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Abstract

Intracortical brain-computer interfaces (iBCIs) can restore movement and commu-
nication abilities to individuals with paralysis by decoding their intended behavior
from neural activity recorded with an implanted device. While this activity yields
high-performance decoding over short timescales, neural data are often nonstation-
ary, which can lead to decoder failure if not accounted for. To maintain performance,
users must frequently recalibrate decoders, which requires the arduous collection of
new neural and behavioral data. Aiming to reduce this burden, several approaches
have been developed that either limit recalibration data requirements (few-shot
approaches) or eliminate explicit recalibration entirely (zero-shot approaches).
However, progress is limited by a lack of standardized datasets and comparison
metrics, causing methods to be compared in an ad hoc manner. Here we intro-
duce the FALCON benchmark suite (Few-shot Algorithms for COnsistent Neural
decoding) to standardize evaluation of iBCI robustness. FALCON curates five
datasets of neural and behavioral data that span movement and communication
tasks to focus on behaviors of interest to modern-day iBCIs. Each dataset includes
calibration data, optional few-shot recalibration data, and private evaluation data.
We implement a flexible evaluation platform which only requires user-submitted
code to return behavioral predictions on unseen data. We also seed the benchmark
by applying baseline methods spanning several classes of possible approaches.
FALCON aims to provide rigorous selection criteria for robust iBCI decoders,
easing their translation to real-world devices. https://snel-repo.github.io/falcon/

1 Introduction

Brain-computer interfaces (BCIs) provide a path to restore movement and communication in individ-
uals with paralysis by decoding neuronal population activity to uncover the user’s intention. BCIs
have recently achieved many promising demonstrations, including high degree of freedom robot arm
control [1, 2], computer use and communication [3–8], and speech decoding [9–13]. A specific class
of BCIs known as intracortical BCIs (iBCIs) have enabled many of these impressive technological
feats. However, many of these demonstrations have required decoders to be recalibrated daily or
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even more frequently, interrupting device use and burdening the user. Real-world iBCI deployment
will require maintaining high performance over long time periods with minimal recalibration. The
challenge here stems from nonstationarities in the neural data that are caused by many factors acting
at multiple timescales, such as shifts in the position of the electrode relative to surrounding tissue,
changes in tissue properties in response to electrode implantation, electrode malfunction, or neural
plasticity [14, 15]. These nonstationarities result in a changing relationship between neural data and
behavior, necessitating frequent decoder recalibration to maintain high performance.

Fortunately, despite these nonstationarities, there are many potential ways to leverage structure in
neural or behavioral data to help reduce the burden of recalibration [16]. For example, while the
spiking activity recorded on an individual iBCI electrode can change over timescales of hours, neural
population activity contains low dimensional structure (manifolds) that shows a consistent relationship
with behavior over months to years [17–19]. Realignment methods that exploit these conserved
manifolds [20–26]can restore decoding without explicit calibration periods. Alternatively, rather
than focusing on structure intrinsic to the neural data, another set of approaches attempts to achieve
robustness by continually recalibrating decoders using the retrospective analysis of data collected
during the subject’s normal use of the iBCI [27–29]. A third strategy has centered on supervised
deep network training using many sessions to yield decoders that are robust to session-to-session
variability [30, 31], which may be extended further to potentially yield universal iBCI decoders that
generalize to new subjects or tasks [32–34]. These diverse and potentially complementary efforts
converge around a single problem statement: the real-world iBCI decoding challenge is to maintain
high performance on distinct, but related, data distributions, with minimal data from the new setting.

While these diverse approaches have thus far used their own ad-hoc evaluation, standardization could
enable rigorous comparison to assess real-world potential and highlight advances upon which future
efforts can build. We propose the FALCON benchmark, Few-Shot Algorithms for Consistent Neural
Decoding, as a common evaluation for stable, long-term decoding performance. FALCON releases
5 multi-session datasets that span movement and communication tasks relevant to iBCIs: human
and monkey reach and grasp behavior (H1, M1), monkey finger movement (M2), human handwriting
(H2), and birdsong (B1). These datasets are divided into held-in and held-out sessions. To evaluate
how well few-shot decoders advance iBCI robustness given real-world data constraints, only a small
amount of supervised data is released from held-out sessions. Approaches for the more challenging
settings of only using neural data on new sessions (unsupervised), or no data from new sessions
(zero-shot), can also be evaluated using the same data splits. This report describes the design of the
benchmark, its datasets, and the performance of baseline models. By introducing FALCON, we aim
to establish standardized evaluation practices for robust iBCI decoding approaches that can provide
researchers with metrics to select methods for in-device use.

1.1 Related work

Benchmarks of BCI Decoding. FALCON evaluates iBCI decoding, or the prediction of intention
from neural activity. To date, benchmarks of decoding have been uncommon compared to other
fields using machine learning. The early BCI competition series [35] and more recent additions of
the International BCI Competition [36] and MOABB [37] evaluated decoding in offline (i.e., pre-
recorded) noninvasive neural datasets in multiple subjects and highlighted several of the challenges
faced in iBCI datasets (multi-session transfer, removal of repeated data structure). More recently,
the Brain2Text decoding benchmark [38] evaluates speech decoding in human iBCIs. However,
absent a strong benchmarking culture, models across intracortical and noninvasive neural recording
modalities [32–34, 39? –42] are still often evaluated on different public or private datasets. This
lack of standardization makes comparison across works difficult due to subjectivity in preprocessing,
metric choice, and evaluation design.

Benchmarks on Neural Data. Benchmarks for neural data analysis are related but differently
motivated than decoding benchmarks. BrainScore [43] evaluates the ability of models to predict
brain data when trained on non-neural data tasks. The Sensorium [44] and Algonauts [45] challenges
evaluate encoding models that predict brain activity of mouse visual cortex and human fMRI,
respectively, given visual stimuli. The Neural Latents Benchmark (NLB) [46] evaluates latent
variable models on spiking activity from different brain areas of monkeys. While the NLB has a
decoding metric, this metric is computed with ridge regression on inferred latent variables and is
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Figure 1. FALCON Evaluation Design. (a) Top: BCI decoders are prepared by collecting calibration data
where a user attempts to perform a cued behavior. This process yields paired examples of behavioral outputs
and associated neural data. Bottom: Current practice requires new calibration data to train new decoders. High
decoding performance may require substantial data, motivating methods for few-shot decoding. FALCON
provides full “held-in” sessions and evaluates few-shot decoding on “held-out” sessions. (b) Each session in
a FALCON dataset contains multiunit threshold crossings and behavioral data (which are discrete sentences
in H2 and continuous covariates otherwise). Evaluation data is withheld from all sessions. All remaining data
is released publicly for held-in sessions. Only a small fraction of data is released for held-out sessions. (c)
FALCON’s design enables comparison of different approaches for consistent decoding. Zero-shot methods use
no data from held-out sessions, few-shot methods use the calibration splits from held-out sessions, and test-time
adaptive methods can implement behavior-free, unsupervised decoder updates during evaluation.

not treated as a primary endpoint. FALCON directly evaluates decoding, allows more flexibility in
decoder architecture, and more closely aligns with the goal of evaluating the quality of iBCI decoders.

2 Benchmark evaluation pipeline and metrics

2.1 Evaluation strategy and pipeline

FALCON evaluates behavioral decoding from iBCI neural activity in five datasets. Each dataset
comprises multiple sessions of data divided into two contiguous splits: held-in and held-out (Fig. 1a).
As in standard decoder calibration, held-in sessions provide sufficient data to train a high-performing
decoder; held-out sessions are prepared for evaluating few-shot decoder performance and therefore
include insufficient data to prepare decoders from scratch ( Fig. 1a,b). All datasets provide multi-unit
threshold crossings (detected voltage deflections caused by nearby neuron action potentials) recorded
from intracortical electrodes and behavioral data (specified per task). An evaluation split of the same
length is withheld from both held-in and held-out. All remaining data is released for held-in sessions
while a small fraction of data is released for held-out sessions. Note that the held-in split provides
a standard-data regime iBCI decoding benchmark, but FALCON focuses on few-shot decoding
performance in the held-out split.

Submitted decoders are executables that implement an iBCI prediction interface. The evaluation server
(EvalAI [47]) requires causal, open-loop predictions to be made on streaming neural data, timestep-
by-timestep. The communication datasets make predictions on coarser timescales (per sentence for
H2, per song motif for B1). These formats mimic current iBCI use for their respective tasks. Lack of
trial structure in movement tasks is an important training time consideration; decoders trained on
trialized data can degrade significantly when evaluated continuously (Section A.5.1). We note that
an important limitation of FALCON is that evaluation may be susceptible to promoting models that
exploit trial structure implicit in the datasets, even if this does not benefit iBCI control [48].
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2.2 Supported approaches and benchmark scope

FALCON allows methods with varying data assumptions to be evaluated in a common setting
(Fig. 1c). Decreased data use provides greater reduction of user burden, but can be more challenging.

Zero-shot methods directly predict behavior on new sessions with fixed model parameters. This
typically requires using deep networks that train on many sessions (e.g. months) of data. Such methods
have enabled high performance cursor control on new days for months into the future [30, 31]. Recent
efforts exploring subject generalization [49, 50, 34] and neural data foundation models [32, 33]
may alleviate the burden of large scale data collection on individual users. However, as current
multi-session zero-shot methods impose large data collection burdens on the user and may still
degrade after long-term use, there is a practical need to explore adaptive methods as well.

Few-shot supervised methods assume the collection of limited calibration data for every session of
use. For people with paralysis, a high-performance iBCI that requires a short calibration procedure
before use may still confer a large advantage over other assistive technologies. Current supervised
deep networks typically adapt to short calibration blocks through fine-tuning of a pretrained model [32–
34]. Few-shot supervision is the least strict setting that can be evaluated with FALCON that still
reduces user burden, for which the highest performance is expected.

