
Appendix for PCB-Merging638

A Novelty and Contribution639

Our research aims to unlock the full potential of task vector-based approaches by adjusting coefficients640

at the parameter level through a balancing mechanism that addresses parameter competition across641

different tasks. We re-examine existing model merging methods and highlight the critical role of642

parameter competition awareness. To clearly demonstrate the innovation of our method, we conduct643

a comparative analysis with existing state-of-the-art baseline methods.644

Comparison with TIES-Merging Both the TIES-Merging [86] and our approach address parameter645

competition or interference through self-awareness and cross-awareness. However, there are several646

key differences:647

1. When performing Drop / Trim to reduce redundancy, we consider both intra-competition648

and inter-competition, whereas TIES-Merging primarily considers parameter magnitude.649

2. In terms of cross-awareness, TIES-Merging only considers the direction of parameters650

across different tasks, neglecting parameter weights. Our method more accurately measures651

the similarity of task vectors to assess conflict levels. We conducted ablation experiments to652

demonstrate the effectiveness of inter-balancing, as shown in App. B.1 and Tab. 6.653

3. Our approach modulates the coefficient of each parameter, while TIES-Merging uses a654

uniform scale for all tasks and parameters. Ablation experiments in the Analysis section655

validate the superiority of our method, as shown in Section 6.1 and Tab. 5.656

Comparison with AdaMerging Although AdaMerging [87] has achieved significant performance657

improvements in image classification, it has several drawbacks:658

1. This method requires unsupervised test samples, which is often impractical.659

2. The use of Shannon entropy to train the adaptive weights limits the method to classification660

tasks.661

3. AdaMerging requires unsupervised training with the availability of (unlabeled) test samples,662

which is a different setup than generalizing to an entirely unseen test set.663

In contrast, our proposed PCB-Merging retains the efficiency and lightwight nature as most previous664

merging methods. Additionally, we conducted experiments on image classification tasks to compare665

the two methods, as shown in App. C.2 and Tab. 7.666

Comparison with Fisher Merging and RegMean The same as Fisher Merging [43] and Reg-667

Mean [27], our PCB-Merging method also introduces additional matrices to adjust parameter coeffi-668

cients, but there are two key differences:669

1. Fisher Merging and RegMean consider only self-awareness or cross-awareness, respectively.670

In contrast, our method accounts for various scenarios of parameter competition.671

2. Both Fisher Merging and RegMean require additional gradient-based computations to obtain672

the Fisher Information Matrix or Inner Product Matrix, which demand more GPU resources.673

Our method, however, is based on task vectors, making it easier and lightwight to implement.674

Comparison with DARE Both DARE [90] and PCB-Merging drop and rescale task vectors for675

model merging, but there are significant differences:676

1. DARE randomly drops parameters according to a drop rate p, while we consider parameter677

competition.678

2. DARE rescales the remaining parameters by a uniform factor of 1/(1 − p), whereas we679

compute a specific coefficient for each task and each parameter.680

3. DARE is mainly used in LLM model merging to maintain the original fine-tuned perfor-681

mance. In contrast, we find that dropping parameters can further enhance performance682

beyond the fine-tuned model with a suitable scale and intra-balancing.683
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Algorithm 1 PCB-Merging Procedure.
Input: Fine-tuned models {θi}ni=1, Initializa-

tion θpre, mask ratio r and coefficient λ.
Output: Merged Model θm
▷ Create task vectors.

{τi}ni=1 = {θi}ni=1 − θpre
for i in1, ..., n do

▷ Step 1: Intra-Balancing.

βintra,i = Softmax(N ∗ Norm(τi ⊙ τi))
▷ Step 2: Inter-Balancing.

βinter,i =
∑n

j=1 Softmax(τi ⊙ τj)

▷ Step 3: Drop low-scoring parameters.

βi = βintra,i ⊙ βinter,i

mi = βi ≥ sorted(βi)[(1− r)×D]

β̂i = mi ⊙ βi

end
▷ Step 4: Rescale task vectors.

