a null hypothesis
H0 with Type I error control.

Lemma A.2 (See Shaer et al. [58], Shekhar and Ramdas [62]). If

EH0 [κt | Ft−1] = 0, (9)

where Ft−1 denotes the filtration (i.e., the smallest σ-algebra) of all previous observations, then the
wealth process {Kt}t∈N0

describes a fair game and

PH0
[∃t ≥ 1 : Kt ≥ 1/α] ≤ α. (10)

Proof. It suffices to show that if EH0 [κt | Ft−1] = 0, then the wealth process {Kt}t∈N0 is a test
martingale:

1. K0 = 1 by definition, and

2. It is immediate to see that the wealth process is nonnegative because vtκt ∈ [−1, 1] and the
bettor never risks more than their current wealth, i.e. they will never go into debt. Finally,

3. If EH0 [κt | Ft−1] = 0, then

EH0
[Kt | Ft−1] = EH0

[Kt−1 · (1 + vtκt) | Ft−1] (11)
= Kt−1 · EH0

[1 + vtκt | Ft−1] (Kt−1 | Ft−1 is constant) (12)
≤ Kt−1 · (1 + EH0 [κt | Ft−1]) (vt ≤ 1) (13)
= Kt−1, (14)

and the wealth process is a supermartingale under the null.

Then, by Ville’s inequality, we conclude that for any significance level α ∈ (0, 1)

PH0 [∃t ≥ 1 : Kt ≥ 1/α] ≤ αE[K0] = α (15)

which is the statement of the lemma.
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A.2 Symmetry-based Two-sample Sequential Testing

In this section, we show how to leverage symmetry to construct valid sequential tests for a two-sample
null hypothesis of the form

H0 : P = P̃ . (16)

Lemma A.3 (See [51, 58, 62]). ∀t ≥ 1, let X ∼ P and X̃ ∼ P̃ be two random variables sampled
from P and P̃ , respectively. If P = P̃ , it holds that for any fixed function ρt : X → R

ρt(X)− ρt(X̃)
d
= ρt(X̃)− ρt(X), (17)

that is
p0(ρt(X)− ρt(X̃)) = p0(ρt(X̃)− ρt(X)), (18)

where p0 is the probability density function induced by H0.

Proof. The proof is straightforward. If P = P̃ , then X and X̃ are exchangeable by assumption.

Proof of Lemma 2

Recall the lemma states that for any fixed function ρt : X → R, the payoff

κt = tanh(ρt(X)− ρt(X̃)) (19)

provides a fair game (i.e., it satisfies Lemma A.2) for a two-sample test with null hypothesis
H0 : P = P̃ . We use Lemma A.3 above to prove a stronger result that implies the desired claim.
Lemma A.4 (See [51, 58, 62]). For any t ≥ 1, and any fixed anti-symmetric function ξ : R→ R, it
holds that

EH0 [ξ(ρt(X)− ρt(X̃)) | Ft−1] = 0. (20)

Proof. We can see that

EH0
[ξ(ρt(X)− ρt(X̃)) | Ft−1] = EH0

[ξ(ρt(X)− ρt(X̃))] (ρt, ξ are fixed) (21)

=

∫
R
ξ(u)p0(u) du (change of variables) (22)

=

∫
R+

(ξ(u) + ξ(−u))p0(u) du (by Lemma A.3) (23)

=

∫
R+

(ξ(u)− ξ(u))p0(u) du (ξ is anti-symmetric) (24)

= 0, (25)

which concludes the proof.

Proof of Lemma 2. Note that tanh is an anti-symmetric function, so Lemma A.4 holds. Then,
Lemma A.2 implies that κt = tanh(ρt(X)−ρt(X̃)) provides a test martingale for H0 : P = P̃ .

A.3 Betting Strategies

So far, we have discussed how to construct valid test martingales in terms of the payoff κt. Then, it
remains to define a strategy to choose the betting fraction vt. In general, any method that picks vt
before data is revealed maintains validity of the test, and we briefly summarize a few alternatives.

Constant betting fraction. Naturally, a fixed betting fraction vt = v is valid. However, this strategy
may be prone to overshooting, i.e. the wealth may go to zero almost surely under the alternative, and
severely impact the power of the test [51, Example 2].

Mixture method [17, 58]. A possible way to overcome the limitations of setting a fixed betting
fraction is to average across a distribution, i.e.

Kt =

∫
V
K

(v)
t p(v) dv, (26)
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where K
(v)
t is the wealth with constant betting fraction vt = v, and p(v) is a prior over the choice

of fractions (e.g., uniform over [−1, 1]). This choice is valid, and motivated by the intuition that
the mixture martingale will be driven by the term that achieves the optimal betting fraction [58,
Theorem 1].

Online Newton step (ONS) [19]. Alternatively, one can frame choosing the betting fraction as an
online optimization problem that finds the optimal vt in terms of the regret of the strategy. We refer
interested readers to [19, 58, 62] for a theoretical analysis of this strategy and simply state here the
wealth’s growth rate. Algorithm A.1 summarizes this strategy.
Lemma A.5 (See Shekhar and Ramdas [62]). For any sequence {vt ∈ [−1, 1] : t ≥ 1}, it holds that

logKt ≥
1

8t

(
t∑

t′=1

vt′

)2

− log t. (27)

Algorithm A.1 ONS Betting Strategy
Input: Sequence of payoffs {κt}t≥1

1: a0 ← 1
2: v1 ← 0
3: for t ≥ 1 do
4: zt ← κt/(1 + vtκt)
5: at ← at−1 + z2t
6: vt+1 ← max(0,min(1, at + 2/(2− log(3)) · zt/at))
7: end for

A.4 Controlling False Discovery Rate

Finally, we briefly present one way to provide false discovery rate (FDR) control when testing multiple
hypotheses with sequential tests. Given m null hypotheses H(1)

0 , . . . ,H
(m)
0 , denote e(1), . . . , e(m)

their respective e-values [60, 76] and let E : [0,∞]m → 2[m] be an e-testing procedure such that
S̃ = E(e(1), . . . , e(m)) is the set of rejected null hypotheses. Then, FDR is the expected proportion
of false discoveries to the number of total findings, i.e.

FDR := E

[
|S̃ ∩ S0|
|S̃|

]
, (28)

where S0 := {j ∈ [m] : H
(j)
0 is true} is the set of true null hypotheses (i.e., the ones that should not

be rejected). Following [8, 79], we say that E is self-consistent at level α if every rejected e-value
satisfies e(j) ≥ m/α|S̃|, and we now state the lemma we use to construct our FDR post-processor in
Algorithm A.2.
Lemma A.6 (See Wang and Ramdas [79]). Any self-consistent e-testing procedure at level α controls
FDR at level α for arbitrary configurations of e-values.

Algorithm A.2 Level-α greedy FDR post-processor.

Input: Wealth processes {K(1)
t }, . . . , {K

(m)
t }, t ∈ N0.

1: S̃ ← ∅
2: for s = 1, . . . ,m do
3: j′, τ ′ ← arg min

j∈[m]\S̃, τ∈[0,∞]

τ s.t. K
(j)
τ ≥ m/αs

4: if τ ′ =∞ then
5: return S̃
6: end if
7: S̃ ← S̃ ∪ {j′}
8: end for
9: return S̃
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Recall that the optional stopping theorem implies that for a test martingale {Kt}t∈N0 , the wealth Kt

is an e-value for any t ≥ 1. Then, intuitively, Algorithm A.2 transforms an e-testing procedure E
into a self-consistent one by greedily rejecting concepts as soon as they cross the adjusted threshold
m/α|S̃|. Note that we do not know the number of rejections a priori, and that m/α|S̃| is a decreasing
function of |S̃|. Hence, the adjusted threshold for the first concept will be m/α (which matches
the common Bonferroni correction [9]), m/2α for the second one, then m/3α, and so on and so
forth. The procedure stops when no more concepts reach the threshold, and concepts are sorted
by their adjusted rejection times. We remark that Algorithm A.2 runs in O(m) time, and that it
does not change the individual testing procedures—which is important because concepts are tested
concurrently in practice.

B Technical Details on Payoff Functions

In this appendix, we include technical details on how to compute the payoff functions of all tests
presented in this paper. We start with a brief overview of the maximum mean discrepancy (MMD)
[29], and we refer interested readers to [1, 4, 61, 68] for rigorous introductions to the theory of
reproducing kernel Hilbert spaces (RKHSs) and their applications to probability and statistics.
Definition B.1 (Mean embedding (see Gretton et al. [29])). Let P be a probability distribution on X
andR an RKHS on the same domain. The mean embedding of P inR is the element µP ∈ R with

∀ρ ∈ R, EP [ρ(X)] = ⟨µP , ρ⟩R. (29)

Furthermore, given X(1), . . . , X(n) sampled i.i.d. from P , the plug-in estimate µ̂
(n)
P is

µ̂
(n)
P :=

1

n

n∑
i=1

φ(X(i)), (30)

where φ is the canonical feature map, i.e. φ(X) = k(X, ·), and k is the kernel associated withR.

