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Abstract

Studying protein mutations within amino acid sequences holds tremendous sig-
nificance in life sciences. Protein language models (PLMs) have demonstrated
strong capabilities in broad biological applications. However, due to architectural
design and lack of supervision, PLMs model mutations implicitly with evolutionary
plausibility, which is not satisfactory to serve as explainable and engineerable tools
in real-world studies. To address these issues, we present MutaPLM, a unified
framework for interpreting and navigating protein mutations with protein language
models. MutaPLM introduces a protein delta network that captures explicit protein
mutation representations within a unified feature space, and a transfer learning
pipeline with a chain-of-thought (CoT) strategy to harvest protein mutation knowl-
edge from biomedical texts. We also construct MutaDescribe, the first large-scale
protein mutation dataset with rich textual annotations, which provides cross-modal
supervision signals. Through comprehensive experiments, we demonstrate that
MutaPLM excels at providing human-understandable explanations for mutational
effects and prioritizing novel mutations with desirable properties. Our code, model,
and data are open-sourced at https://github.com/PharMolix/MutaPLM.

1 Introduction

Studying protein evolution through mutations within amino acid sequences is a central research
topic in life sciences [1–3]. Despite immense research efforts, a large number of protein mutations
with biological significance remain under-explored, highlighting the demand for in-silico tools to
model these mutations. Practically, the tool should meet two requirements. First, it should be
explainable, providing insightful and human-understandable interpretations for mutational effects.
This is crucial for broad biological applications ranging from identifying immune-escape pathogens
[4, 5] to interpreting the mechanisms of human diseases [6, 7]. Additionally, the tool should be
engineerable, proposing protein mutations that satisfy desirable properties such as catalytic activity
and thermostability. This process is known as directed evolution [8, 9], the most prevailing approach
for protein design in the laboratory, which offers substantial benefits across various application fields,
including industry [10], biotechnology [11], and therapeutics [12].

To achieve these goals, deep learning models [13–15] have emerged to capture evolutionary infor-
mation from protein sequences. Recently, the development of protein language models (PLMs)
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[16–20] has brought a paradigm shift in computational biology. By self-supervised learning [21] on
evolutionary-scale databases [22, 23], PLMs have achieved great success in various biological appli-
cations, including structure prediction [19, 24] and protein design [18, 25]. Additionally, PLMs have
demonstrated zero-shot capabilities in predicting and optimizing evolutionary plausibility [26–28], a
continuous value indicating whether a mutation is favored by natural selection.

Despite their promising advancements, we argue that existing PLMs are not yet satisfactory as explain-
able and engineerable tools for handling protein mutations. Regarding mutation explanation, PLMs’
implicit interpretation with evolutionary plausibility is overly vague, lacking detailed information
for mutational effects such as specific alterations in protein functions and impacts on organisms.
Regarding mutation engineering, PLMs can only propose evolutionary-plausible mutations, which
may be misaligned with human preferences in real-world practices of directed evolution. For example,
enhancing the catalytic activity of an enzyme from a bacterium could be detrimental to its survival
due to increased energy costs but beneficial for industrial applications. In such scenarios, the utility
of PLMs in assisting protein engineering is significantly compromised.

In this paper, we aim to develop explainable and engineerable PLMs by explicitly modeling protein
mutations. However, conventional PLMs based on the Transformers [29] architecture provide context-
aware representations for each amino acid, which are inadequate for capturing the discrepancies
between the wild-type and its mutant within a unified feature space. Besides, there is a lack
of supervision signals necessary for comprehending the intricate impacts of protein mutations,
which require extensive background knowledge, including protein structures, protein functions, and
mechanisms of biological processes.

To address these issues, we envision that (1) mutation representations could be captured from the
variations of PLM representations between the wild-type and its mutant with appropriate architecture,
and (2) expert-written texts from protein databases and biomedical publications provide rich cross-
modal supervision for learning protein mutations. Specifically, we propose MutaPLM, a unified
framework for interpreting and navigating Mutations with Protein Language Models. We introduce
a protein delta network that translates between mutations and protein delta features, formulating a
unified feature space aligned with textual semantics. We develop a transfer learning pipeline with a
chain-of-thought (CoT) strategy [30] to harvest protein mutation knowledge from biomedical texts.
Additionally, we construct MutaDescribe, the first large-scale dataset containing diverse protein
mutations and rich textual annotations of their effects. Using natural language as a friendly interface,
the dataset facilitates the training and evaluation of mutation explanation and engineering.

Through comprehensive experiments, we demonstrate that MutaPLM is a versatile, explainable,
and engineerable tool for assisting protein mutation studies. In mutation explanation, MutaPLM
outperforms the strongest baseline model by 6.5% in ROUGE-L, and 19.4% of the predicted muta-
tional effects are regarded as accurate and insightful by human experts. In mutation engineering, our
model achieves an average of 0.409 recall scores on top-50 mutation proposals navigated by free-text
instructions, improving ESM-2 [19] by 1.6-fold.

Our contributions are summarized as follows:

• We propose MutaPLM, a unified framework that enables protein language models to capture
mutations explicitly using a protein delta network and cross-modal supervision.

• We build MutaDescribe, the first dataset with detailed textual annotations for protein mutations.

• We validate the effectiveness of MutaPLM in explaining and engineering protein mutations
through comprehensive experiments.

2 Related Work

2.1 Protein Language Models

In analogy to large language models (LLMs) [31–34] in natural language processing (NLP), protein
language models (PLMs) such as ProteinBERT [35], ProtTrans [17], ProtGPT2 [18], and ESM series
[36, 19, 37] have surged in modeling protein sequences. Pre-trained by masked language modeling
[38] or auto-regressive language modeling [39] on evolutionary-scale protein databases, PLMs have
demonstrated outstanding predictive power on protein secondary and tertiary structures [24], protein
functions [40] and protein-protein interactions [41]. More recently, explorations on PLMs unifying
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Figure 1: Model architecture of MutaPLM. (a) The encoding branch of the protein delta network. The
delta encoder takes the subtraction of the PLM representations of the mutant and wild-type as inputs to generate
z∆. (b) The decoding branch of the protein delta network. The key components involve a delta decoder that
reconstructs mutant features and two prediction heads deciding the position and amino acid of the mutation.

protein sequences and natural language [42–45] have attracted rising research interest, as texts provide
unstructured knowledge and a friendly user interface for studying proteins. Notably, a contemporary
work [46] proposes to perform text-based protein editing by directly generating the mutated protein
sequence. Unfortunately, none of the existing PLMs qualifies as an explainable and engineerable tool
in modeling protein mutations, mainly owing to architectural design and lack of supervision.

2.2 Protein Mutation Modeling

Previous works formulate mutation explanation as learning the ’local fitness landscape’, a mapping
from protein sequences to specific functional activity scores [47]. Models for protein fitness prediction
could be categorized as (1) alignment-based models [48, 49] trained on multiple sequence alignments
(MSAs) [50], (2) PLM models [18, 19] trained on large-scale unaligned sequences, (3) inverse-folding
models [27, 51] that learn protein fitness through structure-conditioned sequence distributions, and
(4) hybrid models [52, 53] that combine both PLMs and MSAs. The evaluations are performed as per
wild-type protein on deep mutation scanning (DMS) [54] or clinical variant [55] benchmarks. In this
work, we formulate mutation explanation as a more challenging task that aims at providing textual
descriptions of mutational effects for arbitrary wild-type protein and mutation.

The traditional mutation engineering [8, 9] task aims at generating protein mutants with high fitness
scores. One line of work leverages generative models including variational auto-encoders (VAEs)
[56], generative language models [57] and diffusion models [58] to directly generate the protein
sequence conditioned on fitness scores. Another line attempts to propose mutations iteratively by
greedy sampling [59], reinforcement learning [60], or proximal gradients [61] on the learned fitness
landscape. Differing from prior studies, MutaPLM incorporates textual instructions instead of fitness
scores as navigation and proposes mutations satisfying human preferences.

3 Methods

The main goal of our work is to develop explainable and engineerable PLMs by explicitly modeling
protein mutations. To achieve this goal, we elaborate on the proposed MutaPLM framework, high-
lighting three design components: (1) a protein delta network that translates between mutations and
protein delta features z∆ (Sec. 3.1, detailed in Appendix A.1), (2) a transfer learning pipeline with a
chain-of-thought strategy that harvests protein mutation knowledge from cross-modal supervision
(Sec. 3.2, detailed in Appendix A.3), and (3) a specifically constructed dataset with diverse proteins
and rich textual annotations of mutation effects (Sec. 3.3, detailed in Appendix B.2).