τm =
∑n

i=1(β̂i ⊙ τi)/
∑n

i=1 β̂i

▷ Obtain merged checkpoint

θm ← θinit + λ ∗ τm
return θm

Comparison with Lorahub Lorahub [23] aims684

to establish a strategic framework for composing685

LoRA modules trained on diverse tasks to achieve686

adaptable performance on new tasks. This frame-687

work utilizes an evolution algorithm (CMA-ES688

[19]) to search for the coefficients of each LoRA689

module, as introduced in Section 3.3. However,690

this search-based approach is time-consuming and691

can only be applied at the task level, leading692

to limited performance. Moreover, LoRA lacks693

self-awareness and considers only competition694

between different tasks.695

Comparison with Task Arithmetic and PEM696

Compositon Both Task Arithmetic [26] and697

PEM Composition [92] methods primarily focus698

on exploring potential applications of task vectors,699

including distribution generalization, unlearning,700

and domain transfer. However, they do not ad-701

dress parameter competition or balance the coef-702

ficients of different tasks or parameters, which703

limits their performance.704

B Additional Analysis705

B.1 Additional Ablation Studies706

We present additional ablation experiments on PCB-MERGING, as shown in Tab. 6. In addition to the707

four main steps discussed in Section 6.1 (Intra-Balancing, Inter-Balancing, Drop, and Rescale), we708

also tested other influencing factors:709

1. Activation functions: We replaced the softmax activation function with common alternatives710

like sigmoid, ReLU, and tanh. The results show minimal performance loss with different711

activation functions, except for ReLU in intra-balancing. This is because these activation712

functions can represent complex nonlinear relationships to balance the values of parameters.713

2. Without regulator N: We removed the regulator N in intra-balancing, which controls intra-714

competition according to the number of models being merged.715

3. Inter-balancing with only sign: We computed inter-balancing using only the sign (−1, 1)716

instead of the actual values, where the sign represents a direction in the D-dimensional717

parameter space relative to initialization. This experiment aims to compare with TIES-718

Merging, which addresses sign conflicts.719

4. Element-wise multiplication vs. Addition: We combined intra-balancing and inter-balancing720

using addition instead of multiplication. This resulted in a performance loss of 4.1% and721

3.9% on the ViT-B/32 and T5-base models, respectively.722

In summary, these ablation experiments demonstrate the functionality and impact of each component723

in our method.
Table 6: More extensive ablation studies on PCB-MERGING

Ablation (→) activation in intra-balancing activation in inter-balancing
Model (↓) sigmoid relu tanh sigmoid relu tanh

without
regulator N

inter-balancing
with only sign

replace multiplication
by adding

PCB
Merging

ViT-B/32 76.1 74.9 76.1 76.2 76.1 76.4 74.7 75.7 72.2 76.3
T5-base 75.3 72.8 75.2 75.3 75.2 75.4 74.1 74.5 71.5 75.4

724

B.2 Additional Hyper-parameters Analysis725

In this section, we present additional experimental results regarding hyper-parameters, observing726

similar phenomena and conclusions as those in Section 6.2. We explored the effects of λ and r on727
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the performance of merging multiple NLP tasks, as discussed in Section 5.1. First, we show the728

performance of various models for different values of λ, keeping r = 0.2. Our method is compared729

to the state-of-the-art baseline, TIES-Merging. As shown in Fig. 7, our approach achieves a higher730

performance ceiling within the optimal range of 0.8 to 1.6. As λ increases, the performance initially731

decreases and then levels off.732

Furthermore, we provide a performance analysis for different values of r with T5-large. We conducted733

a grid search for λ to find its optimal performance for each ratio. Significantly, for r < 0.4, our method734

consistently shows substantial improvements. This highlights the importance of the information735

filtered by our parameter competition balancing approach in the merging process.736
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Figure 7: Performance with various hyperparameters λ and r.

C Additional Results737

C.1 Merging Different Number of Tasks738
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Figure 8: Average normalized performance when
merging a different number of tasks.

We evaluated the performance of the merged739

model on in-domain tasks and analyzed how it740

varies with the number of tasks being merged.741

In Fig. 8, we normalized each task’s accuracy to742

its fine-tuned model’s performance and reported743

the average normalized accuracy for in-domain744

tasks with T5-base model. We compared our745

method against the strongest baseline, TIES-746

Merging [86], and simple averaging [83]. Each747

data point represents the merging of a subset748

of tasks, with the solid line indicating the aver-749

age performance across multiple subsets. We750

observed that as the number of merged tasks751

increases, the performance of all methods de-752

clines, suggesting that more tasks lead to increased parameter competition. Additionally, TIES-753

Merging’s performance drops faster than PCB-Merging, indicating that our PCB-Merging method is754

more effective in balancing parameter competition.755

C.2 Compare with Adamerging756

Table 7: Compare the performance of different
merging methods after applying unsupervised train-
ing with AdaMerging.