We now define the MMD between two probability distributions P,Q and show that it can be rewritten
in terms of their mean embeddings.
Definition B.2 (Integral probability metric (see Müller [45])). Let P,Q be two probability distribu-
tions over X . Furthermore, denote G = {g : X → R} a hypothesis class of real-valued functions
over X . Then,

DG(P,Q) := sup
g∈G
|EP [g(X)]− EQ[g(X)]| (31)

is the distance between P and Q induced by G, and the function g∗ that achieves the supremum is
called witness function.

The MMD is defined as DB(R)(P,Q), where B(R) is the unit ball ofR, i.e.

B(R) := {ρ ∈ R : ∥ρ∥R ≤ 1}. (32)

Definition B.3 (Maximum mean discrepancy (see Gretton et al. [29])). For P,Q defined as above,
letR be an RKHS on their domain. Then,

MMD(P,Q) := sup
ρ∈B(R)

EP [ρ(X)]− EQ[ρ(X)]. (33)

We note that we drop the absolute value because if ρ ∈ B(R), then −ρ ∈ B(R) also. From the
definition of mean embedding, it follows that

MMD(P,Q) = sup
ρ∈B(R)

⟨µP , ρ⟩R − ⟨µQ, ρ⟩R (34)

= sup
ρ∈B(R)

⟨µP − µQ, ρ⟩ (35)

= ∥µP − µQ∥R, (36)

and its witness function satisfies
ρ∗ ∝ µP − µQ. (37)
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Algorithm B.1 Level-α SKIT for the global importance of concept j

Input: Stream (Ŷ (t), Z
(t)
j ) ∼ PŶ Zj

.
1: K0 ← 1
2: Initialize ONS strategy as in Algorithm A.1.
3: for t = 1, . . . do
4: Compute ρt as in Eq. (47)
5: Observe D(2t−1) = (Ŷ (2t−1), Z

(2t−1)
j ) and D(2t) = (Ŷ (2t), Z

(2t)
j )

6: D̃(2t−1) ← (Ŷ (2t−1), Z
(2t)
j ) and D̃(2t) ← (Ŷ (2t), Z

(2t−1)
j )

7: Compute κt as in Eq. (48)
8: Kt ← Kt−1 · (1 + vtκt)
9: if Kt ≥ 1/α then

10: return t
11: end if
12: vt+1 ← ONS step
13: end for

B.1 Computing ρSKIT
t and κSKIT

t

Recall that ρSKIT
t is the estimate of the witness function of MMD(PŶ Zj

, PŶ × PZj ) at time t, i.e.

ρSKIT
t = µ̂

(2(t−1))

Ŷ Zj
− µ̂

(2(t−1))

Ŷ
⊗ µ̂

(2(t−1))
Zj

, (38)

where

µ̂
(2(t−1))

Ŷ Zj
=

1

2(t− 1)

2(t−1)∑
t′=0

(φŶ (Ŷ
(t′))⊗ φZj (Z

(t′)
j )), (39)

µ̂
(2(t−1))

Ŷ
=

1

t− 1

2(t−1)∑
t′=0

φŶ (Ŷ
(t′)), µ̂

(2(t−1))
Zj

=
1

t− 1

2(t−1)∑
t′=0

φZj (Z
(t′)
j ), (40)

and φŶ , φZj are the canonical feature maps associated withRŶ andRZj , respectively. We remark
that ρSKIT

t is an operator, and, for a sample (ŷ, zj), its value ρSKIT
t (ŷ, zj) can be computed as

ρSKIT
t (ŷ, zj) = (µ̂

(2(t−1))

Ŷ Zj
− µ̂

(2(t−1))

Ŷ
⊗ µ̂

(2(t−1))
Zj

)(ŷ, zj) (41)

= µ̂
(2(t−1))

Ŷ Zj
(ŷ, zj)− (µ̂

(2(t−1))

Ŷ
⊗ µ̂

(2(t−1))
Zj

)(ŷ, zj) (42)

with

µ̂
(2(t−1))

Ŷ Zj
(ŷ, zj) =

1

2(t− 1)

2(t−1)∑
t′=0

kŶ (Ŷ
(t′), ŷ)kZj

(Z
(t′)
j , zj) (43)

(µ̂
(2(t−1))

Ŷ
⊗ µ̂

(2(t−1))
Zj

)(ŷ, zj) =
1

2(t− 1)

2(t−1)∑
t′=0

kŶ (Ŷ
(t′), ŷ) ·

2(t−1)∑
t′=0

kZj
(Z

(t′)
j , zj)

 , (44)

where kŶ , kZj
are the kernels associated withRŶ andRZj

, respectively.

Furthermore, note that, in practice, we only have access to samples from the test distribution PŶ Zj

(i.e., the joint) and we swap elements of two consecutive samples to simulate data from the null
distribution PŶ × PZj . More formally, let

D(2t) = (Ŷ (2t), Z
(2t)
j ) ∼ PŶ Zj

, D(2t−1) = (Ŷ (2t−1), Z
(2t−1)
j ) ∼ PŶ Zj

(45)

such that

D̃(2t) = (Ŷ (2t), Z
(2t−1)
j ), D̃(2t−1) = (Ŷ (2t−1), Z

(2t)
j ). (46)
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Then,
ρSKIT
t := µ̂

(2(t−1))

Ŷ Zj
− µ̂

(2(t−1))

Ŷ
⊗ µ̂

(2(t−1))
Zj

(47)

where µ̂Ŷ Zj
, µ̂Ŷ , µ̂Zj are the mean embeddings of PŶ Zj

, PŶ , PZj in RŶ ⊗ RZj , RŶ , and RZj ,
respectively, and⊗ is the tensor product as in Gretton et al. [29]. We remark that ρSKIT

t is a real-valued
operator, i.e. ρSKIT

t : R×R→ R, and that we use data up to t− 1 to compute ρt in order to maintain
validity of the test, i.e. ρt is fixed conditionally on previous observations.

Following Lemma 2, we conclude

κSKIT
t := tanh

(
ρSKIT
t (D(2t−1)) + ρSKIT

t (D(2t))− ρSKIT
t (D̃(2t−1))− ρSKIT

t (D̃(2t))
)

(48)

and Algorithm B.1 summarizes the SKIT procedure for the global semantic importance null hypothesis
HG

0,j in Definition 1.

B.2 Computing ρC-SKIT
t and κC-SKIT

t

Recall that ρC-SKIT
t is the estimate of the witness function of MMD(PŶ ZjZ−j

, PŶ Z̃jZ−j
) with Z̃j ∼

PZj |Z−j
at time t, i.e.

ρC-SKIT
t = µ̂

(t−1)

Ŷ ZjZ−j
− µ̂

(t−1)

Ŷ Z̃jZ−j
, (49)

where

µ̂
(t−1)

Ŷ ZjZ−j
=

1

t− 1

t−1∑
t′=0

(
φŶ (Ŷ

(t′))⊗ φZj (Z
(t′)
j )⊗ φZ−j (Z

(t′)
−j )

)
(50)

µ̂
(t−1)

Ŷ Z̃jZ−j
=

1

t− 1

t−1∑
t′=0

(
φŶ (Ŷ

(t′))⊗ φZj (Z̃
(t′)
j )⊗ φZ−j (Z

(t′)
−j )

)
(51)

and φŶ , φZj
, φZ−j

are the canonical feature maps associated with their respective RKHSs. We
remark that ρC-SKIT

t is defined as an operator, and, for a triplet (ŷ, zj , z−j) its value can be computed
as

ρC-SKIT
t (ŷ, zj , z−j) = (µ̂

(t−1)

Ŷ ZjZ−j
− µ̂

(t−1)

Ŷ Z̃jZ−j
)(ŷ, zj , z−j) (52)

= µ̂
(t−1)

Ŷ ZjZ−j
(ŷ, zj , z−j)− µ̂

(t−1)

Ŷ Z̃jZ−j
(ŷ, zj , z−j) (53)

with

µ̂
(t−1)

Ŷ ZjZ−j
(ŷ, zj , z−j) =

1

t− 1

t−1∑
t′=0

kŶ (Ŷ
(t′), y)kZj

(Z
(t′)
j , zj)kZ−j

(Z
(t′)
−j , z−j) (54)

µ̂
(t−1)

Ŷ Z̃jZ−j
(ŷ, zj , z−j) =

1

t− 1

t−1∑
t′=0

kŶ (Ŷ
(t′), y)kZj

(Z̃
(t′)
j , zj)kZ−j

(Z
(t′)
−j , z−j) (55)

where kŶ , kZj
, kZ−j

are the kernels associated withRŶ ,RZj
, andRZ−j

, respectively.

Following Lemma 2, we conclude

κC-SKIT
t := tanh(ρC-SKIT

t (Ŷ , Zj , Z−j)− ρC-SKIT
t (Ŷ , Z̃j , Z−j)). (56)

B.3 Computing ρX-SKIT
t and κX-SKIT

t

Recall that, for a particular sample z, a concept j ∈ [m], and a subset S ⊆ [m] \ {j} that does not
contain j, ρX-SKIT

t is the estimate—at time t—of the witness function of MMD(ŶS∪{j}, ŶS) with
ŶC = g(H̃C), H̃C ∼ PH|ZC=zC , i.e.

