
Contents1

A Foundation of Diffusion Models 22

A.1 SDEs/ODEs and Solvers . 23

A.2 Guided Sampling Methods . 24

B Related Works 35

C Details of Experimental Setup 36

C.1 Offline Reinforcement Learning Environments and Datasets 37

C.2 Offline Imitation Learning Environments and Datasets 48

D Additional Experiments 59

D.1 Impact of Model Size in RL Benchmarks . 510

D.2 Impact of Diffusion Backbones and Sampling Steps (Full Results) 611

D.3 Additional Analyses of DMs in IL Benchmarks 712

E Experimental Details 713

E.1 Computing Resources . 714

E.2 Evaluation Metircs . 815

E.3 Algorithm Hyperparameters . 816

F Implemented Diffusion Models 817

F.1 DDPM/DDIM/DPM-Solver/DPM-Solver++ . 818

F.2 EDM . 1019

F.3 Rectified Flow . 1120

G Implemented Algorithms 1121

G.1 Diffusion Planners . 1122

G.2 Diffusion Polices . 1223

G.3 Diffusion Data Synthesizers. 1324

H Limitations, Challenges, and Future Directions 1325

I Potential Social Impact 1426

J License 1427

1

A Foundation of Diffusion Models28

A.1 SDEs/ODEs and Solvers29

Assume a D-dimensional random variable x0 ∼ RD with an unknown distribution q0(x0)
1. Diffu-30

sion Models (DMs) [24, 47] define a forward process {xt}t∈[0,T] with T > 0 by the noise schedule31

{αt, σt}t∈[0,T], such that ∀t ∈ [0, T], xt satisfies32

xt = αtx0 + σtϵ, ϵ ∼ N (0, I), (1)

where αt, σt ∈ R+ are differentiable functions of t and the signal-to-noise-ratio (SNR) α2
t /σ

2
t is33

strictly decreasing w.r.t t. The forward process in Equation (1) can also be described as a stochastic34

differential equation (SDE) for any t ∈ [0, T] [24]:35

dxt = f(t)xtdt+ g(t)dwt, x0 ∼ q0(x0), (2)

where wt ∈ RD is the standard Wiener process, and f(t) = d logαt

dt , g2(t) =
dσ2

t

dt − 2σ2
t
d logαt

dt . The36

SDE forward process in Equation (2) has an equivalent reverse process from time T to 0 [47]:37

dxt = [f(t)xt − g2(t)∇x log qt(xt)]dt+ g(t)dw̄t, xT ∼ qT (xT), (3)

where w̄t is a standard Wiener process in the reverse time. One can sample q0(x0) by directly solving38

the SDE in ??, in which the only unknown term is the score function ∇x log qt(xt). In practice, a39

neural network ϵθ(xt) parameterized by θ can be trained to approximate the scaled score function40

−σt∇x log qt(xt) by minimizing the score matching loss [19, 46, 47]:41

L(θ) :=Et∼Uniform(0,T),xt∼qt(xt)

[
∥ϵθ(xt, t) + σt∇x log qt(xt)∥22

]
(4)

=Et∼Uniform(0,T),x0∼q0(x0),ϵ∼N (0,I)

[
∥ϵθ(xt, t)− ϵ∥22

]
. (5)

Since ϵθ(xt, t) can be considered as a predicted Gaussian noise added to xt, it is usually called42

the noise prediction model. With a well-trained noise prediction model, SDE in ?? can be solved43

using numerical solvers, and DDPM [19] is one such method. However, numerical solvers require44

discretization from T to 0, in which the randomness of the Wiener process limits the step size [25].45

For faster sampling, one can solve the following probability flow ODE, which is proven to have the46

same marginal distribution as that of the SDE for any t ∈ [0, T] [47]:47

dxt

dt
= f(t)xt −

1

2
g2(t)∇x log qt(xt), xT ∼ qT (xT). (6)

DDIM [46] discretizes the ODE to the first order for solving, achieving almost no loss in quality with48

fewer sampling steps. DPM-Solver [34, 35] leverages the semi-linearity of diffusion ODEs in ?? for49

exact solutions, eliminating errors in the linear terms, resulting in a higher sample quality. Some50

works also reformulate the framework. EDM [23] optimizes the design choices from a perspective of51

noise schedule and uses a specially designed score function preconditioning to improve the sample52

quality. Rectified flow [33], on the other hand, designs a straight probability flow ODE from the53

optimal transport (OT) perspective, which can straighten itself through reflow procedure. The straight54

property of Rectified flow allows high-quality generation in very few sampling steps.55

A.2 Guided Sampling Methods56

Guided sampling methods aim to draw samples from q0(x0|y) to generate outputs with the charac-57

teristics of the label y. Depending on whether an additional classifier needs to be trained, guided58

sampling methods are divided into two categories: classifier guidance (CG) [5] and classifier-free59

guidance (CFG) [20].60

Classifier Guidance: For conditional sampling, the score function needs to be changed to61

∇x log qt(xt|y), which can be decomposed with the Bayes Theorem:62

∇x log qt(xt|y) = ∇x log qt(xt) +∇x log qt(y|xt), (7)
1To ensure clarity, we establish the convention that the subscript t denotes the timestep in the diffusion

process, while the superscript t represents the timestep in sequential decision-making problem.

2

where the first term can be approximated by the noise prediction model, and the second term is a63

noising classifier that predicts the label y of the corrupt data xt. In practice, an additional neural64

network Cϕ(xt, t,y) is trained to approximate log qt(y|xt), and its gradient is computed to guide65

sampling process:66

ϵ̄θ(xt, t,y) = ϵθ(xt, t)− wσt∇xCϕ(xt, t,y), (8)

where w stands for the guidance scale. A larger value of w sharpens the classifier, amplifying the67

influence of the label y.68

Classifier-free Guidance: According to Equation (7), the gradient of the classifier ∇x log qt(y|xt)69

can be written to ∇x log qt(xt|y)−∇x log qt(xt). By training a conditional noise prediction model70

ϵθ(xt, t,y), the sampling process can be guided with no additional classifier:71

ϵ̄θ(xt, t,y) = ϵθ(xt, t)− wσt∇x log qt(y|xt) = ϵθ(xt, t) + w(ϵθ(xt, t,y)− ϵθ(xt, t)) (9)

where ϵθ(xt, t) = ϵθ(xt, t,Φ) is approximated by the noise prediction model conditioned on a pre-72

specified label Φ standing for non-conditioning. Although CFG can generate trajectories specific to73

condition y, it may cause the agent to reject higher likelihood trajectories in sequential environments,74

resulting in a performance drop [40]. Therefore, some methods [4, 40, 50] set the guidance weight w75

to 1, i.e., no guidance paradigm.76

B Related Works77

In recent years, DMs have demonstrated promising performance in various domains [51, 45, 32, 24],78

giving rise to several high-quality DM libraries, such as Diffusers [49] and Stable Diffusion [44].79

These open-source libraries have significantly promoted research and applications in related fields.80