Model Coefficient AdaMerge Ada + TIES Ada + PCB

ViT-B/32
Task-wise 71.8 74.9 77.1
Layer-wise 80.1 81.1 81.7

ViT-L/14
Task-wise 85.6 86.8 88.2
Layer-wise 90.8 91.0 91.3

We conducted cross-task merging experiments757

on image classification tasks to compare our758

method with AdaMerging [87]. AdaMerging759

employs unsupervised training to learn merging760

coefficients for each task vector in Task Arith-761

metic using unlabeled test datasets. Addition-762

ally, Layer-wise AdaMerging learns coefficients763

for each layer of each task vector.764

AdaMerging can be further improved by apply-765

ing strategies from TIES-Merging to modify task vectors or using PCB-Matrix to adjust the task766

vectors. As shown in Tab. 7, our method enhances AdaMerging, resulting in performance improve-767

ments of 2.2% and 1.4% on the ViT-B/32 and ViT-L/14 models, respectively.768
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C.3 Compare with TIES-Merging using Evolutionary Strategy769

To validate the effectiveness of the evolutionary strategy (ES) proposed in Section 3.3, we applied ES770

to intelligently search for coefficients of different tasks in other baseline methods. The results are771

shown in Tab. 8. Notably, after applying ES, TIES-Merging showed significant improvement. We772

also compared TIES-Merging with ES against our approach with ES. The results demonstrate the773

effectiveness of PCB-MERGING, particularly with a 2.2% performance gain on the T5-large model.
Table 8: Comparing the performance of different methods with evolutionary strategies (ES) after
cross-task merging.

Task (→) 7 NLP Tasks 11 PEFT Tasks 3 LLM Tasks 8 Vision Tasks

Method (↓) T5-Base T5-Large (IA)3 LLaMa2 ViT-B/32 ViT-L/14
Ties-Merging 73.6 80.3 66.8 34.2 73.6 86.0

PCB-MERGING (ours) 75.4 (+1.8) 82.1 (+1.8) 68.1 (+1.3) 35.1 (+0.9) 76.4 (+2.8) 87.5 (+1.5)
Ties-Merging + ES 74.8 81.0 67.6 34.3 74.9 86.8

PCB-MERGING + ES (ours) 76.7 (+1.9) 83.2 (+2.2) 68.8 (+1.2) 35.3 (+1.0) 77.0 (+2.1) 88.1 (+1.6)
774

C.4 Comprehensive Task-Level Results775

We provide the task level for all the cross-task merging experiments in the main Tab. 2.776

Tab. 9, 10, 11, 12, and 13 provide the task level results T5-Base, T5-Large [56], IA3 [39], ViT-777

B/32, and ViT-L/14 [12] respectively. The task level results of the out-of-domain experiments for778

T5-Base and T5-Large can be found in Tab. 14.779

Table 9: Test set performance when merging T5-base models on seven NLP tasks. Please refer to
Section 5.1 for experimental details.

Task(→) Test Set Performance
Method(↓)

Validation Average
paws qasc quartz story_cloze wiki_qa winogrande wsc

Zeroshot - 53.5 49.9 35.8 53.3 48.1 76.2 50 61.1
Fine-tuned - 83.1 94.6 98.4 81.1 84.9 95.8 64.5 62.5
Multitask - 83.6 94 97.9 82.5 86.7 95 64.1 65.3

Averaging[ICML22] [83] ✗ 65.3 67.4 83.4 60.8 50.3 93.2 51.7 50.0
Task Arithmetic[ICLR23] [26] ✗ 53.5 50.6 22.4 55.0 63.6 79.2 53.9 50.0
Ties-Merging[NeurIPS23] [86] ✗ 69.5 76.1 79.5 68.5 65.6 86.3 56.2 54.2

PCB-MERGING (ours) ✗ 73.8 77.1 91.5 68.5 75.8 88.2 61.1 54.2
Fisher Merging[NeurIPS22] [43] ✓ 68.3 66.7 85.6 63.5 57.1 90.1 54.2 60.8

RegMean[ICLR23] [27] ✓ 72.7 77.2 93.8 63.6 64.6 90.4 58.4 60.7
Task Arithmetic[ICLR23] [26] ✓ 73.0 69.6 91.5 67.3 76.1 91.3 58.3 56.9
Ties-Merging[NeurIPS23] [86] ✓ 73.6 82.2 84.8 66.1 73.5 87.0 60.2 61.1

PCB-MERGING (ours) ✓ 75.4 79.0 93.2 65.8 76.1 89.9 59.8 63.9

Table 10: Test set performance when merging T5-large models on seven NLP tasks. Please refer to
Section 5.1 for experimental details.