ρX-SKIT
t = µ̂

(t−1)

ŶS∪{j}
− µ̂

(t−1)

ŶS
, (57)
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where

µ̂
(t−1)

ŶS∪{j}
=

1

t− 1

t−1∑
t′=0

φŶ (Ŷ
(t′)
S∪{j}), µ̂

(t−1)

ŶS
=

1

t− 1

t−1∑
t′=0

φŶ (Ŷ
(t′)
S ), (58)

and φŶ is the canonical feature map ofRŶ . Then, for a prediction ŷ, the value of ρX-SKIT
t is

ρX-SKIT
t (ŷ) = (µ̂

(t−1)

ŶS∪{j}
− µ̂

(t−1)

ŶS
)(ŷ) (59)

= µ̂
(t−1)

ŶS∪{j}
(ŷ)− µ̂

(t−1)

ŶS
(ŷ) (60)

=
1

t− 1

[
t−1∑
t′=0

kŶ (Ŷ
(t′)
S∪{j}, ŷ)−

t−1∑
t′=0

kŶ (Ŷ
(t′)
S , ŷ)

]
, (61)

where kŶ is the kernel associated withRŶ .

To conclude, applying Lemma 2 implies

κX-SKIT
t := tanh(ρX-SKIT

t (ŶS∪{j})− ρX-SKIT
t (ŶS)). (62)

C Proofs

In this appendix, we include the proofs of the results presented in this paper.

C.1 Proof of Lemma 1

Recall that c ∈ Rd×m is a dictionary of m concepts such that cj , j ∈ [m] is the vector representation
of the jth concept. Then, Z = ⟨c,H⟩ is the vector where—after appropriate normalization—Zj ∈
[−1, 1] represents the amount of concept j in h.

We want to show that if Ŷ = ⟨w,H⟩, w ∈ Rd, and d ≥ 3, then

Ŷ⊥⊥Zj ⇍⇒ ⟨w, cj⟩ = 0. (63)

That is, w being orthogonal to cj does not provide any information about the statistical dependence
between Ŷ and Zj , and vice versa.

Proof. Herein, for the sake of simplicity, we will drop the cj notation and consider a single concept
c. Furthermore, we will assume that all vectors are normalized, i.e. ∥w∥ = ∥h∥ = ∥c∥ = 1. Note
that the Eq. (63) above can directly be rewritten as

⟨w,H⟩⊥⊥⟨c,H⟩ ⇍⇒ ⟨w, c⟩ = 0. (64)

( ⇍= ) We show there exist random vectors H such that ⟨w, c⟩ = 0 but ⟨w,H⟩ ⊥̸⊥ ⟨c,H⟩.

Let H ∼ U(Sd), i.e. H = [H1, . . . ,Hd] is sampled uniformly over the sphere in d
dimensions. It is easy to see that ∀j ∈ [d], Hj = ⟨ej , H⟩, where ej is the jth element of

the standard basis. Furthermore, it holds that Hj =
√
1−

∑
j′ ̸=j H

2
j′ by definition. We

conclude that ∀(j, j′), let w = ej and c = ej′ , then ⟨w, c⟩ = 0 but ⟨w,H⟩ ⊥̸⊥ ⟨c,H⟩. That
is, the fact that ej and ej′ are orthogonal does not mean that their respective projections of
H are statistically independent.

( ≠⇒ ) We show how to construct a random vector H such that ⟨w,H⟩⊥⊥⟨c,H⟩ but ⟨w, c⟩ ≠ 0.

Denote Hη := {h ∈ Sd : ⟨c, h⟩ = η, η ̸= 0} the linear subspace of unit vectors in Rd

with the same nonzero inner product with c. Each vector h ∈ Hη can be decomposed into a
parallel and an orthogonal component to c, i.e. ∀h ∈ Hη , h = hc + h⊥ = ηc+ h⊥, where
the last equality follows by definition ofHη .
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ConsiderHη andH−η , it follows that for w, h+ ∈ Hη and h− ∈ H−η

⟨w, h+⟩ = ⟨w, h−⟩ ⇐⇒ ⟨ηc+ w⊥, ηc+ h+
⊥⟩ = ⟨ηc+ w⊥,−ηc+ h−

⊥⟩ (65)

⇐⇒ η2 + ⟨w⊥, h
+
⊥⟩ = −η

2 + ⟨w⊥, h
−
⊥⟩ (66)

⇐⇒ ⟨w⊥, h
+
⊥ − h−

⊥⟩ = −2η
2 (67)

⇐⇒ ⟨w⊥,∆⟩ = −2η2. (∆ := h+
⊥ − h−

⊥) (68)

Denote S = {(h+, h−) : ⟨w⊥,∆⟩ = −2η2} the set of pairs of vector that satisfy Eq. (68),
and note that for each pair (h+, h−) there exists a value β such that ⟨w, h+⟩ = ⟨w, h−⟩ = β.
Then, sampling from S is equivalent to sampling from the set of pairs of vectors inHη and
H−η that attain the same correlation with w.

Note that when d = 2, h+
⊥, h

−
⊥ ∈ {±w⊥} by construction, hence ∆ ∈ {0,±2w⊥} and

⟨w⊥,∆⟩ ∈ {0,±2(1− η2)}. Then, S = ∅ because there are no pairs of vectors such that
⟨w⊥,∆⟩ = −2η2. For d ≥ 3, S is nonempty as long as η ≤

√
1/2.

Then, we can construct H as follows:

– Sample the component parallel to c, i.e. Hc ∼ U(±ηc),
– Sample the component orthogonal to c, i.e. (H+

⊥ , H−
⊥ ) ∼ U(S),

and note that by doing so, we have sampled ⟨c,H⟩ and ⟨w,H⟩ independently. Finally

H =

{
Hc +H+

⊥ if Hc = ηc

Hc +H−
⊥ if Hc = −ηc

(69)

has ⟨w,H⟩⊥⊥⟨c,H⟩ by construction, but, since w ∈ Hη , ⟨w, c⟩ = η ̸= 0.

This concludes the proof of the lemma.

C.2 Proof of Proposition 1

Recall that Proposition 1 states that the payoff function

κC-SKIT
t = tanh(ρC-SKIT

t (Ŷ , Zj , Z−j)− ρC-SKIT
t (Ŷ , Z̃j , Z−j)) (70)

provides a fair game for the global conditional semantic importance null hypothesis HGC
0,j in Defini-

tion 2. That is, the wealth process provides Type I error control.

Proof. Note that HGC
0,j can be directly rewritten as

HGC
0,j : PŶ ZjZ−j

= PŶ Z̃jZ−j
(71)

where Z̃j ∼ PZj |Z−j
. Then, under the null, the triplets (Ŷ , Zj , Z−j) and (Ŷ , Z̃j , Z−j) are exchange-

able by assumption, and the result follows from Lemma 2.

C.3 Proof of Proposition 2

Recall that Proposition 2 claims that a wealth process with

κX-SKIT
t = tanh(ρX-SKIT

t (ŶS∪{j})− ρX-SKIT
t (ŶS)) (72)

can be used to reject the local conditional semantic importance HLC
0,j,S in Definition 3 with Type I

error control, i.e. the game is fair.

Proof. It is easy to see that HLC
0,j,S is already written as a two-sample test. Then, under this null,

ŶS∪{j} and ŶS are exchangeable by assumption, and Lemma 2 implies the statement of the proposi-
tion.
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Y

Figure D.1: Pictorial representation of the data-generating process for the synthetic dataset.

D Synthetic Experiments

In this section, we showcase the main properties of our tests on two synthetic datasets.

D.1 Gaussian Data

We start by illustrating all sequential tests presented in this work are valid, and that they adapt to the
hardness of the problem, i.e. the weaker the dependence structure, the longer their rejection times.
We devise a synthetic dataset with a nonlinear response such that all distributions are known and we
can sample from the exact conditional distribution.

The data-generating process we consider is defined as

Z1 ∼ N (µ1, σ
2
1) µ1 = 1, σ1 = 1 (73)

Z2 ∼ N (µ2, σ
2
2) µ2 = −1, σ2 = 1 (74)

Z3 | Z1 ∼ N (Z1, σ
2
3) σ3 = 1 (75)

and
Y | Z ∼ S(β1Z1 + β2Z2Z3 + β3Z3) + ϵ, (76)

where S is the sigmoid function, ϵ ∼ N (0, σ2
0), σ0 = 0.01 is independent Gaussian noise, and βi,

i = 1, 2, 3 are coefficients that will allow us to test different conditions. Then, it follows that

g(z) = E[Y | Z = z] = S(β1z1 + β2z2z3 + β3z3) (77)

and

Z1 | Z3 ∼ N

(
σ2
1

σ2
1 + σ2

3

Z3 +
σ2
3

σ2
1 + σ2

3

µ1,

(
1

σ2
1

+
1

σ2
3

)−1
)
. (78)

Fig. D.1 depicts the data-generating process. We remark that, for this experiment, we assume there
exists a known parametric relation between the response Y and the concepts Z. This is only to verify
our tests retrieve the ground-truth structure, and our contributions do not rely on this assumption.
With this data-generating process, it holds that:

1. If β2 = 0 then Y⊥⊥Z2,

2. If β1 = 0 then Y⊥⊥Z1 | Z−1, and

3. For an observation Z = z, if z3 = 0 then g(Z̃{2,3})
d
= g(Z̃3) with Z̃C ∼ PZ|ZC=zC .

We test each condition with SKIT, C-SKIT, and X-SKIT, respectively. We use both a linear and
RBF kernel with bandwidth set to the median pairwise distance between all previous observations
(commonly referred to as the median heuristic [27]). For each test, we estimate the rejection rate (i.e.,
how often a test rejects), and the expected rejection time (i.e., how many steps of the test it takes to
reject) over 100 draws of τmax = 1000 samples, and with a significance level α = 0.05. We remark
that a normalized rejection time of 1 means failing to reject in τmax steps.

