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Abstract

This paper studies off-policy evaluation (OPE) in the presence of unmeasured
confounders. Inspired by the two-way fixed effects regression model widely
used in the panel data literature, we propose a two-way unmeasured confounding
assumption to model the system dynamics in causal reinforcement learning and
develop a two-way deconfounder algorithm that devises a neural tensor network to
simultaneously learn both the unmeasured confounders and the system dynamics,
based on which a model-based estimator can be constructed for consistent policy
value estimation. We illustrate the effectiveness of the proposed estimator through
theoretical results and numerical experiments.

1 Introduction

Before deploying any newly developed policy, it is important to assess its impact. In many high-
stakes domains, it is risky or unethical to implement such policies directly for online evaluation. This
challenge highlights the essential role of off-policy evaluation (OPE).

There is a vast body of literature on OPE. Most studies assume there are no unmeasured confounders
(NUC), also known as unconfoundedness (see e.g., Thomas et al. 2015, Jiang and Li 2016, Thomas
and Brunskill 2016, Farajtabar et al. 2018, Liu et al. 2018, Irpan et al. 2019, Schlegel et al. 2019, Tang
et al. 2019, Xie et al. 2019, Dai et al. 2020, Chandak et al. 2021, Hao et al. 2021, Liao et al. 2021b,
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Shi et al. 2021, Chen and Qi 2022, Kallus and Uehara 2022, Liao et al. 2022, Shi et al. 2022b, Xie
et al. 2023, Zhou et al. 2023a). However, the NUC assumption is restrictive and untestable from the
data. It can be violated in various domains such as urgent care [Namkoong et al., 2020], autonomous
driving [Nyholm and Smids, 2020], ride-sharing [Shi et al., 2022c], and bidding [Xu et al., 2023].
Applying standard OPE methods that rely on the NUC assumption in these settings would result in a
biased policy value estimator [see e.g., Bennett and Kallus, 2023, Section 6.1].

Causal reinforcement learning studies offline policy optimization or OPE in the presence of unmea-
sured confounding. Many existing works can be divided into one of the following three groups:

1. Methods under memoryless unmeasured confounding: The first type of methods relies on a
“memoryless unmeasured confounding” assumption to guarantee that the observed data satisfies
the Markov property in the presence of unmeasured confounders [Zhang and Bareinboim, 2016,
Kallus and Zhou, 2020, Li et al., 2021, Liao et al., 2021a, Wang et al., 2021, Chen et al., 2022, Fu
et al., 2022, Shi et al., 2022c, Yu et al., 2022, Bruns-Smith and Zhou, 2023, Xu et al., 2023]. Many
of these works also require external proxy variables (e.g., mediators and instrumental variables) to
handle latent confounders. In contrast, the method proposed in this article neither relies on the
Markov assumption nor requires external proxies.

2. POMDP-type methods: The second category employs a partially observable Markov decision
process (POMDP) to model unmeasured confounders as latent states, drawing on ideas from the
proximal causal inference literature [Tchetgen et al., 2020] to address unmeasured confounding
[Tennenholtz et al., 2020, Nair and Jiang, 2021, Miao et al., 2022, Shi et al., 2022a, Wang et al.,
2022, Bennett and Kallus, 2023, Hong et al., 2023, Lu et al., 2023]. However, these works require
restrict mathematical assumptions that are hard to verify in practice [Lu et al., 2018].

3. Deconfounding-type methods: The final category originates from deconfounding methods in
causal inference, which leverage the inherent structure within observed data, such as multiple treat-
ment dependencies, network structures, and exposure models, to address unmeasured confounding
[Louizos et al., 2017, Tran and Blei, 2017, Wang et al., 2018, Veitch et al., 2019, Wang and Blei,
2019, Zhang et al., 2019, Bica et al., 2020, Veitch et al., 2020, Shah et al., 2022, McFowland III
and Shalizi, 2023, Shuai et al., 2023]. Notably, Wang and Blei [2019] directly estimate latent
confounders for causal inference. However, their algorithm requires the unmeasured confounders
to be a deterministic function of the actions [Ogburn et al., 2020, Wang and Blei, 2019], which has
been criticized as being unreasonable [D’Amour, 2019, Ogburn et al., 2019]; refer to Appendix
A.1. There have also been several extensions of deconfounding methods to reinforcement learning
(RL) [Lu et al., 2018, Hatt and Feuerriegel, 2021, Kausik et al., 2022, 2023]. However, these
methods either impose a one-way unmeasured confounding assumption, which can be overly
restrictive (see Section 2), or require the correct specification of the latent variable [Rissanen and
Marttinen, 2021].

This paper aims to develop advanced deconfounding-type OPE methodologies, allowing for more
flexible assumptions regarding latent variable modeling. Our proposal is inspired by the two-way
fixed effects (2FE) model which is widely employed in applied economics Mundlak [1961], Baltagi
and Baltagi [2008], Griliches [1979], Anderson and Hsiao [1982], Freyberger [2018], Callaway and
Karami [2023] and causal inference with panel data Arkhangelsky and Imbens [2022], De Chaise-
martin and d’Haultfoeuille [2020], Imai and Kim [2021], Sant’Anna and Zhao [2020], Athey and
Imbens [2022]. More recently, Dwivedi et al. [2022] applied the 2FE model to counterfactual predic-
tion in a contextual bandit setting and Bian et al. [2023] extended the 2FE model to RL. However,
their investigations primarily consider an unconfounded setting. Additionally, the model proposed by
Bian et al. [2023] imposes a restrictive additive assumption – requiring the latent factors to influence
both the reward and transition functions in a purely additive manner. Furthermore, they rely on linear
function approximation to estimate the policy value, which may fail to capture the inherently complex
nonlinear dynamics. In contrast, we employ flexible neural networks to model the environment.

In this article, we propose a novel two-way unmeasured confounding assumption to effectively model
latent confounders. This approach categorizes all unmeasured confounders into two distinct groups:
those that are time-specific and those that are trajectory-specific. This assumption enhances the
model’s flexibility beyond one-way unmeasured confounding while ensuring that the total number of
confounders remains much smaller than the sample size, making them estimable from the observed
data. We further develop an original two-way deconfounder algorithm that constructs a neural tensor
network to jointly learn the unmeasured confounders and the system dynamics. Based on the learned
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model, we construct a model-based estimator to accurately estimate the policy value. Our proposed
model for unmeasured confounders shares similarities with latent factor models used to capture
two-way interactions, such as item-customer interactions in recommendation systems [Hu et al., 2008,
He et al., 2017], and relationships between different entities in multi-relational learning [Socher et al.,
2013, Nickel et al., 2015, Nguyen et al., 2017, Wang et al., 2017, Ji et al., 2021].

To summarize, our contributions include: (1) the introduction of a novel two-way unmeasured
confounding assumption; (2) the development of a new two-way deconfounder algorithm for model-
based OPE under unmeasured confounding; (3) the demonstration of the effectiveness of our model
and algorithm.

2 Two-way Unmeasured Confounding

In this section, we begin by presenting the data generating process under unmeasured confounding
and outlining our objectives. We then introduce the proposed two-way unmeasured confounding
assumption and compare it against alternative assumptions.

We consider an offline setting with pre-collected observational data D, containing N trajectories,
each consisting of T time points. We use i to index the i-th trajectory and t to index the t-th time
point. For each pair of indices (i, t), its associated data is given by the observation-action-reward
triplet (Oi,t, Ai,t, Ri,t). In healthcare applications, each trajectory represents an individual patient
where Oi,t denotes the covariates of the i-th patient at time t, Ai,t denotes the treatment assigned to
the patient, and Ri,t measures their clinical outcome at time t.

We investigate a confounded setting characterized by the presence of unmeasured confounders
(denoted by Zi,t) that influence both Ai,t and (Ri,t, Oi,t+1) for each pair (i, t). The offline data
generating process (DGP) can be described as follows: (1) At each time t, the observation Oi,t

is recorded for the i-th trajectory. (2) Subsequently, an action Ai,t is assigned for the i-th subject
according to a behavior policy πb, such that Ai,t ∼ πb(•|Oi,t, Zi,t). (3) Next, we obtain the immediate
reward Ri,t and the next observation Oi,t+1 such that (Ri,t, Oi,t+1) ∼ P(•|Ai,t, Oi,t, Zi,t) for some
transition function P . (4) Steps 2 and 3 are repeated until we reach the termination time T . See
Figure 1(a) for an illustration.