However, unfortunately, these libraries are designed for multimedia such as image, audio, and video81

generation, lacking adaptation for decision-making tasks. This is likely because DMs play diverse82

roles in decision-making, with various usage patterns and many unique mechanism incorporations,83

creating a gap in the multimedia generation paradigm. A library specially designed for decision-84

making is currently missing, and most research codebases are inherited from a few pioneering85

studies [21, 50, 4]. While effective, their algorithm-specific mechanisms and tightly coupled system86

architecture make it challenging for customized development.87

CleanDiffuser aims to provide an "easy-to-hack" starter kit for research needs, offering researchers88

more exploration possibilities. We draw from the experience of many open-source decision-making89

libraries. For example, we emulate stable-baselines3 [43] to carefully reproduce results to provide90

practitioners with reliable baselines for method comparison. However, we inject more modular design91

to encourage users to freely design and modify. We also follow CORL [48] in designing clean and92

logically clear pipelines for readability, but, considering the complexity of DMs, abandon the one-file-93

from-scratch approach and opt for a one-file pipeline approach to offer rich examples of how to utilize94

CleanDiffuser building blocks to implement decision-making algorithms. Additionally, we follow95

Ray [30] in providing ample parameter selection interfaces within modules, making it easy for users96

unfamiliar with the internal implementation to customize effortlessly. In summary, CleanDiffuser97

is not only the first open-sourced modularized DM library tailored for decision-making algorithms98

but also a new library that draws on the advanced experiences of many open-source decision-making99

libraries.100

C Details of Experimental Setup101

C.1 Offline Reinforcement Learning Environments and Datasets102

We evaluate 7 diffusion-based RL algorithms implemented with CleanDiffuser on 15 offline RL103

tasks from 3 benchmarks, including locomotion, manipulation, and navigation. These tasks are104

widely recognized and extensively used in offline RL settings [27, 10, 26, 16, 50, 22, 21, 1, 7, 29, 18],105

enjoying significant acceptance within the research community. Visualization of these tasks is106

3

Figure 1: Visualization of Offline Reinforcement Learning Environments.

presented in Figure 1. These tasks come from the D4RL benchmark, in which the datasets are107

licensed under the Creative Commons Attribution 4.0 License (CC BY), and the code is licensed108

under the Apache 2.0 License.109

Gym-MuJoCo [2] consists of three popular offline RL locomotion tasks (HalfCheetah, Hopper,110

Walker2d), which require controlling three Mujoco robots to achieve maximum movement speed111

while minimizing energy consumption under stable conditions. D4RL [9] benchmark provides three112

different quality levels of offline datasets: “medium” containing demonstrations of medium-level113

performance; “medium-replay” containing all recordings in the replay buffer observed during training114

until the policy reaches “medium” performance; and “medium-expert” which combines “medium”115

and “expert” level performance equally.116

Franka Kitchen [11] requires controlling a realistic 9-DoF Franka robot arm to complete several117

household tasks in a kitchen environment. Algorithms are trained on “partial” and “mixed” datasets.118

The “partial” and “mixed” datasets consist of undirected data, where the robot performs subtasks119

that are not necessarily related to the goal configuration. In the “partial” dataset, a subset of the120

dataset is guaranteed to solve the task, meaning an imitation learning agent may learn by selectively121

choosing the right subsets of the data. The “mixed” dataset contains no trajectories that solve the122

task completely, and the RL agent must learn to assemble the relevant sub-trajectories. This dataset123

requires the highest degree of generalization in order to succeed.124

Antmaze [9] requires controlling the 8-DoF “Ant” quadruped robot to complete maze navigation125

tasks. In the offline dataset, the robot only receives a reward upon reaching the goal, and the dataset126

contains many trajectory segments that do not lead to the endpoint, making it a difficult decision127

task with sparse rewards and a long horizon. The success rate of reaching the endpoint is used as the128

evaluation score, and common offline RL algorithms often struggle to achieve good performance.129

C.2 Offline Imitation Learning Environments and Datasets130

Lift Can Square Transport Tool Hang PushT Relay Kitchen

Figure 2: Visualization of Offline Imitation Learning Environments.

We evaluate 2 diffusion-based IL algorithms implemented with CleanDiffuser on 22 imitation learning131

tasks from 4 benchmarks, with both state and image-based observation inputs. Among them, Relay132

Kitchen and Robomimic support both velocity and position control. Each algorithm is trained with133

its best-performing action space. We provide task summary in Table 1, visualization in Figure 2, and134

more details below:135

PushT [8] requires pushing a T-shaped block (gray) to a fixed target (red) with a circular end-effector.136

The task requires exploiting complex and contact-rich object dynamics to push the T block precisely,137

using point contacts. In this paper, we used three variants. “PushT” env has a five-dimensional138

state space, including the proprioception for end-effector location (agent_x, agent_y) and the139

4

xy coordinates and angles of the blocks (block_x, block_y, block_angle). “PushT-keypoints”140

env includes nine 2D key points obtained from the T-block’s ground truth attitude and proprioception141

for end-effector location. “Pusht-image” env observes the end-effector location and the top view of142

the RGB image. This benchmark is licensed under the Apache-2.0 License.143

Relay Kitchen is proposed in Relay Policy Learning [11], commonly used to evaluate imitative144

learning ability. The environment consists of a 9 DoF position-controlled Franka robot interacting145

with a kitchen scene that includes an openable microwave, four turnable oven burners, an oven146

light switch, a freely movable kettle, two hinged cabinets, and a sliding cabinet door. The “relay”147

dataset contains 566 human demonstrations, each completing four tasks in arbitrary order. The148

goal is to execute as many tasks as possible, regardless of order, showcasing both short-horizon and149

long-horizon multimodality. This benchmark is licensed under the Apache-2.0 License.150

Robomimic [37] requires controlling a robot arm to complete complex manipulation tasks from a151

few human demonstrations. Due to the non-Markovian nature of human demonstrations and the152

demonstration quality variance, learning from human datasets is significantly more challenging153

than learning from machine-generated datasets. Proficient-Human (PH) and Multi-Human (MH)154

datasets are collected by humans through remote teleoperation. The PH datasets consist of 200155

demonstrations collected by a single, experienced teleoperator, while the MH datasets consist of156

300 demonstrations collected by 6 teleoperators of varying proficiency, each of which provided 50157

demonstrations. The benchmark consists of 5 PH tasks (Lift, Can, Square, Tool_hang, Transport) and158

4 MH tasks (Lift, Can, Square, Transport). Each task has both state and image-based observation159

inputs. This benchmark is licensed under the MIT License.160

To the best of our knowledge, the datasets and benchmarks we have used do not contain personally161

identifiable information or offensive content in both previous works and our works.162

Table 1: Imitation Learning Task Summary. Obs Shape represents the low dimensional state space dimension;
Image Shape represents the observation resolution of multi-view images (Camera views x W x H). PH: proficient-
human demonstration, MH: multi-human demonstration, Steps: max episode steps.