D.1.1 Global Importance with SKIT

First, we test that
β2 = 0 =⇒ Y⊥⊥Z2 (79)
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Figure D.2: Global importance results for H0 : Y⊥⊥Z2 with SKIT. (a) Marginal distributions of Y
and Z2 for β2 = 1 and 0, respectively. The red dashed line is the linear regression between the two
variables, and, as expected, the slope is ≈ 0 for β2 = 0. (b) Mean rejection rate and mean rejection
time for SKIT with a linear and RBF kernel, as a function of β2.
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Figure D.3: Global conditional importance results for H0 : Y⊥⊥Z1 | Z−1 with C-SKIT. (a)
Z̃1 ∼ PZ1|Z−1

is independent of Y for Z−1 = [−1, 3]. As expected, the slope of the linear regression
between Y and Z̃1 is ≈ 0. (b) Mean rejection rate and mean rejection time for C-SKIT with a linear
and RBF kernel, as a function of β1.

with the symmetry-based SKIT in Algorithm B.1. Fig. D.2a shows samples from the joint distribution
PY Z2

for β2 = 1 and β2 = 0. As expected, when β2 = 0, the slope of the linear regression (red
dashed line) is ≈ 0 because Y and Z2 are independent. Fig. D.2b reports average rejection rate and
average rejection time as a function of β2. As β2 increases, the strength of the dependency between
Y and Z2 increases, and the rejection time decreases—this adaptive behavior is characteristic of
sequential tests.

We can verify that the rejection rate is below the significance level α = 0.05 when β2 = 0, and
that the SKIT procedure provides Type I error control. Finally, we note that both kernels perform
similarly for this test, with the linear kernel generally rejecting less than the RBF one, and with longer
rejection times.

D.1.2 Global Conditional Importance with C-SKIT

Then, we test that
β1 = 0 =⇒ Y⊥⊥Z1 | Z−1 (80)

with C-SKIT (Algorithm 1). We remark that we can sample from the exact conditional distribution
PZ1|Z−1

= PZ1|Z{2,3} because Z2 is independent of Z1 by construction, and the conditional PZ1|Z3

can be computed analytically as shown in Eq. (78). We verify the conditional distribution behaves as
expected in Fig. D.3a. By construction, Z̃1 is sampled without looking at Y , hence it is independent,
and the slope of the linear regression (red dashed line) is ≈ 0. Fig. D.3b shows mean rejection rate
and time as a function of β1. First and foremost, we can see that in this case the linear kernel always
fails to reject—independently of the value of β1. This behavior highlights an important aspect of all
kernel-based tests, that is the kernel needs to be characteristic in order for the mean embedding to
be an injective function [25, 68]. If this condition is not satisfied, different probability distributions
could share the same mean embedding in the RKHS, and it may not be possible to disambiguate them
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Figure D.4: Local conditional importance results for H0 : g(Z̃{2,3})
d
= g(Z̃3) with X-SKIT. (a)

Shows that, as expected, the test and null distributions overlap when z3 = 0.

at all. Consequently, the test will not be consistent, and increasing τmax will not increase power. For
the RBF kernel—which satisfies the characteristic property for probability distributions on Rd—the
test is valid (i.e., it provides Type I error control for β1 = 0), and it is adaptive to the strength of the
conditional dependence structure—as β1 increases, the rejection time decreases.

D.1.3 Local Conditional Importance with X-SKIT

Finally, we test that for a fixed z,

z3 = 0 =⇒ g(Z̃{2,3})
d
= g(Z̃3), Z̃C ∼ PZ|ZC=zC , ∀C ⊆ [m]. (81)

with X-SKIT (Algorithm 2). That is—because of the multiplicative term z2z3 in g—the observed
value of z2 does not change the distribution of the response of the model when z3 = 0. Fig. D.4a
shows the test (i.e., g(Z̃{2,3})) and null (i.e., g(Z̃3)) distributions for different values of z3 when
z2 = 1. As expected, we can see that when z3 = 0, the two distributions overlap, whereas when
z3 = 0.5, the test distribution is slightly shifted to the right. Fig. D.4b shows results of X-SKIT with
both a linear and RBF kernel as a function of z3. We use both positive and negative values of z3 to
show that X-SKIT has a two-sided alternative, i.e. it rejects both when the test distribution is to the
right and to the left of the null. We can see that both the linear and RBF kernel provide Type I error
control when z3 = 0, and that their rejection times adapt to the hardness of the problem.

Now that we have illustrated all tests in arguably the simplest setting, we move onto a synthetic
dataset where the response is learned by means of a neural network.

D.2 Counting MNIST Digits

In this section, we test the semantic importance structure of a neural network trained to count numbers
in synthetic images assembled by placing digits from the MNIST dataset [38] in a 4×4 grid. Fig. D.5
depicts the data-generating process, which satisfies:

• Blue zeros, orange threes, blue twos, and purple sevens are sampled independently with

Zblue zeros ∼ U({0, 1, 2}) + ϵ Zorange threes ∼ U({0, 1, 2}) + ϵ (82)
Zblue twos ∼ U({1, 2}) + ϵ Zpurple sevens ∼ U({1, 2}) + ϵ (83)

• Green fives are sampled conditionally on blue zeros with

Zgreen fives | Zblue zeros ∼ Cat

{1, 2, 3},

[3/4, 1/8, 1/8] if Nblue zeros = 0

[1/8, 3/4, 1/8] if Nblue zeros = 1

[1/8, 1/8, 3/4] if Nblue zeros = 2

+ ϵ. (84)

That is, the number of blue zeros changes the probability distribution of green fives over
1,2,3.
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Figure D.5: Pictorial representation of the data-generating process for the counting dataset.

• Red threes are sampled conditionally on both orange threes and green fives with

Zred threes | Zorange threes, Zgreen fives ∼ 2 + Bernoulli(p) + ϵ, (85)

p =

{
α if Norange threesNgreen fives ≥ 3

1− α otherwise
, α = 0.9. (86)

That is, the product of the number of orange threes and green fives changes the distribution
of red threes over 1,2.

Finally, we remark that N denotes the nearest integer to Z, and ϵ is independent uniform noise (i.e.,
ϵ ∼ U(−0.5, 0.5)) to make the distribution of the concepts continuous. To summarize, in order to
generate images, we first sample the concepts Z according to the distribution above, round their
values to their respective nearest integers N , and finally randomly place digits from the MNIST
dataset in a 4× 4 grid according to their number. Note that this data-generating process adds color to
the original black and white MNIST digits, and that color matters for the counting task since orange
threes and red threes have different distributions.

We remark that, with the data generating process above, we can sample from the true conditional
distribution of the digits, and, consequently, of images. We omit details on the conditional distribution
for the sake of presentation.4 We stress that this setting differs slightly from the general one presented
in this paper, where we consider both an encoder f and a classifier g such that ŷ = g(f(x)), and we
sample from the conditional distribution of the dense embeddings H given any subset of concepts
(i.e., PH|ZC

). The scope of this experiment is to showcase the effectiveness of our tests when the
response is parametrized by a complex, nonlinear, learned predictor, hence we train a neural network
such that ŷ = f(x) and directly sample from the conditional distribution of images given any subset
of digits (i.e., PX|ZC

).

We sample a training dataset of 50,000 images and train a ResNet18 [30] to predict the number of all
digits for 6 epochs with batch size of 64 and Adam optimizer [35] with learning rate equal to 10−4,
weight decay of 10−5, and a scheduler that halves the learning rate every other epoch (recall that the
model needs to learn to disambiguate red and orange threes, so color matters). To evaluate the model,
we round predictions to the nearest integer and compute accuracy on a held-out set of 10,000 images
from the same distribution (we use the original train and test splits of the MNIST dataset to guarantee
no digits showed during training are included in test images), and the model achieves an accuracy
greater than 99%.

Herein, we study the semantic importance structure of the predicted number of red threes with respect
to the predicted number of other digits. Note that the ground-truth distribution satisfies the following
conditions:

1. Red threes are independent of blue twos and purple sevens, i.e.

Zred threes⊥⊥Zblue twos and Zred threes⊥⊥Zpurple sevens. (87)
4All code necessary to reproduce experiments is available on GitHub.
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Figure D.6: Distribution of ground-truth data and density estimation of the predictions of the trained
model for the validation data in the counting digits experiments.

