
V-PETL Bench: A Unified Visual Parameter-Efficient
Transfer Learning Benchmark

Yi Xin1⇤, Siqi Luo2,1⇤, Xuyang Liu3⇤, Yuntao Du4⇤, Haodi Zhou1, Xinyu Cheng1,
Christina Lee5,6, Junlong Du7, Haozhe Wang8, Mingcai Chen1, Ting Liu9, Guimin Hu10,

Zhongwei Wan11, Rongchao Zhang12, Aoxue Li13, Mingyang Yi14, Xiaohong Liu2†

1State Key Laboratory for Novel Software Technology, Nanjing University,
2Shanghai Jiao Tong University, 3Sichuan University, 4BIGAI, 5MIT, 6Cerebras,

7Tencent, 8Hong Kong University of Science and Technology, 9NUDT, 10University of Copenhagen,
11Ohio State University, 12Peking University, 13Huawei Noah’s Ark Lab, 14Renmin University of China

Project Page: https://v-petl-bench.github.io/

Abstract

Parameter-efficient transfer learning (PETL) methods show promise in adapting a
pre-trained model to various downstream tasks while training only a few parame-
ters. In the computer vision (CV) domain, numerous PETL algorithms have been
proposed, but their direct employment or comparison remains inconvenient. To
address this challenge, we construct a Unified Visual PETL Benchmark (V-PETL
Bench) for the CV domain by selecting 30 diverse, challenging, and compre-
hensive datasets from image recognition, video action recognition, and dense
prediction tasks. On these datasets, we systematically evaluate 25 dominant PETL
algorithms and open-source a modular and extensible codebase for fair evaluation
of these algorithms. V-PETL Bench runs on NVIDIA A800 GPUs and requires
approximately 310 GPU days. We release all the benchmark, making it more effi-
cient and friendly to researchers. Additionally, V-PETL Bench will be continuously
updated for new PETL algorithms and CV tasks.

1 Introduction

Large scale vision transformers (ViT) have achieved remarkable success in various computer vision
(CV) tasks such as image classification [1, 2, 3, 4], segmentation [5, 6, 7] and object detection [8, 9].
However, training these ViT models directly requires massive computational resources to achieve
superior performance, which is often unavailable to many academics and institutions. To alleviate
this dilemma, the “Pre-train & Finetuning” paradigm is proposed. Specifically, teams with sufficient
computational resources utilize enormous datasets [10, 11, 12, 13, 14] to train superior ViT models
and release the pre-trained weights. Researchers with limited computational resources can then
transfer the knowledge from these pre-trained ViT models to downstream tasks through a fine-tuning
stage. However, the standard Full fine-tuning, though effective, still requires substantial computational
and memory resources. This becomes particularly costly for models with billions or even trillions of
parameters. Additionally, for each task, maintaining the task-specific weights of the model brings a
storage burden, as the number of tasks increases.
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Table 1: The comparison between V-PETL Bench and other related benchmarks.

Benchmark # PETL algorithms Tasks # Datasets Models Total GPU Hours

ZhiJian [18] 5 Image Classification 18 ViT -

V-PETL Bench 25
Image Recognition 24 ViT 7458 GPU Hours

(310 GPU Days)Video Action Recognition 3 ViT, Swin
Dense Prediction 3 Swin

To mitigate the above challenges, researchers have proposed parameter-efficient transfer learning
(PETL), which seeks to achieve a better trade-off between the number of trainable parameters and
performance on downstream tasks. While numerous PETL algorithms for the CV domain have
been proposed , their direct employment or comparison is not common. The reasons for this can be
summarized as follows. First, the hyperparameters of some algorithms (e,g., learning rate, weight
decay, etc.) are not open source [15, 16, 17, 18], causing subsequent researchers to spend a lot
of time searching for optimal parameters. Second, the performance of baselines is often seriously
underestimated in some works, making comparisons unfair. Third, existing benchmarks are mostly
constrained to plain image recognition tasks, as summarized in Table 1, preventing consistent and
diverse evaluation across tasks such as video action recognition and dense prediction.

To address the aforementioned issues and facilitate PETL research in the CV domain, we propose
V-PETL Bench: a Unified Visual Parameter-Efficient Transfer Learning Benchmark. V-
PETL Bench offers a diverse and challenging benchmark across 24 image recognition datasets, 3
video action recognition datasets, and 3 dense prediction datasets. Moreover, the V-PETL Bench
provides comprehensive evaluations of 25 PETL algorithms by searching for hyperparameters on
various pre-trained vision transformers. Since the PETL field lacks a unified evaluation metric that
comprehensively considers trainable parameters and performance, we propose the Performance-
Parameter Trade-off (PPT) metric to compare different algorithms using a single metric. Additionally,
V-PETL Bench offers t-SNE and attention map visualizations for better analysis of PETL algorithms.