3.1 Protein Delta Network for Explicit Mutation Modeling

The protein delta network follows an encoder-decoder architecture, utilizing textual semantics as
the latent feature space for protein mutations. As illustrated in Fig. 1, the protein delta network is
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Figure 2: Training pipeline of MutaPLM. (a) Workflow of pre-training on protein-related literature. We
perform next token prediction for the encoding workflow and conditional masked language modeling for the
decoding workflow. (b) Workflow of fine-tuning with chain-of-thought (CoT). We employ a two-round dialog
that involves describing the functions of a wild-type protein, explaining the effects of its mutation, and predicting
the mutation based on the mutational effects.

composed of a protein language model (PLM), a large language model (LLM), a wild-type encoder,
a delta encoder, a delta decoder, and two mutation prediction heads. We leverage ESM-2 (650M)
[19], a powerful PLM pre-trained on evolutionary-scale databases, to encode protein sequences. We
initialize the LLM with BioMedGPT-LM [62], a scientific language model built on LLaMA2-7B [31]
through continual pre-training [63] on large-scale biomedical corpora.

Formulation of protein delta features. We speculate that the subtraction of PLM representations
between the mutant and wild-type, denoted as h∆, contains rich mutation information, making it
suitable for extracting protein delta features z∆. Specifically:

h∆ = hmt − hwt = fPLM(xmt)− fPLM(xwt), (1)

where xmt and xwt are the amino acid sequences of the mutant and wild-type protein, hmt and hwt are
their sequence representations, and fPLM is the protein language model.

The delta encoder fenc and delta decoder fdec facilitates bi-directional transformations between h∆

and z∆ as follows:
z∆ = fenc(h∆), h∆ = fdec(z∆). (2)

Encoding protein delta features. Given h∆, the delta encoder is expected to extract information-
preserving protein delta features z∆ within a unified feature space. However, protein sequences vary
in length, ranging from several tens to thousands of amino acids. To address this issue, we adopt a
cross-attention module [29] to transform the sequential representations into a fixed number of latent
features. The module, partly inspired by BLIP series [64, 65], maintains K trainable features that
serve as queries and takes the sequence representations as keys and values to generate outputs. We
employ two parallel modules for encoding the wild-type features hwt and mutational features h∆.

Decoding protein delta features. Drawing inspirations from LM-DESIGN [66], we introduce a
cross-attention module that takes a symmetrical form of the delta encoder. Specifically, it treats the
wild-type protein representations hwt as queries and protein delta features z∆ as keys and values.
The outputs are then processed by a two-layer feed-forward network (FFN) to reconstruct h∆. The
mutant representations hmt are obtained by combining h∆ with hwt, and fed into a position head and
a language modeling head to predict the mutation. The position head is a fully-connected layer that
predicts whether the amino acid should be substituted. The language modeling head is initialized from
the PLM and predicts the type of the mutated amino acid. To facilitate text-based protein engineering,
we maintain K trainable soft tokens, which are appended to the input token embeddings of the LLM
to summarize textual semantics. The output representations of the soft tokens are processed by the
delta decoder to generate mutations.

Compared with previous works that connect protein sequences with LLMs [67, 44, 45], the proposed
protein delta network exhibits the following advantages:
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• Explicit modeling of protein mutations. Prior models are designed for static protein sequences,
while MutaPLM models the alterations introduced by mutations with protein delta features z∆.

• Encoder-decoder architecture. Prior works adopt either an encoder or a decoder architecture for
protein sequences, while MutaPLM incorporates both encoding and decoding components.

3.2 Transfer Learning with Cross-modal Supervision

Biomedical texts contain rich expert-annotated information on protein properties and mutational
effects. As depicted in Fig. 2, MutaPLM harvests these cross-modal supervision signals through a
transfer learning pipeline, which we detail as follows:

Pre-training on protein literature. In this stage, we aim to incorporate general protein knowledge
from scientific publications with language modeling objectives, as shown in Fig. 2(a). (1) For the
encoding workflow, we take the output representations of the wild-type encoder as LLM inputs
and calculate the next-token prediction objective [39] for generating descriptive texts. (2) For the
decoding workflow, we employ the conditional masked language modeling (CMLM) objective [68]
on the protein sequence. Specifically, we mask 15% amino acids and task the PLM to recover the
masks based on the remaining amino acid sequence and the LLM-summarized textual representations.
It is worth noting that in this stage, the delta decoder acts as a modality translator, generating bias
terms that help reconstruct the original sequence instead of capturing protein mutation information.
Overall, we optimize the summation of these two language modeling objectives.

Fine-tuning on protein mutations with chain-of-thought (CoT). As depicted in Fig. 2(b), we
fine-tune MutaPLM on textual annotations of mutational effects to facilitate mutation explanation
and engineering. Since mutational effects typically involve the enhancement or attenuation of protein
functions, we adopt a chain-of-thought (CoT) strategy [30] that seamlessly connects protein functions
and mutational effects within a two-round dialogue. In the first round, we prompt the LLM to describe
the functions of the wild-type protein using the encoding workflow. In the second round, we introduce
two tasks, namely describing the mutational effects with the encoding workflow, and predicting the
mutation based on textual instructions with the decoding workflow. Both tasks utilize the latent
wild-type representations and the predicted functions from the first round dialogue as additional
inputs. Formally, the overall objective of fine-tuning is the summation of three parts: (1) next token
prediction on protein function descriptions, (2) next token prediction on mutational effects, and (3)
weighted cross-entropy between the predicted mutation and the ground-truth mutation.

Table 1: Statistics of the MutaDescribe dataset. We report the number of proteins and samples, the average
protein sequence length, and the average number of words for mutational effects.

Split # Proteins # Samples Avg. sequence length Avg. words

Train 20,553 165,236 516.1 28.3
Valid 2,207 4,663 524.8 28.3
Test (Easy) 429 460 518.1 27.3
Test (Medium) 68 384 669.6 31.6
Test (Hard) 81 404 530.0 31.8

3.3 MutaDescribe: A Diverse Protein Mutation Dataset with Textual Annotations

We build MutaDescribe, a large-scale dataset comprising 20.9K wild-type proteins and 171.1K
single-site mutations, to facilitate fine-tuning and evaluation. We provide an overview of our dataset
in Tab. 1. The construction process involves the following steps:

Raw data collection. The primary source of MutaDescribe is UniProtKB/SwissProt [69], a widely
adopted protein database that contains 106.6K single-site substitutions. We collect expert-reviewed
descriptions of mutational effects from the Phenotypes & Variants entry and retrieve the abstract of
the corresponding publications on PubMed [70] based on available reference information.

Quality control. We prompt GPT-3.5-turbo [33] to filter out low-quality descriptions such as those
that only mention the originating species. This step helps ensure that the dataset contains high-quality
and informative annotations.
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Table 2: Performance evaluation for mutation explanation on the test sets of MutaDescribe. R-L: ROUGE-L.
BL-2: BLEU-2.

Model Easy Medium Hard Average
R-L BL-2 R-L BL-2 R-L BL-2 R-L BL-2

ProLLaMA [45] 1.02 0.64 1.00 0.91 1.03 0.70 1.02 0.74
Mol-Instructions [67] 5.10 0.65 5.19 0.65 5.56 0.90 5.27 0.73
Galactica-6.7B [74] 6.53 3.52 7.64 3.58 7.33 2.88 7.13 3.33

GPT-4-0613 (1-shot) [33] 8.04 2.93 9.96 3.42 9.62 2.69 9.14 3.00
GPT-4-0613 (5-shot) [33] 10.46 2.51 10.31 2.81 10.79 1.88 10.52 2.40
GPT-4-0613 (5-shot, kNN) [33] 11.63 9.63 12.98 10.88 12.46 8.63 12.31 9.69
GPT-4 + ESM-2 [19] 11.69 11.09 13.02 11.50 12.77 8.48 12.45 10.37
GPT-4 + OntoProtein [75] 11.84 10.93 12.69 11.22 12.81 8.17 12.42 10.13

AugmentedESM [27] 11.60 8.33 11.40 7.46 10.73 6.95 11.26 7.62
Fine-tuned ESM-2 [19] 20.49 9.37 11.87 5.95 11.34 3.32 14.88 6.36

MutaPLM 25.80 18.77 21.07 12.59 16.51 8.69 21.34 13.61

Figure 3: Human-AI collaborative evaluation results for mutation explanation on the test sets of MutaDe-
scribe. We show the number of accurate, relevant, opposite, and irrelevant predictions.

Data enrichment. Given that the descriptions in UniProtKB are generally short and homogeneous,
we utilize GPT-3.5-turbo to enrich the textual annotations by retrieving relevant descriptions from the
original PubMed abstract. Additionally, we balance the number of benign and malignant mutations by
constructing reversed samples. Specifically, for each mutation, we attempt to exchange the wild-type
and the mutant and prompt GPT-3.5-turbo to write a description opposite to the original mutational
effect. For example, if the mutational effect of an A89H mutation is "Increased catalytic activity",
we will create a reversed sample with an H89A mutation and "Decreased catalytic activity".