Few-shot unsupervised methods remove the need for behavioral data on new days, skipping explicit
calibration periods by allowing recalibration procedures to be performed using only neural data from
normal iBCI use. Due to their lack of reliance on behavioral data, unsupervised approaches are not
subject to problems that may arise from behavioral labels, which may be difficult to obtain during
iBCI use when guessing a user’s intent post-hoc can be unreliable. Unsupervised methods typically
assume that the neural activity has an underlying manifold which maintains a stable relationship
to behavior over long periods of time [20–25]. However, the specific context of iBCI use, such
as strategy or posture, may lead to a change in the manifold-to-behavior mapping and violate this
assumption. FALCON’s datasets are drawn from consistent behavior across days, though due to
behavioral complexity, not all behavioral conditions will be sampled in the few-shot calibration data.

Test-time adaptation generally leverages behavioral priors to provide model labels on unlabeled data.
Currently proposed test-time adaptation methods avoid the collection of any calibration data on test
days. Instead, these methods use neural data and inferred behavioral labels collected during normal
iBCI use to perform “semi-supervised” decoder recalibration. However, these methods have only
been demonstrated for two-dimensional cursor use and language communication [27–29], suggesting
open challenges for broad behavioral domains, such as in FALCON’s movement datasets.

2.3 Metrics

Each dataset uses a standard decoding metric. The movement tasks (M1, M2, H1) require predictions of
multi-dimensional motor covariates, such as muscle activity. For these tasks, accuracy is reported
using the coefficient of determination (R2), computed as a variance-weighted average across the
R2 of individual motor covariates. R2 is useful for interpreting low-dimensional predictions as a
constant mean prediction achieves an R2 of 0 and max R2 is 1. The handwriting task (H2) requires
prediction of English characters from a corpus of common sentences; we use word error rate (WER)
as a metric, computed as the edit distance between the predicted and expected sequence divided by
the length of the intended sequence. Birdsong decoding (B1) reports performance as mean squared
error (MSE) on the predicted spectrogram; MSE is preferable for evaluating spectrogram predictions
as the predictions are much higher-dimensional than in movement tasks. Metrics are computed per
session, and across-session mean and standard deviation are reported on EvalAI. Mean and standard
deviation are computed separately for held-in and held-out splits.

3 Datasets

FALCON aims to provide a comprehensive evaluation of few-shot decoding across contemporary
iBCI applications. FALCON datasets span two primary groups of tasks: movement and commu-
nication (Fig. 2). FALCON’s movement datasets have either kinematic or muscle outputs, and
the communication datasets have either text or vocal outputs. Because most human iBCI study
participants have limited independent movement, human behavioral data are those that the researcher
asked the participant to attempt or imagine, while animal behavioral data are recorded from physical
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Figure 2. FALCON datasets span iBCI use cases. For each column, top: task schematic; middle: neural
activity for all channels over time; bottom: example behavioral outputs. Each panel includes a vertical timeline
denoting held-in (gray) and held-out (teal) sessions in the dataset. Ticks mark individual sessions, colored
vertical bars indicate time elapsed within or between splits. Tasks: Movement datasets (mechanical arm) include:
monkey reach-to-grasp (M1, 2 monkeys (A/B), 64/96 channels neural data, 16 channels muscle activity), monkey
finger movements (M2, 96 channels neural data, 2-dimensional finger movements), and human robotic effector
(H1, 172 channels neural data, 7-dimensional hand and arm velocity outputs). Communication tasks (speaking
head) include human handwriting (H2, 192 channels neural data) and songbird vocalization (B1, 85 channels
neural data).

actions. All datasets contain electrophysiological voltage recordings collected from intracortical
microelectrodes. We extract threshold crossings from the recorded voltages to yield spiking activity,
as is standard practice for iBCIs [51]. Detailed descriptions of each dataset and their locations can be
found in Section A.3.

While the ultimate goal of some iBCI research is applications in humans, we provide animal datasets
because animal models are essential to develop iBCI applications and for basic scientific discov-
ery [52]. Using both animal and human data also improves the likelihood of finding models with
broad effectiveness, as levels of instability are likely to vary across subjects and species [22, 23, 53].

M1: Monkey reach and grasp. The M1 dataset consists of recordings using Floating Microelectrode
Arrays (Microprobes), implanted in the precentral gyrus while two monkeys (M1-A and M1-B) reached
to, grasped, and manipulated an object in a specific location (4 possible objects, 8 possible locations)
[54–57]. Intramuscular electromyography (EMG) was recorded from 16 muscles in the right hand
and upper extremity. The large number of object/location combinations leads to a wide variety of
muscle activations. Unlike higher-level behavioral variables (such as robotic arm endpoint velocities),
EMG is a directly measurable output of the motor nervous system, and thus provides a signal that
should have a close correspondence to neural activity on a moment-by-moment basis. EMG is also
directly relevant to iBCIs that combine with functional electrical stimulation to control paralyzed
limbs [58, 59]. Monkey EMG is interesting to iBCI research as human iBCI users with paralysis have
limited muscle control and likely lack the ability to produce EMG decoding targets; recent works
have proposed cross-species transfer to exploit monkey EMG data for iBCI applications [49].

M2: Monkey finger movements. The M2 dataset consists of Utah array recordings from the precentral
gyrus while a monkey made finger movements to control a virtual hand to acquire cued target
positions [60, 61]. Finger actuation ranged from full extension to full flexion with cued movements
focusing on the index finger and/or the middle-ring-small (MRS) finger group. The goal of including
M2 in the FALCON benchmark is to develop methods that accurately predict individuated finger
movements over time. Finger control is a critical aspect of dexterous hand function and is a key target
for iBCI control that aims to restore upper limb and hand function to individuals. Recent work has
shown that the encoding of finger behaviors in motor cortex may be compositional [60, 62]; yet, the
implications of this finding on iBCI control and decoding stability are unclear.

H1: Human robotic effector. The H1 dataset contains Utah array recordings from the hand and
arm motor cortex of a human iBCI participant, collected in a long-term clinical study on iBCIs
for sensorimotor control. The participant was cued to attempt to reach and grasp with their right
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hand. This data was used to calibrate an iBCI for control of a robotic arm in a 7 degree-of-freedom
task [1, 63, 64]. These data are open loop, meaning that the participant attempted cued movements
but was not directly controlling the output and could not correct errors in real-time. H1 contains a
breadth of combinations of robotic arm command variables (3D limb kinematics, 1D rotation, 3D
grasp shape) that are often decoding targets for iBCIs. High-dimensional control is particularly
burdensome to calibrate, as the large number of possible endpoints demands calibration procedures
that are often several minutes long [63]. Developing methods to improve the efficiency of calibration
to novel sessions would advance the practical viability of using iBCIs for high-dimensional control.

H2: Human handwriting. The H2 dataset contains neural activity recorded using Utah arrays placed
in the "hand knob" area of the dorsal motor cortex of a human iBCI participant, collected as part
of the BrainGate2 Clinical Trial. The participant was asked to copy a sentence by attempting to
write each letter individually [5]. The H2 dataset falls in the domain of brain-to-text BCIs, which
aim to restore communication capabilities. Decoders for this task need to accurately predict the
intended character as well as determine when that character was intended to be written, as the task is
fully self-paced. This task is therefore not amenable to traditional linear decoders and will require
more sophisticated approaches, most canonically RNN decoders with a Connectionist Temporal
Classification loss [5, 10, 11, 29]. Additionally, due to the goal of predicting words or sentences,
communication iBCIs often use large language models to further refine predictions or build stable
decoders [10, 29].

B1: Songbird vocalization. The B1 dataset features neural recordings from a zebra finch songbird
using Neuropixels 1.0 probes [65] implanted in the motor brain region robust nucleus of the ar-
copallium (RA). Alongside neural activity, this dataset includes simultaneous free-behavior audio
recordings during awake-singing. Songbird neuroanatomy and vocal behavior have direct parallels to
human speech [66], thereby offering a valuable model for exploring neurally-driven speech synthesis
applications. The B1 dataset presents a unique challenge for stable decoding approaches. Neuropixels
probes may exhibit nonstationarities that vary significantly in type and timescale compared to tradi-
tional microelectrode arrays. Given vocal ground-truth, decoders designed for B1 aim to synthesize
high-fidelity continuous amplitude waveforms or spectrogram representations of vocal output. This
strategy may better preserve the prosodic elements in reconstructed vocalizations, a significant chal-
lenge inherent to current brain-to-text approaches. By developing stable birdsong decoding strategies,
we aim to establish baseline methods that can be adapted to human brain-to-speech iBCIs.

4 Results

We seed FALCON with representative approaches to provide an initial characterization of the stability
challenge. Implementation details on all baselines are provided in Section A.4. For all datasets,
we provide standard decoders applied to held-out sessions in two ways: (1) trained in a many-shot
manner using redacted data (“oracle” decoders) approximately upper-bound performance and (2)
applied zero-shot (“static” decoders) to lower-bound performance. For motor datasets (M1, M2, H1), we
fit a Wiener Filter (WF; ridge regression with history) on inferred neural firing rates derived from
an exponential spike smoothing kernel (see Section A.4.1). A single-session WF is a simple but
effective baseline for offline decoding from high quality spiking activity and is a representative default
method for closed loop control. We also train a single-session recurrent neural network (RNN) and a
multi-session Neural Data Transformer (NDT2 Multi [32]) to establish the performance of higher
capacity nonlinear models. For the human handwriting dataset H2, we provide an RNN trained on
multiple sessions to predict English letters from neural activity, and a second RNN that additionally
uses language models (LMs) as priors to correct RNN outputs and improve accuracy. On B1, we apply
the EnSongdec decoder [67] which predicts song embeddings from spiking data using a feedforward
network and synthesizes them into continuous birdsong using a pretrained EnCodec model [68].