In contrast, following a given target policy π we wish to evaluate, the data is generated as follows:
(1) At each time t, the action Ai,t is determined by the target policy π(•|Oi,t), independent of
the unmeasured confounder Zi,t. (2) The immediate reward Ri,t and next observation Oi,t+1 are
generated according to the transition function P(•|Ai,t, Oi,t, Zi,t). In this setup, the unmeasured
confounders affect only the reward and next observation distributions, but not the action. This is
a primary difference from the offline data generating process. Specifically, whatever relationship
exists between the unmeasured confounders and the actions in the offline data, that relationship is no
longer in effect when we perform the target policy π. Our objective lies in evaluating the expected
cumulative reward under π, given by

ηπ =
1

NT

N∑
i=1

T∑
t=1

Eπ(Ri,t),

where Eπ(Ri,t) represents the expectation under the target policy π, irrespective of the unmeasured
confounders.

To better understand the proposed two-way unmeasured confounding assumption, we first introduce
two alternative assumptions concerning the unmeasured confounders as follows:

(a) Unconstrained unmeasured confounding (UUC): Each pair of indices (i, t) corresponds to an
unmeasured confounder Zi,t, and there are no restrictions on these values.

(b) One-way unmeasured confounding (OWUC): For any i, the unmeasured confounders remain the
same across time, i.e., Hi = Zi,1 = Zi,2 = · · · = Zi,T .

These two assumptions represent two extremes. The UUC assumption offers maximal flexibility
without imposing any specific conditions. In contrast, the OWUC assumption is restrictive, essentially
excluding ‘time-varying confounders’.
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Figure 1: The directed acyclic graphs of data generating processes under different assumptions.
(a) : {zi,t}i,t (colored in blue) are unconstrained unmeasured confounders. (b) : {hi}i (colored in
green) are one-way unmeasured confounders. (c) : {ui}i and {wt}t (colored in orange) are two-way
unmeasured confounders.
The validity of the deconfounder algorithm [Wang and Blei, 2019] relies crucially on the consistent3
estimation of the latent confounders. This is because it employs a plug-in method for constructing the
average treatment effect estimator, which plugs in the estimated latent confounders into the model.

Unconstrained unmeasured confounding imposes no restrictions on the latent variables, but requires
to estimate a total of NT latent variables, which is equal to the sample size. This make consistent
estimation infeasible without resorting to the ‘deterministic unmeasured confounding’ assumption
discussed in Section 1. On the other hand, one-way unmeasured confounding only requires estimating
N latent variables, but in reality, this assumption is often difficult to meet.

In this article, we propose the following two-way unmeasured confounding, which offers a middle
ground between the UUC assumption and the OWUC assumption:

(c) Two-way unmeasured confounding (TWUC): There exist time-invariant confounders {Ui}i and
trajectory-invariant confounders {Wt}t such that Zi,t = (U⊤

i ,W⊤
t )⊤.

As discussed in the introduction, TWUC requires that all unmeasured confounders belong to one
of two groups: trajectory-specific time-invariant confounders and time-specific trajectory-invariant
confounders. Notably, it excludes confounders that are both trajectory- and time-specific. The Uis
can be interpreted as individual baseline information (e.g., salary or educational background) that
remains consistent over time, while the Wts represent external factors (e.g., weather or holidays)
exerting a common influence across all trajectories. This assumption effectively relaxes one-way
unmeasured confounding by accommodating time-varying confounders. Meanwhile, the number
of latent confounders is confined to N + T , much smaller than the sample size N × T when both
N and T grow to infinity. This ensures the feasibility of consistent estimation. See Figure 1 for a
graphical visualization of the three assumptions.

To further elaborate the three modeling assumptions (a) – (c), we consider a linear model setup
where the conditional means of the next observation and the immediate reward are linear functions
of the current observation-action pair as well as the unmeasured confounders, and summarize the
implications of adopting the three assumptions in the following corollaries.

Proposition 1 (Inconsistency of the unconstrained model). The least square estimator (LSE) based
on the UUC assumption cannot yield consistent predictions. Its mean square error (MSE) remains
constant as both N and T increase.

Proposition 2 (Inconsistency of the one-way model under misspecification). When time-varying un-
measured confounders exist, the LSE based on the one-way model cannot yield consistent predictions.
Its MSE remains constant as both N and T increase.

Proposition 3 (Consistency of the two-way model). The LSE based on the two-way model can yield
consistent predictions. Its MSE decays to zero as both N and T increase.

Furthermore, we design a linear simulation setting to numerically compare the estimators based on
these three assumptions and report their MSEs in Figure 2(b). The results reveal that the unconstrained

3Here, consistency means that the estimators converge to their ground truth as the sample size increases [see
e.g., Casella and Berger, 2021].
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model tends to overfit the data, as evidenced by its lowest prediction error on the training dataset
and higher error in off-policy value estimation. Conversely, the one-way model underfits the data.
It achieves the largest errors in both training data prediction and off-policy value estimation. In
contrast, our proposed two-way model strikes a balance, resulting in the lowest error in off-policy
value estimation.

To conclude this section, we summarize the DGP under the proposed two-way unmeasured confound-
ing assumption:

• At the initial time, each trajectory independent generates an observed Oi,1 and an unobserved Ui.
Additionally, a latent W1 is independently generated.

• Next, at each time t, Ai,t and (Ri,t, Oi,t+1) are generated, according to πb (or a target policy π)
and P , respectively. Moreover, a latent Wt+1 is generated, whose distribution depends only on the
past time-specific confounders.

Under this DGP, the two-way unmeasured confounders are policy-agnostic, i.e., unaffected by the
actions or policies. Consequently, we can employ a plug-in approach to construct the policy value
estimator (see (1)), eliminating the need to estimate their distributions.

3 Two-way Deconfounder

We introduce the proposed deconfounder algorithm in this section. We first present the proposed
neural network architecture under two-way unmeasured confounding. We next define the loss function
used for model training. Finally, we introduce a model-based policy value estimator, built upon the
estimated model.

Network Architecture. The proposed model contains the following components: (1) d-dimensional
embedding vectors {ui}i to model the trajectory-specific latent confounders; (2) d-dimensional
embedding vectors {wt}t to model the time-specific latent confounders; (3) A transition func-
tion P̂(•|a, o, ui, wt) that takes an action-observation pair (a, o) and a pair of embedding vectors
(ui, wt) as input to model the conditional distribution of the reward-next-observation pair given the
current observation-action pair and the two-way unobserved confounders; (4) An actor network
π̂b(•|o, ui, wt) that takes o and (ui, wt) as input to model the behavior policy.

Our objective is to simultaneously learn the embedding representations and the parameters in both
the transition and actor networks from the observed data. Toward that end, we treat each pair of
embedding vectors (ui, wt) as two entities. To accurately capture their joint effects on both the
transition function and the behavior policy, we adopt the neural tensor network [NTN, Socher et al.,
2013], which is known for its ability to capture the intricate interactions between pairs of entity
vectors.

Specifically, we parameterize P̂(•|a, o, ui, wt) via a conditional Gaussian model given by
N (µ̂ (a, o, ui, wt) , diag(σ̂ (a, o, ui, wt))), where diag(σ̂ (a, o, ui, wt)) is a diagonal matrix and
σ̂ (a, o, ui, wt) denotes the vector consisting of all diagonal elements. Its conditional mean and
variance functions are modeled jointly with the behavior policy, specified by

(µ̂⊤, σ̂⊤)⊤ = MLPP(ai,t,NTN(o, ui, wt)), π̂b(• | o, ui, wt) = MLPπb
(NTN(o, ui, wt)),

where NTN(o, ui, wt) denotes the output vector from an NTN, and MLPP , MLPπb
are the two

multilayer perceptrons that take this output vector as input. The detailed architecture of NTN layer
is presented in Appendix B.1. As such, the NTN layer captures the joint information from both the
observation o and latent confounders ui, wt and is shared among the actor and transition networks.
We provide an overview of the proposed model architecture in Figure 2 (a).

Finally, we remark that while we model the transition function using a conditional Gaussian like other
works in the RL literature [see e.g., Janner et al., 2019, Yu et al., 2020], more complex generative
models such as transformers or diffusion models are equally applicable.