Data splitting. We first randomly split our dataset into training, validation, and test sets. To evaluate
models’ generalization capabilities on novel proteins, we further partition the test set into three
subsets based on the wild-type sequence homology with training sequences. We adopt MMSeqs2
[71], a widely-adopted tool to calculate sequence homology. The Easy, Medium and Hard test
subsets comprise samples whose sequence homology are between [0.95, 1], [0.5, 0.95), and [0, 0.5)
respectively. We also implement a temporal split based on the publication date of the mutation, and
we defer readers to Appendix B for details and Appendix D.1 for evaluation results.

Compared with prior mutation benchmarks [55, 72, 73], MutaDescribe is the first to incorporate
textual annotations for facilitating mutation explanation and engineering. Besides, MutaDescribe
contains a wider variety of wild-type proteins, surpassing ProteinGym [73] by 6 times in quantity.

4 Experiments

In this section, we demonstrate that MutaPLM is adept at interpreting and engineering mutations
through comprehensive experiments. We start with a brief introduction of our training setups (Sec.
4.1), followed by detailed evaluations on two core tasks: mutation explanation (Sec. 4.2) and mutation
engineering (Sec. 4.3). We also present an in-depth analysis of our design components (Sec. 4.4),
including pre-training and the CoT strategy.
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Figure 4: Case study for a mutation from A (Alanine) to D (Aspartic) at the 205-th position of m7GpppX
diphosphatase. MutaPLM provides accurate explanations and insights, while GPT-4 generates irrelevant results.

4.1 Training Setup

To alleviate catastrophic forgetting [76] and save computational costs, we train MutaPLM in a
parameter-efficient way. We apply low-rank adaptation (LoRA) [77] on the LLM with a rank of 16.
The number of query embeds and soft tokens is set as K = 32. We optimize the LoRA modules, the
wild-type encoder, the delta encoder, the delta decoder, the soft tokens, the position head, and the
language modeling (LM) head, which comprises a total of 75.0M parameters. The remaining 7.4B
parameters are kept frozen.

We pre-train MutaPLM for 200K steps with a batch size of 32 on 1.1M protein-text data collected
from biomedical publications (detailed in Appendix B.1) and fine-tune it for 70K steps with a batch
size of 24 on MutaDescribe. For both stages, we use the AdamW optimizer [78] with a learning rate
that is linearly warmed up to 10−4 for the first 1K steps and decreases to 10−5 following a cosine
annealing strategy. The overall training process takes 10 days on 4 NVIDIA A100 GPUs.

4.2 Performance Evaluation on Mutation Explanation

Differing from existing studies that interpret mutational effects with protein fitness [26, 28], we
formulate mutation explanation as providing detailed textual descriptions for protein mutations.

Baselines. While no prior work is specifically designed for this task, we perform zero-shot analysis
on popular LLMs with various zero-shot or few-shot prompts and implement supervised models
for comparison. Our baselines include (1) Text-based LLMs. We perform in-context learning
[79] by providing 1-shot and 5-shot demonstrations to GPT-4 [33], the most advanced model in
NLP. Additionally, we implement a k-nearest neighbor (kNN) strategy [80] that selects the top-k
homologous proteins from the training set as few-shot examples. (2) LLM-assisted PLMs, including
ESM-2 [19] and OntoProtein [75]. In addition to kNN-based 5-shot samples for GPT-4, we leverage
PLMs to provide additional information by predicting the evolutionary plausibility of the mutation.
(3) LLMs trained on protein sequences, including Galactica-6.7B [74], Mol-Instructions [67], and
ProtLLM [44]. We feed the wild-type and mutated protein sequences into these models and instruct
them to provide mutation explanations. (4) Fine-tuned LLMs. We fine-tune BioMedGPT-LM by
feeding the ESM-2 representations of the wild-type and mutant (Fine-tuned ESM-2) or the wild-type
sequence and evolutionary plausibility (AugmentedESM [27]) into the LLM and performing casual
generation. Notably, for all ESM-2 models used in our baselines, we adopt the model with 650M
parameters for fair comparison. We defer readers to Appendix C.1 for more implementation details.

Evaluation. We adopt BLEU [81] and ROUGE [82] scores to assess the quality of the generations by
comparing them with ground-truth annotations. To further investigate whether the predictions are truly
insightful and helpful in studying protein mutations, we perform a human-AI collaborative evaluation.
Specifically, we first utilize GPT-4 as a proxy of human experts to categorize the predictions into
Accurate, Relevant, Opposite, and Irrelevant, based on the relevance between the predictions and
ground truth. Then, we recruit a postgraduate from a top university who majors in biology to assess
and rectify GPT-4 evaluation results on mutation explanations following the same categorization
protocol. The prompt and detailed evaluation results are displayed in Appendix C.3.

Results and analysis. We present performance comparisons on the test sets of MutaDescribe in Tab.
2 and Fig. 3. We observe that: (1) MutaPLM achieves state-of-the-art performance across various
evaluation metrics, outperforming fine-tuned ESM-2 by 6.46% in ROUGE-L and GPT-4 + ESM-2
by 3.24% in BLEU-2. Additionally, more than 40.22% of MutaPLM predictions are regarded as
Accurate or Relevant with ground-truth labels, which showcases our model’s helpfulness in real-world
research scenarios. (2) While the performance on the Medium and Hard sets is not as promising as in
the easy set, MutaPLM shows generalization capabilities on novel proteins, as validated by 6.44%
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Table 3: Performance evaluation for mutation engineering on the test sets of MutaDescribe. Acc: prediction
accuracy of the amino acid given the position of the mutation. Rec@50: top 50 recall of the desired mutant. -:
not reported due to unaffordable computation costs (requires ∼ 1M forward passes).

Model Easy Medium Hard Average
Acc Rec@50 Acc Rec@50 Acc Rec@50 Acc Rec@50

Random 5.23 0.83 4.94 0.52 5.20 1.24 5.13 0.87

ProtST (ESM-2) [42] 5.86 - 6.51 - 7.18 - 6.49 -

GPT-4-0613 (1-shot) [33] 10.83 5.00 10.77 6.92 12.09 8.79 11.21 6.81
GPT-4-0613 (5-shot) [33] 14.84 4.68 9.32 6.78 13.33 5.62 12.65 5.63
GPT-4-0613 (5-shot, kNN) [33] 15.97 7.56 14.29 7.14 14.77 7.95 15.06 7.56

ESM-2 [19] 35.21 23.91 34.63 22.91 37.87 28.71 35.84 25.15
OntoProtein [75] 39.78 28.91 36.45 26.04 38.61 29.20 38.37 28.12

Fine-tuned BioMedGPT [62] 35.21 7.82 32.29 5.72 39.60 12.62 35.73 8.72
Fine-tuned ESM-2 [19, 83] 52.17 35.65 52.08 30.60 50.00 34.65 51.43 33.77

MutaPLM 56.08 43.47 48.69 34.89 55.19 43.81 53.51 40.94

accurate and 19.80% relevant predictions on the hard set. (3) The evolutionary plausibility values
are beneficial for elucidating mutational effects, as demonstrated by the slightly improved results
of LLM-assisted PLMs against the plain GPT-4 counterpart. However, the superior performance
of fine-tuned ESM-2 and MutaPLM indicates that integrating the mutant sequence provides richer
mutational information. (4) Supervised baselines underperform few-shot GPT-4 models, especially
on Medium and Hard sets and BLEU-2 scores. We observe that supervised models tend to randomly
combine short textual segments from the training set, indicating overfitting problems. (5) LLMs
trained on protein sequences perform poorly, as they are solely instruction-tuned on single protein
sequences. Hence, we emphasize the significance of knowledge transfer from protein functions to
mutational effects and their basic properties.

Case study. Additionally, we present a case study in Fig. 4 for a mutation from m7GpppX diphos-
phatase. Our model accurately identifies the increased decapping activity and provides novel insights
beyond the ground truth. In contrast, the GPT-4 model mistakenly identifies the mutational effects as
decreases in enzymic activity. More cases are available in Appendix D.3.

4.3 Performance Evaluation on Mutation Engineering

Differing from prior works [59–61] that perform mutation engineering with an active learning
paradigm [84], we challenge models to directly propose protein mutations based on the wild-type
sequence and textual instructions. As we primarily focus on single-site mutations, we formulate this
as a retrieval task from 19× L possible mutants for a protein sequence of length L.