We also sample state-of-the-art methods for robust decoding to demonstrate how existing approaches
perform on FALCON datasets. For movement datasets, we provide two deep-network-based unsuper-
vised few-shot alignment approaches, Nonlinear Manifold Alignment with Dynamics (NoMAD) [22]
and Cycle-consistent Generative Adversarial Network (CycleGAN) [23]. Similar to neural latent
variable models [46], NoMAD and CycleGAN use an RNN and an MLP, respectively, to infer neural
firing rates through a Poisson firing rate model. These methods then apply distributional alignment to
match inferred neural firing distributions on held-out sessions to those of held-in sessions. Different
single-session models are trained to provide the different held-in scores. Additionally, we train NDT2
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Figure 3. Static decoders exhibit decoding instabilities on FALCON datasets. (a) Raster plot showing 1
minute of data for each M1-A session, separated by red vertical lines. (b) Neural trajectories from PCA fit on
M1-A Day 0 smoothed spiking activity and applied to Day 0 and Day 23 smoothed spiking activity. Colored by
reach direction. Thick lines show the average of all reaches in a given direction and thin lines indicate single
reaches. (c-e) R2 of oracle decoders (RNN red, WF blue) and static decoders (RNN gray, WF black) for held-in
and held-out splits for M1-A, M2, and H1. Higher values indicate more accurate performance. Downward triangles
indicate points with negative R2 otherwise not visible on these axes. Selected static decoders are annotated with
a gray or black circle. (f) Word error rate (WER) of oracle (blue) and static (black) decoders for H2. Lower values
indicate more accurate performance. Rather than training one model per held-in session, the held-in decoder
is trained using all held-in sessions (performance denoted by horizontal line). Held-out dataset performance
reported as mean ± standard deviation across 5 random seeds. (g) Mean squared error (MSE) of oracle (blue)
and static (black) EnSongdec models for B1 held-in and held-out splits. Lower values indicate more accurate
performance. Static decoder chosen from held-in datasets indicated with black circle.

Multi models that only use calibration data. The H2 stability baseline is a test-time adaptive method
that uses the LM-corrected outputs as pseudo-labels to iteratively recalibrate the RNN (Continual
Online Recalibration with Pseudo-labels; CORP [29]). As vocalization decoding has seen limited
development of specific decoder stabilization approaches, we pose B1 as an open question and solicit
potential solutions from FALCON submissions.

4.1 FALCON datasets exhibit unstable decoding performance across sessions.

We first show that FALCON datasets exhibit qualitative nonstationarities, reflecting the challenges
faced in iBCI use. Figure 3a shows neural spiking activity from all sessions in the M1 dataset. It is
clear that neural firing exhibits different properties across sessions. We also visualize this data in
3 dimensions using principal components analysis (PCA) (Fig. 3b). Under a common projection,
we plot average time courses for different reach directions. Directions are clearly separable in both
sessions (supporting decoding), but the required decoding map changes between sessions.

Next, we quantify that each session’s neural activity can provide good decoding of behavior. We
train oracle decoders for each session, which use all non-evaluation data. Specifically, held-in oracle
decoders use the data from the calibration split, and held-out oracle decoders use both the calibration
split and the redacted data. All oracle decoders are evaluated on respective session evaluation splits.
For movement datasets, oracle decoders consist of Wiener Filters with cross-validated history (WFs)
or single-session RNN models (Fig. 3c-e, blue/red). For H2, the oracle decoder is an RNN trained
to predict letters from neural data, trained jointly on all held-in calibration splits and incrementally
with each session’s held-out calibration and redacted splits (Fig. 3f, blue). For B1, we apply an
EnSongdec model [67], which uses neural data to predict song embeddings before reconstructing
song spectrograms (3g, blue). For all datasets, variability in oracle decoding performance is nontrivial
but small, implying that performance drops from transferring decoders to new sessions are not due to
degraded neural data or a lack of correspondence between neural and behavioral data.

Finally, we quantify decoding instabilities in each dataset with zero-shot static decoders. The specific
static decoder was chosen from the held-in session oracle decoders as the highest performing on
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Figure 4. Baseline model predictions on M1-A dataset. (a) Performance (R2) of each baseline model on
individual held-in and held-out M1 datasets. Box indicates the dataset that will be elaborated on in later panels.
(b) Example decoded EMG traces for each baseline approach. Three of the sixteen total muscles shown: biceps
(BCPs), flexor carpi radialis (FCR), and extensor digitorum (EDC). Each column is an example trial for one
object (sphere or button) and location (angle) pair. Gray traces are the measured EMG for that muscle and
experimental condition, and colored traces are the EMG predicted by each decoder-stabilization method on Day
30. (c) R2 values computed for three individual muscles. Together with the remaining muscles, these values
comprise the variance-weighted R2 presented in panel (a).

the evaluation split of the other held-in sessions, to approximate good generalization to held-out
sessions. We apply the decoder unmodified to the held-out datasets, simulating an iBCI decoder’s
naive (zero-shot) performance on a new session without recalibration. All datasets showed marked
decoding instability (Fig. 3c-g, black/gray), with drops in WF performance up to 0.28 R2 (M1), 0.27
R2 (M2), and 0.14 R2 (H1). RNN decoders exhibit more instability on FALCON movement datasets,
with drops up to 1.94 R2 (M1), 0.82 R2 (M2) and 0.78 R2 (H1). Communication datasets demonstrate
similar trends – error increases as much as 0.40 WER (H2) and 9.03e-4 MSE (B1).

4.2 FALCON baselines demonstrate the difficulty of improving M1 decoder stability.

We next compare current few-shot approaches applied to M1-A in detail. On the held-in datasets,
NDT2 yields the highest performance, followed by NoMAD + WF, and CycleGAN + WF (Fig. 4a).
From held-in to held-out sessions, NDT2 dropped by at most 0.30 R2, NoMAD by at most 0.21
R2, and CycleGAN by at most 0.24 R2. Compared to the static WF (drop ≤ 0.28 R2), the baseline
approaches show at most a marginal improvement, indicating that stability challenges still affect
all approaches applied to M1. Model ranking and relative performance are largely preserved across
sessions, implying that averaging R2 across sessions summarizes performance without obscuring
gains on specific sessions.

For Day 30, we also present decoded predictions for three key muscles - the biceps (BCPs), flexor
carpi radialis (FCR), and extensor digitorum (EDC) - for each baseline approach. In Fig. 4b, each
column is an individual reach for one of the location-object pairs available in the evaluation split
on Day 30. Comparing the predicted EMG traces to the measured EMG traces provides context
for interpreting the R2 numbers and understanding which features of the EMG (the baseline, the
high frequency features, the magnitude) are predicted well by each method. For example, NDT2
captures more high frequency changes in the muscle activity than other methods, potentially due to
its nonlinear decoding. In Fig. 4c, we show R2 values for example muscles individually. Per-muscle
performance preserves the method ranking shown in Fig. 4a, providing further confidence that the
variance-weighted R2 over output dimensions is sound.

4.3 FALCON baseline performance drops from held-in to held-out datasets.

Baseline results on all datasets are shown in Table 1. FALCON quantifies notable performance
gaps across methods. For example, within oracle decoders, which are by definition trained using
the same data, increased model complexity can substantially improve decoding (M2: 0.27 vs 0.77 R2

WF/NDT2 Multi; H2: 0.11 vs 0.02 WER RNN Multi/+ LM). Moreover, it is unsurprising that using
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Table 1. FALCON baselines. Metric means and standard deviations over sessions, computed for held-in data
and held-out data separately. Standard deviations only shown for the held-out split, for clarity. Metrics: R2 for
movement tasks, word error rate (WER) for H2, mean squared error (MSE) for B1. OR: oracle models trained with
unreleased data on held-out split. ZS: Zero-shot/static. FSU: Few-shot unsupervised. FSS: Few-shot supervised.
TTA: Test-time adaptive. Multi: denotes training with multiple held-in datasets; otherwise models use a single
held-in dataset.

Movement (Held-Out R2 / Held-In R2 ↑)
Class M1-A M2 H1

Wiener Filter (WF) OR 0.53±0.04/0.54 0.26±0.03/0.27 0.21±0.04/0.24
RNN OR 0.75±0.05/0.75 0.56±0.04/0.59 0.44±0.13/0.51

NDT2 Multi OR 0.78±0.04/0.77 0.58±0.04/0.62 0.63±0.08/0.68

WF ZS 0.34±0.06/0.46 0.06±0.04/0.15 0.16±0.03/0.20
RNN ZS −.60±0.45/0.52 −0.07±0.23/0.20 0.09±0.18/0.31

CycleGAN + WF [23] FSU 0.43±0.04/0.61 0.22±0.06/0.32 0.12±0.06/0.15
NoMAD + WF [22] FSU 0.49±0.03/0.64 0.20±0.10/0.35 0.13±0.10/0.21

NDT2 Multi [32] FSS 0.59±0.07/0.77 0.43±0.08/0.63 0.52±0.04/0.62

Communication (Held-Out Error / Held-In Error ↓)
Class H2 (WER) Class B1 (MSE ×10−4)

RNN Multi OR 0.15±0.01/0.11 EnSongdec [67] OR 7.47±0.99/5.61
RNN Multi + LM OR 0.03±0.00/0.02

RNN Multi ZS 0.53±0.02/0.11 EnSongdec ZS 21.8±3.91/5.18
RNN Multi + LM ZS 0.37±0.01/0.02
CORP [29] TTA 0.11±0.01/0.02

more data will provide large performance gains (ZS to FSU to FSS in movement datasets, ZS to TTA
in H2). FALCON encourages the submission of novel approaches in each class of data use.