Loss Function. As mentioned earlier, the proposed model contains both the transition network and
the actor network. Accordingly, our loss function is given by

L (D; {ui}i, {wt}t) =(1− α) · LT + α · LA,

5



(a) network architecture (b) numerical experiments

Figure 2: (a) : An overview of the proposed network architecture. (b) : The upper panel reports
MSEs under different unmeasured confounding assumptions for fitting the observed data whereas
the bottom panel displays the MSEs for off-policy value prediction. The unconstrained unmeasured
confounding model shows the best fit for the training data, due to overfitting. The OPE estimator
under the proposed two-way unmeasured confounding achieves the smallest MSE. More details are
referred to Appendix D.1.

where LT is the negative log likelihood of conditional Gaussian model for the transition network,
LA is the cross-entropy loss between the actual action and actor network, and α ∈ (0, 1) is a
hyperparameter that balances the two losses. This loss is optimized to compute both the latent
embeddings vectors (ui, wt)s and the parameters in the three neural networks: NTN, MLPP and
MLPπb

. Further details are relegated to Appendix C.1 to save space.

Alternative to our loss function which involves both the actor and transition networks, one can
consider minimizing other losses focused exclusively on either the transition or the actor network,
but not necessarily both. However, in the presence of unmeasured confounding, it is essential to
note that both the behavior policy and transition function are influenced by these latent confounders.
Consequently, our joint learning approach is expected to more effectively identify the unmeasured
confounders compared to these transition-only or actor-only approaches.

Model-based OPE. Based on the estimated model, we develop a model-based estimator to learn
ηπ via Monte Carlo policy evaluation [Sutton and Barto, 2018]. A key observation is that, since the
two-way unmeasured confounders are policy-agnostic, the empirical sum shown below is an unbiased
intermediate estimator for the evaluation target ηπ:

1

NT

N∑
i=1

T∑
t=1

Eπ
(
Ri,t | Oi,1, Ui, {Wt′}tt′=1

)
. (1)

Note that in this formulation, the latent factors in the conditioning set can be substituted with our
estimated embedding vectors. Additionally, based on our estimated transition network, the expectation
Eπ can be effectively approximated using the Monte Carlo method. This approach allows us to
construct a model-based plug-in estimator for Equation (1).

To elaborate, the Monte Carlo simulation begins at t = 1 for each individual i. We sample an action
Âi,t according to the target policy π(• | Ôi,t), draw samples for R̂i,t and Ôi,t+1 from the learned
transition network P̂(• | Âi,t, Ôi,t, Ûi, Ŵt) with the estimated latent factors {Ûi}i, {Ŵt}t, and
iterate this procedure until the terminal time T is reached. Next, we replicate this simulation multiple
times to reduce the Monte Carlo error. The final step is to aggregate all the estimated results across
these simulations to construct the final OPE estimator.

4 Theoretical Results

In this section, we provide a finite-sample error bound for the expected difference between the
estimated policy value and the ground truth ηπ. We first introduce some notations. We consider
a tabular setting where the observation space O, action space A and latent factor spaces U , W
are all discrete. Let dD̄ denote the data distribution of quadruples (a, o, u, w), dD̄(a, o, u, w) =
(NT )−1

∑
(A,O,U,W )∈D̄ P(A = a,O = o, U = u,W = w), where the summation

∑
(A,O,U,W )∈D̄
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is carried out over all quadruples in the augmented dataset D̄ = D ∪ {Ui}i ∪ {Wt}t containing both
the observed data and the latent confounders. Furthermore, let dπ represent the visitation distribution
under π. Specifically, dπ(a, o, u, w) denotes the average probability of a given quadruple (a, o, u, w)
appearing at any time step under π (refer to Appendix B.1 for the detailed definition).

We next introduce some assumptions to derive the finite-sample error bound of the proposed policy
value estimator.

Assumption 1 (Coverage). The data distribution covers the visitation distribution induced by the
target policy π, i.e., C = supa,o,u,w

dπ(a,o,u,w)
dD̄(a,o,u,w) < ∞.

Assumption 2 (Boundedness). The absolute values of the immediate reward are upper bounded by
some constant Rmax < ∞.

Assumption 3 (Error bound of estimated transition function). E∥P̂ − P∥2dD̄
≤ ε2P for some εP > 0

where ∥P̂ − P∥dD̄ denotes the total variation distance between P̂ and P (see Appendix B.1 for the
detailed definition).

Assumption 4 (Error bound of estimated latent confounders).
∑

1≤i≤N E∥Ûi − Ui∥22/N ≤ ε2U,W

and
∑

1≤t≤T E∥Ŵt −Wt∥22/T ≤ ε2U,W for some εU,W > 0.

Assumption 5 (Autocorrelation). For any t1, t2 ≥ 1, let ρ(t1, t2) denote the correlation coefficient
between Eπ(R1,t1 |{Wt′}t1t′=1) and Eπ(R1,t2 |{Wt′}t2t′=1). There exists some 0 ≤ α ≤ 1 such that∑

1≤t1 ̸=t2≤T ρ(t1, t2) = O(T 2α).

We remark that conditions similar to Assumptions 1-2 are widely imposed in the RL literature to
simplify the theoretical analysis [see e.g., Chen and Jiang, 2019, Fan et al., 2020, Liu et al., 2020,
Uehara and Sun, 2021]. Assumption 3 is concerned with the estimation error of the transition function.
This error is expected to be minimal, since we use neural networks for function approximation [see
e.g., Schmidt-Hieber, 2020, Farrell et al., 2021]. Assumptions 4 is concerned with the estimation
errors of the estimated two-way unmeasured confounders. According to Proposition 3, these errors
are negligible under simple models. Finally, Assumption 5 is purely technical. It measures the
autocorrelation of the time series Eπ(R1,t|{Wt′}tt′=1). Here, α = 0 indicates independence over
time. This condition is automatically satisfied when α = 1.

Theorem 1 (Finite-sample error bound). Suppose the two-way unmeasured confounding assumption
holds, and Assumptions 1-5 are satisfied. Then

E|η̂π − ηπ| ≤ CTRmaxεP + cTRmaxεU,W + cRmaxN
−1/2 + cRmaxT

α−1,

for some constant c > 0.

It can be seen from Theorem 1 that the mean absolute error of the proposed policy value estimator
involves two components:

1. Estimation errors: The first two terms on the right side of the inequality correspond to the
estimation errors of the transition function and latent confounders respectively. Notably, both
terms are linear in the time horizon T , due to error accumulation (see Appendix B.5). However,
such a linear dependence is the best one can hope in general [Jiang, 2024], although it is possible
to eliminate the dependence upon T under additional ergodicity assumptions [Liao et al., 2022].

2. Standard deviations: The last two terms measure the standard deviations of the average values
across trajectories and over time, respectively. These upper bounds decays to zero, as both N
and T approach infinity, provided that the exponent α in Assumption 5 – which measures the
autocorrelation of the time series Eπ(R1,t|{Wt′}tt′=1) – is strictly smaller than 1.

5 Experiments

In this section, we perform numerical experiments using two simulated datasets and one real-world
dataset to demonstrate the effectiveness of the proposed two-way deconfounder (denoted by TWD)
in handling unmeasured confounders. We consider two simulated examples in Section 5.1: a simple
dynamic process and a tumor growth example. For each simulated example, the true value of ηπ is
computed based on 10,000 Monte Carlo experiments. We also explore a real-world example using the
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(a) The simulated dynamic process
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(b) Tumor growth example

Figure 3: Logarithmic MSE and Bias of various estimators for the simulated dynamic process and
tumor growth example.

MIMIC-III dataset in Section 5.2, and conduct a sensitivity analysis and an ablation study in Sections
5.3 and 5.4, respectively. The source code is available on Github: https://github.com/fsmiu/Two-way-
Deconfounder.

We use two metrics to evaluate different OPE estimators: the logarithmic mean squared error (LMSE)
and bias. Both are estimated based on 20 simulations. Comparison is made between TWD and
the following set of baseline methods, which covers a wide range of model-based and model-free
approaches:

(1) Model-based method (MB) that learns a transition model from the offline data based on the
proposal by Yu et al. [2020] and applies the Monte Carlo method to construct the OPE estimator;

(2) Minimax weight learning [MWL, Uehara et al., 2020] that learns a marginalized importance
sampling (MIS) ratio from the offline data to constructs an MIS estimator for OPE;

(3) Double robust method (DR) that combines the MIS ratio and an estimated Q-function computed
via minimax learning [Uehara et al., 2020] to enhance robustness of OPE;

(4) Partially observable MWL [PO-MWL, Shi et al., 2022a] – a POMDP-type method that extends
MWL to handle unmeasured confounders;

(5) Partially observable DR [PO-DR, Shi et al., 2022a] – another POMDP-type method that extends
DR to handle unmeasured confounders;

(6) Recurrent state-space method [RSSM, Hafner et al., 2019a,b] that models unmeasured con-
founders as latent states;

(7) Model-free two-way doubly inhomogeneous decision process (TWDIDP1) – a deconfounding-
type method that uses the model-free algorithm developed by Bian et al. [2023];

(8) Model-based two-way doubly inhomogeneous decision process (TWDIDP2) – another model-
based deconfounding-type algorithm, also developed by Bian et al. [2023].