Baselines. We adopt four groups of baselines including: (1) Few-shot LLMs. Similar to mutation
explanation, we prompt GPT-4 to suggest single-site mutations through in-context few-shot learning.
(2) Zero-shot PLMs including ESM-2 [19] and OntoProtein [75]. We calculate the evolutionary
plausibility scores following [26] for each amino acid and derive the best mutant. (3) A retrieval-based
model, namely ProtST (ESM-2) [42]. We calculate the cosine similarity between PLM and textual
representations of mutational effects to score and rank mutations. (4) Fine-tuned models. We fine-tune
BioMedGPT [62] to directly propose a mutation based on the protein sequence and instruction. We
also fine-tune ESM-2 by combining its wild-type sequence representations with BioMedBERT [83]
encodings of textual instructions by a cross-attention layer. Please refer to Appendix C.1 for details
of our baselines.

Evaluation. We report the average accuracy of the mutated amino acid on the ground-truth mutational
position. We also report top-50 recall scores on all possible mutations.

Results and analysis. Comparisons between MutaPLM and baselines on the test sets of MutaDescribe
are presented in Tab. 3. We observe that: (1) MutaPLM achieves an average of 53.51% in accuracy
and 40.94% in top-50 recall, improving the original ESM-2 model by 1.6-fold. The substantial gains
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Figure 5: Visualization of fitness scores for multi-round protein optimization. The curves indicate the
average results, and the shaded regions indicate the standard deviation.

of MutaPLM underscore the significance of textual navigation in mutation engineering. (2) MutaPLM
outperforms the fine-tuned ESM-2 model by an average of 2.09% in accuracy and 6.17% in top-50
recall, benefiting from our architectural design and pre-training. (3) The overall performance of
MutaPLM on the Easy and Hard sets are similar but significantly higher than on the Medium set.
We attribute this to data distribution: protein sequences in the Medium set are longer (see Tab. 1),
and the distribution of the mutated amino acids differs (see Fig. A1). Besides, the PLM may have
witnessed the wild-type protein during pre-training, which mitigates the overfitting problem. (4)
Compared to LLMs, both zero-shot and fine-tuned PLMs achieve superior performance, thanks
to their evolutionary knowledge attained from pre-training on large-scale protein sequences. (5)
Aligning the representations of protein sequences and texts cannot benefit mutation modeling, as
evidenced by the poor performance of ProtST (ESM-2).

Visualization of protein fitness on multi-round optimization. In addition to single-site mutations,
we employ a beam-search algorithm [85] to obtain multi-point substitutions iteratively. We manually
write the optimization objective for 6 representative benchmarks, set the number of beams as 20,
perform 20 independent runs, and visualize the fitness scores predicted by ESM landscape models
[86]. We compare MutaPLM with EvoProtGrad [87], a gradient-based strategy that leverages PLMs
for multi-round optimization, as well as with random sampling. More details are presented in
Appendix C.4. As shown in Fig. 5, our model consistently yields higher-fitness mutants across
6 proteins with varying objectives, especially in the initial rounds of optimization. These results
highlight MutaPLM’s potential in assisting real-world mutagenesis applications.

4.4 In-depth Analysis

Impacts of transfer learning. We show the impacts of pre-training and fine-tuning in Fig. 6. As
the fine-tuning proceeds, the performance of MutaPLM continues to improve on the Easy set but
deteriorates on the Medium and Hard sets, indicating overfitting problems on out-of-domain samples.
Besides, without pre-training, MutaPLM achieves higher performance for the initial steps, which
we attribute to the adaptation cost from pre-training texts to fine-tuning texts. However, the overall
ROUGE-L scores decline by 1.56% for mutation explanation and 1.18% for mutation engineering as
the fine-tuning finalizes. Overall, these results validate our transfer learning design.

Impacts of chain-of-thought (CoT). To investigate the impacts of the chain-of-thought strategy, we
perform ablation studies by (1) replacing the predicted function with the ground truth description,
(2) replacing the predicted function with ’Unknown function’, (3) removing the delta features for
mutation explanation, and (4) removing the mutational effects for mutation engineering. As shown in
Tab. 4, removing protein functions leads to a performance drop of 2.80% for mutation explanation
and 1.13% for mutation engineering. Conversely, using the ground-truth function results in notable
improvements, particularly for mutation explanation. Besides, the delta features and mutational
effects within the second-round dialog play more significant roles in MutaPLM. These findings
highlight the significance of jointly incorporating protein function and mutation information in
explaining and navigating protein mutations.
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Table 4: Ablation studies. w/o: without.
w/: with. We report average ROUGE-L for
mutation explanation and average Recall@50
for mutation engineering.

Model Explain Engineer

MutaPLM 21.34 40.94

w/ golden function 23.80 41.26
w/o function 18.54 39.81
w/o delta features 17.36 -
w/o mutational effects - 35.10 Figure 6: Performance analysis for mutation explanation

(blue) and engineering (orange) on pre-training and fine-
tuning. w/o pt: without pre-training. w/ pt: with pre-training.

5 Limitations and Broader Impacts

MutaPLM pioneers as the first attempt in the explicit modeling of protein mutations with natural
language, and we expect future endeavors on (1) expanding the scale and diversity of the MutaDescribe
dataset by integrating multi-point mutations and indels [73], (2) analyzing the alterations of protein
3D structures [88] to deepen the understanding of mutations, and (3) developing active learning [84]
pipelines to harness feedbacks from wet-lab experiments in real-world mutagenesis studies.

While MutaPLM bears promise in mutation explanation and engineering, we emphasize safety
concerns that it can be misused to generate pathogenic mutations and harmful bio-agents. Hence,
we declare that MutaPLM, upon public release, should be restricted to research purposes, and any
further applications should undergo comprehensive experiments and human inspections.

6 Conclusions

In this work, we present MutaPLM, a unified framework harvesting protein language models for
mutation explanation and engineering. We propose a protein delta network to model mutations
explicitly with protein delta features and develop a transfer learning pipeline with a chain-of-thought
strategy to integrate protein mutation knowledge from biomedical texts. Additionally, we construct
MutaDescribe, the first large-scale dataset containing diverse proteins and detailed textual annota-
tions for mutations. Our experiments demonstrate that MutaPLM offers insightful explanations for
mutational effects and proposes desirable mutants based on textual instructions. We anticipate that
the proposed MutaPLM framework and our publicly released dataset will pave the way for novel
research avenues and applications in studying proteins.
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Appendix

A Details of MutaPLM

A.1 Model Architecture

Our protein delta network consists of a protein language model (PLM), a large language model
(LLM), a wild-type encoder, a delta encoder, a delta decoder, and two prediction heads for mutation.
We introduce these components as follows:

Protein language model. We formulate the wild-type protein as an amino acid sequence xwt =[
x
(wt)
1 , x

(wt)
2 , · · · , x(wt)

L

]
of length L. We focus on single-site substitution mutants, denoted by its

sequence xmt =
[
x
(mt)
1 , x

(mt)
2 , · · · , x(mt)

L

]
satisfyingH(xwt, xmt) = 1, whereH(·, ·) is the Hamming

distance. We adopt ESM-2 (650M) [19] as our protein language model fPLM, which transforms the
protein sequences into dense feature vectors as follows:

hwt =
[
h
(wt)
1 , h

(wt)
2 , · · · , h(wt)

L

]
= fPLM(xwt),

hmt =
[
h
(mt)
1 , h

(mt)
2 , · · · , h(mt)

L

]
= fPLM(xmt).

(A1)

Then, we introduce the mutational representation, h∆, calculated as follows:

h∆ =
[
h
(∆)
1 , h

(∆)
2 , · · · , h(∆)

L

]
= hmt − hwt. (A2)

Large language model. Similarly, we formulate biomedical texts as a sequence of tokens t =
[t1, t2, · · · , tN ]. We initialize our LLM with BioMedGPT-LM [62], which is obtained by continually
pre-training LLaMA2-7B [31] on biomedical corpus. The large language model fLLM takes the
following steps to transform t into latent features and output distributions of the next token:

e = [e1, e2, · · · , eN ] = gemb(t),

zt = [z1, z2, · · · , zN ] = gtransformers(e),

P (ti|t<i) = gLM(hi),

(A3)

where gemb is the word embedding layer, zt is the textual representation calculated by transformer
blocks gtransformers, gLM is the language modeling head, and P (ti|t<i) is the probability distribution of
i-th token based on preceding tokens.

Wild-type encoder. The wild-type encoder comprises K trainable query vectors qwt =
[q1, q2, · · · , qK ] and a cross attention module. It transforms the wild-type representations hwt into a
fixed number of features as follows:

zwt =
[
z
(wt)
1 , z

(wt)
2 , · · · , z(wt)

K

]
= CrossAttentionwt(qwt, hwt, hwt),

CrossAttention(Q,K, V ) = Softmax

(
Q̂K̂T

√
dk

)
V̂

Q̂ = QWQ, K̂ = KWK , V̂ = VWV ,

(A4)

where WQ,WK ,WV are trainable parameters, and dk is the feature dimension.