V-PETL Bench is a very heavy-duty and resource-consuming work. For the entire V-PETL Bench,
we spend about 310 GPU days on NVIDIA A800 GPUs, as illustrated in Table 1. We open-source
the codebase to ensure a unified and consistent evaluation of PETL algorithms. By evaluating 25
standard PETL algorithms on 30 datasets, we obtain several interesting findings: (1) Existing PETL
algorithms can achieve performance competitive with Full fine-tuning in most downstream tasks
and perform significantly better than Full fine-tuning when the amount of data is insufficient, which
indicates that it could be an effective alternative to Full fine-tuning; (2) Existing PETL algorithms
demonstrate significant efficiency, where most algorithms only updated less than 1% of the number of
the pre-trained model. Additionally, they lead to improved computation and memory efficiency while
achieving better performance; (3) Directly applying PETL algorithms from the NLP domain to vision
tasks without any specific design results in performance degradation compared to well-designed
PETL algorithms tailored for the CV domain; (4) The data and task similarity between pre-training
and downstream tasks plays a key role, with higher similarity leading to better results. Furthermore,
no single PETL algorithm consistently outperforms all others across all tasks.

To sum up, we list our contributions as follows:

• We propose V-PETL Bench: a unified and challenging parameter-efficient transfer learning
benchmark for CV tasks for fair and consistent evaluations. To our knowledge, we are the
first to build PETL benchmark that cover image classification, video action recognition, and
dense prediction tasks.

• We implement 2 traditional and 25 PETL algorithms and open-source a modular codebase
along with configuration files, enabling easy reproduction of the reported results in the
V-PETL Bench. Our codebase is extensible and open for continued development.

• We propose the Performance-Parameter Trade-off (PPT) metric to compare PETL algorithms,
which comprehensively considers two factors: task performance and trainable parameters.
Additionally, we provide an in-depth analysis of these representative algorithms.

2



Table 2: Details of the datasets in the V-PETL Bench.

Application Dataset Description #Classes Train size Val size Test size

Image Recognition

Fine-Grained Visual Classification (FGVC) [20]

CUB-200-2011 [21] Fine-grained bird species recognition 200 5,394 600 5,794
NABirds [22] Fine-grained bird species recognition 555 21,536 2,393 24,633
Oxford Flowers [23] Fine-grained flower species recognition 102 1,020 1,020 6,149
Stanford Dogs [24] Fine-grained dog species recognition 120 10,800 1,200 8,580
Stanford Cars [25] Fine-grained car classification 196 7,329 815 8,041

Visual Task Adaptation Benchmark (VTAB) [26]

CIFAR-100 [27]

Natural-tasks that contain natural
images captured using standard
cameras.

100

800 200

10,000
Caltech101 [28] 102 6,084
DTD [29] 47 1,880
Flowers102 [23] 102 6,149
Pets [30] 37 3,669
SVHN [31] 10 26,032
Sun397 [32] 397 21,750

Patch Camelyon [33] Specialized-tasks that contain
images captured via specialized
equipment, such as medical and
satellite imagery.
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800 200

32,768
EuroSAT [34] 10 5,400
Resisc45 [35] 45 6,300
Retinopathy [36] 5 42,670

Clevr/count [37]

Structured-tasks that require
geometric comprehension like object
counting.

8

800 200

15,000
Clevr/distance [37] 6 15,000
DMLab [38] 6 22,735
KITTI/distance [39] 4 711
dSprites/location [40] 16 73,728
dSprites/orientation [40] 16 73,728
SmallNORB/azimuth [41] 18 12,150
SmallNORB/elevation [41] 9 12,150

Video Recognition
Kinetics-400 [42]

Video action recognition
400 240,436 N/A 19,787

SSv2 [43] 174 168,913 24,777 27,157
HMDB51 [44] 51 3,500 1,500 1,849

Dense Prediction
MS COCO [45] Instance segmentation 80 118,000 N/A 5,000
ADE20K [46] Semantic segmentation 150 20,000 N/A 2,000
PASCAL VOC [47] Object Detection 21 16,000 N/A 5,000

2 Related Work

As shown in Table 1, the related benchmark is ZhiJian [18]. ZhiJian includes 5 PETL algorithms
but only supports image recognition tasks and the ViT model. Additionally, ZhiJian is incomplete
constructed and has not been updated for a long time. Therefore, it is of significance to build a
visual PETL community that can continuously update PETL algorithms to boost the development of
PETL. This need is also highlighted in the survey [19]. Furthermore, Zhijian did not open source
some specific details, such as parameter configurations, training logs, and model checkpoints, etc.
In contrast, V-PETL Bench will open-source all these details and regularly update with new PETL
algorithms and CV tasks, making it more efficient and friendly for researchers.