Task(→) Test Set Performance
Method(↓)

Validation Average
paws qasc quartz story_cloze wiki_qa winogrande wsc

Zeroshot - 53.1 58.2 54.2 54.1 54.3 70.9 49.2 63.9
Fine-tuned - 88.9 94.5 98.3 88.5 91.4 96.2 74.5 79.2
Multitask - 88.1 94.2 98.5 89.3 92 95.4 73.5 73.6

Averaging[ICML22] [83] ✗ 54.7 57.2 26.4 71.4 54.8 86.6 50.2 36.1
Task Arithmetic[ICLR23] [26] ✗ 73.6 69.7 83.6 58.3 77.4 94.4 59.3 72.2
Ties-Merging[NeurIPS23] [86] ✗ 71.7 71.2 97.1 74.2 74.9 73.3 62.9 48.6

PCB-MERGING (ours) ✗ 77.1 78.1 98 75.4 77.7 89.1 64.6 56.9
Fisher Merging[NeurIPS22] [43] ✓ 68.7 68.4 83 65.5 62.4 94.1 58.2 49.2

RegMean[ICLR23] [27] ✓ 79.8 83.9 97.2 73.2 82.6 94.1 63.2 64.4
Task Arithmetic[ICLR23] [26] ✓ 80.2 77.6 96.6 75.1 85.6 93.8 61.8 70.8
Ties-Merging[NeurIPS23] [86] ✓ 80.3 78.2 97.5 72.8 83.7 94.5 64.5 70.8

PCB-MERGING (ours) ✓ 82.1 82.0 98.4 72.2 85.6 94.0 67.5 75.0
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Table 11: Test set performance when merging (IA)3 models on eleven tasks. Please refer to Section
5.1 for experimental details.

Task(→) Natural Language Inference Sentence Completion Co-reference WSD
Method(↓)

Validation Average
RTE CB ANLI1 ANLI2 ANLI3 COPA Hella. Story. WSC Wino. WiC

Zeroshot - 53.1 58.2 54.2 35.5 34.4 34.4 75.0 39.2 86.5 63.9 51.2 51.9
Fine-Tuned - 71.4 82.7 95.8 70.4 46.5 53.0 85.3 44.4 95.0 65.3 75.1 71.7

Averaging[ICML22] [83] - 57.9 81.2 58.3 43.3 39.1 40.0 80.9 40.1 92.4 52.8 53.8 55.0
Task Arithmetic[ICLR23] [26] ✗ 59.2 76.5 79.2 59.8 47.5 48.2 66.2 31.4 81.5 51.4 57.7 51.6
TIES-Merging[NeurIPS23] [86] ✗ 64.9 81.2 87.5 58.1 46.5 47.4 80.2 42.6 91.1 58.3 60.8 59.9

PCB-MERGING (ours) ✗ 66.1 85.9 83.3 64.2 47.8 45.9 82.4 42.7 91.2 63.9 61.9 57.1
Fisher Merging[NeurIPS22] [43] ✓ 62.2 83.3 83.3 45.9 41.0 42.2 83.1 42.2 94.1 58.3 56.7 54.2

RegMean[ICLR23] [27] ✓ 58 81.2 58.3 43.3 39.2 40.2 80.9 40.1 92.5 53.5 53.8 55
Task Arithmetic[ICLR23] [26] ✓ 63.9 74.1 83.3 60.8 49.4 50.0 87.5 41.5 95.3 49.3 62.8 49.1
TIES-Merging[NeurIPS23] [86] ✓ 66.8 78.6 87.5 66.6 51.3 51.5 81.7 43.2 90.9 57.6 67.0 58.4

PCB-MERGING (ours) ✓ 68.1 80.0 83.3 67.1 51.1 49.6 88.3 42.7 92.8 61.8 67.6 64.7

Table 12: Test set performance when merging ViT-B/32 models on 8 vision tasks. Please refer to
Section 5.1 for experimental details.