Notably, the first three methods require the NUC assumption. The next three methods are POMDP-
type, whereas the last two are deconfounding-type algorithms. Given our focus on settings without
external proxies, we do not compare against methods developed under memoryless unmeasured
confounding, which typically rely on these proxies, as commented in Section 1.

5.1 Simulation studies

Simulated Dynamic Process. We first consider a dynamic process with four-dimensional obser-
vations and binary actions. The data is generated under the proposed TWUC assumption; see
Appendix D.2 for its detailed DGP. We fix T = 50, and vary the number of trajectories from 250
to 2000. As shown in Figure 3(a), our proposed TWD estimator frequently achieves the smallest
LMSE with bias closer to 0 in all cases. Additionally, the LMSE of TWD generally decreases as the
number of trajectories increases, demonstrating its consistency. In contrast, most other methods under
the assumption of NUC or POMDP setting are severely biased, highlighting the risks of ignoring or
improperly handling unmeasured confounding.

Tumor Growth Example. We consider a tumor growth example and utilize the pharmacokinetic-
pharmacodynamic (PK-PD) model for data generation; see Appendix D.3 for details. The observation
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Figure 4: (a) : The estimated policy value for four target policies in real-world dataset. (b) : Average
root MSE and its standard error in the results for predicting immediate reward and next observation.
The results are aggregated over 20 runs.

is two-dimensional, including the tumor volume V (t) and the chemotherapy drug concentration
C(t). The action space A includes two treatments: radiotherapy Ar(t) and chemotherapy Ac(t). We
evaluate two target policies: a random policy (denoted by ‘A’) and a individualized policy that is
tailored to the patients’ conditions (denoted by ‘B’). As shown in Figure 3(b), TWD consistently
achieves the lowest LMSE and is empirically unbiased in all cases, demonstrating the effectiveness of
our method. In contrast, other methods yield biased estimates, resulting in significantly higher LMSEs.
Importantly, the performance of these alternative methods does not show significant improvement
with an increase in the total number of trajectories. These results underscore the applicability of our
method in a more realistic scenario.

5.2 Real-world example: MIMIC-III database

In this section, we apply the proposed two-way deconfounder to the medical information mart for
intensive care (MIMIC-III) database [Johnson et al., 2016]. We extract 3,707 patients with trajectories
up to 20 timesteps. Following the analysis of Zhou et al. [2023b], we define a 5 × 5 action space
and set the reward to the difference between current SOFA score and next SOFA score, so a lower
reward indicates a higher risk of mortality. We also extract 12 covariates as the observation; further
details are described in Appendix D.4. The dataset is likely non-stationary and lacks patient’s
personal information. Therefore, it might be reasonable to employ TWUC to model the unmeasured
confounders [Bian et al., 2023].

Given that this is a real dataset, we do not have access to the true value of the target policy. To
compare TWD against other baselines, we employ two approaches. The first approach uses 90% of
data for training, and the remaining 10% for evaluating an algorithm’s prediction error for the reward
and next observation. Notice that this approach is applicable to evaluate model-based methods only.
We report all mean squared prediction errors in Figure 4(b). It can be seen that TWD results in the
lowest prediction errors in all cases, demonstrating its effectiveness to infer unobserved confounders.

The second approach assesses each algorithm ability in distinguishing between tailored individualized
policies and other random, non-individualized policy. An effective OPE algorithm should consistently
rank an individualized policy as the superior policy. In what follows, four policies are evaluated using
TWD and other baseline methods: a randomized policy, a non-individualized high dose policy, a
non-individualized low dose policy and an tailored individualized policy. As shown in Figure 4(a),
TWD and MB can effectively distinguish the individualized policy from other policies, with the
individualized policy consistently achieving the highest estimated value. However, other methods
lead to strange conclusions. For example, the result from TWDIDP2 suggest that all policies achieve
similar values. Consequently, results from MWL,DR, PO-DR and RSSM suggest that the high dose
policy is better than the tailored individualized policy. Additionally,TWDIDP1 performs specially
poor, rendering it unsuitable for display alongside other methods in this figure.While these results
require further validation by medical professionals, they highlight the potential of the proposed
method in real-world medical applications.

5.3 Sensitivity analysis

In this section, we investigate how TWD performs when the proposed TWUC assumption is violated.
Specifically, we vary unmeasured confounders that are both trajectory- and time-specific in the
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Figure 5: Sensitivity analysis for the simulated dynamic process and tumor growth experiment.

reward function and behavior policy and we introduce a sensitivity parameter Γ to quantify the
extent to which the proposed TWUC assumption is violated. When Γ = 1, the proposed TWUC
assumption holds; as Γ decreases towards zero, the assumption is increasingly violated. We vary
Γ = {0.0, 0.3, 0.7, 1.0} in the experiments, and fix the number of the trajectory to 1000. See further
details in Appendix D.5.

We focus on the two simulated examples. As shown in Figure 5(a), in the simulated dynamic process,
the performance of the proposed methods remains relatively stable as long as Γ > 0. However, when
Γ = 0 – where the TWUC is completely violated – TWD loses its superiority. Meanwhile, as shown
in Figure 5(b), in the tumor growth example, the performance of TWD is very sensitive to Γ, and
TWD performs better than other methods only if Γ = 1.0.

5.4 Ablation study

We conduct an ablation study to compare TWD against the following variants:

(1) TWD with transition-only loss function (TWD-TO): This variant employs the proposed TWUC
assumption, but removes the cross-entropy loss from the objective function. Consequently, it
solely uses the transition model to learn the two-way embedding vectors, without modeling the
behavior policy during training.

(2) TWD without neural tensor network (TWD-MLP): In this variant, the neural tensor network is
replaced with an MLP.

(3) One-way deconfounder without individual embedding (OWD-NI): This variant removes the
individual embedding vector, operating under the one-way unmeasured confounding assumption.

(4) One-way deconfounder without time embedding (OWD-NT): This variant removes the time
embedding vector.

Table 1: Ablation study for variants of TWD

Environments

DP TG

Model A B A B

TWD 4.23 4.47 4.42 4.33

TWD-TO 4.72 5.14 3.58 3.39

TWD-MLP 4.34 5.26 4.56 4.44

OWD-NI 7.50 8.59 6.80 6.92

OWD-NT 6.78 8.92 6.26 6.31
1 DP: the simulated dynamic process, TG: the tumor

growth example, A: Target policy A, B: Target policy
B.

We fix the number of trajectories to 1000 and report
the LMSEs of various estimators in Table 1. It can
be seen that: (i) OWD-NI and OWD-NT significantly
underperform TWD due to their reliance on the one-
way unmeasured confounding assumption. (ii) TWD
consistently outperforms TWD-MLP, due to the neural
tensor network’s ability to capture intricate interactions
between the trajectory-specific and the time-specific
unmeasured confounders. (iii) In the simulated dy-
namic process, TWD achieves better performance than
TWD-TO. This could be attributed to our proposed
joint learning strategy, which simultaneously estimates
both the transition function and the behavior policy and
enhances the model’s capability to infer unmeasured
confounders. However, TWD performs worse than TWD-TO in the tumor growth example.

In summary, these results demonstrate the effectiveness of the proposed two-way unmeasured
confounding model and our joint learning strategy, along with the crucial role of the neural tensor
network in capturing complex interactions, all contributing to TWD’s superior performance.
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A Discussion

A.1 Critiques of Wang and Blei [2019]

In this section, we discuss the critiques of the paper Wang and Blei [2019] and illustrate how our
proposal addresses these criticisms.

Specifically, Wang and Blei [2019] imposed the “consistency of substitute confounders” assumption
which requires that the unmeasured confounders Zi can be consistently estimated from the causes
Ai. However, this assumption indeed invalidates the derivations of Theorems 6-8 of Wang and Blei
[2019], resulting in the inconsistency of the algorithm. Specifically, as commented by D’Amour
[2019], if the event A = a provides a perfect measurement of Z such that there is some function ẑ(A)
such that ẑ(a) = Z, then the overlap condition fails. As a result, the ATE cannot be consistently
identified. Ogburn et al. [2019] expressed similar concerns towards the algorithm.