In the following sections, we will first introduce the downstream CV tasks and datasets, pre-trained
models, PETL algorithms, and benchmark results of V-PETL Bench. Then, we will present the
codebase structure of V-PETL Bench in Section 7.

3 Tasks and Datasets

The V-PETL Bench includes 30 datasets from image recognition, video action recognition, and dense
prediction tasks, as detailed in Table 2. Each dataset in the V-PETL Bench is under a permissive
license that allows usage for research purposes. These datasets are chosen based on the following
considerations: (1) The dataset represents a mainstream CV task and is broadly relevant to PETL;
(2) The dataset is diverse and covers multiple domains; (3) The training process is environmentally
sustainable and affordable for research labs in both industry and academia.

3.1 Image Recognition Task

Image recognition is the primary application for PETL. The V-PETL Bench supports 24 image
recognition datasets, as shown in Table 2, which can be categorized into two types as detailed below:
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Table 3: Specifications of different pre-trained backbones are supported in the V-PETL Bench.

Pre-trained
Backbone

Pre-trained
Objective

Pre-trained
Dataset

# params
(M)

Feature dim
d

ViT-B [1]
Supervised ImageNet-21k

85 M 768
ViT-L [1] 307 M 1024 checkpoint
ViT-H [1] 630 M 1280 checkpoint

Swin-B [2] Supervised ImageNet-22k 88 M 1024 checkpoint
Swin-L [2] 198 M 1536 checkpoint

ViT-B(VideoMAE) [50] Self-Supervised Kinetics-400 85 M 768 checkpoint
Video Swin-B [51] Supervised 88 M 1024 checkpoint

Fine-Grained Visual Classification (FGVC). FGVC comprises 5 fine-grained visual classification
datasets including CUB-200-2011 [21], NABirds [22], Oxford Flowers [23], Stanford Dogs [24] and
Stanford Cars [25]. If a dataset only has train and test sets publicly available, we randomly split
90% of the training set for training and 10% for validation. This validation set is then used to select
hyperparameters. More details of these datasets in the V-PETL Bench can be found in Appendix B.1.

Visual Task Adaptation Benchmark (VTAB). VTAB comprises 19 diverse visual classification
datasets, which are organized into three domains: 1) Natural - datasets that contain natural images
captured with standard cameras. The group includes Caltech101 [28], CIFAR100 [27], DTD [29],
Flowers102 [23], Pets [30], Sun397 [32], and SVHN [31]; 2) Specialized - datasets that contain
images captured via specialized equipment, such as medical, and satellite images. The group includes
Resisc45 [35], EuroSAT [34], Patch Camelyon [33] and Diabetic Retinopathy [36] ; 3) Structured -
datasets that require geometric comprehension such as object counting. The group includes Clevr [37],
dSprites [40], SmallNORB [41], DMLab [38] and KITTI [39]. Each dataset in VTAB contains 1000
training examples. Following [20], we use the provided 800-200 split of the train set to determine
hyperparameters. More information on these datasets is available in Appendix B.1.

3.2 Video Action Recognition Task

The detailed dataset statistics for the video action recognition datasets in the V-PETL Bench are
described in Table 2. We include the widely used Kinetics-400 [42], SSv2 [43], and HMDB51 [44]
datasets from the previous protocol [48, 49], which are still challenging for PETL. For the SSv2 and
HMDB51 datasets, we select the optimal parameters on the validation set and test the results on the
test set. More details about these datasets in the V-PETL Bench can be found in Appendix B.2.

3.3 Dense Prediction Task

The V-PETL Bench includes three dense prediction datasets as shown in Table 2. MS COCO [45] is
a representative instance segmentation dataset with 118k training images and 5k validation images.
ADE20K [46] is the most widely used semantic segmentation dataset, containing 20k training and
2k validation images. Pascal VOC [47] has 16k/5k training/validation images and is used for object
detection tasks. More details of these datasets in the V-PETL Bench can be found in Appendix B.3.