Task(→) Test Set Performance
Method(↓)

Validation Average
SUN397 Cars RESISC45 EuroSAT SVHN GTSRB MNIST DTD

Individual - 90.5 75.3 77.7 96.1 99.7 97.5 98.7 99.7 79.4
Multitask - 88.9 74.4 77.9 98.2 98.9 99.5 93.9 72.9 95.8

Averaging[ICML22] [83] ✗ 65.8 65.3 63.4 71.4 71.7 64.2 52.8 87.5 50.1
Task Arithmetic[ICLR23] [26] ✗ 60.4 36.7 41 53.8 64.4 80.6 66 98.1 42.5
Ties-Merging[NeurIPS23] [86] ✗ 72.4 59.8 58.6 70.7 79.7 86.2 72.1 98.3 54.2

PCB-MERGING (ours) ✗ 75.9 65.8 64.4 78.1 81.1 84.9 77.1 98.0 58.4
Fisher Merging[NeurIPS22] [43] ✓ 68.3 68.6 69.2 70.7 66.4 72.9 51.1 87.9 59.9

RegMean[ICLR23] [27] ✓ 71.8 65.3 63.5 75.6 78.6 78.1 67.4 93.7 52
Task Arithmetic[ICLR23] [26] ✓ 70.1 63.8 62.1 72 77.6 74.4 65.1 94 52.2
Ties-Merging[NeurIPS23] [86] ✓ 73.6 64.8 62.9 74.3 78.9 83.1 71.4 97.6 56.2

PCB-MERGING (ours) ✓ 76.3 66.7 65.5 78.5 79.3 86.4 77.1 98.2 59.1

Table 13: Test set performance when merging ViT-L/14 models on 8 vision tasks. Please refer to
Section 5.1 for experimental details.

Task(→) Test Set Performance
Method(↓)

Validation Average
SUN397 Cars RESISC45 EuroSAT SVHN GTSRB MNIST DTD

Fine-tuned - 94.2 82.3 92.4 97.4 100 98.1 99.2 99.7 84.1
Multitask - 93.5 90.6 84.4 99.2 99.1 99.6 96.3 80.8 97.6

Averaging[ICML22] [83] ✗ 79.6 72.1 81.6 82.6 91.9 78.2 70.7 97.1 62.8
Task Arithmetic[ICLR23] [26] ✗ 83.3 72.5 79.2 84.5 90.6 89.2 86.5 99.1 64.3
Ties-Merging[NeurIPS23] [86] ✗ 86 76.5 85 89.3 95.7 90.3 83.3 99 68.8

PCB-MERGING (ours) ✗ 86.9 75.8 86 89.2 96 88 90.9 99.1 70
Fisher Merging[NeurIPS22] [43] ✓ 82.2 69.2 88.6 87.5 93.5 80.6 74.8 93.3 70

RegMean[ICLR23] [27] ✓ 83.7 73.3 81.8 86.1 97 88 84.2 98.5 60.8
Task Arithmetic[ICLR23] [26] ✓ 84.5 74.1 82.1 86.7 93.8 87.9 86.8 98.9 65.6
Ties-Merging[NeurIPS23] [86] ✓ 86 76.5 85 89.4 95.9 90.3 83.3 99 68.8

PCB-MERGING (ours) ✓ 87.5 76.8 86.2 89.4 96.5 88.3 91 98.6 73.6

Additionally, we present the results of merging vision tasks using radar charts for a more intuitive780

comparison of performance across each task, as shown in Fig. 9. The previous baseline methods781

show unstable performance, with poor results in some tasks. In contrast, our method is more robust,782

achieving near-best performance across all tasks.783

We also present task-level results of cross-domain merging experiments, as introduced in Section 5.2.784

Firstly, we fine-tuned five distinct domain-specific models for Emotion Classification and then785

employed different model merging methods to obtain a single model. For models with an encoder-786

only architecture, we used the same shared classification head initialization during merging. We787

tested the performance of the merged model on the original five domains and its generalization on788
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Figure 9: Test set performance when merging ViT-B/32 and ViT-L/14 models on eight image
classification tasks.

Table 14: Out-of-distribution performance across six held-out tasks after merging the checkpoints of
T5-base and T5-large models from seven NLP tasks. Please refer to Section 5.1 for experimental
details.