Task
Low Dim Tasks Image Tasks

Action Dim PH Demonstration MH Demonstration Max Steps
Obs Shape Obs Shape Image Shape

PushT 5 N/A N/A 2 200 N/A 300
PushT-Keypoint 20 N/A N/A 2 200 N/A 300
PushT-Image N/A 2 1x96x96 2 200 N/A 300
Relay Kitchen 60 N/A N/A 9 656 N/A 280
Lift 19 9 2x84x84 7 200 300 400
Can 23 9 2x84x84 7 200 300 400
Square 23 9 2x84x84 7 200 300 500
Transport 59 18 4x84x84 7 200 300 700
Tool_hang 53 9 2x240x240 7 200 N/A 700

D Additional Experiments163

D.1 Impact of Model Size in RL Benchmarks164

Table 2: Impact of Model Size in RL Benchmarks. Performance of DD and IDQL with varying model sizes.
Results correspond to the mean and standard error over 150 episode seeds.

Environment DD IDQL
Model Size 4M 15M 60M 1.6M 6M 25M

HalfCheetah-m 45.3± 0.3 44.5± 0.1 47.1± 0.1 51.5± 0.1 51.5± 0.1 51.7± 0.1
Kitchen-m 56.5± 5.8 80.5± 4.1 27.7± 2.1 66.5± 4.1 69.2± 1.0 67.5± 1.8
Antmaze

8.0± 4.3 26.0± 5.9 22.7± 6.6 48.7± 4.7 52.0± 5.7 54.0± 4.3(mp for DD, lp for IDQL)

There is a significant disparity in network model sizes used by diffusion-based decision-making165

algorithms. For instance, the official implementation of DD utilizes around 60M parameters [1], while166

Diffuser uses 4M [21], and IDQL [16] has approximately only 1.6M parameters. These works have167

5

limited discussion on the impact of model size. Therefore, we aim to explore the approximate scale168

of parameter sizes required for diffusion-based decision-making algorithms to function effectively.169

In this experiment, we test DD and IDQL at three different model sizes, starting from the default170

parameter size used in the main experiments and gradually increasing the parameter size by four times.171

The performance of the algorithms is evaluated on three tasks including locomotion, manipulation,172

and navigation. Results are presented in Table 2. We find that, apart from the performance of DD173

on Kitchen-m and Antmaze-mp, increasing the model size does not lead to significant performance174

gains in other cases. However, even with the performance gains brought by model size, DD can not175

entirely catch up with the performance of IDQL, indicating that the dominant effect on performance176

is still primarily driven by the algorithm rather than the model size.177

D.2 Impact of Diffusion Backbones and Sampling Steps (Full Results)178

Figure 3: Full D4RL Results of IDQL. Performance of IDQL with various diffusion backbones and varying
sampling steps. Results correspond to the mean over 150 episode seeds.

Figure 4: Full D4RL Results of DD. Performance of DD with various diffusion backbones and varying
sampling steps. Results correspond to the mean over 150 episode seeds.

6

Due to space limitations in the main text, we present the full results of IDQL and DD on D4RL in179

Figure 3 and Figure 4. The algorithms are trained for 1×106 gradient steps, and the sampling steps for180

DD are set to 5, with other hyperparameters consistent with default settings. This experiment selects181

DDPM, DDIM, SDE-DPM-Solver++ 1, ODE-DPM-Solver++ (2M), EDM, and Rectified Flow as the182

diffusion/solver backbones. We select DDPM and DDIM because they are the first-order discretization183

of diffusion reverse SDE/ODE, respectively [47, 46]. We do not choose DPM-Solver because its184

first-order solver is equivalent to DDIM [34], and higher-order solvers may cause instability under185

guidance [35]. For DPM-Solver++, we select a first-order SDE solver, SDE-DPM-Solver++ 1,186

and a second-order ODE solver, ODE-DPM-Solver++ (2M). Since higher-order solvers can lead187

to instability, they are therefore not chosen. We select EDM and Rectified Flow because they have188

achieved excellent results in image generation but have not been widely used in the decision-making189

domain, to the best of our knowledge. Thanks to CleanDiffuser’s support for various solvers190

and varying sampling steps, the results for DDPM, DDIM, SDE-DPM-Solver++ 1, and ODE-DPM-191

Solver++ (2M) only require training one single model. Additionally, using different sampling steps192

does not require additional training. These features provide a great convenience for conducting193

ablation experiments. We believe these features of CleanDiffuser can also benefit future research194

efforts.195

D.3 Additional Analyses of DMs in IL Benchmarks196

Table 3: The Model Size and Inference Time of Dif-
fusionPolicy and DiffusionBC in Low-Dim Lift-ph.
DiffusionPolicy uses 50 sampling steps across the ex-
periments, and DiffusionBC incorporates 8 additional
Diffusion-X sampling steps.
Algorithm Model Size (M) Inference Time (s)

DiffusionPolicy
w/ Chi_UNet1d 68.91 0.405

DiffusionPolicy
w/ Chi_TFM 9.50 0.343

DiffusionPolicy
w/ DiT1d 16.59 0.194

DiffusionBC
w/ DiT1d 16.59 0.217

DiffusionBC
w/ Pearce_MLP 0.83 0.062

ACT 7.83 0.006

Using the low-dim lift-ph task with 50 sample197

steps in Robomimic as a reference, we present198

the number of parameters and inference time for199

each variant of DiffusionPolicy, DiffusionBC,200

and ACT in table 3. Although Chi_UNet1d ex-201

hibits the best performance in many IL tasks,202

it has the largest model size and the slowest203

inference speed. Larger model size results in204

higher training costs, and in many real-world205

applications that require real-time inference, we206

need to make trade-offs between inference speed207

and performance. Compared to the transformer-208

based ACT algorithm, all structures of the dif-209

fusion policy exhibit slower sampling speeds210

because the denoising process requires multiple211

forwards for neural networks. This is also an212

important challenge that limits the application of DMs for decision-making. We also note that213

DiffusionBC is slower than DiffusionPolicy when using the same network architecture and model214

size, as DiffusionBC performs 8 additional steps of Diffusion-X sampling to mitigate OOD issues.215

Although the best-performing Chi_UNet1d model uses a considerable model size, simply increasing216

the Transformer-based DMs like DiT1d can sometimes harm performance. We discuss this in detail217

in appendix D.1, which is also consistent with the experimental observations of the [4]. Finding the218

optimal model size in applications remains an open research question.219

E Experimental Details220

E.1 Computing Resources221

RL experiments are conducted on a server equipped with 2 Intel(R) Xeon(R) Gold 6326 CPUs @222

2.90GHz and 8 NVIDIA GeForce RTX3090 GPUs, and a server equipped with 2 Intel(R) Xeon(R)223

Gold 6326 CPUs @ 2.90GHz and 8 NVIDIA GeForce RTX2080Ti GPUs. IL experiments are224

conducted on a server equipped with 2 Intel(R) Xeon(R) Gold 6338 CPUs @ 2.00GHz and 8 NVIDIA225

A800 GPUs, and a server equipped with 2 Intel(R) Xeon(R) Gold 6338 CPUs @ 2.00GHz and 4226

NVIDIA GeForce RTX3090 GPUs.227

7

E.2 Evaluation Metircs228

In the D4RL benchmark, the scores are normalized to the range between 0 and 100 with expert-229

normalized scores = 100× score × random_score
expert_score-random_score [9]. As for IL benchmarks, we report target area230

coverage as scores in the PushT benchmark and success rate in the Robomimic benchmark. In the231

Relay Kitchen environment, since the vast majority of human demonstrations can only complete232

4 subtasks, we denote the success rate of completing the i-th subtask as pi and report the average233

success rate as score = (p1 + p2 + p3 + p4)/4.234

E.3 Algorithm Hyperparameters235

Unless stated otherwise, we utilize default hyperparameters from the official implementations for236

most algorithms and datasets. Configuration files and hyperparameters for each algorithm and237

environment are available in YAML format on our GitHub repository for reproducibility.238

Key hyperparameters for each offline RL algorithm are presented in Table 4, and each offline IL239

algorithm in Table 5. We also reproduce the Transformer-based ACT [52] algorithm based on the240

official implementation, the key hyperparameters are in Table 50000.241

Table 4: Hyperparameters for Diffusion Planners, Diffusion Policies and Diffusion Data Synthesizer for
RL.