2. Red threes are independent of blue zeros conditionally on green fives, i.e.

Zred threes⊥⊥Zblue zeros | Zgreen fives. (88)

3. If—in a specific image—there are no orange threes, then red threes are independent of green
fives, i.e.

Zred threes|(Ngreen fives = ngreen fives, Norange threes = 0)
d
= Zred threes|Norange threes = 0. (89)

D.2.1 Global Importance with SKIT

We start by testing whether the predictions of the model satisfy the ground-truth condition

Zred threes⊥⊥Zblue twos and Zred threes⊥⊥Zpurple sevens (90)

with SKIT (Algorithm B.1). We remark that at inference, we round predictions to the nearest integer
and add independent uniform noise ϵ ∼ U(−0.5, 0.5) to make the distribution of the response of
the model continuous. Fig. D.6 shows the ground-truth distribution of red threes as a function of
other digits in the held-out set, and the kernel density estimation of the predictions of the model. As
expected, we can see that the ground-truth distribution is marginally dependent on blue zeros, orange
threes, and green fives, but it is independent of blue twos and purple sevens.

We repeat all tests 100 times with both linear and RBF kernels with bandwidth set to the median of
the pairwise distances of previous observations. We perform tests on independent draws of data of
size τmax ∈ {100, 200, 400, 800, 1600} from the validation set, and study the rank of importance as
a function of τmax, i.e. the amount of data available to test. Fig. D.7 includes mean rejection rate and
mean rejection time for each digit, and the rank of importance of digits as a function of τmax. We can
see that—as expected—both linear and RBF kernels successfully control Type I error for “blue twos”
and “purple sevens”, and this confirms that the distribution of the predictions of the model agrees
with the underlying ground-truth data-generating process. Furthermore, we can see that the rank of
importance is stable across different values of τmax, with purple sevens and blue twos consistently
ranked last.

D.2.2 Global Conditional Importance with C-SKIT

Then, we test whether the predictions of the model satisfy the ground-truth conditional independence
condition

Zred threes⊥⊥Zblue zeros | Zgreen fives (91)

with C-SKIT. Analogous to above, we repeat all tests 100 times with linear and RBF kernels, and
Fig. D.8 includes results for τmax ∈ {100, 200, 400, 800, 1600}. Here—similarly to the synthetic
experiment presented in Appendix D.1—we can see that the linear kernel almost always fails to reject,
i.e. the mean rejection rates for all digits are close to 0. As discussed earlier, this behavior is due to
the fact that the linear kernel is not characteristic for the distributions. On the other hand, the RBF is,
and, as expected, it is consistent and it provides Type I error control for the null hypothesis that red
threes are independent of blue zeros conditionally on all other digits, which is true. Furthermore, we
can see that the rank of importance is less stable compared to the one in Fig. D.2, and in particular,
τmax = 100 seems not to be sufficient to retrieve the correct ground-truth structure (i.e., blue twos
are ranked before green fives). This highlights how the amount of data available for testing may affect
results and findings.
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Figure D.7: Global semantic importance results for the predicted number of red threes with linear and
RBF kernels. In each subfigure, the leftmost panel shows mean rejection rate and mean rejection time
over 100 tests with α = 0.05 and τmax = 800. The rightmost panel shows the rank of importance of
digits for the prediction of red threes as a function of τmax.
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Figure D.8: Global conditional semantic importance results for the predicted number of red threes
with linear and RBF kernels. In each subfigure, the leftmost panel shows mean rejection rate and
mean rejection time over 100 tests with α = 0.05 and τmax = 800. The rightmost panel shows the
rank of importance of digits for the prediction of red threes as a function of τmax.

D.2.3 Local Conditional Importance with X-SKIT

Finally, we test whether the predictions of the model satisfy the ground-truth condition that, for a
particular image, if there are no orange threes (i.e., norange threes = 0) then red threes are independent
of the observed green fives (i.e., ngreen fives), i.e.

Zred threes|(Ngreen fives = ngreen fives, Norange threes = 0)
d
= Zred threes|Norange threes = 0. (92)

We remark that, in the equation above, conditioning is written in terms of the integer norange threes =
0 because of its intuitive meaning, and that this is equivalent to conditioning on zorange threes ∈
(−0.5, 0.5). Similarly, we could replace ngreen fives with zgreen fives, and, in practice, we run tests
conditioning on the observed concepts z, and not their integer values n.

We use X-SKIT (Algorithm 2) with a linear and RBF kernel with bandwidth set to the median of
the pairwise distances of previous observations. We repeat all tests 100 times on individual images
with 0, 1, and 2 orange threes, significance level α = 0.05, and τmax = 400. Fig. D.9 shows results
grouped by number of orange threes. As expected, we see that when norange threes is grater than 0, the
number of green fives is important for the predictions of the model (i.e., rejection rate is close to 1,
with short rejection rate), whereas when there are no orange threes in the image, both the linear and
RBF kernel control Type I error. We qualitatively compared our findings with pixel-level explanations
with Grad-CAM [57], and we can see that they only highlight red threes because that is the digit we
are explaining the prediction of. That is, pixel-level explanations cannot convey the full spectrum of
semantic importance for the predictions of a model—which can be misleading to users. For example,
in this case, a user may not understand when the predictions of a model depend on the number of
green fives, because they are never highlighted by pixel-level saliency maps. In real-world scenarios,
digits may be replaced by sensitive attributes that cannot be inferred by the raw value of pixels. For
example, a saliency map highlighting a face does not convey which attributes were used by the model,
such as skin color, biological sex, or gender. It is immediate to see how being able to investigate the
dependencies of the predictions of a model with respects to these attributes (which our definitions
provide) is paramount for their safe deployment.
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(a) Results for norange threes = 2.
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(b) Results for norange threes = 1.
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(c) Results for norange threes = 0.

Figure D.9: Local conditional importance of Ngreen fives conditionally on Norange threes. Each row
contains the input image, the Grad-CAM explanation for the prediction of the model, and X-SKIT
results for 100 repetitions of the test with τmax = 400, with a linear and RBF kernel. Note that
X-SKIT finds the observed number of green fives important whenever the number of orange threes is
greater than zero, whereas Grad-CAM does not.

With these results on synthetic datasets, we now showcase the flexibility of our proposed tests on
zero-shot image classification with several and diverse vision-language (VL) models.

E Experimental Details

In this appendix, we include further details about the real-world experiments that were omitted from
the main text for the sake of presentation. All experiments were run on a private server with one 24
GB NVIDIA RTX A5000 GPU and 96 CPU cores with 500 GB of RAM memory.

List of VL models used in the experiments. We use 8 different VL models, both CLIP- and
non-CLIP-based: CLIP:RN50,ViT-B/32,ViT-L/14 [52], OpenClip:ViT-B-32,ViT-L-14 [31], FLAVA
[65], ALIGN [32], and BLIP [39].

Evaluating rank agreement. We use a weighted version of Kendall’s tau [33] introduced by Vigna
[74] which assigns higher penalties to swaps between elements with higher ranks. This choice reflects
the fact that concepts with higher importance should be more stable across different models. We
briefly remark that this notion of rank agreement is bounded in [−1, 1] (−1 indicates reverse order,
and 1 perfect alignment) but not symmetric.

Evaluating importance agreement. We threshold rejection rates at level α to classify concepts into
important and not important ones. Then, importance agreement is the accuracy between pairs of
binarized vectors.

E.1 Estimating Conditional Distributions from Data

Here, we introduce nonparametric methods to estimate the conditional distributions necessary to
run our C-SKIT and X-SKIT tests. Throughout this section, we will assume access to a training set
{(h(i), z(i))}ni=1 of n tuples of dense embeddings h ∈ Rd with their semantics z ∈ [−1, 1]m.

E.1.1 Estimating PZj |Z−j
for C-SKIT

Here, we describe how to sample from the conditional distribution of a concept Zj given the rest,
Z−j , i.e. Z̃j ∼ PZj |Z−j

, which is necessary to run our C-SKIT test. In particular, for a concept
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Figure E.1: Example marginal and estimated conditional distributions p(zj) and p̃(zj |z−j) for two
class-specific concepts on three images from the Imagenette dataset. Distributions are shown as a
function of the effective number of points in the weighted KDE (i.e., neff).

j ∈ [m], and an observation z ∈ [−1, 1]m, we define the unnormalized conditional distribution

p̃(zj | z−j) =

n∑
i=1

wiϕ

(
z
(i)
j − zj

νscott

)
(93)

by means of weighted kernel density estimation (KDE), where ϕ is the standard normal probability
density function, νscott is Scott’s factor [56], and

wi = ϕ

(
z
(i)
−j − z−j

ν

)
, ν > 0 (94)

are the weights. That is, the further z(i)−j is from z−j , the lower its weight in the KDE. As for all
kernel-based methods, the bandwidth ν is important for the practical performance of the model. For
our experiments, we choose ν adaptively such that the effective number of points in the KDE (i.e.
neff = (

∑n
i=1 wi)

2/
∑n

i=1 w
2
i ) is the same across concepts. This choice is motivated by the fact

that different concepts have different distributions, and we want to guarantee the same number of
points are used to estimate their conditional distributions. Furthermore, we note that neff controls the
strength of the conditioning—the larger neff, the slower the decay of the weights, and the weaker the
conditioning. That is, in the limit, the weights become uniform, the conditional distribution tends
to the marginal p̃(zj), and all tests presented become of decorrelated semantic importance [72, 73].
With this, sampling Z̃j ∼ PZj |Z−j=z−j

boils down to first sampling i′ according to the weights

w = [wi, . . . , wn], and then sampling Z̃j from the Gaussian distribution centered at z(i
′)

j .