4 Pre-trained Models

In the V-PETL Bench, we experiment with the Vision Transformer (ViT) [1] and the Swin Transformer
(Swin [2]), as shown in Table 3. These architectures are commonly used in the visual PETL domain.
Following most research on visual PETL, we employ different levels of ViT for image recognition
tasks, all pre-trained on ImageNet-21k [11]. For video action recognition tasks, we utilize the
Video Swin Transformer and ViT (from VideoMAE) as the backbone. To examine the impact of
pre-training data and downstream task correlation on transfer, we use pre-trained weights on Kinetics-
400 [42] (a video dataset). For object detection, we use Swin-Large combined with RetinaNet [52]
for training. Additionally, we employ Swin-Large with UperNet [53] for semantic segmentation tasks
and Swin-Base with Cascade Mask RCNN [54] for instance segmentation tasks. For the convenience
of researchers, we provide download links for all pre-trained weights.
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5 PETL Algorithms Implemented in the V-PETL Bench

We implement 2 traditional and 25 PETL algorithms in the codebase for V-PETL Bench, including
Full fine-tuning, Frozen, Adapter [15], AdaptFormer [48], SCT [55], BitFit [17], U-Tuning [56],
VPT-shallow [20], VPT-Deep [20], Prefix Tuning [57], SSF [58], LoRA [16], NOAH [59], FacT [60],
RepAdapter [61], Hydra [62], LST [63], DTL [64], HST [65], GPS [66], LAST [67], SNF [68],
BAPAT [57], LN TUNE [69], LoRand [70], E3VA [71], and Mona [72]. The algorithms are chosen
based on the following considerations: 1) According to the visual PETL survey [19], existing PETL
algorithms are categorized into 7 basic categories (details in Appendix C). For each category, we select
2 to 5 algorithms for implementation; 2) The algorithm is commonly used in the visual PETL domain
and has considerable influence; 3) The algorithm corresponds with the comprehensive timeline of
visual PETL development. More details of these algorithms can be found in Appendix D.

6 Benchmark Results

6.1 Evaluation Metrics

In the field of PETL, evaluation of algorithms typically focuses on two main aspects: the number of
trainable parameters and the performance on tasks. Algorithms that achieve better performance with
fewer trainable parameters generally attract more attention. However, there are currently no strict
metrics to measure the PETL algorithms. To address this, we propose the Performance-Parameter
Trade-off (PPT) metric. Specifically, the PPT metric for a PETL algorithm M takes into account its
performance Mt on a downstream task t, its trainable parameters PM , and a normalization constant
C. The formula for PPTM is expressed as follows:

PPTM = Mt ⇥ exp(�log10(
PM

C
+ 1)). (1)

The normalization constant C is set at 107 as the parameters for most PETL algorithms typically fall
within this range. For a detailed explanation of the design of the PPT metric, please see Appendix E.

6.2 Image Recognition Results

Benchmark Results on FGVC. The benchmark results for 13 PETL algorithms on FGVC [20]
are presented in Table 4. From these results, we observe the following insights: (1) Compared
to Full fine-tuning, PETL algorithms demonstrate competitive performance. Notably, about half
of these algorithms even outperform the Full fine-tuning paradigm. (2) Most PETL algorithms
surpass Full fine-tuning regarding PPT, highlighting their parameter efficiency. (3) Among the PETL
algorithms, GPS [66] and SNF [68] stand out in the PPT metric. GPS achieves high performance
through gradient-guided parameter selection during fine-tuning. SNF minimizes conditional mutual
information to adaptively adjust the network’s shortcut connections, effectively preserving important
feature information. (4) Some PETL algorithms, such as Adapter [72], LoRA [16], and BitFit [17],
originate from the natural language processing (NLP) domain. Directly applying them to vision tasks
without any specific design modifications results in performance degradation.

Benchmark Results on VTAB. Table 5 presents the benchmark results for 18 PETL algorithms
on VTAB [20]. Our analysis yields the following insights: (1) Almost all PETL algorithms out-
perform Full fine-tuning, demonstrating that fully fine-tuning the pre-trained ViT on limited data
risks overfitting and catastrophic forgetting. In contrast, fine-tuning only a few parameters helps
maintain the generalizability of the pre-trained models when adapting to downstream tasks. (2)
DTL achieves the best PPT by leveraging low-rank linear mappings and feature reuse to reduce
tunable parameters while enhancing performance. (3) Most PETL algorithms perform well on the
Natural and Specialized groups because their classification objectives align with the training goals
of the pre-trained dataset, ImageNet [73]. However, the Structured group tasks, such as object
counting and depth prediction, differ significantly from ImageNet’s training objectives, resulting in a
substantial domain gap. PETL algorithms with less extensive parameter tuning, such as BitFit [17]
and VPT-Shallow [20], fail to adequately bridge this gap, leading to sub-optimal performance.
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Table 4: Benchmark results on FGVC. We evaluate 13 PETL algorithms on five datasets with ViT-
B/16 models pre-trained on ImageNet-21K. We highlight the best and the second results.