Unlike Wang and Blei [2019], our algorithm does not require such an assumption. Under the RL
setting, the proposed two-way unmeasured confounding assumption effectively limits the number
of unmeasured confounders to O(N) + O(T ), which facilitates their consistent estimation when
both the number of trajectories N and the number of decision points per trajectory T grow to infinity,
avoiding the need for the unmeasured confounders to be deterministic functions of the actions.
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A.2 Limitations

Although the proposed two-way unmeasured confounding assumption is more flexible than the
existing one-way unmeasured confounding, it might not adequately handle more complex scenarios
involving latent confounders that are both trajectory- and time-specific, or policy-dependent. In
practice, this assumption can be partially evaluated by testing whether including the estimated two-
way confounders in the observation leads to a Markovian system [see e.g., Chen and Hong, 2012, Shi
et al., 2020, Zhou et al., 2023c].

A.3 Future work

Our proposal requires the existence of an observation which, along with the two-way confounders,
blocks all backdoor paths between the treatment and both the immediate reward and future observa-
tions. Naïvely using pre-treatment variables as observations might lead to biased estimators in certain
causal models like the M-graph Cinelli et al. [2022]. While confounder selection algorithms [Guo
et al., 2023] are designed to address the problem, they mainly focus on the bandit setting. Our future
work is to extend these algorithms to RL to further improve the practical applicability of our method.

B Proofs

B.1 Notations

We first introduce list the notations that will be used in our proof.

• NTN(o, ui, wt) = f(g(u⊤
i W

[1:k]wt+Mτi,t+b)), where τi,t is shorthand for [o⊤i,t, u
⊤
i , w

⊤
t ]

⊤, f is
a standard linear layer and g is the activation function. Within this function, W [1:k] ∈ Rd×d×k is a
three-dimensional tensor and the bilinear tensor products uT

i W
[1:k]wt result in a vector whose m-th

entry is given by uT
i W

[m]wt, where W [m] denotes the m-th slice of the tensor. M ∈ Rk×(do+2d),
where do represents the dimension of observation o, and b ∈ Rk is the bias term.

• R(a, o, u, w) :=
∑

r,o′ rP(r, o′|a, o, u, w), which denotes the expectation of reward given obser-

vation o, action a and latent factors (u,w), and R̂ denotes its estimator.

• P (o′|a, o, u, w) :=
∑

r P(r, o′|a, o, u, w) denotes the observation transition function, which cal-
culates the probability of transitioning from observation o to observation o′ given the action a and
latent factors (u,w), and P̂ denotes its estimator.

• ρ0(•) denotes the probability mass function of (Oi,1, Ui).

• dD̄ denotes the data distribution of quadruples (a, o, u, w), given by dD̄(a, o, u, w) =

T−1
∑T

t=1 P(O1,t = o,A1,t = a, U1 = u,Wt = w).

• dπ denotes the distribution of quadruples (a, o, u, w) in a trajectory of horizon T generated under
π, i.e., dπ(a, o, u, w) = T−1

∑T
t=1 Pπ(O1,t = o,A1,t = a, U1 = u,Wt = w).

• TV(P̂(•|a, o, u, w),P(•|a, o, u, w)) :=
∑

r,o′ |P̂(r, o′|a, o, u, w)−P(r, o′|a, o, u, w)|/2 denotes

the total variation between P̂(•|a, o, u, w) and P(•|a, o, u, w).

• ∥P̂ − P∥dD̄ :=
√
E(A,O,U,W )∼dD̄

TV2(P̂(•|A,O,U,W ),P(•|A,O,U,W )) is used to measure

the average estimation error of P̂ on the given offline dataset.

Additionally, we will use a generic constant c in the proof, whose value is allowed to vary from place
to place.

B.2 Proof of Proposition 1

Proof. Notice that the MSE of the predicted reward-next-observation pair is equal to the sum of the
MSE of the predicted immediate reward and that of the predicted next observation. Consequently, it
suffices to show the MSE of the predicted immediate reward remains constant.
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Toward that end, we consider the following linear model under unconstrained unmeasured confound-
ing,

Ri,t = (Oi,t, Ai,t)ζ + Zi,t + εi,t,

where Zi,ts are one-dimensional, ζ = (ζ1, ζ2)
⊤ = R2 denotes the coefficient vector, and εi,t

are mean zero i.i.d. measurement errors with each εi,t being independent of the set of variables
Hi,t = {(Oi′,t′ , Ai′,t′ , Zi′,t′) : i

′ ̸= i or t′ ≤ t}.

In vector and matrix notations, we define Y = (R1,1, . . . , R1,T , . . . RN,2, . . . , RN,T )
⊤ as the (NT )-

dimensional outcome vector, β = (ζ1, ζ2, Z1,1, . . . , Z1,T , . . . , ZN,1, . . . , zN,T )
⊤ as the (NT + 2)-

dimensional coefficient vector, E = (ε1,1, . . . , ε1,T , . . . , εN,1, . . . , εN,T )
⊤ ∈ RNT as the set of

residuals and

X =


O1,1 A1,1 1 0 · · · 0
O1,2 A1,2 0 1 · · · 0

· · · · · · · · · · · ·
. . . · · ·

ON,T AN,T 0 0 · · · 1

 ∈ RNT×(NT+2).

Thus, we can formulate the linear model as Y = Xβ + E . Since the LSE β̂ is an unbiased estimator,
its predictor Ŷ = Xβ̂’s MSE can be calculated as follows,

MSE(Ŷ ) =
1

NT
E∥Ŷ − E(Y |Xβ)∥22 =

1

NT
E∥X(X⊤X)−X⊤E∥22

=
1

NT
E[E⊤X(X⊤X)−X⊤E ] = 1

NT
E
{

trace[X(X⊤X)−X⊤EE⊤]
}

=
σ2

NT
E
{

trace[X(X⊤X)−X⊤]
}
= σ2,

(2)

where the conditional expectation E(Y |Xβ) is taken in a componentwise manner, (X⊤X)− denotes
the generalized inverse of X⊤X and σ2 = Var(εi,t). Here, the second last equation holds due to the
independence between εi,t are Hi,t. Consequently, the MSE is a fixed constant. This completes the
proof.

B.3 Proof of Proposition 2

Proof. Similar to the proof of Proposition 1, it suffices to prove that the MSE of the predicted
immediate reward remains a constant. Toward that end, we assume the immediate reward satisfies the
following linear two-way unmeasured confounding assumption,

Ri,t = (Oi,t, Ai,t)ζ + Ui +Wt + εi,t.

However, one-way unmeasured confounding assumes only the existence of trajectory-specific unmea-
sured confounders and ignores time-specific confounders, leading to the following model

Ri,t = (Oi,t, Ai,t)ζ +Hi + εi,t.

Because we are more concerned with estimating fixed effects and also to simplify subsequent symbols,
we consider a scenario that is easier to estimate. Let ζ̂ denote the LSE of ζ based on the one-way
model. Since X⊤Ŷ = X⊤X(X⊤X)−1X⊤Y = X⊤Y , the LSE of Hi satisfies

Ĥi =
1

T

T∑
t=1

[Ri,t − (Oi,t, Ai,t)ζ̂] = Ui +
1

T

T∑
t=1

[Wt − (Oi,t, Ai,t)(ζ̂ − ζ)].

Therefore, the MSE of the predicted R̂i,t = (Oi,t, Ai,t)ζ̂ + Ĥi is given by

1

NT

∑
i,t

E[(Oi,t, Ai,t)ζ̂ + Ĥi − (Oi,t, Ai,t)ζ − Ui −Wt]
2 =

1

T

T∑
t=1

E(Wt −
1

T

T∑
t′=1

Wt′)
2.

For a stationary and ergodic time series {Wt}t, T−1
∑T

t′=1 Wt′ is to converge to E(Wt) as T → ∞
and thus, the above equation is to converge to the variance of Wt. Consequently, unless each Wt is
degenerate, the MSE will not decay to zero. This completes the proof.
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B.4 Proof of Proposition 3

Proof. To simplify the proof, we only show the MSE of predicted immediate reward decays to zero as
both N and T grow to infinity. The two-way model can be similarly expressed as Y = Xβ+E , where
Y = (R1,1, . . . , R1,T , . . . RN,1, . . . , RN,T )

⊤ ∈ RNT , β = (ζ1, ζ2, U1, . . . , UN ,W1, . . . ,WT )
⊤ ∈

RN+T+2, E = (ε1,1, . . . , ε1,T , . . . εN,1, . . . , εN,T )
⊤ ∈ RNT , and

X =


O1 A1 1T 0T · · · 0T IT
O2 A2 0T 1T · · · 0T IT

· · · · · · · · · · · ·
. . . · · · · · ·

ON AN 0T 0T · · · 1T IT

 ∈ RNT×(N+T+2),

where 1T = (1, . . . , 1)⊤ ∈ RT , 0T = 0 · 1T , and IT represents the T × T identity matrix.