Fig. E.1 shows the marginal (i.e., p(zj)) and estimated conditional distributions (i.e., p̃(zj |z−j)) of
two class-specific concepts as a function of effective number of points neff for three images in the
Imagenette dataset. We can see how as neff increases, the estimated conditional distribution becomes
closer to the marginal, and that the conditional distributions of class-specific concepts tend to be
skewed to higher values compared to their marginals. This behavior suggests that images from a
specific class have higher values of concepts that are related to the class. We use neff = 2000 for all
tests across all real-world experiments.

E.1.2 Estimating PH|ZC=zC for X-SKIT

Here, we describe how to sample from the conditional distribution of dense embeddings H con-
ditionally on any subset of concepts C ⊆ [m] of a particular semantic vector z ∈ [−1, 1]m, i.e.
H̃C ∼ PH|ZC=zC , which is necessary to run our X-SKIT test. We show how to achieve this by
coupling the nonparametric sampler introduced above with ideas of nearest neighbors. This choice is
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Figure E.2: Example test (i.e., g(H̃S∪{j})) and null (i.e., g(H̃S)) distributions for a class-specific
concept and a non-class specific one on three images from the Imagenette dataset as a function of the
cardinality of S.

motivated by the need to keep samples in-distribution with respects to the downstream classifier g.
Intuitively, we propose to:

1. Sample Z̃ ∼ PZ|ZC=zC , and then

2. Retrieve the embedding H(i′) such that its concept representation Z(i′) is the nearest
neighbor of Z̃.

Step 2 makes sure that samples are coming from real images, and it overcomes some of the hurdles
of sampling a high-dimensional vector (H ∈ Rd, d ∼ 102) conditionally on a low-dimensional one
(zC ∈ [−1, 1]|C|, C ⊆ [m], m ≈ 20). More precisely, recall that {(h(i), z(i))}ni=1 is a set of n pairs
of dense embeddings and their semantics, then

H̃C = h(i′) s.t. i′ = arg min
i∈[n]

∥z(i) − Z̃∥, Z̃ ∼ PZ|ZC=zC , (95)

where PZ|ZC=zC is approximated with p̃(z−C | zC), −C := [m] \ C as in Eq. (93).

Fig. E.2 shows some example test (i.e., g(H̃S∪{j})) and null distributions (i.e., g(H̃S)) for a class-
specific concept and a non-class specific one on the same three images from the Imagenette dataset
as in Fig. E.1. We remark that S can be any subset of the remaining concepts, so we show results for
random subsets of increasing size. We can see that the test distributions of class-specific concepts
are skewed to the right, i.e. including the observed class-specific concept increases the output of the
predictor. Furthermore, we see the shift decreases the more concepts are included in S, i.e. if S is
larger and it contains more information, then the marginal contribution of one additional concept will
be smaller. On the other hand, including a non-class-specific concept does not change the distribution
of the response of the model, no matter the size of S—precisely as our local definition of importance
(HLC

0,j,S) demands.

E.2 AwA2 Dataset

Here, we include additional information, tables, and figures for the AwA2 dataset experiment. This
dataset comprises 37,322 images (29,841 for training and 7,481 for testing) from 50 animal species
along with class-level annotations of 85 attributes (some example figures are included in Fig. E.3).
Concept annotations are reported both as frequencies (i.e., how often an attribute appears in images
coming from a class) and as binary labels (i.e., 1 means that an attribute is present in a class, and 0
otherwise). Table E.2 shows the zero-shot classification performance of all VL models used in this
experiment for the top-10 classes, and, for each class, we test 20 attributes: the 10 most frequent, and
a random subset of 10 absent ones (concepts are included in Table E.3). Finally we remark that, for
each model, we obtain the dictionary c by encoding concepts with its text encoder.
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Tests are run with bandwidths of the kernels set to the 90th percentile of the pairwise distances
between observations and τmax = 400, 800 for SKIT and C-SKIT, respectively.

giant panda tiger giraffe zebra lion squirrel sheep horse elephant dalmatian

Figure E.3: Example images from the top-10 best classified classes in the AwA2 dataset.

Table E.2: Zero-shot classification accuracy on the AwA2 dataset.
Accuracy

Model giant panda tiger giraffe zebra lion

CLIP:RN50 100.00% 100.00% 100.00% 100.00% 99.51%
CLIP:ViT-B/32 100.00% 100.00% 100.00% 100.00% 99.51%
CLIP:ViT-L/14 100.00% 100.00% 99.59% 100.00% 100.00%
OpenClip:ViT-B-32 100.00% 100.00% 100.00% 100.00% 100.00%
OpenClip:ViT-L-14 100.00% 100.00% 100.00% 100.00% 100.00%
FLAVA 100.00% 98.86% 100.00% 100.00% 99.02%
ALIGN 100.00% 100.00% 100.00% 99.57% 100.00%
BLIP 100.00% 100.00% 99.17% 99.15% 99.51%

average 100.00%± 0.00 99.86%± 0.38 99.84%± 0.29 99.84%± 0.30 99.69%± 0.34

Accuracy

Model squirrel sheep horse elephant dalmatian

CLIP:RN50 99.17% 97.54% 98.18% 94.71% 96.36%
CLIP:ViT-B/32 99.58% 98.59% 99.39% 99.04% 98.18%
CLIP:ViT-L/14 100.00% 99.65% 98.78% 100.00% 100.00%
OpenClip:ViT-B-32 99.58% 99.65% 98.78% 100.00% 97.27%
OpenClip:ViT-L-14 100.00% 100.00% 100.00% 100.00% 100.00%
FLAVA 99.17% 100.00% 99.39% 99.04% 98.18%
ALIGN 99.58% 99.65% 99.70% 100.00% 99.09%
BLIP 99.17% 98.94% 99.39% 100.00% 100.00%

average 99.53%± 0.33 99.25%± 0.80 99.20%± 0.55 99.10%± 1.71 98.64%± 1.29

Table E.3: Class-level attributes tested on the AwA2 dataset.
Attributes (20)

Class present (10) absent (10)

giant panda patches, old world, furry, black, big,
white, walks, paws, bulbous, vegetation

flies, flippers, hooves, desert, hairless,
red, blue, horns, plankton, yellow

tiger stripes, stalker, meat, meat teeth, hunter,
strong, fierce, old world, muscle, big

strain teeth, tunnels, hops, plankton, bipedal,
tusks, flippers, flies, small, skimmer

giraffe long neck, long legs, big, quadrupedal, spots,
vegetation, lean, old world, walks, ground

bipedal, hibernate, cave, mountains, ocean,
hunter, water, stripes, gray, fish

zebra stripes, old world, quadrupedal, black, white,
ground, group, grazer, walks, hooves

blue, spots, brown, water, coastal,
patches, tusks, claws, scavenger, red

lion meat, stalker, strong, hunter, meat teeth,
big, fierce, paws, furry, old world

tunnels, blue, horns, skimmer, long neck,
water, flippers, tusks, arctic, spots

squirrel tail, furry, forager, small, gray,
tree, new world, forest, vegetation, brown

horns, blue, yellow, tusks, meat teeth,
flippers, scavenger, desert, plankton, strain teeth

sheep white, quadrupedal, walks, group, vegetation,
grazer, ground, fields, furry, new world

arctic, flippers, insects, paws, long neck,
red, yellow, swims, plankton, hands

horse hooves, fast, grazer, big, long legs
tail, quadrupedal, fields, brown, strong

arctic, tree, bipedal, plankton, fish,
stripes, ocean, strain teeth, scavenger, orange

elephant big, old world, gray, tough skin, quadrupedal
tusks, hairless, strong, ground, walks

claws, flippers, orange, swims, ocean
stripes, tunnels, plankton, coastal, strain teeth

dalmatian big, old world, gray, tough skin, quadrupedal
tusks, hairless, strong, ground, walks

claws, flippers, orange, swims, ocean
stripes, tunnels, plankton, coastal, strain teeth

33



SKIT

cl
ip
:R
N5
0

cl
ip
:V
iT-
B/
32

cl
ip
:V
iT-
L/
14

op
en
_c
lip
:V
iT-
B-
32

op
en
_c
lip
:V
iT-
L-
14

fla
va

al
ig
n

bl
ip

clip:RN50

clip:ViT-B/32

clip:ViT-L/14

open_clip:ViT-B-32

open_clip:ViT-L-14

flava

align

blip

1.00
(±0.00)

0.74
(±0.09)

0.71
(±0.13)

0.42
(±0.20)

0.57
(±0.12)

0.56
(±0.11)

0.51
(±0.16)

0.44
(±0.19)

0.74
(±0.10)

1.00
(±0.00)

0.78
(±0.10)

0.38
(±0.25)

0.50
(±0.20)

0.59
(±0.16)

0.44
(±0.26)

0.49
(±0.19)

0.72
(±0.10)

0.79
(±0.10)