Method
Dataset CUB-200

-2011 NABirds Oxford
Flowers

Stanford
Dogs

Stanford
Cars Mean # Params.

(M) PPT

Traditional Finetuning
Full fine-tuning 87.3 82.7 98.8 89.4 84.5 88.54 85.8M -
Linear probing 85.3 75.9 97.9 86.2 51.3 79.32 0 M 0.79

PETL Algorithms
Adapter[15] 87.1 84.3 98.5 89.8 68.6 85.66 0.41M 0.84

AdaptFormer[48] 88.4 84.7 99.2 88.2 81.9 88.48 0.46M 0.87
Prefix Tuning [74] 87.5 82.0 98.0 74.2 90.2 86.38 0.36M 0.85

U-Tuning [56] 89.2 85.4 99.2 84.1 92.1 90.00 0.36M 0.89
BitFit [17] 87.7 85.2 99.2 86.5 81.5 88.02 0.10M 0.88

VPT-Shallow [20] 86.7 78.8 98.4 90.7 68.7 84.66 0.25M 0.84
VPT-Deep [20] 88.5 84.2 99.0 90.2 83.6 89.10 0.85M 0.86

SSF [58] 89.5 85.7 99.6 89.6 89.2 90.72 0.39M 0.89
LoRA [16] 85.6 79.8 98.9 87.6 72.0 84.78 0.77M 0.82
GPS [59] 89.9 86.7 99.7 92.2 90.4 91.78 0.66M 0.90
HST [65] 89.2 85.8 99.6 89.5 88.2 90.46 0.78M 0.88

LAST [67] 88.5 84.4 99.7 86.0 88.9 89.50 0.66M 0.87
SNF [68] 90.2 87.4 99.7 89.5 86.9 90.74 0.25M 0.90

Table 5: Benchmark results on VTAB. We evaluate 18 PETL algorithms on 19 datasets with ViT-B/16
models pre-trained on ImageNet-21K. We highlight the best and the second results.
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Traditional Finetuning
Full fine-tuning [20] 68.9 87.7 64.3 97.2 86.9 87.4 38.8 79.7 95.7 84.2 73.9 56.3 58.6 41.7 65.5 57.5 46.7 25.7 29.1 65.57 85.8M -
Linear probing [20] 63.4 85.0 63.2 97.0 86.3 36.6 51.0 78.5 87.5 68.6 74.0 34.3 30.6 33.2 55.4 12.5 20.0 9.6 19.2 52.94 0M 0.53

PETL Algorithms
Adapter [15] 69.2 90.1 68.0 98.8 89.9 82.8 54.3 84.0 94.9 81.9 75.5 80.9 65.3 48.6 78.3 74.8 48.5 29.9 41.6 71.44 0.16M 0.71

VPT-Shallow [20] 77.7 86.9 62.6 97.5 87.3 74.5 51.2 78.2 92.0 75.6 72.9 50.5 58.6 40.5 67.1 68.7 36.1 20.2 34.1 64.85 0.08M 0.65
VPT-Deep [20] 78.8 90.8 65.8 98.0 88.3 78.1 49.6 81.8 96.1 83.4 68.4 68.5 60.0 46.5 72.8 73.6 47.9 32.9 37.8 69.43 0.56M 0.68

BitFit [17] 72.8 87.0 59.2 97.5 85.3 59.9 51.4 78.7 91.6 72.9 69.8 61.5 55.6 32.4 55.9 66.6 40.0 15.7 25.1 62.05 0.10M 0.61
LoRA [16] 67.1 91.4 69.4 98.8 90.4 85.3 54.0 84.9 95.3 84.4 73.6 82.9 69.2 49.8 78.5 75.7 47.1 31.0 44.0 72.25 0.29M 0.71

AdaptFormer [48] 70.8 91.2 70.5 99.1 90.9 86.6 54.8 83.0 95.8 84.4 76.3 81.9 64.3 49.3 80.3 76.3 45.7 31.7 41.1 72.32 0.16M 0.72
SSF [58] 69.0 92.6 75.1 99.4 91.8 90.2 52.9 87.4 95.9 87.4 75.5 75.9 62.3 53.3 80.6 77.3 54.9 29.5 37.9 73.10 0.21M 0.72