Given FALCON’s flexibility to accommodate many classes of approaches, a method’s held-in score
may be used to contextualize its own held-out score. Oracle decoders establish the approximate
variability in performance between held-in and held-out splits, which appears relatively small (e.g.,
max difference = 0.04 R2 for NDT2 Multi on H1, 0.04 WER for RNN Multi on H2). Yet, all methods
show sizable gaps between held-in and held-out scores, far exceeding the expected variability. In
absolute terms, all decoders perform well on held-in M1 (R2 = 0.46-0.78), but performance drops
by 0.12-0.18 R2 on the held-out split (and the RNN has an extreme failure). M2 and H1, which show
lower overall decoding performance, maintain that held-out scores are only a fraction of the potential
performance indicated by held-in scores. This is also true for H2, where CORP provides a great
advance over zero-shot methods but yields error on the held-out datasets that is nearly 4x higher
than that of oracle decoders on average (0.03 vs 0.11 WER). These results indicate that room for
improvement remains in the few-shot challenge on FALCON datasets.

5 Discussion

FALCON extends previous efforts to benchmark models of neural data by presenting a standardized
evaluation procedure for algorithms that improve decoder robustness in iBCI applications. We release
datasets from 3 movement and 2 communication tasks, spanning monkeys, songbirds, and human
participants. FALCON is designed to be inclusive of many classes of approaches; we demonstrate
standardized comparison of 5 different approaches for movement datasets, 3 different approaches for
H2, and 1 approach for B1, each with varying complexity and data-use strategies. These initial models
far under-sample the wide design space of methods; we believe further submissions to FALCON will
help clarify the value of different training data and priors. We hope that FALCON will encourage
new approaches to be developed and adopted for real-world iBCI devices.

We expect that FALCON will enable machine learning researchers to apply cutting-edge approaches
to a neuroengineering problem. To this end, we impose minimal restrictions on training strategies: we
allow zero-shot, few-shot, or test-time adaptation and provide generous compute for model inference.
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While the provided baselines train with only the calibration data, FALCON is compatible with
foundation models and can be used to assess their efficacy for improving iBCI robustness.

Extensions and limitations FALCON’s datasets, except for B1, contain constrained behavior
with trial structure, derived from repeated cues to start and stop stereotyped behavior. Model
memorization of trial structure can impede closed loop control and has been a major hurdle for
adopting deep networks across iBCI settings [48, 69, 70]. Corroborating this narrative, NDT2
models trained on trialized data degraded in FALCON’s continuous evaluation (Section A.5.1). To
penalize sensitivity to trial structure, FALCON does not provide trial labels in movement decoding
tasks. However, FALCON datasets are still inherently structured. Providing datasets with more
naturalistic behavior is technically challenging, particularly in humans without intact motor abilities
for whom intended behavior must be communicated post-hoc. Nonetheless, future extensions may
endeavor to evaluate more free and diverse behaviors, bringing evaluation closer to real-world iBCI
use. To more easily aggregate a large number of behaviors, advances in cross-subject or cross-task
generalization [49, 32, 50, 71] motivate analogous few-shot benchmarks where users are given
restricted data for a new subject or behavior.

An important consideration in interpreting FALCON is that it evaluates open loop prediction, not
closed loop iBCI control. Closed loop control introduces shifts in neural data due to sensory
feedback [72] and consequent user compensation. Users can correct for certain classes of decoder
error, implying that worse decoder predictions may not yield poor control [73, 74]. The popular
robotics paradigm of evaluating control in simulation [75] is challenging for iBCI given the complexity
of simulating these considerations. Understanding how to design evaluation that avoids this open-to-
closed loop performance gap remains an open problem for the field, and it is important to note that
consistent decoding in FALCON may not necessarily yield consistent real-world control. Nonetheless,
FALCON solidifies a current community focus on reducing data requirements. Thus, approaches
reaching performance saturation in the FALCON benchmark would significantly advance the field.

FALCON datasets all provide multiple sessions of data for individual subjects. While multi-session
data is a substantial advance over single dataset benchmarks (e.g. [46]), methods can have variable
performance when applied to different subjects [22, 23]. The relatively unique nature of the tasks in
FALCON and the cost of intracortical experiments are currently prohibitive to providing data from
the high number of subjects needed to support claims of subject generalization. Evaluation of subject
generalization will be an important priority for real-world application when these datasets become
more common, and FALCON can be easily adapted to support these datasets.

Finally, FALCON baselines exclusively use spiking activity for decoding. While spiking activity is
the default input for many iBCIs, the experimental procedure for determining spiking thresholds often
involves researcher discretion. Generally, thresholds are set as a multiple of the RMS of voltages
recorded during a baseline period, but the precise multiple and protocol for baseline collection
varies from dataset to dataset. To encourage research into stability methods that might avoid human
variability or thresholding overall, we have additionally released the raw 30kHz broadband activity
for M2 and B1.

Ethical considerations Animal datasets were collected with approval by Institutional Animal Care
and Use Committees. Human datasets were collected with Institutional Review Board approval, as
part of clinical trials conducted under FDA Investigational Device Exemptions. Informed consent
was obtained prior to any experimental procedures. Approvals and experimental procedures can be
found in the primary references for each dataset.

FALCON focuses on algorithms that solve a problem specific to iBCIs. Such devices are intended to
restore function to individuals with disabilities or impairments resulting from brain injury or disease.
However, their widespread adoption raises ethical considerations with respect to the impact of these
devices on human identity, privacy, and equity, which are the subject of ongoing study [53, 76].

FALCON also makes use of previously collected animal datasets. Animal models are critical
to neuroscientific research that aids in improving our understanding of the brain and develops
medical devices for the treatment or assistance of neurological disorders. We hope that by releasing
standardized animal datasets, the FALCON benchmarking effort will contribute to the minimization
of redundant data collection by allowing researchers to make better use of existing data.
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NeurIPS Paper Checklist
1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: The abstract and introduction introduce the purpose of the benchmark and its
contributions. We cite existing BCI literature to establish the motivation for the benchmark
and justify that the methods it evaluates are important.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: The Discussion section outlines the limitations of the benchmark in its current
form and what future benchmarks may focus on.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
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Answer: [N/A]
Justification: The paper does not contain any theorems, formulas, or proofs.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: Benchmark platform and evaluation code is publicly available in our repository.
Baseline code is available for all published models; unpublished models will release code
after the approach has been published. For all baselines, methods are described either in
the supplement of this work or in references to the original publications surrounding the
approaches themselves.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.
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5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [Yes]
Justification: All benchmark code is released in our public repository. Baseline code
is released for all published methods. Unpublished method code will be released upon
publication of the approaches’ original manuscripts.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/public/
guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: High level details are provided in the main text, with additional details in the
supplemental material, for all results presented here.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: Baseline results are reported in Table 1 as the mean and standard deviation
across held-out datasets.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.
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• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: All results were obtained using our evaluation platform, which has compute
resources described in the supplemental material.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: All datasets have been released and anonymized to protect the privacy of
participants. All datasets were collected with appropriate ethical board approvals.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader Impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: The discussion section of the work discusses possible negative societal impacts
of enabling more stable iBCI control. The positive societal impacts - namely more usable
neuroprosthetic devices - motivate the paper.
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Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [N/A]

Justification: The paper releases only neural and behavioral data from animal models and
anonymous human participants.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: Previously-published or documented models and datasets used in the paper are
cited with licenses obeyed for academic use. Many of the models’ respective creators are
authors on this work. No previously-released data is used.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
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• The authors should state which version of the asset is used and, if possible, include a
URL.

• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the package

should be provided. For popular datasets, paperswithcode.com/datasets has curated
licenses for some datasets. Their licensing guide can help determine the license of a
dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: The paper releases previously-collected datasets for the first time. Each dataset
is briefly described in the main text with more detail in the Appendix. Code related to the
benchmark is publicly available on our Github.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [N/A] .

Justification: This work does not contain any new human subjects data. Previously-collected
human subjects data released for use in the benchmark has details included in the Appendix
of this paper and/or in the original works that describe the experiments.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
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Answer: [N/A] .
Justification: This work does not contain any new human subjects data. Previously-collected
human subjects data released for use in the benchmark was conducted under each institution’s
IRB approval and FDA Investigational Device Exemptions. Further details are documented
in the original works that describe the experiments where these data were collected, which
can be found in the Appendix.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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A Supplementary Material

A.1 Computational Resources

EvalAI is a platform that allows users to host and participate in AI challenges. It provides a simple
interface for the participants to submit their solutions and for the challenge organizers to evaluate
them. The link to our FALCON EvalAI page can be found on our challenge website: https://snel-
repo.github.io/falcon/

For the FALCON challenge, we provide a container-based image evaluation infrastructure within
EvalAI. This environment is primarily based on AWS Elastic Kubernetes Service (Kubernetes Cluster
service) but also uses other AWS services like Elastic File System (EFS) to store the ground-truth
dataset file(s) on which the evaluation is to be performed. The EFS file system is mounted on the
AWS Elastic Compute Cloud (EC2) instance inside the EKS cluster, so the dataset file(s) can be
accessed for evaluation.

Once the challenge’s participant submits a solution (model) through the EvalAI platform by pushing
a Docker container image, an EvalAI agent publishes the solution to the AWS Elastic Container
Registry (ECR). The EKS cluster has a single EC2 instance server with pre-defined resources (CPU,
memory, storage) which pulls the Docker container image and runs the evaluation script on the
submitted solution. The evaluation script is responsible for evaluating the submitted solution and
providing a score based on the evaluation criteria. The score is then sent back to the EvalAI platform
to report leaderboard metrics.