Delta encoder. The delta encoder follows the same architecture as the wild-type encoder. It encodes
the protein delta features as follows:

z∆ =
[
z
(∆)
1 , z

(∆)
2 , · · · , z(∆)

K

]
= CrossAttentionenc(q∆, h∆, h∆), (A5)

where q∆ are the K trainable queries, and the cross attention is calculated following Equ. A4.
Notably, the wild-type encoder and delta encoder comprise independent parameters.

Delta decoder. The delta decoder transforms the protein delta features z∆ back to the original
mutation representations h∆. It comprises a cross-attention layer and a two-layer feed-forward
network with ReLU activation. Specifically:

z̃∆ = CrossAttentiondec(hwt, z∆, z∆),

h∆ = FeedForward(z̃∆),
(A6)
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Table A1: Average l2-norm of MutaPLM’s intermediate representations on MutaDescribe.
Representation hwt h∆ z∆

Avg. l2-norm 9.90 0.35 1.04

where the cross attention is calculated following Equ. A4.

Mutation prediction heads. After reconstructing the mutant representation by hmt = hwt + h∆, we
develop a position prediction head fpos and a language modeling head fLM to predict the mutation.
Specifically:

P
(
x
(mt)
i ̸= x

(wt)
i

)
= fpos

(
h(mt)
i

)
,

P
(
x
(mt)
i

)
= fLM

(
h
(mt)
i

)
,

(A7)

where P
(
x
(mt)
i ̸= x

(wt)
i

)
denotes the probability of i-th amino acid to be mutated, and P

(
x
(mt)
i

)
denotes the probability distribution of the i-th amino acid. The parameters of the position prediction
head are initialized from scratch, and those of the language modeling head are derived from the PLM.

A.2 Justifications for Mutational Features

To model mutations explicitly, we leverage the subtraction of the wild-type and mutant representations
as the mutational features h∆, which is subsequently processed by the delta encoder. One of the
essential considerations is that the PLM is overly smooth, making h∆ too small and less informative.
However, we argue that due to the non-smooth nature of the protein fitness landscape [61], the output
representations of PLMs are also non-smooth. Moreover, after training, the delta encoder learns to
capture the orientation of h∆, yielding a z∆ with an appropriate norm. We also present empirical
justification by calculating the average l2-norm of hwt, h∆, and z∆ on MutaDescribe, which are
displayed in Tab. A1.

A.3 Pre-training Objectives

MutaPLM performs pre-training on large-scale protein-relevant literature. Given the protein sequence
xwt and its semantically related text t, we optimize the following objectives:

Protein-to-text generation. We first concatenate the latent wild-type features zwt in Equ. A4 and the
text embeddings e in Equ. A3. We perform conditional auto-regressive language modeling that aims
to generate t based on the protein representations and previous tokens. The objective is calculated as
follows:

z = [z1, z2, · · · , zK︸ ︷︷ ︸
protein

, zK+1, · · · , zK+N︸ ︷︷ ︸
text

] = gtransformers ([zwt; e]) ,

P (ti|t<i, zwt) = gLM(zK+i),

Lp2t =
1

N

N∑
i=1

H [ti, P (ti|t<i, zwt)] ,

(A8)

where H(·, ·) denotes cross-entropy.

Text-to-protein generation. We first append K trainable soft tokens s = [s1, s2, · · · , sK ] to the
input token embeddings to summarize textual semantics. Then, we derive z∆ as the last hidden state
of s as follows:

z̃ = [z̃1, z̃2, · · · , z̃N︸ ︷︷ ︸
text

, z̃N+1, · · · , z̃N+K︸ ︷︷ ︸
z∆

] = gtransformers([e; s]), (A9)

where s denotes the soft tokens. We pass z∆ into the delta decoder to obtain h∆ as in Equ. A6. It is
worth noting that in this stage, we are aimed at aligning the feature space of PLMs and LLMs, and
z∆ and h∆ are NOT related to protein mutations.

Then, we randomly mask 15% amino acids in the protein sequence. We adopt the conditional masked
language modeling objective to reconstruct the masked tokens as follows:
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Table A2: Prompt templates for fine-tuning. The first and second round dialogs are composed of system
prompts, latent wild-type and delta features, and special tokens including <BOP>, <EOP>, <BOM>, <EOM>.
We highlight the parts that are used to calculate the objectives.

Type Content

System Prompt You are an expert at biology and life science. Now a user gives you several
protein sequences and mutations. Please follow user instructions and answer
their questions.

User Prompt for Function
Prediction

Based on the following protein sequence, please describe its function.

User Prompt for Mutation
Explanation

Next is a mutation from <xi> to <x̂i> at position i. Please generate a
brief/detailed introduction to describe it.

User Prompt for Mutation
Engineering

Next is a brief/detailed introduction of mutational effects. Please generate a
protein mutation that fits the description.

Round 1 Dialog [System Prompt] [User Prompt for Function Prediction] <BOP>
[Latent Wild-type Features] <EOP> [Protein Function]

Round 2 Dialog for Muta-
tion Explanation

[Round 1 Dialog] [User Prompt for Mutation Explanation]
<BOM> [Delta Features] <EOM> [Mutational Effects]

Round 2 Dialog for Muta-
tion Engineering

[Round 1 Dialog] [User Prompt for Mutation Engineering]
[Mutational Effects] <BOM> [Soft Embeds] <EOM>

hmask = fPLM(xmask),

h̃ =
[
h̃1, h̃2, · · · , h̃L

]
= hmask + h∆,

P
(
x
(wt)
i

∣∣xmask, h∆

)
= fLM

(
h̃i

)
,

Lt2p =
1

|M|
∑
i∈M

H
[
xi, P

(
x
(wt)
i

∣∣xmask, h∆

)]
,

(A10)

where xmask is the masked sequence of the wild-type xwt, andM denotes the masked positions.

Overall objective. The overall objective for pre-training is calculated by:

L1 = E(xwt,t)∼D1
(Lp2t + Lt2p), (A11)

where E denotes expectation, and D1 denotes our pre-training dataset.

A.4 Fine-tuning Objectives

We employ a chain-of-thought (CoT) strategy to reason over protein functions and mutational effects
in a two-round dialog. Given the wild type sequence xwt, the mutant sequence xmt, the description
of protein functions tfunc and the description of mutation effects t∆, we calculate the following
objectives:

First-round dialog. We first prompt the LLM to generate function descriptions tfunc =[
t(func)
1 , t(func)

2 , · · · , t(func)
M

]
based on the wild-type protein. We perform conditional auto-regressive

language modeling as follows:

Lfunc =
1

M

M∑
i=1

H
[
t(func)
i , P

(
t(func)
i

∣∣t(func)
<i , zwt

)]
. (A12)

The predictions of protein functions yfunc =
[
y(func)
1 , y(func)

2 , · · · , y(func)
N

]
is derived by:

y(func)
i = argmax

{
P
(
y(func)
i

∣∣y(func)
<i , zwt

)}
(A13)

Second-round dialog for mutation explanation. We prompt the LLM to generate textual descrip-
tions for mutation effects t∆ =

[
t
(∆)
1 , t

(∆)
2 , · · · , t(∆)

T

]
based on the function information in the
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first-round dialog and protein delta features z∆. The objective is calculated as follows:

Lexp =
1

T

T∑
i=1

H
[
t
(∆)
i , P

(
t
(∆)
i

∣∣t(∆)
<i , yfunc, z∆, zwt

)]
. (A14)

Second-round dialog for mutation engineering. We apply the same soft tokens s as in pre-training
to the input prompt to calculate the delta features based on the first-round dialog and descriptions of
mutational effects:

ẑ = [ẑ1, ẑ2, · · · , ẑN︸ ︷︷ ︸
prompt

, ẑN+1, · · · , ẑN+K︸ ︷︷ ︸
z∆

] = gtransformers([tprompt; s]), (A15)

where tprompt is the input embeddings of the prompt involving the first-round dialog and the mutational
effects.

Then, reconstructing hmt = hwt +h∆ with the delta decoder, we calculate the weighted cross-entropy
loss for the mutation position and the mutated amino acid with the prediction heads:

Leng = − 1

L

L∑
i=1

{
1

{
x
(mt)
i = x

(wt)
i

}
log(1− fpos(h

mt
i ))

+ λ · 1
{
x
(mt)
i ̸= x

(wt)
i

}
log fpos(h

mt
i )

−L · 1
{
x
(mt)
i ̸= x

(wt)
i

}
H
[
x(mt)
i , fLM(h(mt)

i )
]}

,

(A16)

where 1{·} is the boolean indicator function, and λ is a hyper-parameter controlling label weight. In
our experiments, we set λ = 50.

The overall objective is calculated as follows:

L2 = E(xwt,xmt,tfunc,t∆)∼D2
(Lfunc + Lexp + Leng), (A17)

where D2 is our fine-tuning dataset.