NOAH [59] 69.6 92.7 70.2 99.1 90.4 86.1 53.7 84.4 95.4 83.9 75.8 82.8 68.9 49.9 81.7 81.8 48.3 32.8 44.2 73.25 0.43M 0.72
SCT[55] 75.3 91.6 72.2 99.2 91.1 91.2 55.0 85.0 96.1 86.3 76.2 81.5 65.1 51.7 80.2 75.4 46.2 33.2 45.7 73.59 0.11M 0.73
FacT [60] 70.6 90.6 70.8 99.1 90.7 88.6 54.1 84.8 96.2 84.5 75.7 82.6 68.2 49.8 80.7 80.8 47.4 33.2 43.0 73.23 0.07M 0.73

RepAdapter [61] 72.4 91.6 71.0 99.2 91.4 90.7 55.1 85.3 95.9 84.6 75.9 82.3 68.0 50.4 79.9 80.4 49.2 38.6 41.0 73.84 0.22M 0.72
Hydra [62] 72.7 91.3 72.0 99.2 91.4 90.7 55.5 85.8 96.0 86.1 75.9 83.2 68.2 50.9 82.3 80.3 50.8 34.5 43.1 74.21 0.28M 0.73
LST [63] 59.5 91.5 69.0 99.2 89.9 79.5 54.6 86.9 95.9 85.3 74.1 81.8 61.8 52.2 81.0 71.7 49.5 33.7 45.2 71.70 2.38M 0.65
DTL [64] 69.6 94.8 71.3 99.3 91.3 83.3 56.2 87.1 96.2 86.1 75.0 82.8 64.2 48.8 81.9 93.9 53.9 34.2 47.1 74.58 0.04M 0.75
HST [65] 76.7 94.1 74.8 99.6 91.1 91.2 52.3 87.1 96.3 88.6 76.5 85.4 63.7 52.9 81.7 87.2 56.8 35.8 52.1 75.99 0.78M 0.74
GPS [66] 81.1 94.2 75.8 99.4 91.7 91.6 52.4 87.9 96.2 86.5 76.5 79.9 62.6 55.0 82.4 84.0 55.4 29.7 46.1 75.18 0.22M 0.74

LAST [67] 66.7 93.4 76.1 99.6 89.8 86.1 54.3 86.2 96.3 86.8 75.4 81.9 65.9 49.4 82.6 87.9 46.7 32.3 51.5 74.15 0.66M 0.72
SNF [68] 84.0 94.0 72.7 99.3 91.3 90.3 54.9 87.2 97.3 85.5 74.5 82.3 63.8 49.8 82.5 75.8 49.2 31.4 42.1 74.10 0.25M 0.73

6.3 Video Action Recognition Results

Table 6 displays comparative results for 5 PETL algorithms using ViT-B from VideoMAE and Video
Swin Transformer on the SSv2 [43] and HMDB51 [44] datasets. The findings are as follows: (1) On
SSv2 [43], which has sufficient data, the ViT-B from VideoMAE outperforms others, illustrating the
robustness of features learned through self-supervised learning and the enhanced generalization of
the pre-trained model. Conversely, on HMDB51 [44], which has limited data and fewer categories,
the supervised pre-trained Video Swin Transformer shows superior performance, indicating better
adaptability and generalization in smaller datasets. (2) On SSv2 [43], only a few PETL algorithms
outperform Full fine-tuning, suggesting that with sufficient data, full fine-tuning is less likely to
overfit. Conversely, on HMDB51 [44], most PETL algorithms outperform full fine-tuning, indicating
that full fine-tuning may lead to overfitting when data is scarce, whereas PETL algorithms offer
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Table 6: Benchmark results on SSv2 and HMDB51. We evaluate 5 PETL algorithms with ViT-B
from VideoMAE and Video Swin Transformer. The results are Top-1 accuracy.