The EC2 instance type is g4dn.4xlarge which has 16 vCPUs, 64 GiB of memory, 1 NVIDIA T4 GPU,
and 100 GB of storage. This configuration is sufficient to run the evaluation script on the submitted
baseline solutions for the FALCON challenge. EC2 G4dn instances are created to help accelerate
machine learning inference and graphics intensive workloads.

A.2 Interpretation of FALCON Metrics

One goal of the FALCON benchmark is to standardize the metrics used for evaluation of stable
decoding performance for each task. As the decoded outputs are very distinct in nature, different
metrics were selected for tasks in each domain, each of which is representative of the most widely
used metric in each field. As with all benchmarks, metrics should be interpreted with care, as these
metrics alone do not necessarily capture all properties of a predicted output. R2 has a convenient
maximum at 1, but can be arbitrarily negative if the predictions contain more variance than the
ground truth variable. R2 also heavily penalizes predictions that are shifted from the expected center
point. WER does not account for how close a given prediction is to the intended word and may
overly penalize predictions that are only incorrect by a few characters. MSE can occupy unbounded
ranges (i.e., [0, ∞)) that can be difficult to contextualize without other relative values. Hence, while
models that demonstrate gains in the FALCON metrics will certainly show improved predictions,
a poor-scoring model may not necessarily have unreasonable outputs. We recommend visualizing
predictions to add additional context to FALCON scores.

A.3 Datasets

FALCON datasets come from multiple labs and were often collected as parts of larger experiments.
Thus, some datasets included in FALCON may share subject and task with other publicly available
data, but we ensure that any such releases exclude the specific held-out sessions used in FALCON.

A.3.1 Data format

All datasets were formatted according to the Neurodata Without Borders (NWB) standard for
neurophysiological data. NWB provides open-source Python and Matlab APIs for reading formatted
datasets (https://github.com/NeurodataWithoutBorders). The data format builds upon HDF5 and
can also be read using any package in any programming language that can access typical HDF5
files. Additionally, FALCON releases a code package that facilitates reading from and analyzing the
converted NWB files (https://github.com/snel-repo/falcon-challenge).
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A.3.2 Data hosting and licensing

Datasets are hosted on the Distributed Archives for Neurophysiology Data Integration (DANDI), a
platform specifically designed for publishing and sharing neurophysiological data. DANDI generates
metadata and identifiers for all uploaded datasets. The datasets we have released on DANDI are
distributed under a Creative Commons Attribution 4.0 International license. The authors bear all
responsibility in case of violations of rights. The FALCON datasets can be found at the following
links:

• M1-A - https://dandiarchive.org/dandiset/000941

• M1-B - https://dandiarchive.org/dandiset/001209

• M2- https://dandiarchive.org/dandiset/000953

• H1- https://dandiarchive.org/dandiset/000954

• H2- https://dandiarchive.org/dandiset/000950

• B1- https://dandiarchive.org/dandiset/001046

A.3.3 Dataset documentation - M1

General description This dataset contains unsorted spike times and electromyography (EMG)
data from two macaques performing a reach and grasp task. Neural activity was recorded from
Floating Microelectrode Arrays (FMAs; Microprobes) implanted in the motor cortex (M1). EMG was
recorded from 16 muscles of the right hand and upper extremity. EMG electrodes were comprised of
32-gauge, Teflon-coated, multi-stranded, stainless steel wire. They were implanted in bipolar pairs,
separated by 5-10mm along the axis of the muscle. Muscle targeting and separation were performed
as described in [77]. Wires were tunneled subcutaneously to exit the skin of the back at the midline
in four separate bundles. Each bundle ended in a separate connector sewn into the back of a jacket
worn by the monkey.

Our release of M1-A consists of 4 held-in datasets spanning 5 days, each with 53-61 minutes of
calibration data, and 3 held-out datasets spanning 21 days, which have only 1.1-2.2 minutes of
calibration data available. We also release a second monkey, M1-B, for which there are 4 held-in
datasets spanning 7 days (with 52-60 minutes of calibration data each) and 4 held-out datasets
spanning 7 days (with 0.9-1.3 minutes of calibration data).

Source This dataset was collected by Adam G. Rouse with the support of Marc Schieber. The data
was collected for the purpose of to dissociating the effects of location and object during reach-to-
grasp behaviors. The experiment and data collection is described and features in a number of papers,
including [54–57]. The dataset creators have granted permission to use and distribute the dataset
sessions as part of the benchmark.

Intended use This dataset has been curated for evaluating stable decoding approaches as part of
the FALCON benchmark. Muscle activations are a target for iBCIs through functional electrical
stimulation [59] and are important scientifically for motor control as they are the direct output of
commands sent from the central nervous system. The dataset is available on DANDI to allow others
to evaluate their approaches on the data.

Experimental design The experimental task is to reach to, grasp, and manipulate 4 different objects
at 8 different locations, arranged in a center-out fashion. The 4 objects are separated by 45 degrees
with a fifth object in the middle. The center object is a coaxial cylinder, and the four peripheral
(target) objects include: a button mounted inside a tube, a sphere, a perpendicular cylinder, and a
coaxial cylinder identical to the center object. The trained manipulation schemes are as follows:
cylinders are pulled towards the subject, the button is pushed, and the sphere is rotated 45 degrees.

The objects are arranged in a fixed order (perpendicular cylinder, coaxial cylinder, button, sphere)
spanning 135 degrees of a circle. Objects were rotated to one of eight orientations in 22.5 degree
increments (some positions excluded due to biomechanical or visual constraints). This leads to a total
of 8 possible locations per object. Trials begin with the monkey pulling on the center cylinder and
holding for 1500-2000ms. A blue light cues a pheripheral object, which the monkey needs to reach
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to, grasp, and manipulate. For a trial to be successful, the monkey complete these interactions with
the cued object within 1000ms and hold the object in the manipulated state for 1000ms.

Data collection methods The dataset contains neural activity of two rhesus monkeys implanted
with 6 FMAs, 16 channels each, electrodes of length 1.5-8mm. We focus on 4 of these arrays (H,
I, J, and K) placed in primary motor cortex (m1) that were consistently recorded from throughout
the duration of this dataset. Recordings were sampled at 30kHz. Thresholds to extract spiking data
were manually set for each channel and may vary from session to session. Intramuscular EMG was
recorded from 16 muscles including: anterior deltoid (DLTa), posterior deltoid (DLTp), pectoralis
major (PECmaj), short head of biceps (BCPs), lateral head of triceps (TCPlat), flexor carpi radialis
(FCR), flexor carpi ulnaris (FCU), extensor carpi radialis brevis (ECRB), extensor carpi ulnaris
(ECU), radial and ulnar flexor digitorum profundus (FDPr, FDPu), abductor pollicis longus (APL),
extensor digitorum communis (EDC), thenar muscle group (Thenar), first dorsal interosseus (FDI),
and hypothenar muscle group (Hypoth).

Processing For all sessions, thresholds crossings were computed in 20ms bins. We apply a standard
set of preprocessing for the EMG data decoding target as follows: notch filter the signal at 60Hz
and harmonics to remove line noise, high pass filter (acausal Butterworth filter, 4th order) with a
65Hz cutoff, rectify the resulting signal, clip the signal at the 99th quantile, scale the signal at the
95th quantile, resample to 50Hz, rectify again, and finally low pass filter (acausal Butterworth filter,
4th order) with a cutoff of 10Hz. In both held-in and held-out files, the last 40% of the data was
reserved for evaluation. Remaining data is released for held-in sessions for calibration. Ten trials
were released for each held-out calibration set.

A.3.4 Dataset documentation - M2

General description This dataset contains unsorted spike times and finger kinematics from a
macaque performing an individuated finger control task. Neural activity was recorded from precentral
gyrus. Finger position and finger velocity were also recorded.

M2 includes 4 held-in datasets over 10 days, with between 5.9-13.3 minutes of calibration data per
session available, and 4 held-out datasets over 26 days with between 0.8-1.7 minutes of calibration
data provided.

Source This dataset was collected by Samuel R. Nason-Tomaszewski, Matthew J. Mender, and
Cynthia A. Chestek at the University of Michigan. The data was collected to study closed-loop
individuated finger control with an iBCI. The experiment and data collection are discussed in [60].
The dataset creators have granted permission to use and distribute the dataset sessions as part of this
benchmark.

Intended use This dataset has been curated for evaluating stable decoding approaches as part of
the FALCON benchmark. Dexterous hand control is an important behavior that iBCIs aim to restore,
and robust decoding approaches that work well with individuated finger movement behaviors may
aid in this endeavor. The dataset is available on DANDI to allow others to evaluate their approaches
on the data.

Experimental design The monkey is shown a virtual hand whose finger state mirrors that of a
manipulandum. The manipulandum was designed to measure the monkey’s finger state. Only two
independent degrees of freedom are allowed in the manipulandum - the index finger and MRS group,
which bundles middle, ring, and small fingers.

In trials, the monkey is shown visual cues (colored dots) to indicate a target finger state, and the
monkey moves their fingers to the cued positions. The visual cues are colored corresponding to the
colors of the fingers, indicating which finger group should be moved to each target. The monkey is
trained to proficiency, and each trial is on the order of a second.

The finger and target positions are bounded to the range [0, 1], where 0 represents full extension of
the finger group, and 1 represents full flexion of the finger group. The task begins with both targets at
a central position (0.5), and the targets return to the central position every other trial (i.e. a typical
center-out-and-back task paradigm). In between central targets, the task randomly selects from a set
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of target positions that moves one or both groups of fingers away from the central position. Whether
one or both groups of fingers moves in a given trial is randomly selected, and the distance to which
each group moves is also randomly selected (±0.2, ±0.3, or ±0.4 from the central position). For
trials in which both finger groups are instructed to move from the central position, the magnitude of
instructed movement for both finger groups is always equal, but the direction of movement is not
always the same. There are no trials in which one group was instructed to move to +0.4 and the other
group was instructed to move to -0.4 due to the difficulty in separating fingers that far.