Task(→) Question Answering WSD Sentence Completion
Method(↓)

model Average
cosmos_qa social_iqa quail wic copa h-swag

Pretrained

T5-base

31.1 21.9 18.8 24.1 65.6 43.8 12.5
Averaging[ICML22] [83] 31.7 21.9 21.9 24.6 68.8 37.5 15.6

Fisher Merging[NeurIPS22] [43] 33.8 15.6 21.9 24.9 65.6 53.1 21.9
Task Arithmetic[ICLR23] [26] 31.9 15.6 31.2 25.7 28.1 68.8 21.9

RegMean[ICLR23] [27] 34.3 23.1 28.1 24.9 48.4 62.5 18.8
TIES-Merging[NeurIPS23] [86] 35.3 21.9 25 25.7 50 65.6 23.8

PCB-MERGING (ours) 37.2 23.6 29.2 26.6 51.9 67.1 24.8
Pretrained

T5-large

27.6 21.9 21.9 24.9 28.1 56.2 12.5
Averaging[ICML22] [83] 30.4 31.2 25 26.3 31.2 59.4 9.4

Fisher Merging[NeurIPS22] [43] 32 34.4 25 26.1 40.6 56.2 9.4
Task Arithmetic[ICLR23] [26] 33.3 21.9 34.4 24.6 40.6 59.4 18.8

RegMean[ICLR23] [27] 36 34.4 28.1 25.3 62.5 50 15.6
TIES-Merging[NeurIPS23] [86] 40.4 31.2 43.8 26.6 59.4 59.4 21.9

PCB-MERGING (ours) 42.5 33.6 45.8 29.6 62.2 59.2 24.6

unseen datasets from five other domains. For more dataset details, please refer to App. D. To ensure789

the reliability of the results, we fine-tuned the models five times with different random seeds and790

reported the average performance for these runs, as shown in Tab. 15.791

Table 15: In domain and Out of domain performance when merging Roberta-base models on 5
emotion datasets. Please refer to Section 5.2 for experimental details.

Dataset(→) In Domain Out of Domain
Method(↓) Average Dialy. Crowd. TEC Tales ISEAR Average Emoint SSEC Elect. Ground. Affec.

Fine-Tuned 51.38 49.3 28.9 56.4 49.2 73.1 -
Averaging[ICML22] [83] 23.2 29.9 16.6 17.0 25.2 27.1 11.6 27.8 5.2 6.5 14.0 4.3

Fisher Merging[NeurIPS22] [43] 26.1 29.8 25.9 19.5 26.2 29.0 16.2 32.7 10.7 12.0 14.8 10.9
RegMean[ICLR23] [27] 34.2 33.1 20.7 34.1 35.0 48.3 21.3 43. 15.4 13.7 20. 0 14.6

TIES-Merging[NeurIPS23] [86] 34.5 32.2 20.6 35.5 35.1 49.3 21.5 43.4 16.1 13.3 19.7 15.0
PCB-MERGING (ours) 35.6 32.1 21.2 37.4 36.0 51.2 22.2 44.2 17.5 13.5 19.7 16.1
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D Dataset details792

This section provides a detailed dataset description.793

Merging NLP Tasks Following TIES-Merging [86], we choose seven datasets for merging NLP794

models: question answering (QASC [29], WikiQA [88], and QuaRTz [75]), paraphrase identification795

(PAWS [93]), sentence completion (Story Cloze [67]), and coreference resolution (Winogrande [62]796

and WSC [34]).797

Merging PEFT Models Following TIES-Merging [86], we use eleven datasets including sentence798

completion (COPA [58], H-SWAG [91], and Story Cloze [67] datasets), natural language inference799

(ANLI [49], CB [42], and RTE [17]), coreference resolution (WSC [34] and Winogrande [62]), and800

word sense disambiguation (WiC [53]).801

Merging Vision Tasks Following Task Arithmetic [26], we study multi-task model merging on802

eight image classification datasets below. Stanford Cars [32] is a car classification dataset consisting803

of 196 classes of cars. DTD [9] is a texture classification dataset comprising 47 classes. EuroSAT [20]804

comprises 10 classes of geo-referenced satellite images. GTSRB [71] includes 43 classes of traffic805

signs. MNIST [33] features grayscale images of handwritten digits across 10 classes. RESISC45 [7]806

encompasses 45 classes of remote sensing image scenes. SUN397 [84] consists of 397 classes of807

scene images. Lastly, SVHN [48] encompasses 10 classes of real-world digital classification images.808

Table 16: Statistics of in domain and out-of-
domain emotion classification datasets.