1.00
(±0.00)

0.34
(±0.23)

0.52
(±0.19)

0.56
(±0.16)

0.47
(±0.25)

0.51
(±0.14)

0.50
(±0.14)

0.40
(±0.24)

0.40
(±0.15)

1.00
(±0.00)

0.56
(±0.09)

0.37
(±0.15)

0.46
(±0.14)

0.37
(±0.15)

0.56
(±0.17)

0.44
(±0.33)

0.50
(±0.23)

0.52
(±0.17)

1.00
(±0.00)

0.39
(±0.17)

0.54
(±0.13)

0.31
(±0.24)

0.53
(±0.10)

0.55
(±0.21)

0.53
(±0.17)

0.38
(±0.13)

0.42
(±0.15)

1.00
(±0.00)

0.51
(±0.08)

0.43
(±0.12)

0.49
(±0.16)

0.41
(±0.29)

0.49
(±0.23)

0.45
(±0.13)

0.54
(±0.14)

0.42
(±0.13)

1.00
(±0.00)

0.42
(±0.20)

0.46
(±0.15)

0.48
(±0.17)

0.52
(±0.11)

0.34
(±0.12)

0.39
(±0.17)

0.46
(±0.14)

0.43
(±0.22)

1.00
(±0.00)

c-SKIT

cl
ip
:R
N5
0

cl
ip
:V
iT-
B/
32

cl
ip
:V
iT-
L/
14

op
en
_c
lip
:V
iT-
B-
32

op
en
_c
lip
:V
iT-
L-
14

fla
va

al
ig
n

bl
ip

1.00
(±0.00)

0.65
(±0.09)

0.57
(±0.19)

0.52
(±0.11)

0.42
(±0.12)

0.48
(±0.15)

0.43
(±0.19)

0.42
(±0.19)

0.66
(±0.09)

1.00
(±0.00)

0.63
(±0.19)

0.49
(±0.11)

0.52
(±0.10)

0.52
(±0.14)

0.46
(±0.21)

0.45
(±0.09)

0.56
(±0.17)

0.61
(±0.21)

1.00
(±0.00)

0.45
(±0.15)

0.47
(±0.13)

0.51
(±0.13)

0.50
(±0.09)

0.49
(±0.11)

0.52
(±0.11)

0.44
(±0.16)

0.45
(±0.17)

1.00
(±0.00)

0.41
(±0.12)

0.37
(±0.15)

0.47
(±0.16)

0.28
(±0.19)

0.38
(±0.17)

0.45
(±0.19)

0.49
(±0.14)

0.41
(±0.08)

1.00
(±0.00)

0.33
(±0.17)

0.46
(±0.12)

0.41
(±0.10)

0.49
(±0.12)

0.49
(±0.15)

0.51
(±0.11)

0.36
(±0.14)

0.38
(±0.11)

1.00
(±0.00)

0.42
(±0.22)

0.45
(±0.11)

0.43
(±0.19)

0.45
(±0.19)

0.49
(±0.07)

0.53
(±0.14)

0.43
(±0.13)

0.36
(±0.25)

1.00
(±0.00)

0.37
(±0.14)

0.47
(±0.17)

0.45
(±0.14)

0.46
(±0.15)

0.38
(±0.10)

0.41
(±0.08)

0.47
(±0.12)

0.40
(±0.15)

1.00
(±0.00)

PCBM

cl
ip
:R
N5
0

cl
ip
:V
iT-
B/
32

cl
ip
:V
iT-
L/
14

op
en
_c
lip
:V
iT-
B-
32

op
en
_c
lip
:V
iT-
L-
14

fla
va

al
ig
n

bl
ip

1.00
(±0.00)

0.53
(±0.12)

0.55
(±0.07)

0.38
(±0.24)

0.31
(±0.16)

0.40
(±0.17)

0.41
(±0.21)

0.28
(±0.21)

0.47
(±0.14)

1.00
(±0.00)

0.54
(±0.08)

0.44
(±0.25)

0.42
(±0.17)

0.38
(±0.16)

0.41
(±0.18)

0.25
(±0.22)

0.44
(±0.21)

0.56
(±0.06)

1.00
(±0.00)

0.39
(±0.13)

0.37
(±0.17)

0.37
(±0.14)

0.40
(±0.14)

0.17
(±0.23)

0.34
(±0.28)

0.41
(±0.23)

0.36
(±0.14)

1.00
(±0.00)

0.37
(±0.18)

0.27
(±0.24)

0.45
(±0.16)

0.26
(±0.26)

0.32
(±0.18)

0.42
(±0.20)

0.41
(±0.13)

0.38
(±0.14)

1.00
(±0.00)

0.30
(±0.26)

0.44
(±0.15)

0.25
(±0.19)

0.41
(±0.18)

0.37
(±0.18)

0.40
(±0.14)

0.33
(±0.22)

0.34
(±0.15)

1.00
(±0.00)

0.30
(±0.16)

0.17
(±0.24)

0.44
(±0.20)

0.37
(±0.21)

0.38
(±0.17)

0.42
(±0.22)

0.44
(±0.21)

0.34
(±0.21)

1.00
(±0.00)

0.22
(±0.19)

0.26
(±0.19)

0.29
(±0.17)

0.18
(±0.20)

0.23
(±0.25)

0.26
(±0.21)

0.15
(±0.30)

0.21
(±0.25)

1.00
(±0.00)

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

W
e
ig
h
te
d
K
e
n
d
a
ll'
s
ta
u

Figure E.4: Rank agreement comparison between SKIT, C-SKIT, and PCBM on the AwA2 dataset.
Results are reported as mean and standard deviation over the 10 classes considered in this experiment.
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Figure E.5: SKIT importance results with CLIP:ViT-L/14 on the AwA2 dataset.
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Figure E.6: C-SKIT importance results with CLIP:ViT-L/14 on the AwA2 dataset.
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Figure E.7: Example test images from the CUB dataset with their respective classes.

Table E.4: Zero-shot classification accuracy on the CUB dataset.
Accuracy

Model white pelican brown pelican mallard horned puffin vermilion flycatcher

CLIP:RN50 92.00% 95.00% 95.00% 86.67% 88.33%
CLIP:ViT-B/32 98.00% 96.67% 90.00% 93.33% 93.33%
CLIP:ViT-L/14 98.00% 100.00% 100.00% 95.00% 100.00%
OpenClip:ViT-B-32 100.00% 98.33% 98.33% 88.33% 96.67%
OpenClip:ViT-L-14 100.00% 100.00% 100.00% 96.67% 100.00%
FLAVA 100.00% 100.00% 98.33% 95.00% 91.67%
ALIGN 96.00% 96.67% 95.00% 98.33% 78.33%
BLIP 98.00% 80.00% 96.67% 65.00% 55.00%

average 97.75%± 2.54% 95.83%± 6.24% 96.67%± 3.12% 89.79%± 10.08% 87.92%± 14.09%

Accuracy

Model northern flicker cardinal blue jay cape glossy starling frigatebird

CLIP:RN50 78.33% 63.16% 65.00% 73.33% 78.33%
CLIP:ViT-B/32 98.33% 71.93% 83.33% 90.00% 80.00%
CLIP:ViT-L/14 98.33% 100.00% 85.00% 100.00% 96.67%
OpenClip:ViT-B-32 96.67% 100.00% 88.33% 96.67% 88.33%
OpenClip:ViT-L-14 100.00% 100.00% 91.67% 95.00% 93.33%
FLAVA 76.67% 100.00% 91.67% 88.33% 90.00%
ALIGN 86.67% 92.98% 83.33% 80.00% 55.00%
BLIP 61.67% 61.40% 90.00% 73.33% 75.00%

average 87.08%± 12.96% 86.18%± 16.42% 84.79%± 8.14% 87.08%± 9.75% 82.08%± 12.47%

E.3 CUB Dataset

Here, we include additional information and results for the experiment of the CUB dataset [77],
which contains 11,788 images of 200 different bird classes, and each image is annotated with the
presence of 312 fine-grained concepts that describe the appearance of the bird (e.g., “has orange bill”,
“has hook-shaped bill”, “is small”) with the labelers’ confidence. Formally, the dataset is a collection
{(x(i), y(i), z(i), u(i))}ni=1 of images x with class label y, binary semantic vector z(i) ∈ {0, 1}m,
and uncertainty values u(i) ∈ {1, 2, 3, 4}: “not visible” (1), “guessing” (2), “probably” (3), and
“definitely” (4).

We randomly sample 10 images from the 10 classes with highest average accuracy across models:
Table E.4 includes accuracies of all VL models used, and Fig. E.7 shows some example test images

Table E.5: X-SKIT results on the CUB dataset as a function of conditioning set size s.
s Rank agreement Importance agreement Importance f1 score

1 0.81± 0.14 0.96%± 0.06% 0.93± 0.15
2 0.82± 0.13 0.97%± 0.06% 0.93± 0.14
4 0.84± 0.12 0.95%± 0.08% 0.88± 0.15
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(a) Rank agreement.
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(b) Importance agreement.