Hyperparameter Diffuser DD AdaptDiffuser DQL EDP IDQL SynthER

Architecture Janner_UNet DiT Janner_UNet DQL_MLP DQL_MLP LNResnet LNResnet
Diffusion Model DDPM DDIM DDPM DDPM DPM-Solver++ (2M) DDPM DDIM
Sampling Steps 20 20 20 5 15 5 128
Horizon 64 (Antmaze) 64 (Antmaze) 64 (Antmaze) 1 1 1 1

32 (Otherwise) 32 (Otherwise) 32 (Otherwise)
Temperature 0.5 0.5 0.5 0.5 0.5 0.5 1.0
Gradient Steps 1e6 1e6 1e6 2e6 2e6 2e6 1e5
Batch Size 64 64 64 256 256 256 256
Learning Rate 3e-4 3e-4 3e-4 3e-4 3e-4 3e-4 3e-4
N candidates 64 1 64 50 50 256 N/A

Table 5: Hyperparameters for DiffusionPolicy and DiffusionBC in Low-Dim and Image Tasks.

Hyperparameters DiffusionPolicy DiffusionBC

Architecture Chi_UNet1d Chi_Transformer DiT1d Pearce_MLP DiT
Diffusion Model DDPM DDPM DDPM DDPM DDPM
Sampling Steps 5 (PushT) 5 (PushT) 5 (PushT) 50 50

50 (Otherwise) 50 (Otherwise) 50 (Otherwise)
Horizon 16 10 10 2 2
Obs Steps 2 2 2 2 2
Action Steps 8 8 8 1 1
Gradient Steps 1e6 1e6 1e6 1e6 1e6
Batch Size 256 (Low dim) 256 (Low dim) 256 (Low dim) 512 (Low dim) 512 (Low dim)

64 (Image) 64 (Image) 64 (Image) 64 (Image) 64 (Image)
Temperature 1.0 1.0 1.0 1.0 1.0
Learning Rate 1e-4 1e-4 1e-4 1e-3 5e-4
Extra Sample Steps N/A N/A N/A 8 8
Control Mode Pos Pos Pos Vel Vel

F Implemented Diffusion Models242

F.1 DDPM/DDIM/DPM-Solver/DPM-Solver++243

Applying Solvers with One Score Function. Due to the generation processes of DDPM [19],244

DDIM [46], DPM-Solver [34], and DPM-Solver++ [35] can all be expressed using the same diffusion245

SDE/ODE [47], utilizing the same noise schedule, training just one noise predictor model enables the246

use of these four solvers for sampling. Recall that the diffusion ODE with noise prediction model is:247

dxt

dt
= f(t)xt +

g2(t)

2σt
ϵθ(xt, t). (10)

8

Table 6: Hyperparameters for ACT in Low-Dim and Image Tasks.

Hyperparameters Value

Learning Rate 1e-5
Batch Size 256 (Low dim) / 64 (Image)
Encoder Layers 4
Decoder Layers 7
Feedforward Dimension 256
Hidden Dimension 256
Heads 8
Chunk size 16
Beta 10
Gradient Steps 1e6
Control Mode Vel (Kitchen) / Pos (Otherwise)

Substituting f(t) = d logαt

dt , g2(t) =
dσ2

t

dt − 2σ2
t
d logαt

dt , and conducting first-order discretization248

result in a recursive formula:249

xt − xs =
αt − αs

αs
xs +

1

2σs

[
2σs(σt − σs)− 2

σ2
s

αs
(αt − αs)

]
ϵθ(xs) (11)

xt =
αt

αs
xs − αt

(
σs

αs
− σt

αt

)
ϵθ(xs, s) (12)

xt = αt

(
xt − σtϵθ(xs, s)

αs

)
+
√

σ2
sϵθ(xs, s), (13)

where t and s are the next and current sampling steps. Equation (13) is DDIM update [46]. By250

introduce βs = (σt/σs)
√
1− α2

s/α
2
t , the generative process of DDPM is:251

xt = αt

(
xt − σtϵθ(xs, s)

αs

)
+
√
σ2
s − β2

s ϵθ(xs, s) + βsϵs, (14)

where ϵs ∼ N (0, I) is standard Gaussian noise independent of xs. DPM-Solver leverages the252

semi-linearity of the diffusion ODE and formulates the exact solution by the “variation of constants”253

formula:254

xt = e
∫ t
s
f(τ)dτxs +

∫ t

s

(
e
∫ t
τ
f(r)dr g

2(τ)

2στ
ϵθ(xτ , τ)

)
dτ (15)

xt =
αt

αs
xs − αt

∫ t

s

dλτ

dτ

στ

ατ
ϵθ(xτ , τ)dτ, (16)

where λt := log(αt/σt) is the log-signal-to-noise-ratio (log-SNR). This formulation eliminates the255

approximation error of the linear term since it is exactly computed, and the non-linear term can be256

approximated using its Talor expansion:257

xt =
αt

αs
xs − αt

k−1∑
n=0

ϵ
(n)
θ (x, s)

∫ λt

λs

e−λ (λ− λs)
n

n!
dλ+O((λt − λs)

k+1). (17)

In CleanDiffuser, we have implemented only DPM-Solver-1, corresponding to the k=1 scenario in258

Equation (17), as guided sampling tends to make high-order solvers unstable [35], leading to poor259

performance in decision-making tasks. DPM-Solver++ alleviates this instability issue by using a260

data prediction model xθ(xt, t) instead of the noise prediction model ϵθ(xt, t), transforming the261

generative process into:262

xt =
σt

σs
xs + σt

k−1∑
n=0

x
(n)
θ (x, s)

∫ λt

λs

eλ
(λ− λs)

n

n!
dλ+O((λt − λs)

k+1), (18)

where xθ(xt, t) is trained to predict the original data x0 from the perturbed data xs. In263

CleanDiffuser, we have implemented DPM-Solver++ for k ≤ 2, as it already yields satisfac-264

tory results at k = 2, while higher-order solvers may still lead to instability.265

9

Although the data prediction model can mitigate the instability issue caused by guided sampling and266

easily clip data to address the “train-test mismatch” problem [35], there is still no definitive evidence267

in practice to determine the superiority of either the data prediction model or the noise prediction268

model. In CleanDiffuser, we provide users with the option to choose between these two prediction269

models and use the approximation xt ≈ αtxθ(xt, t) + σϵθ(xt, t) to seamlessly switch between the270

two formulations to cater to the requirements of different solvers.271

Noise Schedules. CleanDiffuser provides two popular noise schedules by default: Linear Noise272