Train Dev Test

In-domain
DialyDialog 72,085 10,298 20,596
CrowdFlower 27,818 3,974 7,948
TEC 14,735 2,105 4,211
Tales-Emotion 10,339 1,477 2,955
ISEAR 5,366 766 1,534

Out-of-domain
Emoint 7,102
SSEC 4,868
ElectoralTweets 4,056
GroundedEmotions 2,585
AffectiveText 1,250

Merging LLMs809

• CMMLU [35] is a comprehensive Chinese evalu-810

ation benchmark specifically designed to assess811

language models’ knowledge and reasoning abil-812

ities in a Chinese context. It covers 67 topics813

ranging from basic subjects to advanced profes-814

sional levels.815

• GSM8K [10] is a collection of 8.5K high-quality,816

linguistically varied math word problems from817

grade school, crafted by skilled human authors.818

The solutions predominantly require executing819

a series of basic arithmetic operations (+, −, ×,820

÷) to derive the final answer.821

• HumanEval [6] is a dataset for evaluating code gen-822

eration ability, containing 164 manually crafted823

programming problems covering aspects such as824

language understanding, reasoning, algorithms,825

and simple mathematics.826

Out of Domain Generalilzation The average performance is reported over the following tasks and827

datasets: Cosmos QA [24], Social IQA [64], and QuAIL [59] for question answering; WiC [53] for828

word sense disambiguation; and COPA [58], and H-SWAG [91] for sentence completion.829

Cross-Domain Merging In order to investigate the performance of the sentiment classification830

task, following RegMean [27], we selected a diverse and challenging set of datasets. Among them,831

DailyDialogs [38], CrowdFlower, TEC [46], Tales-Emotion [2], and ISEAR [65] is utilized to832

train domain-specific model. For acessing OOD generalization performance, we use Emoint [45],833

SSEC [66], ElectoralTweets [47], GroundedEmotions [40], and AffectiveText [73]. For OOD834

evaluation, we focus exclusively on the fundamental emotions: anger, disgust, fear, joy, sadness, and835

surprise. A detailed overview of the datasets and statistics is provided in Tab. 16.836

Cross-Training Configurations Merging We study four GLUE benchmark text classification837

datasets [79]. (1) MRPC [11]: Sentence pairs labeled for semantic equivalence; (2) RTE [17]:838

Sentence pairs for entailment prediction; (3) CoLA [81]: Sentences labeled for grammaticality; (4)839

SST-2 [70]: Sentences labeled for sentiment.840
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E Baseline details841

This section provides a detailed baseline description. Our experiments encompass seven comparison842

methods:843

• Individual means that each task uses an independent fine-tuned model, which has no844

interference between tasks, but cannot perform multiple tasks simultaneously.845

• Traditional MTL collects the original training data of all tasks together to train a multi-task846

model. It can be used as a reference upper bound for model merging work.847

• Weight Averaging is the simplest method of model merging, which directly averages the848

parameters of multiple models using θm =
∑n

t=1 θt/n, calculating the element-wise mean849

of all individual models. It can be used as a lower bound for model merging. [8, 83].850

• Fisher Merging [43] calculates the Fisher information matrix [15] F̂t =851

Ex∼DtEy∼pθt (y|x)∇θt(log pθt(y|xt))
2 to measure the importance of each parameter when852

merging models for task t, where and model merging is performed according to the guidance853

of this importance.854

• RegMean [27] imposes a constraint when merging models, that is, the L2 distance between855

the merged model’s and the individual models’ activations. It computes a least-squares856

solution as θm = (
∑n

t=1 X
T
t Xt)

−1
∑n

t=1(X
T
t Xtθt), where Xt is the input activation of857

the corresponding layer.858

• Task Arithmetic [26] first defines the concept of “task vectors” and merges these vectors859

into a pre-trained model to execute multi-task learning. The model is produced by scaling860

and adding the task vectors to the initial model as θm = θinit + λ ∗
∑n

t=1 τt.861

• Ties-Merging [86] further solves the task conflict problem in Task Arithmetic [26]. It862

eliminates redundant parameters and resolves symbol conflicts through three steps: Trim,863

Elect Sign, and Disjoint Merge.864

• AdaMerging automatically learns a merging coefficient for each layer of each task vector865

in Task Arithmetic [26].866

• LoraHub [23] employs Low-rank Adaptations to dynamically combine task-specific mod-867

ules for cross-task generalization, and adapts to new tasks by configuring θ′ =
∑K

k=1 wk ·θk.868

• DARE [90] sets the majority of delta parameters to zero and rescale the rest by θ′ =869