Figure E.8: X-SKIT agreement results on the CUB dataset as a function of conditioning set size,
s. Results are reported as means and standard deviations over the random 100 images used in the
experiment.

for each class. For each image, we select 14 concepts to test: we first restrict ourselves to annotations
with good confidence (i.e., “probably” or “definitely”), and then, for each concept j, we estimate its
marginal (i.e., pj := P[Zj = 1]) and class-conditional (i.e., pj|y := P [Zj = 1 | Y = y]) rates over
the dataset. Finally, for each test image x with label y, we score concepts by the difference between
their class-conditional and marginal rates, i.e. sj(y) = pj|y − pj . Intuitively, a large value of sj(y)
indicates that concept j has a higher occurrence in class y compared to the population, and we say
that it is discriminative for class y. We test the 7 most discriminative concepts that are present in the
observed image x, and a random subset of 7 concepts that are absent according to the ground-truth
annotations. We remark that, since concepts are binary, we do not use the KDE-based methods
presented in Appendix E.1, and instead we approximate PH|ZC=zC by sampling uniformly from
the entries in the dataset that match the conditioning vector zC . Finally, we use RBF kernels with
bandwidths set to the median of the pairwise distances of observations, and τmax = 200.

After running X-SKIT, we classify concepts as important by thresholding their rejection rates at
level α—which is a statistically-valid way of selecting important concepts. Table E.5 summarizes
agreement and detection results as a function of conditioning set size s (i.e., the number of concepts
in S ⊆ [m] \ {j}), and Fig. E.8 includes all pairwise agreement values. We note that the f1 score for
s = 4 (i.e., when conditioning on 4 concepts) is lower compared to s = 1, 2. This is expected, as the
more concepts one conditions on, the smaller the effect of including one additional concept.

Finally, Fig. E.9 shows ranks of importance for all models on the 4 example images used in the main
body of the paper.
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Figure E.9: X-SKIT importance results (s = 1) across all models for four example images in the
CUB dataset.
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Figure E.10: Example images from the Imagenette dataset with their respective labels.

Table E.6: Zero-shot classification accuracy on the Imagenette dataset.
Accuracy

Model tench English springer cassette player French horn church

CLIP:RN50 99.48% 99.49% 95.80% 99.49% 100.00%
CLIP:ViT-B/32 99.74% 99.24% 96.08% 98.73% 100.00%
CLIP:ViT-L/14 99.22% 99.75% 99.72% 99.75% 100.00%
OpenClip:ViT-B-32 100.00% 100.00% 98.32% 99.24% 99.76%
OpenClip:ViT-L-14 100.00% 100.00% 99.72% 99.75% 100.00%
FLAVA 99.74% 99.24% 97.76% 98.22% 100.00%
ALIGN 99.74% 100.00% 99.44% 99.75% 100.00%
BLIP 100.00% 98.48% 93.56% 99.75% 100.00%

average 99.74%± 0.26% 99.53%± 0.50% 97.55%± 2.09% 99.33%± 0.54% 99.97%± 0.08%

Accuracy

Model parachute golf ball gas pump garbage truck chainsaw

CLIP:RN50 99.74% 97.74% 91.65% 98.71% 96.63%
CLIP:ViT-B/32 98.97% 99.25% 97.61% 99.49% 99.22%
CLIP:ViT-L/14 99.74% 99.75% 100.00% 99.74% 99.74%
OpenClip:ViT-B-32 99.49% 99.25% 97.61% 99.23% 97.67%
OpenClip:ViT-L-14 100.00% 99.50% 99.28% 99.49% 98.96%
FLAVA 98.72% 99.00% 97.61% 99.23% 96.37%
ALIGN 99.49% 99.75% 99.28% 99.49% 98.96%
BLIP 99.49% 99.50% 98.09% 99.23% 98.19%

average 99.46%± 0.39% 99.22%± 0.61% 97.64%± 2.43% 99.33%± 0.29% 98.22%± 1.15%

E.4 Imagenette Dataset

Here, we present additional information and results on the Imagenette dataset presented in the main
body of this manuscript.5 This dataset contains 13,394 images (9,469 for training and 3,925 for
testing) from ten easily separable classes in ImageNet [22]. Fig. E.10 includes example images from
the classes in the dataset, and Table E.6 reports the classification accuracy across all vision-language
models (98.99%± 0.01% average accuracy).

Recall that the ImageNet dataset does not provide ground-truth semantic annotations, hence we use
SpLiCe [6] to find which concepts to test. In particular, we use the 10,000 most frequent words in
the vocabulary from the MSCOCO dataset [40], and we set the ℓ1 regularization term in SpLiCe to
0.20. Following previous work [85], we filter the selected concepts such that they are different from
the classes in the dataset. We use WordNet [23] to lemmatize both concepts and class names (e.g.,
“churches” becomes “church”), and we check that concepts are not contained in class names and vice
versa. For example, the concept “churches” would be skipped because “church” is already the name
of a class, and “gasoline” would be skipped because it contains part of the class “gas pump”.

5The Imagenette dataset is available at https://github.com/fastai/imagenette.
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(a) Global importance with SKIT.
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Figure E.11: Global importance results with CLIP:ViT-L/14 on the Imagenette dataset.
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Figure E.12: Rank agreement comparison between SKIT, C-SKIT, and PCBM on Imagenette. Result
are reported as mean and standard deviation over the 10 classes considered in the experiment.
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(a) Global importance with SKIT.
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(b) Global conditional importance with C-SKIT.

Figure E.13: Importance results with CLIP:ViT-L/14 on Imagenette as a function of τmax.

We run SKIT and C-SKIT with RBF kernels with bandwidths equal to the 90th percentile of the
pairwise distances of previous observations and τmax = 400, 800, respectively. We encode the
entire dataset using SpLiCe and keep the top-20 concepts to test. Fig. E.11 shows global and
global conditional importance results with CLIP:ViT-L/14 for all classes in the dataset. Furthermore,
Fig. E.12 shows all pairwise rank agreement comparisons for SKIT, C-SKIT, and PCBM across all 8
VL models used in the experiment. Lastly, Fig. E.13 qualitatively shows ranks of importance as a
function of τmax with CLIP:ViT-L/14.

We use X-SKIT on 2 random images from all classes in the dataset (20 images total). Recall that
we use SpLiCe to encode each image and keep the top-10 concepts, and finally add the bottom-4
concepts according to PCBM, for a total of 14 concepts per image. We set the bandwidth of the RBF
kernel used in the test to the median of the distance of the observations, and τmax = 200. As in the
CUB dataset experiment, we classify concepts as important by thresholding their rejection rates at
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Table E.7: X-SKIT results on the Imagenette dataset as a function of conditioning set size s.
s Rank agreement Importance agreement

1 0.59± 0.21 0.71± 0.14
2 0.56± 0.21 0.67± 0.13
4 0.53± 0.23 0.68± 0.14
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Figure E.14: X-SKIT agreement results on the Imagenette dataset across 8 different vision-language
models as a function of conditioning set size, s. Results are reported as means and standard deviations
over the random 20 images used in the experiment.

level α. Table E.7 summarizes rank and importance agreement as a function of conditioning set size
s (i.e., the number of concepts in S), and Fig. E.14 includes all pairwise agreement values. We can
see that ranks are generally well-aligned across models, and that agreement slightly decreases as the
number of conditioning concepts increases. Finally, Figs. E.15 and E.16 include results with X-SKIT
for 2 images from three classes in the dataset across all models used in the experiment, and Fig. E.17
summarizes ranks across models on the same images.
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Figure E.15: Local importance results with SKIT and CLIP:ViT-L/14 for 2 images from three classes
in the Imagenette dataset (part I of II.
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Figure E.16: Local importance results with SKIT and CLIP:ViT-L/14 for 2 images from three classes
in the Imagenette dataset (part II of II).
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Figure E.17: Summary of X-SKIT ranks of importance across all models for 2 examples images from
3 classes in the Imagenette dataset.
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• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: Throughout the paper, we clearly state what guarantees our proposed methods
provide, and what they do not. We comment on possible future directions.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

44



Answer: [Yes]
Justification: We provide complete proofs and background information for each claim.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: We provide pseudocode for all algorithms used in the paper, detailed descrip-
tions of the data generating processes for synthetic datasets, links to the publicly available
datasets that were used, description of hyperparameters used for training and testing models,
and link to a GitHub repository to reproduce all experiments presented in the paper.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.
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5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [Yes]
Justification: We provide all code necessary to reproduce the experiments presented in this
paper.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: We dedicate an appendix to the full experimental details.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: We report p-values and uncertainty estimates wherever they are appropriate.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).
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• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: We specify all computational resources used in this work.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: The work presented in this paper did not involve human subjects, and all data
used was from current publicly available datasets.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader Impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: The objective of this paper is to develop statistically-valid methods to study
the semantic importance of human-interpretable concepts for the predictions of black-box
models. We envision this research will support better practices towards a responsible use of
artificial intelligence in society.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
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• If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

• Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: The presented paper does not pose such risks.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: We stated all original references of papers and code repositories used for this
paper, inclusive of their respective licenses.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
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• If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]

Justification: The submitted paper does not release new assets.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: The submitted paper does not involve crowdsourcing nor research with human
subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: The submitted paper does not involve crowdsourcing nor research with human
subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.
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• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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