Data collection methods The M2 dataset contains neural activity of a rhesus macaque with two
64-channel Utah microelectrode arrays placed in the precentral gyrus, of which 96 channels are
are provided. Recordings were originally sampled at 30kHz. Finger positions and velocities were
recorded at 1kHz using actuator velocities measured by the manipulandum.

Processing For all sessions, we release threshold crossings in 20ms bins. We similarly resample
the finger kinematics to 50Hz for consistency. In both held-in and held-out sessions, the last 40% of
the trials were reserved for evaluation splits. The preceding 60% of held-in session data is released
for calibration. For held-out sessions, the first 10% of each session is released as the calibration split.

A.3.5 Dataset documentation - H1

General description This dataset contains unsorted spike times and robotic actuator kinematics
from a human iBCI participant during an open-loop attempted reach-to-grasp task. Neural activity
was recorded from motor cortex. Behavioral covariates include the 7-degree-of-freedom kinematics
corresponding to each cue. The 7 degrees of freedom are: 3 dimensions of translation, 1 dimension
of rotation (roll), and 3 dimensions for grasp shaping. The grasp shaping dimensions are: pinching
(flexion and extension of thumb/index/ring finger), scooping (flexion and extension of ring and pinky
finger), and thumb abduction.

H1 consists of 6 held-in sessions over 20 days (5-9 minutes of calibration data each) and 7 held-out
sessions over 15 days (1.5-1.8 minutes of calibration data provided).

Source This data was collected by Sharlene Flesher, John Downey, Jennifer L. Collinger, and
Robert A. Gaunt at the University of Pittsburgh as part of a clinical trial of iBCIs for sensorimotor
control. The experiment and data collection protocol are described in [1, 63, 64]. Participant and
date-time information have been obfuscated for deidentification. This data was collected under an
Investigational Device Exemption from the U.S. Food and Drug Administration and is registered at
ClinicalTrials.gov (NCT01894802). The study was also approved by the Institutional Review Boards
at the University of Pittsburgh and the Space and Naval Warfare Systems Center Pacific. Informed
consent was obtained before any study procedures were conducted and included permission for data
sharing. Dataset collectors granted their permission to use and distribute these sessions as part of this
benchmark.

Intended use This data has been curated for evaluating stable decoding approaches as part of the
FALCON benchmark. The H1 dataset provides an example of a high degree-of-freedom behavior,
which may pose specific challenges to robust decoding approaches. The dataset is available on
DANDI to allow others to evaluate their approaches on the data.

Experimental design As this is an open loop task, the participant is asked to attempt to perform a
movement cued with a virtual arm. The virtual arm movement occurs in phases: reach, grasp, carry,
release. Each phase begins with a presentation of a combined visual and word cue for a particular
movement, so the participant can prepare an imagined movement, and an another cue to execute
the imagined movement. The participant has had practice following these cues to calibrate similar
decoders before this dataset was collected.

Data collection methods Neural data was collected at 30kHz from two Utah arrays placed in the
hand and arm region of motor cortex.

Processing For all sessions, we preprocess the neural data into 20ms bins. Robotic arm and hand
kinematics were also downsampled to 50Hz to be consistent with the neural data. For both held-in
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and held-out sessions, we reserve the last 20% of each file for evaluation. All remaining data is
released for held-in sessions, to be used for calibration. The first 20% of each file is released for each
held-out session as the calibration split.

A.3.6 Dataset documentation - H2

General description H2 contains unsorted spike times and sentence prompts from a of a BrainGate2
pilot clinical trial participant (referred as T5) during an open-loop attempted handwriting task. Neural
activity was recorded from the hand “knob” area of arrays placed in the precentral gyrus. Behavioral
covariates for this task are not continuous but rather the cued sentence for each trial.

H2 consists of 21 held-in sessions over 287 days (7-45 minutes of calibration data each) and 5 held-out
sessions over 176 days (1-2 minutes of calibration data provided).

Source This data was collected by Chaofei Fan, Leigh R. Hochberg, and Jaimie M. Henderson at
Stanford University as part of the BrainGate2 Neural Interface System clinical trial (ClinicalTrials.gov
Identifier: NCT00912041, registered June 3, 2009) on iBCIs. The experiment and data collection
protocol are described in [5, 29]. This pilot clinical trial was approved under an Investigational
Device Exemption (IDE) by the US Food and Drug Administration (Investigational Device Ex-
emption G090003). Permission was also granted by the Institutional Review Boards of Stanford
University (protocol 20804). Informed consent was obtained prior to any study procedures being
conducted. Dataset collectors granted their permission to use and distribute these sessions as part of
this benchmark.

Intended use This dataset has been curated for evaluating stable decoding approaches as part
of the FALCON benchmark. Restoring communication is a primary high-level goal of iBCIs, and
the handwriting task is a prime example of a brain-to-text decoding scheme that is appropriate for
participants with arrays placed in motor areas. The dataset is available on DANDI to allow others to
evaluate their approaches on this data.

Experimental design On each trial, T5 was prompted to copy a cued sentence by writing individual
characters (26 English letters, 4 punctuations, and a special ">" character to represent space). T5 was
instructed to attempt to write as if his hand were not paralysed, while imagining that he was holding
a pen on a piece of ruled paper. Each trial has a fixed-length delay period and a variable-length go
period. During the delay period, T5 reads the cued sentence. Once the go cue is on, T5 starts to copy
the sentence letter by letter and uses a verbal cue to indicate he has finished copying. In each session,
both open-loop and “pseudo-closed-loop” trials were collected. In open-loop trials, the participant
only sees the cued sentence; in pseudo-closed-loop trials, the real-time decoded letters are shown.

Data collection methods Data was collected from two 96-channel intracortical Utah arrays placed
in the hand “knob” area of the participant’s left hemisphere precentral gyrus. Original neural
recordings were collected at 30kHz.

Processing For all sessions, neural data was binned at 20ms. We provide only data from within
each trial period, as inter-trial time could be long and lead to unnecessarily large data files. Each
trial is accompanied by the cued sentence. For both held-in and held-out sessions, 40% of the trials
are reserved for evaluation. For held-in sessions, remaining trials are released for calibration. For
held-out sessions, only 3 trials are released for few-shot calibration.

A.3.7 Dataset documentation - B1

General description The B1 dataset contains unsorted spike times, audio recordings, and audio
spectrograms from a zebra finch songbird during natural vocal behavior. Neural activity was recorded
using Neuropixels 1.0 probes from the motor region robust nucleus of the arcopallium (RA). The
dataset includes a precomputed spectrogram derived from the recorded amplitude waveform cor-
responding to each vocal epoch, which constitutes the decoding target for this dataset. Due to the
inherent non-determinism in spectrogram computation, we include the computational function used
to derive the spectrograms. Additionally, the raw amplitude waveform is available for use in decoding
strategies that might prefer it as a target before conversion to spectrogram form.
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B1 consists of 3 held-in sessions corresponding to 3 consecutive days of recordings, with 7-26 seconds
of calibration data per session available, and 3 held-out sessions recorded over the following 6 days,
with 2.7 seconds of calibration data per session provided.

Source This dataset was collected by Pablo Tostado-Marcos, Ezequiel Matias Arneodo, Timothy
Q. Gentner, and Vikash Gilja. The original experiment and procedures are described in [67]. Data
collectors granted their permission to use and distribute these data as part of this benchmark.

Intended use This dataset has been curated for evaluating stable decoding approaches as part of the
FALCON benchmark. The dataset offers an alternative to brain-to-text iBCIs by focusing on the direct
reconstruction of audio spectrograms from neural signals, thereby encouraging decoding approaches
that preserve the prosodic elements of vocal behavior. The B1 dataset proposes the songbird model as
a proxy for human vocalization, supporting the development of neuroprostheses aimed at restoring
communication capabilities and advancing stable-decoding methods. This dataset is available on
DANDI to allow others to evaluate their approaches on these data.

Experimental design An adult, male zebra finch songbird was implanted with a single high-density
Neuropixels 1.0 probe targeting the telencephalic motor region RA in the right brain hemisphere.
Simultaneous neural and behavioral (song) data were collected in a single-housing acoustically-
isolated chamber during awake-singing. The bird was allowed to move and sing freely during
120-240 minute-long recording sessions.

Data collection methods Neural data and vocal behavior were collected simultaneously. Voltage
signals were recorded by 384 Neuropixels channels, amplified, band-pass filtered (300Hz-10000Hz),
multiplexed and digitized at 30kHz on the Neuropixels headstage, and transferred to the data acquisi-
tion module. We focus on 85 channels in the B1dataset corresponding to region RA. Audio signals
were recorded at 25kHz and high-pass filtered (250Hz) for subsequent extraction of spectral features.
The stereotypy characteristic of zebra finch song enabled the segmentation of non-overlapping se-
quences of song syllables, or motifs, composing the bird’s own song. These motifs are similar in
their syntactic structure but vary in timing, pitch and syllable count across vocal renditions. Custom
software was used for extracting song motifs from the audio recordings and for computing the
spectrogram representations to be used as decoding targets.