The prompt templates for fine-tuning are displayed in Tab. A2.

B Training data

B.1 Pre-training Data

Our pre-training data involves 1.1M protein-text pairs collected from the UniProtKB/SwissProt [69]
database. We download 467.8K proteins with the Publications entry and retrieve 257.2K PubMed
[70] abstracts based on the reference information.

B.2 Fine-tuning and Testing Data: MutaDescribe

To create a natural language annotated dataset for protein mutations, we first collect 164K samples
from the Phenotypes & Variants entry of UniProtKB/SwissProt. After deduplication and removing
sites without valid text annotations, we obtain 107K mutants for 21K proteins as our raw data,
comprising 33K natural variants and 74K mutagenesis sequences.

Unfortunately, the collected raw data is not suitable for protein mutation modeling, mainly owing to
the following problems: (1) As shown in Tab. A3, the expert-revised annotations within UniProtKB
contain an average of 9.4 words, containing limited information. (2) Through analyzing the polarity of
the mutational effects, we observe that the number of malignant and benign mutations are imbalanced
(∼ 9:1), which may mislead model predictions.

To address these issues, (1) we perform data enrichment by collecting the abstracts of the biological
literature in which the mutation is mentioned. We retrieve 50K publications based on the reference
information of the mutation available in UniProtKB and prompt GPT-3.5-turbo to extract relevant
information from the abstracts. The prompt template is visualized in Tab. A5. After ChatGPT
enrichment, the textual annotations are expanded with an average of 28.3 words. (2) We generate
64.5K additional reverse samples. Specifically, for each malignant and benign mutation, we exchange
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Table A3: An Overview of MutaDescribe.
# All # Raw # Enriched # Reversed

171,147 106,645 57,147 64,502

Avg. words (UniProtKB) Avg. words (Enriched)

9.44 28.33

# Malignant # Benign # Not significant # Unknown

72,198 8,000 26,447 4

the wild-type and mutant and prompt GPT-3.5-turbo to flip the polarity of the textual descriptions for
mutational effects. We empirically find that the quality of mutation descriptions using GPT-3.5-turbo
and GPT-4 is similar, and therefore we opt for GPT-3.5-turbo to save API costs.

We implement two splitting strategies for our dataset. For structural split, we first partition our
dataset into training, validation, and test sets. Then, for each wild-type sequence in the test set,
we calculate the maximum sequence homology with the wild-type sequences in the training set
by MMseqs2 [71]. Based on the homology, we divide the test set into three subsets. The Easy
subset comprises 460 mutants with homology between 0.95 and 1, the Medium subset comprises
384 mutants with homology between 0.5 and 0.95, and the Hard subset comprises 404 mutants with
homology between 0 and 0.5. For temporal split, we extract the publication date of the literature
reporting each mutation. Mutations studied before 2022 are used as training and validation sets, while
those studied in 2022 and 2023 comprise the test set. The train/valid/test set comprises 156K, 8K,
and 1.6K samples, respectively. The detailed statistics of temporal split are shown in Tab. A4.

We present a closer look at our MutaDescribe dataset in Fig. A1, displaying the length of protein se-
quences, the number of words in textual annotations, the number of mutation samples per protein, the
distribution of the originating species, the distribution of the cellular localization and the distribution
of the mutated amino acid. We show in our illustrations that MutaDescribe is a large-scale, diverse,
and detailed annotated dataset for studying protein mutations.

C Experiment Settings

C.1 Baselines for Mutation Explanation

For mutation explanation, we implement the following baselines:

Galactica-6.7B [74]. This baseline is a unified large-language model pre-trained on scientific papers
and protein knowledge bases. We prompt the model to investigate if it could explain mutational
effects in a zero-shot manner.

ProLLaMA [45]. This baseline is developed on LLaMA2-7B by further pre-training the model on
protein sequences from UniRef50 [22]. Similarly, we perform zero-shot mutation explanation by
prompting.

Mol-Instructions [67]. We implement the protein-oriented model of Mol-Instructions that is
instruction-tuned from LLaMA2-7B [31]. We perform zero-shot prompting that provides the model
with the name and amino acid sequence of the protein sequence and task definitions.

GPT-4 [33] with in-context learning. We adopt the 0613 version of GPT-4, the most advanced LLM
in natural language processing. In addition to the protein name, wild-type sequence, and mutation

Table A4: Statistics of the temporal split. We report the number of proteins and samples, the average protein
sequence length, and the average number of words for mutational effects.

Split # Proteins # Samples Avg. sequence length Avg. words

Train 20,295 156,300 518.00 28.48
Valid 5,436 8,000 514.30 28.73
Test 310 1,611 536.67 26.37
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Figure A1: Detailed statistics of the MutaDescribe dataset. We show (a) the length of protein sequences, (b)
the number of words in textual annotations, (c) the number of mutation samples per protein, (d) the distribution
of the originating species, (e) the distribution of the cellular localization and (f) the distribution of the mutated
amino acid.

Table A5: Prompt template for data enrichment. We prompt GPT-3.5-turbo to extract relevant information
from the abstracts of the biological literature in which the mutation is mentioned.

[System prompt]You will be provided with a document and some relevant mutation sites (for
example, site A21D indicates a mutation from A to D at position 21). First, determine whether
these sites are mentioned in the document. If so, extract the text from the document that describes
the functional changes caused by these sites. Otherwise, you must extract any functional changes
mentioned in the document. For each site, please try to extract the corresponding protein name or
gene name. You must be accurate and clear. Return a series of JSON documents, with each JSON
formatted as follows:
{"Mutation Site": <provided mutation site>,
"Mentioned": <whether this site is mentioned in the document>
"protein_name": <protein name corresponding to the site>,
"gene_name": <gene name corresponding to the site>,
"Functional_changes": <functional information>}

[User prompt]
document: <document>
sites: <list of mutation sites>
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Table A6: Prompt templates for each baseline for mutation explanation. {original_aa} and
{mutated_aa} denote the amino acid before and after the mutation respectively. {fitness_change} is
the subtraction of the PLM-calculated evolutionary plausibility scores between the mutant and wild-type.

Baseline Prompt

Galactica-6.7B protein {protein_name}: [START_AMINO] {protein_sequence}
[END_AMINO] has a mutation {original_aa} to {mutated_aa} at
position {position}. Question: What are the functional changes of the
protein after this mutation?
Answer:

ProLLaMA Seq=<{protein_sequence}> has a mutation {original_aa} to
{mutated_aa} at position {position}. Question: What are the func-
tional changes of the protein after this mutation?
Answer:

Mol-Instructions Please evaluate protein {protein_name} with the given mutation, and
provide an explanation of any activity or reaction the mutation may
cause:
<protein> “‘{protein_sequence}“‘
<mutation> {original_aa} to {mutated_aa} at position
{position}

GPT-4-0613 (few-shot) [System prompt] You are an expert in bioinformatics. You will be
provided with a protein and its mutation information. Please predict the
changes in the protein’s function after this mutation. Your response
should only focus on the effect of the change without additional words.

[User prompt] Example 1:
protein name: Glutathione S-transferase P
protein sequence: MPPYTVVYFPVRGRCAALRM...
mutation: D to A at position 99
(Additional samples ...)

protein name: {protein_name}
protein sequence: {protein_sequence}
mutation: {original_aa} to {mutated_aa} at position {position}
function change:

GPT-4 + ESM-2 &
GPT-4 + OntoProtein

[System prompt] You are an expert in bioinformatics. You will be
provided with a protein and its fitness score after a single mutation.
Please predict the changes in the protein’s function based on the fitness
score. Your response should only focus on the effect of the change
without additional words.

[User prompt] Example 1:
protein name: Glutathione S-transferase P
protein sequence: MPPYTVVYFPVRGRCAALRM...
mutation: D to A at position 99
fitness change: -0.7684
(Additional samples ...)

protein name: {protein_name}
protein sequence: {protein_sequence}
mutation: {original_aa} to {mutated_aa} at position {position}
fitness change: {fitness_change}
function change:
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information, we provide few-shot demonstrations to facilitate in-context learning. For the 1-shot and
5-shot baseline, we randomly sample 1 and 5 samples from the training set of MutaDescribe. For
the kNN-based 5-shot baseline, we follow [80] to search for relevant samples based on the sequence
homology calculated by MMseqs2 [71]. We select 5 samples from the training set with the highest
homology as few-shot demonstrations for each test sample.

GPT-4 + ESM-2 [19]. ESM-2 is a popular protein language model pre-trained on evolutionary-scale
databases. Given a mutation, we mask the mutated position and utilize ESM-2 (650M) to predict the
logits for the mutated amino acid. Following [26], we adopt the subtraction between the mutant and
wild-type logits as the evolutionary plausibility scores. We follow the 5-shot kNN setting on GPT-4
and provide the scores as additional information.