Schedule [19] and Cosine Noise Schedule [38]. The former defines:273

αt = exp

(
− (β1 − β0)

4
t2 − β0

2
t

)
, (19)

where β0 = 0.1, β1 = 20 and σt =
√

1− α2
t . The diffusion SDE/ODE is solved between [ϵ, T],274

where ϵ = 0.001 and T = 1 for numerical stability. The later schedule defines:275

αt =
cos

(
π
2 · t+s

1+s

)
cos

(
π
2 · s

1+s

) (20)

where s = 0.008 and σt =
√
1− α2

t . The diffusion SDE/ODE is solved between [ϵ, T], where276

ϵ = 0.001 and T = 0.9946 for numerical stability. Beyond the two schedules, CleanDiffuser277

allows users to fully customize new noise schedules according to the specified format to explore278

algorithm performance.279

F.2 EDM280

EDM [23] rewrites the diffusion forward process in Equation (1) as:281

xt = st(x0 + σtϵt), (21)

which can be interpreted as adding noise to a scaled version of the original data. By setting the scale282

st ≡ 1 to a constant, EDM obtains the following reverse process:283

dxt

dt
= −σ̇tσt∇x log p(x;σt)dt, (22)

where p(x;σt) = pt(x). A data prediction model Dθ(x;σ) is trained to approximate x +284

σ2∇x log p(x;σ) and results in a practical generative process:285

xt = xs + (t− s) ·
(
σ̇s

σs
xs −

σ̇s

σs
Dθ(xs;σs)

)
. (23)

One feature of EDM is that it applies preconditioning to Dθ:286

Dθ(x;σ) = cskip(σ)x+ cout(σ)Fθ(cin(σ)x; cnoise(σ)). (24)

where Fθ is the neural network to be trained, cskip modulates the skip connection, cin and cout scale287

the input and output magnitudes, and cnoise maps noise level σ into a conditioning input for Fθ. Fθ is288

trained by minimizing the noising score matching loss:289

L(θ;σ) = Ey∼pdata,n∼N (0,σ2I)

[
λ(σ)∥Dθ(y + n;σ)− y∥22

]
, (25)

where λ(σ) is the loss weight. These coefficients are optimized to achieve the following objectives:290

(1) inputs of Fθ have unit variance, (2) training target of Fθ have unit variance, (3) cskip can minimize291

cout so that the errors of Fθ are amplified as little as possible, and (4) the loss of Fθ has a uniform292

weight across noise levels. The optimization results give the following design choices: cskip =293

σ2
data/(σ

2 + σ2
data), cout = σ · σdata/

√
σ2

data + σ2, cin = 1/
√

σ2
data + σ2, cnoise = log(σ)/4, and294

λ(σ) = (σ2
data + σ2)/(σdata · σ)2.295

Noise Schedule. CleanDiffuser provides only one default noise schedule, which is specially296

designed for EDM:297

σt = t, t ∈ [σmin, σmax] , (26)
where σmin = 0.002 and σmax = 80.298

10

F.3 Rectified Flow299

Rectified flow [33] is an ODE on time t ∈ [0, 1]:300

dxt

dt
= vθ(xt, t), (27)

where the drift force vθ is trained to drive the flow to follow the direction (x0−x1) of the linear path301

pointing from x1 to x0 as much as possible, by solving a simple least squares regression problem:302

L(θ) = Ex0∼p0,x1∼p1,t∼Uniform(0,1)

[
∥(x0 − x1)− vθ(xt, t)∥22

]
, (28)

where xt = tx1+(1− t)x0. It achieves the mutual transformation of samples from two distributions303

p0 and p1, by solving Equation (26) forward or backward. Rectified flow possesses many favorable304

properties that allow it to continuously learn from its own sampled data to straighten the ODE flow,305

and this procedure is called reflow. The straighter the ODE flow, the fewer sampling steps are needed306

to achieve good generation quality. In an ideal scenario, if the flow becomes completely straight, then307

we have:308

xt = tx1 + (1− t)x0 = x1 + (1− t)v(x1, 1), ∀t ∈ [0, 1], (29)

which enables one-step sampling. The Rectified Flow implemented in CleanDiffuser has full309

functionality to transform samples from any two arbitrary probability distributions. By default, it310

follows the settings in diffusion models, where p0 is the dataset distribution and p1 is the standard311

Gaussian distribution.312

G Implemented Algorithms313

G.1 Diffusion Planners314

Diffuser. [21] Diffuser is the first diffusion planning algorithm, and its paradigm has been widely315

adopted in subsequent diffusion planning algorithms. Diffuser generates state-action pair trajectories316

x = [xτ , · · · , xτ+H−1] from:317

p(x|Oτ :T) ∝ p(x)p(Oτ :T |x) = p(x)

T∏
t=τ

exp(r(st, at)), (30)

where Ot1:t2 is a binary random variable denoting the optimality of a trajectory from t1 to t2, and T318

is the episode terminal time step of the trajectory 2. Therefore, it is natural to define the classifier in319

CG as a reward function on perturbed trajectories:320

∇x log pt(xt|Oτ :T) = ∇x log pt(xt) +

T∑
k=τ

∇skt ,a
k
t
r(skt , a

k
t) = ∇x log pt(xt) +∇xJϕ(xt, t),

(31)
where Jϕ(xt, t) is a neural network trained to predict the episodic cumulative reward

∑T
k=τ r(s

k
t , a

k
t)321

of the perturbed trajectory xt. At each inference step, given the current state sk, Diffuser sets322

and freezes the first state of the trajectory as sk and performs guided sampling in an inpainting323

manner to generate a set of trajectories {x0}. Subsequently, it identifies the optimal trajectory324

x∗
0 = argmaxx0

Jϕ(x0, 0) that maximizes the episodic cumulative reward, and extracts the first325

action ak in x∗
0 to execute.326

Decision Diffuser. [1] Decision Diffuser (DD) introduces another prominent framework that utilizes a327

state-only trajectory formulation and implements CFG by discarding the optimality variable Oτ :T in328

favor of directly employing normalized episodic cumulative reward y =
∑T

t=τ r(x) as the condition.329

As no additional reward predictor can be used for trajectory selection, DD generates only a single330

2In previous works, authors typically consider only the trajectory cumulative reward as the generative
condition, i.e. using Oτ :τ+H−1, which overlooks future optimality. Their code implementations actually use the
episodic cumulative reward, i.e. Oτ :T . Therefore, we adopt this episodic cumulative reward expression.