Processing To allow maximum flexibility in decoder design, we provide threshold crossing activity
at the original 30kHz resolution. Thresholds were independently set on a per-channel basis and may
vary across sessions. The amplitude waveform corresponding to each motif rendition, synchronized
to neural data, is also provided at the original 25kHz sampling rate. The audio signals provided were
band-pass filtered within the relevant birdsong frequency range (250Hz-8000Hz) and de-noised using
the noisereduce Python package [78]. The spectrogram corresponding to each amplitude waveform,
which constitutes the ultimate decoding target, is provided at 1kHz resolution. We provide only a
window of data around each 700ms-long motif (100ms before motif onset and 100ms after the end
of the motif; total epoch length is 900ms). For both held-in and held-out datasets, 40% of the song
motifs are reserved for evaluation. On held-in datasets, the remaining 60% of the data is released for
calibration. On held-out datasets, 3 motifs are made available for the few-shot calibration split.

A.4 Baseline Implementation Hyperparameters

A.4.1 Wiener Filter (WF)

Description For the movement datasets, linear static and oracle decoders are done using a Wiener
filter. Wiener filters predict the current value of an output signal using previous timesteps, as defined
by:

y[t] =

I−1∑
i=0

wix[t− i]

where y[t] is the output signal at time t, x[t] is the input signal at time t, wi is the filter coefficient,
and I is the number of previous samples to use for decoding. In our decoder, the input signal x is
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the smoothed neural data, y is the behavioral output to predict, and I is the number of time bins of
history. The weights are fit using a matrix formation of the above equation:

W = (XTX + λI)−1XT y

where W is a matrix of filter coefficients, X represents the predictor data with history and bias, and
y represents the output signal. λI represents a diagonal matrix with the L2 regularization constant
filling the diagonal. The bias term is not regularized and therefore its diagonal entry is set to zero.
The L2 regularization aims to avoid decoder overfitting by penalizing solutions with large individual
weights.

Implementation We implement the WF as a Ridge Regression model using the Scikit-learn
library [79].

Parameter Optimization L2 regularization values are obtained using 5-fold cross validation. We
sweep a range of 20 values spanning 1e-5 to 1e5 in logspace. For each value, we train and test
a Wiener filter using 5-fold cross validation, testing the decoder on a held-out fold. The optimal
regularization value was selected based on which value yielded the highest performance metric. Final
performance was reported on the held out fold.

To determine the number of bins of history to use for each dataset, we swept from I = 0 to I = 30
by training on all held-in calibration and held-out oracle data splits and reporting performance on the
evaluation split for each dataset, separately. We selected the appropriate number of bins by plotting
the resulting R2 for each session and choosing the value that coincided with the elbow for the most
sessions within a dataset. These results are shown in Figure 5. We ultimately selected I=30 bins
(600ms) for M1, I=7 bins (140ms) for M2, and I=30 bins (600ms) for H1.

Figure 5. Sweeps to determine WF history. We train WF decoders on each session (differentiated by shades
of blue, see colorbar) of all datasets with history from I = 0ms to I = 600ms and evaluate the prediction R2

on the held-out split. We select the history that maximizes performance for most sessions, indicated with the
vertical red dashed line. For M1 and H1, performance continued to rise with increased history. We capped history
at 600ms to ensure reasonable use for iBCIs [80, 81], but selected this maximal value for these datasets. For M2,
performance reached an elbow with 140 ms of history.

Code Availability The WF decoder used for FALCON is available on our Github repository at:
https://github.com/snel-repo/falcon-challenge/blob/main/decoder_demos/sklearn_decoder.py

A.4.2 RNN Decoder - Movement

Description The RNN baseline uses a 1-layer LSTM followed by a linear readout of behavior. It is
a simple supervisd baseline.

Implementation This minimal baseline excludes any multi-session layers, and thus was only
trained on single sessions of data to report oracle and zero-shot results. It is implemented within the
NDT2 codebase, but uses simple Pytorch layers.
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Parameter Optimization We sweep learning rate and model hidden size, though find training
varies little with these choices. We sweep 6 parameter combinations per model. Models train very
quickly (2-10 minutes on a single 2080 NVIDIA GPU).

Code Availability RNN baseline code is available in the NDT2 codebase:
https://github.com/joel99/context_general_bci/.

A.4.3 Neural Data Transformer 2 [32]

Further results We present additional NDT2 baselines in Table 2.

Table 2. FALCON movement baselines with zero-shot and static NDT2. We include NDT2 zero-shot and
static results for comparison with the RNN baseline. Oracle single-session models and zero-shot transfer achieve
comparable results with the vanilla RNN decoder.

Movement (Held-Out R2 / Held-In R2 ↑)
Class M1 M2 H1

Wiener Filter (WF) OR 0.53±0.04/0.54 0.26±0.03/0.27 0.21±0.04/0.24
RNN OR 0.75±0.05/0.75 0.56±0.04/0.59 0.44±0.13/0.51
NDT2 OR 0.71±0.06/0.72 0.44±0.08/0.53 0.38±0.13/0.44

NDT2 Multi OR 0.78±0.04/0.77 0.58±0.04/0.62 0.63±0.08/0.68

WF ZS 0.34±0.06/0.46 0.06±0.04/0.15 0.16±0.03/0.20
RNN ZS −.61±0.48/0.51 0.13±0.09/0.17 0.08±0.17/0.29

NDT2 [32] ZS 0.11±0.11/0.55 −0.03±0.15/0.28 0.10±0.10/0.32
NDT2 Multi [32] FSS 0.59±0.07/0.77 0.43±0.08/0.63 0.52±0.04/0.62

Description NDT2 is a Transformer-based deep neural network previously demonstrated to enable
multi-context neural data modeling with or without any specific parameters for different datasets.
The model tokenizes each timestep of the input data into contiguous subsets of fixed length along the
full channel dimension. As there are multiple tokens per timestep, the multiple input tokens must
be merged to produce per-timestep decoding. In this work, the NDT2 baselines use cross-attention
for behavior decoding. Additionally, the models perform neural data reconstruction as a secondary
objective.

Implementation NDT2 models are prepared as the other single-session baselines, i.e. separate
models are trained per session and the model that performs best on held-in data is used for zero-shot
transfer. NDT2 Multi models use all available calibration data at once, e.g. for the oracle NDT2 Multi
model, a single model was trained with all held-in calibration, held-out calibration, and held-out
redacted data; the regular NDT2 Multi model uses all calibration data. Thus NDT2 does use the
few-shots of calibration data available in future sessions for predicting an early held-out session; this
is an implausible design for real-world use, chosen for simplicity.

As described in Section A.5.1, the training dataloader was modified to provide random fixed length
subsets over either training on trialized data or direct splitting of the continuous data. This is required
on M1and M2for the model to be more robust to FALCON’s continuous evaluation.

Parameter Optimization NDT2 used a fixed grid search on model parameters and learning rate
for each of M1, M2, H1, and trained with early stopping. The checkpoint with best validation score was
used to compute the baseline metric. Individual runs (6 runs per sweep) cost up to 3 hours per model
(for M1data) on a single NVIDIA 2080 GPU.

Code Availability The codebase and checkpoints, along with the specific hyperparameter sweeps,
are on the public Github repo: https://github.com/joel99/context_general_bci/.

A.4.4 NoMAD [22]

Description Nonlinear Manifold Alignment with Dynamics (NoMAD) is a manifold alignment
decoder stabilization approach that operates in a few-shot unsupervised regime. NoMAD frames the
stabilization problem using pairs of datasets consisting of an initial calibration dataset, “Day 0,” where
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both neural and behavioral data are available, and a later dataset that contains neural nonstationarities
with respect to Day 0, termed “Day K,” for which only neural data is available.

On Day 0, a dynamics model is trained, and a decoder is trained to map from the inferred dynamics
to the behavior. The model and decoder are then frozen. On Day K, using neural calibration data, a
feedforward alignment network is trained to map the new neural data onto the fixed dynamics model.
This alignment network is trained primarily using a Kullback-Leibler divergence cost between the
RNN states of the dynamics model on Day 0 and Day K. After alignment network training, the fixed
decoder can be applied to the Day K dynamics to maintain accuracy.

Implementation The Day 0 dynamics model is latent factor analysis via dynamical systems
(LFADS) [82, 17]. Unlike the model with the behavioral readout described in [22], the LFADS
models here are the standard nonautonomous models described in [17, 83, 84]. Of note, we select
only one Day 0 dataset from the held-in sessions for each task; for M1 , this is the 20120926 session,
for M2, 2020-10-19-Run2, and for H1, 19250113T120811. The remaining details are consistent with [22].
The decoder applied is a Wiener Filter with 4 bins of history for M1and M2; for H1, we used 4 bins of
history for most held-in sessions and 8 bins of history to evaluate the Day 0 session that NoMAD
aligned to as well as all held-out sessions.

Parameter Optimization Day 0 LFADS model parameters were optimized using AutoLFADS [83,
84]. AutoLFADS was trained using 8 NVIDIA GeForce RTX 2080 Ti GPUs with training time less
than one hour per held-in dataset. NoMAD alignment network hyperparameters were optimized
using a random search, with each model in the random search using one NVIDIA GeForce RTX 2080
Ti GPU (training time approx. 20 minutes). Wiener Filter bins of history were optimized using a grid
search. Models and decoders were selected based on those which had the highest accuracy on the
held-out calibration data.

Code Availability Because [22] is still under review, the Systems Neural Engineering Lab will not
release the code right now. The code will be made available when this paper has been published.