Similar to Equation (2), the MSE of the predicted reward is equal to

MSE(Ŷ ) =
1

NT
E[E⊤X(X⊤X)−1X⊤E ] = σ2 trace(X⊤X)

NT
=

σ2(N + T + 2)

NT
,

which decays to zero as both N and T increase to infinity. The proof is hence completed.

B.5 Proof of Theorem 1

To simplify the proof, we analyze a variant of our estimator computed via sample-splitting and
cross-fitting. Specifically, we begin by dividing the entire dataset D into two subsets D(1) and D(2),
each containing N/2 trajectories. Next, we separately apply the proposed two-way deconfounder
algorithm detailed in Section 2 to the two data subsets to learn the transition functions and latent
confounders. Denote them by P̂(j), {Û (j)

i }i and {Ŵ (j)
t }t, respectively, for j = 1, 2. Finally, we

construct two model-based estimators, given by

η̂(1) =
2

NT

∑
i∈D(1)

T∑
t=1

Ê(2)
(
Ri,t | Oi,1, Û

(1)
i ,

{
Ŵ

(1)
t′

}t

t′=1

)
, (3)

and

η̂(2) =
2

NT

∑
i∈D(2)

T∑
t=1

Ê(1)
(
Ri,t | Oi,1, Û

(2)
i ,

{
Ŵ

(2)
t′

}t

t′=1

)
, (4)

where Ê(j) denotes the expectation that uses the transition function P(j) to approximate Eπ, and
the summation

∑
i∈D(j) is carried over all trajectories in D(j). We average them construct our final

estimator η̂π = (η̂(1) + η̂(2))/2.

Notice that in both (3) and (4), the transition function used to conduct the model-based estimator is
independent of the initial observation and the estimated latent confounders. This avoids imposing
additional VC-class type conditions on the transition network. We remark that sample splitting is
widely used in statistics and machine learning [see e.g., Chernozhukov et al., 2018, Shi et al., 2021,
Kallus and Uehara, 2022].

Proof. We focus on bounding E|η̂(1) − ηπ|. The same upper bound applies to E|η̂(2) − ηπ| and
E|η̂π − ηπ|, thanks to the triangle inequality. To ease notation, we will remove the superscripts in
Ê(2), P̂(2), Û (1)

i , Ŵ (1)
t , and present them as Ê, P̂ , Ûi, Ŵt. Due to the use of cross-fitting, Ê and P̂

are independent of Ûis and Ŵts. The proof is divided into two steps. In the first step, we upper bound
E|η̂(1) − η(1)| where

η(1) =
2

NT

∑
i∈D(1)

T∑
t=1

Eπ(Ri,t|Oi,1, Ui, {Wt′}tt′=1).

Next, in the second step, we upper bound E|η(1) − ηπ|. Finally, combining these two bounds leads to
the upper bound for E|η̂(1) − ηπ|.
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Step 1. Recall that

η̂(1) =
2

NT

∑
i∈D(1)

T∑
t=1

Ê(Ri,t|Oi,1, Ûi, {Ŵt′}tt′=1).

Notice that the difference η(1) − η̂(1) can be decomposed into the sum of

2

NT

∑
i∈D(1)

T∑
t=1

[
Eπ(Ri,t|Oi,1, Ui, {Wt′}tt′=1)− Ê(Ri,t|Oi,1, Ui, {Wt′}tt′=1)

]

+
2

NT

∑
i∈D(1)

T∑
t=1

[
Êπ(Ri,t|Oi,1, Ui, {Wt′}tt′=1)− Ê(Ri,t|Oi,1, Ûi, {Ŵt′}tt′=1)

]
= I1 + I2.

We first study I1. Since Oi,1s and Uis are independent of Wts, the first line forms a sum of i.i.d.
random variables. Thus, it converges to

I∗1 :=
1

T

T∑
t=1

∑
o,u

[
Eπ(Ri,t|Oi,1 = o, Ui = u, {Wt′}tt′=1)− Ê(Ri,t|Oi,1 = o, Ui = u, {Wt′}tt′=1)

]

×ρ0(o, u) =
1

T

T∑
t=1

∑
o,u

I∗1,t(o, u, {Wt′}tt′=1)ρ0(o, u),

with the expected error E|I1 − I∗1 | upper bounded by cRmax/
√
N for some constant c > 0 by

Cauchy-Schwarz inequality.

It remains to study I∗1 , or equivalently, I∗1,t for each t. To begin with, consider the case where t = 1.
It follows that

|I∗1,1(o, u,W1)| =
∑
a

π(a|o)[R(a, o, u,W1)− R̂(a, o, u,W1)]

=
∑
a,r,o′

π(a|o)r[P(r, o′|a, o, u,W1)− P̂(r, o′|a, o, u,W1)]

≤ Rmax

∑
a

π(a|o)TV(P̂(•|a, o, u,W1),P(•|a, o, u,W1))

When t = 2, one can show that

|I∗1,2(o1, u, {Wt}2t=1)| ≤ Rmax

∑
a1

π(a1|o1)TV(P̂(•|a1, o1, u,W1),P(•|a1, o1, u,W1))

+Rmax

∑
a2,o2,a1

π(a2|o2)π(a1|o1)TV(P̂(•|a2, o2, u,W2),P(•|a2, o2, u,W2))P (o2|a1, o1, u,W1).

Using the same argument, one can show that

|I∗1,t(o1, u, {Wt′}tt′=1)| ≤ Rmax

t∑
t′=1

∑
at′ ,ot′ ,··· ,a1

π(a′t|o′t)
t′−1∏
j=1

[
π(aj |oj)P (oj+1|aj , oj , u,Wj)

]
×TV(P̂(•|at′ , ot′ , u,Wt′),P(•|at′ , ot′ , u,Wt′)).

As such, we obtain
T∑

t=1

∑
o,u

E|I∗1,t(o, u, {Wt′}tt′=1)|ρ0(o, u)

≤ Rmax

T∑
t=1

Eπ[TV(P̂(•|A1,t, O1,t, U1,Wt),P(•|A1,t, O1,t, U1,Wt))].

Using the change of measure theorem, the right-hand-side can be upper bounded by

CTRmaxE[TV(P̂(•|A1,t, O1,t, U1,Wt),P(•|A1,t, O1,t, U1,Wt))],
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where C denotes the single-policy concentration coefficient defined in Assumption 1. By Cauchy-
Schwarz inequality, the above expression can be further bounded from above by CTRmaxεP .

Using similar arguments, we can upper bound |I2| by

Rmax

N

N∑
i=1

T∑
t=1

max
a,o

[TV(P̂(•|a, o, Ûi, Ŵt), P̂(•|a, o, Ui,Wt))].

As neural networks are Lipschitz continuous functions of their parameters, the above total variation
norm is proportional to ∥(Û⊤

i , Ŵ⊤
t )⊤− (U⊤

i ,W⊤
t )∥2. Consequently, under Assumption 4, the above

expression is upper bounded by cTRmaxεU,W for some constant c > 0. This completes the proof of
Step 1.

Step 2. According to the DGP described in Section 2, (U1, O1,1), · · · , (Un, On,1) are i.i.d., ηπ,
and are independent of {Wt}t. ηπ can thus be represented by T−1

∑T
t=1 Eπ(R1,t). We further

decompose |η(1) − ηπ| into the following two components:

|η(1) − ηπ| =
∣∣∣ 2

NT

∑
i∈D(1)

T∑
t=1

Eπ(Ri,t|Oi,1, Ui, {Wt′}tt′=1)−
1

T

T∑
t=1

Eπ(R1,t)
∣∣∣

≤
∣∣∣ 2

NT

∑
i∈D(1)

T∑
t=1

Eπ(Ri,t|Oi,1, Ui, {Wt′}tt′=1)−
1

T

T∑
t=1

Eπ(R1,t|{Wt′}tt′=1)
∣∣∣

+
∣∣∣ 1
T

T∑
t=1

Eπ(R1,t|{Wt′}tt′=1)−
1

T

T∑
t=1

Eπ(R1,t)
∣∣∣ = I3 + I4.

Conditional on {Wt}t, I3 corresponds to a sum of i.i.d. random variables. An application of Cauchy-
Schwarz inequality implies that EI3 ≤

√
EI23 ≤ cRmax/

√
N , for some constant c > 0. Similarly,

under Assumption 5, we have

EI4 ≤
√
EI24 ≤ Rmax

T

√ ∑
1≤t1,t2≤T

ρ(t1, t2) = O(RmaxT
α−1).