11

trajectory at each inference step and employs an trained inverse dynamic model Iϕ to predict the331

action to be executed at = Iϕ(st, st+1).332

AdaptDiffuser. [31] Observing that the insufficient diversity of offline RL training data may limit the333

sample quality of DMs, AdaptDiffuser, an extension of Diffuser, proposes to utilize self-generated334

diverse synthetic expert data to fine-tune itself. The pipeline of AdaptDiffuser involves initially335

training a Diffuser as usual, then generating a large amount of synthetic expert data and using a336

discriminator to filter out high-quality data. Finally, fine-tuning is done on this dataset. This self-337

evolving process can be repeated multiple times to optimize the model, and different directions of338

model self-evolution can be controlled by designing different discriminators. The inference method339

of AdaptDiffuser is consistent with Diffuser, and its performance for seen tasks has been enhanced340

while also being able to adapt to unseen tasks.341

G.2 Diffusion Polices342

Diffusion Q-Learning. [50] Diffusion Q-learning (DQL) leverages the capability of DMs to model343

complex distributions, directly applying DDPM as the policy πθ(a0|s) in the RL actor-critic frame-344

work. Sampling from the policy is therefore equivalent to the denoising process of the diffusion345

model. The Bellman operator can be used to train the Q-value function of the diffusion policy:346

L(ϕ) = E(sk,ak,r,sk+1)∼D,ak+1
0 ∼πθ′

[∥∥∥∥(r + γ min
i=1,2

Qϕ′
i
(sk+1,ak+1

0))−Qϕi
(sk,ak)

∥∥∥∥2
2

]
, (32)

where ϕ1 and ϕ2 represent the parameters of the double Q-learning trick, ϕ′ and θ′ represent the target347

networks. For policy optimization, DQL employs the most basic form of Offline RL optimization,348

which involves training the policy to maximize the Q-value while imitating behavior policies, using a349

weighting factor α to balance the influence of both aspects:350

L(θ) = Lscore(θ)− α · Es∼D,a0∼πθ
[Qϕ(s,a0)] , (33)

where Lscore(θ) is the score matching loss used for diffusion model training. As the scale of the351

Q-value function varies in different offline datasets, to normalize it, DQL sets α = η
E(s,a)∼D[|Qϕ(s,a)|]352

and tunes η for loss term balance. The Qϕ in the denominator is only for normalization and not353

differentiated over.354

Efficient Diffusion Policy. [22] Efficient Diffusion Policy (EDP) aims to address the significant355

computational overhead caused by iterative sampling and gradient computation during the training356

of the DQL. Compared to DQL, EDP proposes using DPM-Solver instead of DDPM to reduce the357

number of sampling steps. Then, EDP introduces an action approximation technique, where during358

policy optimization, one-step denoising is performed on the perturbed action at to approximate a0.359

For the process using a data prediction model xθ and a noise prediction model ϵθ separately, the360

following two equations can express the technique:361

a0 ≈ xθ(at, t) (34)

a0 ≈ at − σtϵθ(at, t)

αt
. (35)

EDP reduces the sampling steps to 15 (even though DQL has only 5 sampling steps) and performs362

only one-step denoising during policy optimization, significantly speeding up the model training363

process and achieving performance close to that of DQL.364

Implicit Diffusion Q-Learning. [16] Implicit Diffusion Q-Learning (IDQL) models the policy from365

the perspective of general constrained policy search (CPS), in which the optimal policy is described366

as a weighted behavior policy:367

π∗(a|s) = πb
θ(a|s)w(a|s), s.t.

∫
A
w(a|s)da = 1, ∀s, (36)

where πb
θ(a|s) represents the behavior policy learned by the diffusion model from the dataset,368

and w(s,a) is a weight function. IDQL derives its weight function from the generalized implicit369

12

Q-learning:370

w(a|s) = |f ′(Qϕ(s,a)− V ∗(s))|
|Qϕ(s,a)− V ∗(s)|

, (37)

where f can be any convex function, f ′ = ∂f
∂V (s) , and371

V ∗(s) = argmin
V (s)

Ea∼πb
θ(a|s)

[f(Qϕ(s,a)− V (s))] . (38)

Therefore, the training of IDQL consists of two independent processes: training the diffusion model372

to clone the behavior policy and training the IQL-based weight function w(a|s). At each inference373

step, IDQL samples a set of candidate actions {a0}, computes the weights {w(s,a0)}, and then374

selects the action to be executed as a categorical from {w(s,a0)}.375

DiffusionBC. [40] DiffusionBC constructs an observation-to-action diffusion model for imitating376

stochastic and multimodal human demonstrations. The basic version of DiffusionBC applies diffusion377

generation directly as a diffusion policy π(a0|s,at, t) with noisy action at ∈ R|a|, denoising timestep378

t and observation s (possibly with a history) input. To better select intra-distributional actions to379

mimic human behavior, DiffusionBC proposed the Diffusion-X Sampling trick, which encourages380

higher likelihood actions during sampling. For diffusion-X sampling, the sampling process first381

runs normal T denoising timesteps, and timesteps is fixed to t = 1, then extra denoising iterations382

continue to run for M timesteps toward higher-likelihood regions.383

DiffusionPolicy. [4] Similar to DiffusionBC, Diffusion Policy also uses a diffusion model to directly384

approximate the conditional distribution p(a|s), but uses two key design choices: (1) Closed-loop385

Action-chunking Prediction: Diffusion Policy generates sequences of actions per prediction rather386

than single action to encourage temporal consistency and smoothness in long-term planning to better387

fit multimodal distributions. At time step t, the policy takes the latest Ts (the observation horizon)388

steps of observation data st as input and predicts H steps of actions, of which Ta (the action prediction389

horizon) steps of actions are executed on the robot without re-planning. (2) Network Architecture390

Options: Diffusion Policy adopts the traditional 1D-Unet [21] and DiT [41] to new CNN-based Unet391

and time-series diffusion transformer network architectures. CNN-based Diffusion Policy conditions392

the action generation process on observation s with Feature-wise Linear Modulation (FiLM) [42] and393

Transformer-based Diffusion Policy fuses state s and action a features via cross attention to jointly394

predict ϵθ(o, ak, k), where k is sinusoidal embedding for diffusion iteration. The Diffusion Policy395

has demonstrated excellent performance and high stability in multiple simulation environments and396

real-world tasks for imitation learning and is a widely used baseline for embodied AI.397

G.3 Diffusion Data Synthesizers.398

SynthER. [36] SynthER uses the diffusion model to generate one-step transitions (s,a, r, d, s′).399

Trained on an offline dataset, SynthER then upsamples it to a larger dataset (in D4RL, SynthER400

upsamples each dataset to 5M transitions), which helps other offline RL algorithms to optimize the401

agent policy.402

H Limitations, Challenges, and Future Directions403

Limitations. Although the modular structure and pipeline design of CleanDiffuser greatly simplify404

the implementation difficulty for researchers deploying DMs, the inherent complexity of the principles405

and improvements of DMs still requires a considerable amount of time to deeply understand each type406

of module. We hope to alleviate this issue and better facilitate collaboration through comprehensive407

configuration files and documentation, as well as active maintenance and updates. Additionally,408

When dealing with certain specific issues, CleanDiffuser may require tailored adjustments and409

optimizations. For instance, the current version of CleanDiffuser does not directly support410

discrete or hybrid action space tasks, which may be mitigated through techniques such as action411

representation [28] or using categorical diffusion models [6].412

13

Based on experimental analyses of CleanDiffuser, we have identified several promising areas for413

further research as follows:414

Unleashing the potential of diffusion planners. Analogous to the classification of RL algorithms,415

as diffusion planners can imaginatively generate interactive trajectories, they should be categorized416

under model-based RL (MBRL). In MBRL, there are various ways to utilize learned dynamic417

models, including planning to search for the optimal action [13, 17], optimizing policies using418

rollout trajectories [12], and even combining these two approaches [15, 14]. Currently, diffusion419

planners are limited to the first paradigm, and due to their sensitivity to guidance and lack of safety420

constraints, they are prone to OOD plans [7], falling short in performance compared to other offline421