A.4.5 CycleGAN [23]

Description Cycle-Consistent Adversarial Network (CycleGAN) is a decoder stabilization approach
based on the use of Generative Adversarial networks (GANs) that, like NoMAD, operates in a few-
shot unsupervised regime. Similar to a conventional GAN, CycleGAN architecture consists of a
pair of neural networks, a generator and a discriminator. The generator (or aligner) is trained to
transform the high-dimensional neuronal firing rates from the calibration “Day K” dataset into a
form resembling the initial “Day 0” dataset, which was used to train the fixed neural-to-behavior
decoder. The discriminator is trained adversarially to the generator to maximize the distance between
the distributions of Day K and Day 0 datasets. Unlike regular GANs, CycleGAN also implements a
cycle-consistent loss that regularizes the learning of the Day K to Day 0 mapping function, thereby
reducing the search space and making training more stable. This is achieved by adding a second pair
of generator and discriminator networks that are trained to learn the opposite transformation (i.e.,
from Day 0 to Day K). After CycleGAN training, the aligner is used to transform Day K into Day 0
data to maintain the accuracy of a fixed Day 0 decoder.

Implementation Here we select only one Day 0 dataset from the held-in sessions for each task
to compute the fixed decoder and the subsequent Day 0 to Day K CycleGAN aligners. (20120926
session for M1 , 2020-10-28-Run1 for M2, and 19250120 for H1). The decoder used is a Wiener Filter
with 8 bins of history for all the tasks.

Parameter Optimization Training CycleGAN is computationally efficient since the generator and
discriminators pairs are feedforward neural networks. The training process can be completed on any
modern CPU in under two minutes. We used the same hyperparameters as described in [23]. The
selection of CycleGAN aligners and decoders was based on those that achieved the highest accuracy
on the held-out calibration data.

Code Availability A step-by-step tutorial on the use of Cycle-GAN for neural alignment can be
found on the public Github repo: https://github.com/limblab/adversarial_BCI/blob/main/Cycle_
GAN_aligner.ipynb.
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A.4.6 RNN Decoder and Language Models - Communication (H2)

Description The baseline RNN decoder for H2consists of a shared Gated Recurrent Unit (GRU)
backbone and a set of session-specific affine transform layers. The neural activity first undergoes
an affine transformation via the session-specific layer, and then the GRU backbone decodes the
transformed neural activity into characters. The GRU and session-specific transforms are trained
end-to-end on multiple sessions.

The language model (LM) evaluates a sentence’s probability. Given the character probabilities output
from RNN, we use beam search and an LM to find the most likely sentence.

Implementation The baseline RNN is a 2-layer GRU with 512 hidden units. A softmax layer maps
the GRU outputs to character probabilities. The session-specific layer is implemented as a linear
layer with the same number of units as the input neural features.

The baseline RNN is trained jointly on multiple sessions to maximize performance. The zero-
shot/static model is trained on calibration splits of all held-in sessions. The oracle model is trained on
oracle splits of held-out sessions (not including sessions later than the testing day) plus the calibration
splits of all held-in sessions.

We use a 3-gram LM trained on the OpenWebText2 corpus to convert the RNN outputs into words in
real-time. To further improve the accuracy, we use GPT2-XL to rescore the outputs from the 3-gram
LM. See details in [29].

Parameter Optimization Hyperparameters were optimized by grid search in [29]. No additional
optimization is done for this work.

Code Availability Code and pre-trained models are available here: https://github.com/cffan/
CORP

A.4.7 CORP [29]

Description CORP leverages language models (LMs) for test-time adaptation. It first uses LMs
to correct errors due to nonstationarity in decoded sentences. The corrected sentences are used as
pseudo-labels to calibrate the RNN. The calibration runs after the user finishes writing a sentence.

Implementation We use the same RNN and LM implementations as in A.4.6. For FALCON, we
first trained a seed model on calibration splits of held-in sessions. Then, for each held-out evaluation
session, we take the calibrated model from the previous session (seed model for the first evaluation
session), use the model to decode trials from the new sessions, and run calibration after decoding.

Parameter Optimization Hyperparameters were optimized by grid search in [29]. No additional
optimization is done for this work.

Code Availability Code and pre-trained models are available here: https://github.com/cffan/
CORP

A.4.8 EnSongdec [67] - B1

Description The EnSongdec model is a brain-to-song deep neural network that enables synthesis of
an amplitude waveform from input brain activity. The model features a feed-forward neural network
(FFNN) trained to predict audio (song) embeddings, z, from each timestep of input neural data. The
FFNN is coupled to a Quantizer-Decoder network extracted from a pre-trained, state-of-the-art audio
codec (EnCodec) [68]. The quantization layer converts z into a compressed latent representation, zq ,
utilizing residual vector quantization (RVQ). The decoder network uses transposed convolutions to
reconstruct the time-domain audio signal at its original sampling rate.

Implementation We first used the Encoder network of a pre-trained EnCodec model to extract
meaningful embedding representations of birdsong. To prioritize reconstruction quality over data
compression and streamability, we opted for minimal EnCodec audio compression settings (24kbps
at a 48kHz upsampled input). Next, we optimized custom feed-forward neural networks to translate
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input neural signals into continuous embedding representations of birdsong. Threshold-crossing
inputs were smoothed using a 1-d Gaussian kernel (σ = 30) and downsampled to match the rate
of the target song embeddings (150 samples per second; 7ms bins). 14ms of neural data (2 bins)
were used to predict each audio embedding sample. The resulting feed-forward neural network
featured an input layer of size i = N × history_bins (where N = 85 denotes the number of
Neuropixels channels targeting the brain region of interest), two 64-unit hidden layers and a 128-unit
output layer corresponding to the dimensionality of the embedding space. ELU activation functions
were employed and mean square error (MSE) was used as the reconstruction loss to train FFNNs.
The Quantizer-Decoder network excised from the aforementioned pre-trained EnCodec model was
coupled to the FFNN to synthesize a continuous time-domain song signal. The spectrogram of the
reconstructed song was compared to the spectrogram of the original recorded song to evaluate the
performance of EnSongdec.

Parameter Optimization Hyperparameters were optimized using a grid search approach based on
minimal song reconstruction error. We used Weights & Biases for experiment tracking. Models were
trained on a proprietary cluster of servers using NVIDIA GeForce RTX 2080 Ti GPUs.

Code Availability Code to implement EnSongdec can be found in the public Github repository:
https://github.com/pabloslash/EnSongdec

A.5 Evaluation Parameters

A.5.1 Continuous vs Trialized Evaluation for Motor Tasks

Real-world BCIs will require continuous decoding of user intention. This motivated us to design
FALCON evaluation to be continuous, despite the fact that the evaluation data was often collected
in a trialized setting. When making this design choice, we identified a sensitivity to training and
evaluation context length that varied across datasets. Specifically, we trained trialized NDT2 decoders,
where training data is divided into single behavioral trials, and continuous NDT2 decoders, where
the continuous training data is divided into fixed length segments. Trialized models used up to 4
seconds of history (M1 and H1 had trials in excess of this length, but M2 trials averaged to about 1
second. Further, continuous models did not directly train on data split into segments of a given length,
but rather required augmentation. Data was split into segments longer than the target length; e.g. for
2 seconds of history, data might be split into 4 second segments, and a 2 second slice was drawn
at random. Decoders of either kind were evaluated in a trialized setting, where signals about trial
change could be used to reset model input, or in a continuous setting, where these signals were not
available.

Fig. 6 illustrates the sensitivity of trialized models to continuous evaluation. Trialized models often
performed well in trialized evaluation, and in particular did not degrade with long histories. However,
when evaluated in continuous settings, performance dropped precipitously in M1 and M2. In H1, models
trained on trialized data continue to improve with higher histories, on either trialized or continuous
evaluation.

In contrast, models trained on continuous data fail with long histories, but peak performance was
often comparable to peak trialized performance. Accordingly, NDT2 baselines for M1 and M2 trained
with continuous data and with trialized data for H1.

The dependence of trialized training on trialized evaluation suggests that models are exploiting trial
structure (distinct behavior at the start, middle, and end of trials) to reduce uncertainty about decoding
at different timepoints. This is likely to not benefit closed loop control, where decoding should be
able to produce flexible behavior at any timepoint. Since continuous models are also able to achieve
similar performances, it is possible that continuous models are still exploiting trial structure by
inferring the part of the trial that needs to be currently decoded. Moreover, the fact that performance
continues to improve with longer context for H1 remains a particularly concerning edge case that may
be exploited in FALCON leaderboards. We do not restrict H1 context in evaluation for simplicity, but
encourage works to report the history they use as input for context. We also encourage work that
sheds light on why H1 behaves differently than M1 and M2.
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Figure 6. Continuous vs Trialized Decoding. We train and evaluate NDT2 decoders on combinations of
trialized and continuous data. History indicates the length of context the model uses to make predictions during
evaluation. These decoders are sensitive to data trialization, with varying effects across datasets. Models trained
with trialized data in M1and M2fail significantly when evaluated in a continuous fashion (indicating dependence on
trial structure during decoding). Continuous models can often match the performance of trialized models in either
trialized or continuous evaluation, but is sensitive to the length of history used. H1, unlike the other datasets, sees
continued gains with increased context beyond the explored range even under continuous evaluation, indicating
further possibility of model exploitation of trial structure. Held-in metrics show similar trends. FALCON is
susceptible to models that exploit these gains.

A.5.2 Determining data volumes for few-shot calibration on held-out days

FALCON aims to enforce the realistic constraint that calibration on new sessions will have limited
neural and behavioral data. To ensure that the few-shot problem was well-represented, we established
that the held-out calibration splits were insufficient to train new linear decoders on their own. As
shown in Table 3, performance of WF decoders on the movement datasets trained on the held-out
calibration splits under-performs those trained on the held-out oracle splits.

Table 3. WF decoder performance on held-out data splits. WF decoders trained on held-out calibration and
held-out oracle splits for all movement datasets.

Training Data M1 M2 H1
Held-out calibration 0.24±0.04 0.14±0.05 0.11±0.03

Held-out oracle 0.53±0.04 0.26±0.03 0.21±0.04
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