The proof is hence completed by combining the results in both steps.

C Implementation.

C.1 Details for loss function

The final loss is defined as follows:

L (D; {ui}i, {wt}t) =(1− α) · 1
2

∑
i,t

{
[µ̂− φi,t]

⊤
Σ̂−1 [µ̂− φi,t] + log det Σ̂

}
+ α ·

∑
i,t

CrossEntropy (ai,t, π̂b(ai,t|oi,t, ui, wt)) ,

where loss weighting α ∈ (0, 1) is a hyperparameter, φi,t =
(
ri,t, o

⊤
i,t+1

)⊤
, and

(ai,t, oi,t, ri,t, oi,t+1) is sampled from the offline dataset D, Σ̂ = diag(σ̂), det Σ̂ represents the
determinant of Σ̂, and CrossEntropy is the cross-entropy loss.

C.2 Implementation Details for Two-way Deconfounder Model.

The Two-way Deconfounder Model described in Section 3 was implemented in Pytorch and trained on
an NVIDIA GeForce RTX 3090. For every task, we repeat it 20 times and the results are aggregated
over 20 runs. The training time of 4 to 12 hours hours (depending on the task) on a single NVIDIA
GeForce RTX 3090. Each dataset undergoes a 75/25 split for training, validation respectively.
Using the validation set, we perform hyperparameter optimization using many iterations of grid
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search to find the optimal values for hyperparameters. The search range for each hyperparameter
is described as follows, learning rate lr ∈ [0.005, 0.001], Batch size bs ∈ [28, 29, 210, 211, 212],
weight decay λ ∈ [0.01, 0.0001], two-way embedding dimension dtw ∈ [21, 22, 23], Loss weighting
α ∈ [0.0, 0.3, 0.5, 0.7].

C.3 Implementation Details for Ablation Study.

Variants of TWD are model-based methods, model-based method with two-way embedding(TWD-
TO,TWD-MLP) and model-based method with one-way embedding(TWD-NI,TWD-NT)Yu et al.
[2020], Kausik et al. [2022], where the first can be applied to the two-way setting , and the second is
originally designed for the one-way case. We adopt the same embedding approach for variants of
TWD as our method. TWD-TO can be seen as a special case of our method, which only remove the
CrossEntropy loss of the behavior policy. TWD-MLP remove the neural tensor network. However,
the biggest difference between TWD-NI or TWD-NT and our method is that it use the one-way
embedding based on Kausik et al. [2022] removing the embedding of trajectory-invariant or time-
invariant unmeasured confounders. We provide Change details of those variants compared to TWD
in the following.

• TWD-TO: Because it removes the CrossEntropy loss of the behavior policy, the loss function
is as follows,

L (D; {ui}i, {wt}t) =
∑
i,t

[
{
[µ̂− φi,t]

⊤
Σ̂−1 [µ̂− φi,t] + log det Σ̂

}
],

other model settings are the same as TWD.
• TWD-MLP: Its conditional mean and variance functions are modeled jointly with the

behavior policy,

(µ̂⊤, σ̂⊤)⊤ = MLPP(ai,t,MLP(o, ui, wt)),

π̂b(• | o, ui, wt) = MLPπb
(MLP(o, ui, wt)),

It replaces the neural tensor network with a simple MLP and MLP is the multilayer percep-
tron that take o, ui and wt as input.

• TWD-NI: Its conditional mean and variance functions are modeled jointly with the behavior
policy,

(µ̂⊤, σ̂⊤)⊤ = MLPP(ai,t,NI(o, wt)),

π̂b(• | o, wt) = MLPπb
(NI(o, wt)),

It removes the individual embedding and NI is the multilayer perceptron that take o and wt

as input.
• TWD-NT: Its conditional mean and variance functions are modeled jointly with the behavior

policy,

(µ̂⊤, σ̂⊤)⊤ = MLPP(ai,t,NT(o, ui)),

π̂b(• | o, ui) = MLPπb
(NT(o, ui)),

It removes the time embedding and NT is the multilayer perceptron that take o and ui as
input.

D Simulation details

D.1 A linear simulation setting

Let O = R,U = R,W = R,R = R, and A = {1, 0}. For evey i and t, ui and wt are sampled a
Normal distribution N (0, 1). The observed data is generated as follows,

The transition model. For each i and t, given (Oi,t, Ai,t, Ui,Wt), We generate

Oi,t+1 = 0.7Oi,t +Ai,t + 2Ui + 2Wt − 0.5 + es
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where the random error es ∼ N (0, 1)

The reward model. For each i and t, given (Oi,t, Ai,t, Ui,Wt), We generate

Ri,t = Oi,t + 3Ai,t + 2Ui + 2Wt + er

where the random error er ∼ N (0, 2)

Behavior policy. For each i and t, given (Oi,t, Ui,Wt), We generate

p (Ai,t = 1 | Oi,t, Ui,Wt) = sigmoid (Oi,t + Ui +Wt)

Target policy. p(Ai,t = 1) = 0.5

We generate datasets respectively under the behavioral and target policy,. Under the assumptions of
one-way unmeasured confounders, two-way unmeasured confounders, and unconstrained unmeasured
confounders, respectively, we use the least squares method to fit the model parameters. Then, we
use the learned model to perform the off-policy evaluation. The number of trajectory is N =
{200, 300, 400, 500, 600, 700, 800}. The length of the horizon is fixed at 50. we calculate MSE error
in fitting the observed data and MSE error in off-policy evaluation, respectively. Two-way unmeasured
confounders outperformed the other two on off-policy evaluation, as shown in the Figure 1.

D.2 Simulated Dynamic Process

We first describe the detailed setting for the simulated data. Let O = R4,U = R,W =
R,R = R, and A = {1, 0}. We let T = 50 and the number of data trajectories N =
{250, 500, 1000, 1500, 2000}. We consider a four-dimensional variable Oi,t = (O1

i,t, O
2
i,t, O

3
i,t, O

4
i,t)

whose initial distribution is given by N (04, I4) where I4 denotes a four-dimensional iden-
tity matrix. The individual-invariant unmeasured confounders {Ui}i are sampled a Normal
distribution N (0, 1). The time-invariant unmeasured confounders {Wt}t are sampled a Nor-
mal distribution N (0, 1). The data generating process is outlined as follows, reward func-
tion and transition function are given by Ri,t = fr (Oi,t, Ai,t, Ui,Wt,Γ) + er, er ∼ N (0, 1),
and Oi,t+1 = fo (Oi,t, Ai,t, Ui,Wt,Γ) + eo, eo ∼ N (04, I4), the behavior policy satisfies
P (Ai,t = 1 | Oi,t, Ui,Wt) = sigmoid (fa (Oi,t, Ui,Wt,Γ)). Γ is the confounding strength pa-
rameter. We set Γ = 1 in this section. fo(·), fr(·) and fa(·) are the functions of input variable on the
next observation, immediate reward, and action, respectively.

The transition model. For each i and t, given (Oi,t, Ai,t, Ui,Wt) and Γ, We generate

Oi,t+1 = µsOi,t + Γ · βof (Ui,Wt) + λoAi,tI4 + bo + eo

where I4 = [1, 1, 1, 1]⊤, the random error eo ∼ N (04, I4) with I4 denoting the 4-by-4 identity
matrix,

• µo =

 0.8 0 0 0
0 0.8 0 0
0 0 0.8 0
0 0 0 0.8

,

• βo =

 0.1 0 0 0
0 0.1 0 0
0 0 0.1 0
0 0 0 0.1

,

• λo = [1, 1, 1, 1]⊤,

• bo = [−0.5,−0.5,−0.5,−0.5]⊤,

• fo (Ui,Wt) = [ui − wt, ui + wt,−ui − wt,−ui + wt]
⊤.

The reward model. For each i and t, given (Oi,t, Ai,t, Ui,Wt) and Γ, We generate

Ri,t = µrOi,t + Γ · βrf (Ui,Wt) + λrAi,t + er

where the random error er ∼ N (0, 1), βr = 3.0, λr = 2.5,

• µr = [0.25, 0.25, 0.25, 0.25]⊤,
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• fr (Ui,Wt) = ui · wt.

Behavior policy. For each i and t, given (Oi,t, Ui,Wt) and Γ, We generate

p (Ai,t = 1 | Oi,t, Ui,Wt) = sigmoid (µaOi,t − 4 + Γ · βafa (Ui,Wt))

where βa = 3,

• µa = [0.25, 0.25, 0.25, 0.25]⊤,
• fr (Ui,Wt) = ui · wt + ui + wt.

Target policy.