θ · (1/(1− p)) where p is the proportion of delta parameters dropped, therefore efficiently870

reduces parameter redundancy.871

F Implementation details872

F.1 Computational Resources and Runtimes873

Our experiments were conducted on Nvidia A6000 GPUs with 48GB of RAM. Depending on the874

dataset size, fine-tuning the T5-Base and T5-Large models for single tasks took between 15 minutes875

and 2 hours, while fine-tuning the multitask checkpoint took around eight hours. The fine-tuned (IA)3876

models were provided by Yadav et al. [86].4. We also used vision models ViT-B/32 and ViT-L/14 as877

provided by Ilharco et al. [26].5.878

Merge experiments were highly efficient, with evaluations for RoBerta-base, T5-Base, T5-Large,879

ViT-B/32, and ViT-L/14 models taking less than 2 minutes. However, two specific experiments880

required more time: (1) Evaluating (IA)3 models took about one hour for 11 datasets due to the881

need to use multiple templates from prompt sources and compute median results across them. (2)882

Validation on LLMs (LLaMa2) was also slow, usually requiring about 40 minutes for evaluating 3883

datasets.884

F.2 Training details885

Cross-Task Merging We trained the T5-base and T5-large models for up to 75,000 steps, using886

an effective training batch size of 1024 and a learning rate of 0.0001. To prevent overfitting, we887

implemented an early stopping mechanism with a patience of 5. Training was conducted in bfloat16 to888

4https://github.com/prateeky2806/ties-merging
5https://github.com/mlfoundations/task_vectors#checkpoints
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conserve GPU memory, with a maximum sequence length of 128 tokens. For the PEFT configuration889

of the (IA)3 approach on the T0-3B model, we adjusted the parameters accordingly. The training890

batch size was set at 16, and the evaluation batch size was 32, while keeping the learning rate at891

0.0001. Given the increased complexity, we extended the early stopping patience to 10. No learning892

rate scheduler or weight decay was used in any of our training processes. For large language models,893

we directly utilized the fine-tuned checkpoints provided by Huggingface6.894

Cross-Domain Merging We performed fine-tuning of the RoBERTa-base model starting with an895

initial learning rate of 1e-5, and for the T5-base model, we used an initial learning rate of 1e-4.896

We applied the AdamW optimizer consistently across all experiments. The learning rate was set897

to gradually increase during the first 6% of training steps and then linearly decreased to zero. The898

models were trained with a batch size of 16 over 30 epochs for the task of emotion classification. We899

assessed model performance at the end of each epoch and, upon completing the training, resumed900

from the best-performing checkpoint.901

Cross-Training Configurations Merging When merging multiple checkpoints of the same task,902

each model is fine-tuned 10 times on each dataset using a random hyperparameter search. The903

learning rate is randomly selected in log space from [10−6, 10−3], the batch size from {8, 16, 32, 64},904

and the number of epochs from {2, 3, 5}. Evaluation occurs once at the end of training without early905

stopping. We use a maximum sequence length of 128 tokens and train the models using the Adam906

optimizer [30], with β1 = 0.9, β2 = 0.999 and ϵ = 10−8. Training includes gradient clipping at 1.0,907

no weight decay, and a learning rate that linearly decays to zero by the end of the process.908

F.3 Hyper-parameter settings909

Given the sensitivity of task vector-based model merging methods to hyperparameters, we present the910

optimal values of λ and r as determined in our experiments, as shown in Tab. 17. For Task Arithmetic,911

we conduct a search over λ ranging from 0.2 to 1.5 with a step size of 0.1. For TIES-Merging and912

PCB-MERGING, we search over mask ratios r in {0.05, 0.1, 0.2}, and λ ranging from 0.8 to 2.5 with913

a step size of 0.1.

Table 17: Optimal λ and mask ratio r for cross-task merging

Task (→) 7 NLP Tasks 11 PEFT Tasks 3 LLM Tasks 8 Vision Tasks

Method (↓) T5-Base T5-Large (IA)3 LLaMa2 ViT-B/32 ViT-L/14
Task Arithmetic[ICLR23] [26] [λ] 0.4 0.5 0.5 0.3 0.3 0.3

Ties-Merging[NeurIPS23] [86] [λ, r] [1.7, 0.1] [2.4, 0.05] [1.7, 0.1] [1.0, 0.1] [1.0, 0.1] [1.1, 0.05]
PCB-MERGING (ours) [λ, r] [1.9, 0.05] [2.2, 0.05] [1.8, 0.1] [0.9, 0.1] [1.2, 0.05] [1.2, 0.05]

914

6https://huggingface.co/
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