MBRL algorithms. Future research can explore new paradigms for diffusion planners, attempting422

diverse ways to utilize generated trajectories or integrating safety constraints to enhance the fidelity423

of generated trajectories, thereby unleashing the full potential of diffusion planners.424

Exploring the reasons behind sampling degradation. In ??, we discuss an anomaly known as425

sampling degradation, where the algorithm’s performance decreases as the number of sampling steps426

increases. This anomaly has been identified in previous works [22, 3] and remains an open question.427

Theoretically, more sampling steps should result in a more accurate SDE/ODE solution, ultimately428

producing higher-fidelity samples. This naturally prompts a trade-off exploration between sampling429

steps and performance during implementation. However, in experiments, increasing sampling steps430

in certain tasks does not improve performance and can even lead to a decrease. Future research can431

systematically investigate this anomaly to provide optimal recommendations for selecting sampling432

steps.433

Understanding the impact of SDE and ODE. In our experiments, we observe consistent differences434

in SDE solvers and ODE solvers on algorithm performance, tendency to sampling degradation, and435

sensitivity to guidance. While there is existing research on the impact of SDE and ODE in computer436

vision [39, 35], there is still a gap in research within the decision-making domain. Future research437

can fill this gap and explore the implications of SDE and ODE solvers in decision-making tasks.438

Accelerating Diffusion Model Sampling. Due to the denoising process involved in iterative sampling,439

DMs face the issue of slow sampling speeds when used for decision-making. This poses significant440

challenges in scenarios such as real-time robot control or game AI. DiffuserLite [7] is a diffusion441

planner method that addresses this issue by modeling the diffusion process through a plan refinement442

process for coarse-to-fine-grained trajectory generation and further accelerates the sampling speed443

using rectified flow. Further speeding up the sampling speed of various roles of DMs remains a444

promising research direction.445

I Potential Social Impact446

CleanDiffuser fills a critical gap in the current landscape by providing a unified and modularized447

framework that empowers researchers and practitioners to explore new frontiers. This will accelerate448

the development and deployment of diffusion-based decision-making applications, such as various449

robotics research and products. However, CleanDiffuser may also be used in military weapon450

development.451

J License452

Our codebase is released under Apache License 2.0.453

14

References454

[1] Anurag Ajay, Yilun Du, Abhi Gupta, Joshua B. Tenenbaum, Tommi S. Jaakkola, and Pulkit455

Agrawal. Is conditional generative modeling all you need for decision making? In The Eleventh456

International Conference on Learning Representations, ICLR, 2023.457

[2] Greg Brockman, Vicki Cheung, Ludwig Pettersson, Jonas Schneider, John Schulman, Jie Tang,458

and Wojciech Zaremba. Openai gym. arXiv preprint arXiv:1606.01540, 2016.459

[3] Huayu Chen, Cheng Lu, Chengyang Ying, Hang Su, and Jun Zhu. Offline reinforcement learning460

via high-fidelity generative behavior modeling. In The Eleventh International Conference on461

Learning Representations, ICLR, 2023.462

[4] Cheng Chi, Siyuan Feng, Yilun Du, Zhenjia Xu, Eric Cousineau, Benjamin Burchfiel, and463

Shuran Song. Diffusion policy: Visuomotor policy learning via action diffusion. In Proceedings464

of Robotics: Science and Systems, RSS, 2023.465

[5] Prafulla Dhariwal and Alexander Quinn Nichol. Diffusion models beat GANs on image466

synthesis. In Advances in Neural Information Processing Systems, NIPS, 2021.467

[6] Sander Dieleman, Laurent Sartran, Arman Roshannai, Nikolay Savinov, Yaroslav Ganin,468

Pierre H Richemond, Arnaud Doucet, Robin Strudel, Chris Dyer, Conor Durkan, et al. Continu-469

ous diffusion for categorical data. arXiv preprint arXiv:2211.15089, 2022.470

[7] Zibin Dong, Jianye Hao, Yifu Yuan, Fei Ni, Yitian Wang, Pengyi Li, and Yan Zheng. Diffuserlite:471

Towards real-time diffusion planning. arXiv preprint arXiv:2401.15443, 2024.472

[8] Pete Florence, Corey Lynch, Andy Zeng, Oscar A Ramirez, Ayzaan Wahid, Laura Downs,473

Adrian Wong, Johnny Lee, Igor Mordatch, and Jonathan Tompson. Implicit behavioral cloning.474

In Conference on Robot Learning, CoRL, 2022.475

[9] Justin Fu, Aviral Kumar, Ofir Nachum, George Tucker, and Sergey Levine. D4rl: Datasets for476

deep data-driven reinforcement learning. arXiv preprint arXiv:2004.07219, 2020.477

[10] Scott Fujimoto and Shixiang Gu. A minimalist approach to offline reinforcement learning. In478

Advances in Neural Information Processing Systems, NIPS, 2021.479

[11] Abhishek Gupta, Vikash Kumar, Corey Lynch, Sergey Levine, and Karol Hausman. Relay policy480

learning: Solving long-horizon tasks via imitation and reinforcement learning. In Proceedings481

of the Conference on Robot Learning, CoRL, 2020.482

[12] Danijar Hafner, Timothy Lillicrap, Jimmy Ba, and Mohammad Norouzi. Dream to con-483

trol: Learning behaviors by latent imagination. In International Conference on Learning484

Representations, ICLR, 2020.485

[13] Danijar Hafner, Timothy Lillicrap, Ian Fischer, Ruben Villegas, David Ha, Honglak Lee, and486

James Davidson. Learning latent dynamics for planning from pixels. In Proceedings of the487

36th International Conference on Machine Learning, ICML, 2019.488

[14] Nicklas Hansen, Hao Su, and Xiaolong Wang. TD-MPC2: Scalable, robust world models489

for continuous control. In The Twelfth International Conference on Learning Representations,490

ICLR, 2024.491

[15] Nicklas A Hansen, Hao Su, and Xiaolong Wang. Temporal difference learning for model492

predictive control. In Proceedings of the 39th International Conference on Machine Learning,493

ICML, 2022.494

[16] Philippe Hansen-Estruch, Ilya Kostrikov, Michael Janner, Jakub Grudzien Kuba, and Sergey495

Levine. Idql: Implicit q-learning as an actor-critic method with diffusion policies. arXiv preprint496

arXiv:2304.10573, 2023.497

15

[17] Xiaotian Hao, Jianye Hao, Chenjun Xiao, Kai Li, Dong Li, and Yan Zheng. Multiagent498

gumbel muzero: Efficient planning in combinatorial action spaces. Proceedings of the AAAI499