GPT-4 + OntoProtein [75]. OntoProtein is a text-augmented PLM that aligns protein sequences
with gene ontology definitions. We follow the GPT-4 + ESM-2 baseline to predict mutational effects
based on evolutionary plausibility and kNN few-shot demonstrations.

AugmentedESM [27]. In the original paper, the model is designed to solve fitness regression tasks by
linearly combining the adaptive fitness score calculated following [26] and the amino acid sequence.
We slightly adapt the model to perform mutation explanation by feeding the fitness score and the
raw protein sequence into BioMedGPT-LM. We fine-tune the LLM with the casual auto-regressive
language modeling objective on mutation effects. The hyperparameters for fine-tuning are the same
as MutaPLM.

Finetuned ESM-2. Similar to MiniGPT-4 [89], we translate each residue representation of ESM-2
(650M) [19] into LLM input embeddings using a linear projection layer. We fine-tune BioMedGPT-
LM with the casual auto-regressive language modeling objective on mutation effects based on the
translated features of the wild-type and mutant. The hyperparameters for fine-tuning are also the
same as MutaPLM.

The prompts for our baselines are displayed in Tab. A6.

C.2 Baselines for Mutation Engineering

For mutation engineering, we implement the following baselines:

Random. As the name suggests, the proposed mutations are randomly sampled from every possible
single-site substitution with equal probability.

GPT-4 [33] with in-context learning. We provide few-shot examples for GPT-4 to suggest protein
mutations, and the sampling strategy is the same as in mutation explanation. We evaluate accuracy
and top-50 recall with a two-round dialog. In the first-round dialog, we directly prompt GPT-4 to
provide 50 mutations on arbitrary positions. In the second-round dialog, we provide the model with
the ground-truth position and ask

ESM-2 [19]. We feed the whole sequence into the PLM to calculate the output logits for each amino
acid. We rank mutations by the subtraction of the mutant and wild-type logits.

OntoProtein [75]. This baseline follows the same implementation as ESM2-650M.

ProtST (ESM-2) [42]. ProtST trains a series of PLMs by contrastive learning [90] between protein
sequences and biomedical texts. Hence, we implement a cross-modal retrieval strategy, using the
cosine similarity between the mutated sequence and the textual description of mutational effects to
score mutations. We opt not to report top-50 recall scores due to: (1) unaffordable computational
costs, as each possible mutation requires an individual forward pass, and (2) poor performance, as the
baseline merely outperforms random guesses.

Fine-tuned BioMedGPT. We provide the LLM with the wild-type sequence and textual instructions
of desired mutational effects, and fine-tune the model to propose mutations. To evaluate accuracy,
we additionally provide the mutated position and prompt the model to generate the mutated amino
acid. To evaluate top-50 recall, we prompt the model to generate a single mutation, since our dataset
only comprises one ground-truth mutation. The evaluations are performed within two independent
sessions, and we combine the causal auto-regressive language modeling objective of both sessions
during fine-tuning.
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Table A7: Prompt template for few-shot GPT-4 and fine-tuned BioMedGPT in mutation engineering.
Evaluating Rec@50
on GPT-4

[System prompt] You are an expert in bioinformatics. You will be
provided with a protein and the functional change resulting from a
single-site mutation. Please predict the 50 most probable mutation sites
where Each entry starts with the amino acid before the mutation, followed
by the position of the mutation, and ends with the amino acid after the
mutation. For example, D65A indicates that the amino acid at position 65
changes from D to A. Your response should only contain the 50 sites in a
list format separated by commas, without additional words.

[User prompt] Example 1:
protein name: Glutathione S-transferase P
sequence: MPPYTVVYFPVRGRCAALRMLLA...
functional change: Reduces affinity for glutathione.
50 probable mutation sites: D99A, T110K, D58V, L53I, V165P, ...
(Additional samples ...)

protein name: {protein name}
sequence: {protein sequence}
functional change: {mutational effects}
50 probable mutation sites:

Evaluating Accuracy
on GPT-4

{First round dialog}
[User prompt] The correct mutated position is {mutation position}.
What is the most probable amino acid after the mutation? The valid amino
acids include: [G, V, S, E, C, K, Q, N, M, H, I, Y, L, D, W, A, T, R, P, F].
Your answer should only contain one of the uppercase amino acids without
other words.

Evaluating Rec@50
on fine-tuned
BioMedGPT

You are an expert assistant in biology and protein engineering. Now you are
given a protein sequence and an instruction describing a mutation effect.

Protein: {protein sequence}
Instruction: {mutational effects}
User: Please design a mutation that best fits the instruction.
Assistant:

Evaluating Accu-
racy on fine-tuned
BioMedGPT

You are an expert assistant in biology and protein engineering. Now you are
given a protein sequence and an instruction describing a mutation effect.

Protein: {protein sequence}
Instruction: {mutational effects}
User: Given mutation at position {mutation position}, please choose
an amino acid that best fits the instruction.
Assistant:

Fine-tuned ESM-2. We leverage BioMedBERT [83] to encode the textual instructions. We employ a
cross-attention layer that takes the ESM-2 representations of the wild-type sequence as queries and
the BioMedBERT representations as keys and values. The outputs are fed into a position prediction
head and a language modeling head to predict mutations, which is the same as MutaPLM.

The prompt templates for GPT-4 and fine-tuned BioMedGPT are presented in Tab. A7.

C.3 Human-AI Collaborative Evaluation for Mutation Explanation

Due to the complexity of biomedical texts, we develop a human-AI collaborative evaluation pipeline
to comment on the accuracy and helpfulness of predicted mutational effects. Specifically, we query
GPT-4 to compare model predictions with ground-truth annotations as in Tab. A8 and categorize
them as follows.
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Table A8: Prompt template for GPT-4 evaluation. We leverage GPT-4 to categorize predictions into Accurate,
Relevant, Opposite, and Irrelevant, based on the relevance between the predicted functional alterations and
ground-truth explanations.

[System prompt] You are an expert in biology and protein sciences. You want to figure out the
effects of protein mutations by alterations of protein functions. Now we provide you with two
descriptions of protein mutational effects in a JSON format, where the "label" denotes the ground
truth description of the mutational effects, and the "prediction" denotes the prediction of a model.
You should be precise and faithful in evaluating if the predicted mutation effects are semantically
related to the ground truth. You should answer with one of the following categories:

(1) Accurate. The prediction and the label describe the same functions that are altered,
and the extent of functional changes is mostly the same (For example, "strongly decrease" and
"abolish").
(2) Relevant. The prediction and the label describe the same functions that are altered, and the
extent of functional changes are in the same direction (For example, "strongly increase" and
"slightly increase").
(3) Opposite. The prediction and the label describe the same functions that are altered, but the
functional changes are opposite (For example, "increase" and "decrease").
(4) Irrelevant. The prediction and the label describe different alterations of functions.
Note that you should be careful about the altered functions before analyzing the extent. Answer
with one word only from "Accurate", "Relevant", "Opposite" and "Irrelevant" to summarize your
evaluation.

[User prompt]{"label": {ground_truth}, "prediction": {model_output}}

• Accurate. The predicted alterations in protein functions and estimations of extent are mostly
the same as the ground truth.

• Relevant. The prediction identifies the protein function that is altered by the mutation. While it
accurately predicts the attenuation or the degradation, the estimation of the extent is not correct.

• Opposite. The prediction identifies the protein function that is altered by the mutation. However,
it mistakenly predicts attenuation as degradation or vice versa.

• Irrelevant. The prediction and the ground truth are about completely different functional
alterations.

Then, we recruit a postgraduate from a top university who majors in biology to further assess the
results. Specifically, we collect samples that are marked as Accurate, Relevant, and Opposite by GPT-
4, and include Irrelevant samples for strong baselines (5-shot GPT-4 models and fine-tuned models)
and MutaPLM. We present the mutation explanations, ground-truth results, GPT-4 evaluation, and
categorization protocol, and ask the expert to rectify the evaluation result if necessary. In total, 12.0%
of the GPT-4 evaluations are modified, and the confusion matrix is displayed in Fig. A2. We observe
that GPT-4 evaluation is consistent with human experts in most cases, showcasing its reliability as a
proxy of expert evaluators in saving evaluation costs. However, it occasionally misclassifies Accurate
predictions into Relevant, and Relevant or Opposite predictions into Irrelevant, which we attribute to
the fact that GPT-4 tends to favor more fluent answers instead of more informative ones. We leave
more realistic and labor-saving evaluation strategies for future exploration.

C.4 Multi-round Optimization

We incorporate the following datasets from [86] for multi-round fitness optimization:

• Adeno-associated Viruses (AAV) [91]. The dataset involves a 28-amino acid segment of the
caspid protein VP1 from Adeno-associated virus. The optimization objective is to improve its
capability as a gene delivery vector.