• Target policy A: p(Ai,t = 1) = 0.3.
• Target policy B: p(Ai,t = 1) = 0.5.

D.3 Tumor Growth simulated data setup

In this section, we give brief description about Tumor Growth environment setting and experiment
details. We set up many subsets randomly with different numbers of patients who received treatments
sequentially over 60 stages. To be specific, we randomized patients into three groups, with each
patient having a group label Si ∈ {1, 2, 3}.

The transition model. We apply the unobserved confounding variables to the PK-PD model:

• V (t) = (1+ρ log
(

K
V (t−1)

)
−βcC(t)−

(
αAr(t) + βAr(t)

2
)
+et)V (t−1). where ρ and

K are model parameters sampled for each patient according to prior distributions in Geng
et al. [2017], Lim [2018], Bica et al. [2020] and et ∼ N

(
0, 0.012

)
. Specifically, βc, α and

β are model parameters sampled for representing specific characteristics which affect with
patient’s response to chemotherapy and radiotherapy according to randomly subclassing
patients into 3 different groups Si ∈ {1, 2, 3} in Geng et al. [2017], Lim [2018], Bica et al.
[2020], which are influenced by genetic factors [Bartsch et al., 2007] and can be regarded as
time-invariant confounders.

• C(t) = C(t−1)/2+5 ·Ac(t), which relies on the chemo treatment action and exponentially
decays over time.

The reward model. The reward model consists of three parts:

• pathological-health reward: A negative reward Rn for penalising the patient if tumor size is
large or accepts too much drugs and radio: 1.5 exp(−V (t)).

• side-effect reward: A positive reward Rp for accepting treatments when take action at time
step t: exp(−(Ar(t) +Ac(t))2)

• reward imposed by unmeasured confounders: A reward RTW about the two-way confounder
parameter:(4 · sigmoid(Si − 2)− sin(0.1πt)).

• total reward: R = Rn +RP +RTW + er, er ∼ N (0, 1)

Behavior policy. We introduce two-way unmeasured confounders to treatment assignment policy.
For each i and t, We generate,

Ac(t) ∼ Bernoulli(sigmoid(
γc

Dmax
(D(t)− θc) + (3 · sigmoid(Si − 2)− 0.75 · sin(0.1πt))))

Ar(t) ∼ Bernoulli(sigmoid(
γr

Dmax
(D(t)− θr) + (3 · sigmoid(Si − 2)− 0.75 · sin(0.1πt))))

where D(t) is tumor diameters, Dmaxis the half maximum size of the tumor, θc and θr are fixed such
that θc = θr = Dmax/2 and γc and γr are also fixed such that γc = γr = 10.0 .

Target policy.

• Target policy A: Ac(t), Ar(t) ∼ Bernoulli(0.05).
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• Target policy B: Ac(t), Ar(t) ∼ Bernoulli(p), where p is related to the conditions of
patients:

p =


0.2, if Yt > 88,

0.1, if 44 < Yt ≤ 88,

0.05, if 5 < Yt ≤ 44,

0.01, otherwize

(5)

D.4 A real-world example: MIMIC-III.

We show how the Two-way Deconfounder can be applied to a real-world medical setting using
the Medical Information Mart for Intensive Care (MIMIC-III) database [Johnson et al., 2016]. We
extract 3,707 patients with trajectories up to 20 timesteps. Following the analysis of Zhou et al.
[2023b], we define a 5 × 5 action space by discretizing both vasopressors fluid Av and intravenous
Ai fluid interventions into 5 levels. We define the reward Ri,t = SOFAi,t − SOFAi,t+1 as
the difference between current SOFA score and next SOFA score, so a lower reward indicates a
higher risk of mortality. We extract 12 patient covariates as observation space, including Glasgow
coma scale,Systolic blood pressure, Weight, SOFA, SIRS, Fraction of inspired oxygen, Blood Urea
Nitrogen, Creatinine, Serum Glutamic-Oxaloacetic Transaminase, Partial Pressure of Oxygen ,
Total Bilirubin, Platelet Count. Considering the complexity of the real data, we incorporate the
normalization step before modeling them.

Target policy.

• the randomized policy: P (Av = 0) = P (Av = 1) = p(Av = 2) = P (Av = 3) = p(Av =
4) = 0.2, P (Ai = 0) = P (Ai = 1) = p(Ai = 2) = P (Ai = 3) = p(Ai = 4) = 0.2.

• the high dose polic: P (Av = 3) = p(Av = 4) = 0.5, P (Ai = 3) = p(Ai = 4) = 0.5.

• the low dose polic: P (Av = 0) = 0.4, P (Av = 1) = p(Av = 2) = 0.3, P (Ai = 0) =
0.4, P (Ai = 1) = p(Ai = 2) = 0.3.

• the tailored policy:

– if normalized SOFA score ≥ 0.95, p(Av = 4) = p(Av = 3) = 0.3, p(Av = 2) = 0.2
and P (Av = 0) = P (Av = 1) = 0; p(Ai = 4) = p(Ai = 3) = 0.3, p(Ai = 2) = 0.2
and P (Ai = 0) = P (Ai = 1) = 0.

– if 0.95 > normalized SOFA score ≥ 0.7, p(Av = 4) = p(Av = 3) = 0.1, p(Av =
2) = 0.2, p(Av = 1) = p(Av = 0) = 0.3;p(Ai = 4) = p(Ai = 3) = 0.1, p(Ai =
2) = 0.2, p(Ai = 1) = p(Ai = 0) = 0.3.

– if normalized SOFA score < 0.7, p(Av = 0) = 0.8, p(Av = 1) = 0.2andp(Av =
2) = p(Av = 1) = p(Av = 0) = 0; p(Ai = 0) = 0.8, p(Ai = 1) = 0.2andp(Ai =
2) = p(Ai = 1) = p(Ai = 0) = 0.

D.5 Sensitivity analysis

In two simulated datasets, the modified reward model and behavior policy according to sensitivity
parameter Γ are as follows,

Simulated Dynamic Process.

• The reward model: For each i and t, given (Oi,t, Ai,t, Ui,Wt) and Γ, We generate

Rt,t = µrOt,t + Γ · βrf (Ui,Wt) + λrAi,t + er

where the random error er ∼ N (0, 1), βr = 3.0, λr = 2.5,

– µr = [0.25, 0.25, 0.25, 0.25]⊤,
– fr (Ui,Wt) = ui · wt.

• Behavior policy: For each i and t, given (Oi,t, Ui,Wt) and Γ, We generate

p (Ai,t = 1 | Oi,t, Ui,Wt) = sigmoid (µaOi,t − 4 + Γ · βafa (Ui,Wt))

where βa = 3,
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– µa = [0.25, 0.25, 0.25, 0.25]⊤,
– fr (Ui,Wt) = ui · wt + ui + wt.

Tumor Growth.

• The reward model: R = Rn + RP + RTW + er, where er ∼ N (0, 1) and RTW =
Γ · (4 · sigmoid(Si − 2)− sin(0.1πt))

• Behavior policy: For each i and t, We generate,

Ac(t) ∼Bernoulli(sigmoid(
γc

Dmax
(D(t)− θc)

+ Γ · (3 · sigmoid(Si − 2)− 0.75 · sin(0.1πt))))

Ar(t) ∼Bernoulli(sigmoid(
γr

Dmax
(D(t)− θr)

Γ · (3 · sigmoid(Si − 2)− 0.75 · sin(0.1πt))))

where D(t) is tumor diameters, Dmaxis the half maximum size of the tumor, θc and θr are
fixed such that θc = θr = Dmax/2 and γc and γr are also fixed such that γc = γr = 10.0 .
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made in the paper.
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• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.
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whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
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to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

28
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• Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
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to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: Our paper poses no such risks.
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• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
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• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: Our paper does not release new assets.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.
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human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: Our paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

32


	Introduction
	Two-way Unmeasured Confounding
	Two-way Deconfounder
	Theoretical Results
	Experiments
	Simulation studies
	Real-world example: MIMIC-III database
	Sensitivity analysis
	Ablation study

	Discussion
	Critiques of wang2019blessings
	Limitations
	Future work

	 Proofs
	Notations
	Proof of Proposition 1
	Proof of Proposition 2
	Proof of Proposition 3
	Proof of Theorem 1

	Implementation.
	Details for loss function
	Implementation Details for Two-way Deconfounder Model.
	Implementation Details for Ablation Study.

	Simulation details
	A linear simulation setting
	Simulated Dynamic Process
	Tumor Growth simulated data setup
	A real-world example: MIMIC-III.
	Sensitivity analysis