Method Model Pre-training # Params.
SSv2 HMDB51

Top1 PPT Top1 PPT

Vision Transformer (from VideoMAE)

Full fine-tuning ViT-B Kinetics 400 85.97 M 53.97 % - 46.41 % -
Frozen ViT-B Kinetics 400 0 M 29.23 % 0.29 49.84 % 0.50

AdaptFormer [48] ViT-B Kinetics 400 1.19 M 59.02 % 0.56 55.69 % 0.53
BAPAT [57] ViT-B Kinetics 400 2.06 M 57.78 % 0.53 57.18 % 0.53

Video Swin Transformer

Full fine-tuning Video Swin-B Kinetics 400 87.64 M 50.99 % - 68.07 % -
Frozen Video Swin-B Kinetics 400 0 M 24.13 % 0.24 71.28 % 0.71

LoRA [16] Video Swin-B Kinetics 400 0.75 M 38.34 % 0.37 62.12 % 0.60
BitFit [17] Video Swin-B Kinetics 400 1.09 M 45.94 % 0.44 68.26 % 0.65

AdaptFormer [48] Video Swin-B Kinetics 400 1.56 M 40.80 % 0.38 68.66 % 0.64
Prefix-tuning [74] Video Swin-B Kinetics 400 6.37 M 39.46 % 0.32 56.13 % 0.45

BAPAT [57] Video Swin-B Kinetics 400 6.18 M 53.36 % 0.43 71.93 % 0.58

Table 7: Benchmark results on COCO. We evaluate 9 PETL algorithms with Swin-B models pre-
trained on ImageNet-22K.

Swin-B # Params. Memory
COCO

(Cascade Mask R-CNN)
APBox PPT APMask PPT

Traditional Finetuning
Full fine-tuning 86.75 M 17061 MB 51.9 % - 45.0 % -

Frozen 0.00 M 7137 MB 43.5 % 0.44 38.6 % 0.39

PETL Algorithms
Bitfit [17] 0.20 M 13657 MB 47.9 % 0.47 41.9 % 0.42

LN TUNE [69] 0.06 M 12831 MB 48.0 % 0.48 41.4 % 0.41
Partial-1 [75] 12.60 M 7301 MB 49.2 % 0.35 42.8 % 0.30
Adapter [15] 3.11 M 12557 MB 50.9 % 0.45 43.8 % 0.39
LoRA [16] 3.03 M 11975 MB 51.2 % 0.46 44.3 % 0.40

AdaptFormer [48] 3.11 M 13186 MB 51.4 % 0.46 44.5 % 0.40
LoRand [70] 1.20 M 13598 MB 51.0 % 0.49 43.9 % 0.42
E3VA [71] 1.20 M 7639 MB 50.5 % 0.48 43.8 % 0.42
Mona [72] 4.16 M 13996 MB 53.4 % 0.46 46.0 % 0.40

a more effective solution. (3) BAPAT [57] achieves outstanding performance by integrating the
strengths of Adapter [15], Prefix [74], and Prompt [20].

6.4 Dense Prediction Results

Benchmark Results on COCO. Table 7 presents the results on COCO [45] using 9 PETL algorithms
with pre-trained Swin-B. Our analysis reveals that: (1) Full fine-tuning generally outperforms most
PETL algorithms. This is because COCO [45] is a substantial dataset with sufficient data, reducing the
likelihood of overfitting when fully fine-tuning. However, most PETL algorithms show competitive
performance, demonstrating their parameter efficiency. (2) Mona [72] stands out as the only PETL
algorithm to surpass full fine-tuning, showcasing the effectiveness of its multi-cognitive visual filters.

Benchmark Results on PASCAL VOC and ADE20K. Table 8 presents the results on Pascal VOC
[47] and ADE20K [46] using 9 PETL algorithms. We can observe that: (1) On Pascal VOC, which
features fewer data and object categories, all PETL algorithms surpass Full fine-tuning. This is
because adjusting a small number of parameters in the pre-trained model helps prevent overfitting and
catastrophic forgetting, thereby preserving the model’s generalization ability. Conversely, on ADE20K
[46], which has more data and object categories, Full fine-tuning outperforms all PETL algorithms.
With more available data, fully fine-tuning the pre-trained model allows for better adaptation to the
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Table 8: Benchmark results on PASCAL VOC and ADE20K. We evaluate 9 PETL algorithms with
Swin-L models pre-trained on ImageNet-22K.