• Aliphatic Amide Hydrolase (AMIE) [92]. The dataset aims to improve the enzymic activity
of Aliphatic amidase from Pseudomonas aeruginosa in catalyzing the hydrolysis of short-chain
aliphatic amides.
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Figure A2: Confusion matrix between GPT-4 and manual evaluation.

Table A9: Prompts for navigating mutation engineering.
Dataset Prompt

AAV Increased viability for packaging of a DNA payload for gene therapy.
AMIE Increase in activity.
avGFP Leads to enhanced fluorescence at 37 degrees Celsius.
E4B Enhances cleavage by caspase-6 and granzyme B.
LGK Increased enzyme activity.
UBE2I Increased growth rescue rate at high temperature in a yeast strain.

• Green Fluorescent Proteins (avGFP) [93]. The dataset aims to enhance the fluorescent
intensity of the Green Fluorescent Protein from Aequorea victoria. The protein is widely
adopted as a biosensor for detecting gene expressions and protein locations.

• Ubiquitination Factor Ube4b (E4B) [94]. The dataset aims to improve the enzymic activity
of Ubiquitin conjugation factor E4B in Homo sapiens, which plays a role in proteasomal
degradation by interacting with other proteins.

• Levoglucosan Kinase (LGK) [95]. The dataset focuses on Levoglucosan kinase in Lipomyces
starkeyi. The optimization objective is to enhance its catalytic activity in canonical kinase
phosphotransfer reaction.

• SUMO E2 conjugase (UBE2I) [96]. The dataset studies SUMO-conjugating enzyme UBC9 in
Homo sapiens which is relevant to several human diseases. The optimization objective is to
improve the growth rescue rate at high temperatures in a yeast strain.

We manually write prompts in Tab. A9 to navigate the optimization process by a beam search process.
Specifically, we initialize the candidate set with the wild-type sequence. Then, for each round of
optimization, we feed each candidate sequence and the textual instruction into the decoding workflow
of MutaPLM. Then we sample K mutations, the probability of which is proportional to the logits
of the position head and the logits of the LM head. The optimization process is further detailed
in Algorithm 1. The baselines are implemented by the EvoProtGrad [87] package. We perform
experiments for 20 times, each comprising 10 optimization rounds.

D Additional Experiment Results

D.1 Experiment Results on Temporal Split

The experimental results for mutation explanation and engineering are shown in Tab. A10 and Tab.
A11 respectively. We observe that: (1) MutaPLM achieves promising performance on the temporal
split and outperforms strong baselines, showcasing its robustness in handling novel mutations. (2)
For mutation explanation, the experiment results are similar to those on the Hard set of the structural
split, and we observe similar over-fitting issues as in structural split that more training steps lead
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Algorithm 1 Multi-round Optimization with Beam Search

Require: Wild-type Sequence xwt, Instruction t, Number of Rounds N , Number of Candidates K
C ← {xwt}
for Round = 1, 2, · · · , N do

for x ∈ C do
h← fPLM(x)
h← h+Decoder(h, T ) ▷ Add mutational features
Scorepos,Scoreaa ← fpos(h), fLM(h) ▷ Calculate the logits two prediction heads
Score(x, i, j)← Scorepos

i + Scoreaa
i,j ,∀i ̸= j ▷ The score mutating i-th amino acid to j

end for
P (x, i, j)← GlobalSoftMax[Score(x, i, j)] ▷ Probality distribution of sampling mutations
C ← Mutate(x, i, j), (x, i, j) ∼ SampleK(P ) ▷ Sampling without replacement

end for
return C

Table A10: Performance evaluation for mutation explanation on temporal split.
Model BLEU-2 BLEU-4 METEOR ROUGE-1 ROUGE-2 ROUGE-L

ProLLaMA [45] 0.69 0.21 3.33 0.83 0.04 0.80
Galactica-6.7B [74] 3.50 1.31 5.61 7.44 0.85 6.17
Mol-Instructions [67] 0.58 0.08 4.90 5.41 0.13 4.55

GPT-4-0613 (5-shot, kNN) [33] 9.30 4.25 15.08 13.92 2.29 11.84

AugmentedESM [27] 7.00 3.12 11.29 12.03 2.84 10.12
Fine-tuned ESM-2 [19] 6.90 3.83 13.86 14.21 4.63 12.62

MutaPLM 10.83 6.15 17.84 18.99 6.92 16.51

to improved validation loss but performance drops on the test set. This further underscores the
significance of improving the generalization capability of mutation explanation models to assist
real-world applications. (3) For mutation engineering, the results show little difference with those
on the structural split. As discussed in Sec. 4.3, the PLM may have witnessed the protein sequence
during pre-training, which mitigates the overfitting problem.

D.2 Low-N Fitness Regression

While MutaPLM is not specifically designed for numeric tasks, we investigate if the learned Delta
features could benefit fitness regression. We perform experiments on two protein fitness benchmarks,
namely Spike-ACE2 [97] and avGFP [93]. Spike-ACE2 is a deep mutational scanning dataset that
aims to predict the binding strengths between SARS-Cov-2 variants and its receptor ACE2, which
is critical for identifying potentially dangerous strains of the virus. The avGFP benchmark aims to
predict the fluorescence intensity of GFP variants, which is beneficial for developing biomarkers.

Table A11: Performance evaluation for mutation engineering on temporal split.
Model Accuracy (%) Recall@50 (%)

Random 4.40 0.81
ProtST (ESM-2) [42] 5.11 -
GPT-4-0613 (5-shot, kNN) [33] 12.13 6.28

ESM-2 [19] 34.76 24.02
OntoProtein [75] 37.74 28.49

Fine-tuned BioMedGPT [62] 34.57 4.09
Fine-tuned ESM-2 [19, 83] 55.78 44.04

MutaPLM 58.50 46.05
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Figure A3: More case studies at mutation explanation. We report the outputs of MutaPLM and GPT-4 (5-shot,
kNN).
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Table A12: Performance evaluation on protein fitness regression benchmarks. We perform experiments 5
times with different random seeds and report the Spearman correlation coefficient. The best and second-best
results are marked in bold and underlined.

Model Spike-ACE2 avGFP

Ridge Regression 0.335±0.052 0.298±0.071
ESM-2 [19] 0.331±0.041 0.554±0.013
Augmented ESM [27] 0.363±0.021 0.497±0.096
Augmented EVmutation [48] 0.354±0.044 0.512±0.034
ConFit [28] 0.412±0.033 0.564±0.035
Tranception_L [99] 0.488±0.040 0.594±0.019

MutaPLM 0.481±0.028 0.596±0.032

Following prior works [98, 28], we adopt the low-N setting with 192 randomly sampled training
samples and 48 validation samples. We calculate the adaptive fitness by our PLM following [26] and
concatenate it with the delta features z∆. The result is fed into a trainable 2-layer MLP to predict the
fitness scores, and the remaining parameters are kept frozen. We also implement baselines including
Ridge Regression, ESM-2 [19], AugmentedESM [27], Augmented EVmutation [48], ConFit [28],
and Tranception_L [99]. All the models are trained for 50 epochs with a batch size of 16 and a
learning rate of 0.001 using the MSE loss. We sample different low-N datasets with 5 random seeds
and report the results in Tab. A12.

We observe that MutaPLM significantly outperforms baseline models that adopt ESM-2 as the
PLM, indicating that the delta features have captured mutational knowledge from natural language
supervision that benefits fitness regression tasks. While MutaPLM achieves comparable results with
Tranception_L on both benchmarks, it is worth noting that the model adopts a different network
architecture specifically designed for fitness regression. Therefore, we speculate that adopting a
mutation-oriented PLM instead of ESM-2 may further improve the performance. While fitness
regression is not the main focus of our work, we expect future endeavors that jointly harvest discrete
textual descriptions and continuous fitness scores.

D.3 Additional Case Studies

We present more case studies of mutation explanation in Fig. A3.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: The claims are validated by our experiments in Section 4.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We discuss our limitations in Section 5.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [NA]
Justification: The paper does not include theoretical results.
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Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental Result Reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: We provide the dataset construction process in Section 3.3 and implementation
details in Section 4.1.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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Answer: [Yes]
Justification: We provide our data and code at https://github.com/PharMolix/
MutaPLM.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: We present implementation details in Section 4.1.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [No]
Justification: While we report error bars for protein fitness optimization, the majority of
experiments do not include error bars because it would be too computationally expensive.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
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• It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

• It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: The information is provided in Section 4.1.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: N/A.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader Impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: We discuss broader impacts in Section 5.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
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• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [Yes]
Justification: We clarify safeguards in Section 5.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: The original papers of assets are cited.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
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13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [Yes]
Justification: The assets and documentation are at https://github.com/PharMolix/
MutaPLM.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [Yes]
Justification: The instructions to human participants are displayed in Appendix C.3.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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