Swin-L # Params. Memory
(VOC)

Pascal VOC
(RetinaNet)

ADE20K
(UPerNet)

APBox PPT mIoU PPT

Traditional Finetuning
Full fine-tuning 198.58 M 15679 MB 83.5 % - 52.10 % -

Frozen 0.00 M 3967 MB 83.6 % 0.84 46.84 % 0.47

PETL Algorithms
Bitfit [17] 0.30 M 10861 MB 85.7 % 0.85 48.37 % 0.48

LN TUNE [69] 0.09 M 10123 MB 85.8 % 0.86 47.98 % 0.48
Partial-1 [75] 28.34 M 3943 MB 85.4 % 0.48 47.44 % 0.27
Adapter [15] 4.66 M 10793 MB 87.1 % 0.74 50.78 % 0.43
LoRA [16] 4.57 M 10127 MB 87.5 % 0.74 50.34 % 0.43

AdaptFormer [48] 4.66 M 11036 MB 87.3 % 0.74 50.83 % 0.43
LoRand [70] 1.31 M 11572 MB 86.8 % 0.82 50.76 % 0.48
E3VA [71] 1.79 M 4819 MB 86.5 % 0.81 49.64 % 0.46
Mona [72] 5.08 M 11958 MB 87.3 % 0.73 51.36 % 0.43

downstream task. Nevertheless, PETL algorithms still achieve competitive outcomes, demonstrating
their parameter efficiency. (2) LN TUNE [69] achieves the highest performance on both Pascal VOC
and ADE20K, indicating that fine-tuning only the LayerNorm parameters is effective and efficient.

6.5 Discussion

Figure 1: The GPU memory on COCO and PASCAL VOC.

Computational Cost. Some PETL
works [63, 71] also explore Memory-
Efficient methods, which is closely
related to gradient backpropagation.
As shown in Figure 1, all PETL algo-
rithms save varying amounts of mem-
ory compared to Full fine-tuning,
with Frozen and E3VA performing
particularly well. The Frozen method
achieves this because its backbone
parameters are frozen and do not par-
ticipate in gradient backpropagation.
E3VA designs a parallel branch for the backbone, causing the gradient backpropagation to bypass the
backbone. In the future, we believe there will be more work on parameter and memory efficiency.

Feature Distribution. V-PETL Bench offers t-SNE visualizations that intuitively display the feature
distribution for the downstream task. These visualizations enable us to evaluate the effectiveness
of the PETL algorithms. Figure 2 shows t-SNE visualizations for two specific tasks, SVHN and
Clevr/count, as examples. The visualizations demonstrate that the feature distribution of the data is
closely linked to performance, with higher performance showing more distinct decision boundaries.

Full Finetuning
Acc. = 87.4

Frozen
Acc. = 36.6

BitFit
Acc. = 59.9

VPT-Shallow
Acc. = 74.5

LoRA
Acc. = 85.3

AdaptFormer
Acc. = 86.6

SCT
Acc. = 91.2

SVHN

Clevr
(count)

Acc. = 56.3 Acc. = 34.3 Acc. = 61.5 Acc. = 50.5 Acc. = 82.9 Acc. = 81.9 Acc. = 81.5

Figure 2: Visualization of feature distribution on SVHN and Clevr/count.
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Figure 3: The structure of the V-PETL Bench codebase consists of four layers.

7 Codebase Structure of V-PETL Bench

In this section, we provide an overview of the codebase structure of V-PETL Bench, which which is
organized into four abstract layers, as shown in Figure 3.

Core Layer. In the core layer, we implement the essential functions commonly used for training
PETL algorithms. Additionally, this layer includes the code for datasets, data loaders, and pre-trained
models that are utilized in the V-PETL Bench.

Algorithm Layer. In the algorithm layer, we first implement the base class for PETL algorithms,
which includes initializing the datasets, data loaders, and models from the core layer. Moreover, we
implement the loss functions and algorithm-specific configurations used in PETL algorithms. Based
on these implementations, we currently support 25 PETL algorithms in the V-PETL Bench. More
algorithms are expected to be added through the continued extension of V-PETL Bench.

Extension Layer. The extension layer is dedicated to advancing the core PETL algorithms for visual
analysis. In this layer, we primarily implement attention map and feature distribution visualization,
enabling researchers to directly observe and compare the performance of different PETL algorithms.

API Layer. We encapsulate the core functions and algorithms within the API layer, creating a
user-friendly interface for individuals from diverse backgrounds who are interested in applying
PETL algorithms to new applications. Additionally, we provide configuration files for all supported
algorithms, complete with detailed parameter settings, enabling the reproduction of results.

8 Conclusion

In this paper, we introduce V-PETL Bench, the first comprehensive benchmark for visual parameter-
efficient transfer learning domain. The V-PETL Bench includes 30 CV datasets and implements
25 dominant PETL algorithms. We also propose the PPT metric to compare different algorithms
based on both the number of parameters and the performance. Additionally, we conduct several
insightful analyses of the results. We regard V-PETL Bench as a long-term evolving project and are
dedicated to its continuous development. Our roadmap for the future includes expanding its scope to
the multimodal model and the generative model.
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