Conference on Artificial Intelligence, AAAI, 2024.500

[18] Longxiang He, Li Shen, Linrui Zhang, Junbo Tan, and Xueqian Wang. Diffcps: Diffusion501

model based constrained policy search for offline reinforcement learning. arXiv preprint502

arXiv:2310.05333, 2024.503

[19] Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. In504

Advances in Neural Information Processing Systems, NIPS, 2020.505

[20] Jonathan Ho and Tim Salimans. Classifier-free diffusion guidance. In NeurIPS 2021 Workshop506

on Deep Generative Models and Downstream Applications, 2021.507

[21] Michael Janner, Yilun Du, Joshua Tenenbaum, and Sergey Levine. Planning with diffusion for508

flexible behavior synthesis. In Proceedings of the 39th International Conference on Machine509

Learning, ICML, 2022.510

[22] Bingyi Kang, Xiao Ma, Chao Du, Tianyu Pang, and Shuicheng Yan. Efficient diffusion policies511

for offline reinforcement learning. Advances in Neural Information Processing Systems, NIPS,512

36, 2024.513

[23] Tero Karras, Miika Aittala, Timo Aila, and Samuli Laine. Elucidating the design space of514

diffusion-based generative models. In Alice H. Oh, Alekh Agarwal, Danielle Belgrave, and515

Kyunghyun Cho, editors, Advances in Neural Information Processing Systems, NIPS, 2022.516

[24] Diederik P Kingma, Tim Salimans, Ben Poole, and Jonathan Ho. Variational diffusion models.517

In Advances in Neural Information Processing Systems, NIPS, 2021.518

[25] P.E. Kloeden and E. Platen. Numerical Solution of Stochastic Differential Equations. Stochastic519

Modelling and Applied Probability. Springer Berlin Heidelberg, 2011.520

[26] Ilya Kostrikov, Ashvin Nair, and Sergey Levine. Offline reinforcement learning with implicit521

q-learning. In International Conference on Learning Representations, ICLR, 2022.522

[27] Aviral Kumar, Aurick Zhou, George Tucker, and Sergey Levine. Conservative q-learning for523

offline reinforcement learning. In Advances in Neural Information Processing Systems, NIPS,524

2020.525

[28] Boyan Li, Hongyao Tang, Yan Zheng, Jianye Hao, Pengyi Li, Zhen Wang, Zhaopeng Meng,526

and Li Wang. Hyar: Addressing discrete-continuous action reinforcement learning via hybrid527

action representation. arXiv preprint arXiv:2109.05490, 2021.528

[29] Wenhao Li, Xiangfeng Wang, Bo Jin, and Hongyuan Zha. Hierarchical diffusion for offline529

decision making. In Proceedings of the 40th International Conference on Machine Learning,530

ICML, 2023.531

[30] Eric Liang, Richard Liaw, Robert Nishihara, Philipp Moritz, Roy Fox, Ken Goldberg, Joseph532

Gonzalez, Michael Jordan, and Ion Stoica. RLlib: Abstractions for distributed reinforcement533

learning. In Proceedings of the 35th International Conference on Machine Learning, ICML,534

2018.535

[31] Zhixuan Liang, Yao Mu, Mingyu Ding, Fei Ni, Masayoshi Tomizuka, and Ping Luo. Adaptd-536

iffuser: Diffusion models as adaptive self-evolving planners. In International Conference on537

Machine Learning, ICML, 2023.538

[32] Haohe Liu, Zehua Chen, Yi Yuan, Xinhao Mei, Xubo Liu, Danilo Mandic, Wenwu Wang, and539

Mark D Plumbley. AudioLDM: Text-to-audio generation with latent diffusion models. In540

Proceedings of the 40th International Conference on Machine Learning, ICML, 2023.541

16

[33] Xingchao Liu, Chengyue Gong, and qiang liu. Flow straight and fast: Learning to generate542

and transfer data with rectified flow. In The Eleventh International Conference on Learning543

Representations, ICLR, 2023.544

[34] Cheng Lu, Yuhao Zhou, Fan Bao, Jianfei Chen, Chongxuan Li, and Jun Zhu. DPM-solver: A545

fast ODE solver for diffusion probabilistic model sampling in around 10 steps. In Advances in546

Neural Information Processing Systems, NIPS, 2022.547

[35] Cheng Lu, Yuhao Zhou, Fan Bao, Jianfei Chen, Chongxuan Li, and Jun Zhu. Dpm-548

solver++: Fast solver for guided sampling of diffusion probabilistic models. arXiv preprint549

arXiv:2211.01095, 2023.550

[36] Cong Lu, Philip Ball, Yee Whye Teh, and Jack Parker-Holder. Synthetic experience replay.551

Advances in Neural Information Processing Systems, NIPS, 36, 2024.552

[37] Ajay Mandlekar, Danfei Xu, Josiah Wong, Soroush Nasiriany, Chen Wang, Rohun Kulkarni,553

Li Fei-Fei, Silvio Savarese, Yuke Zhu, and Roberto Martín-Martín. What matters in learning554

from offline human demonstrations for robot manipulation. In 5th Annual Conference on Robot555

Learning, CoRL, 2021.556

[38] Alexander Quinn Nichol and Prafulla Dhariwal. Improved denoising diffusion probabilistic557

models. In Proceedings of the 38th International Conference on Machine Learning, ICML,558

2021.559

[39] Shen Nie, Hanzhong Allan Guo, Cheng Lu, Yuhao Zhou, Chenyu Zheng, and Chongxuan Li.560

The blessing of randomness: SDE beats ODE in general diffusion-based image editing. In The561

Twelfth International Conference on Learning Representations, ICLR, 2024.562

[40] Tim Pearce, Tabish Rashid, Anssi Kanervisto, Dave Bignell, Mingfei Sun, Raluca Georgescu,563

Sergio Valcarcel Macua, Shan Zheng Tan, Ida Momennejad, Katja Hofmann, and Sam Devlin.564

Imitating human behaviour with diffusion models. In The Eleventh International Conference565

on Learning Representations, ICLR, 2023.566

[41] William Peebles and Saining Xie. Scalable diffusion models with transformers. In Proceedings567

of the IEEE/CVF International Conference on Computer Vision, ICCV, 2023.568

[42] Ethan Perez, Florian Strub, Harm De Vries, Vincent Dumoulin, and Aaron Courville. Film:569

Visual reasoning with a general conditioning layer. In Proceedings of the AAAI conference on570

artificial intelligence, AAAI, 2018.571

[43] Antonin Raffin, Ashley Hill, Adam Gleave, Anssi Kanervisto, Maximilian Ernestus, and Noah572

Dormann. Stable-baselines3: Reliable reinforcement learning implementations. Journal of573

Machine Learning Research, 2021.574

[44] Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Björn Ommer. High-575

resolution image synthesis with latent diffusion models. In Proceedings of the IEEE/CVF576

Conference on Computer Vision and Pattern Recognition, CVPR, 2022.577

[45] Nataniel Ruiz, Yuanzhen Li, Varun Jampani, Yael Pritch, Michael Rubinstein, and Kfir Aber-578

man. Dreambooth: Fine tuning text-to-image diffusion models for subject-driven generation.579

In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition,580

CVPR, 2023.581

[46] Jiaming Song, Chenlin Meng, and Stefano Ermon. Denoising diffusion implicit models. In582

International Conference on Learning Representations, ICLR, 2021.583

[47] Yang Song, Jascha Sohl-Dickstein, Diederik P Kingma, Abhishek Kumar, Stefano Ermon, and584

Ben Poole. Score-based generative modeling through stochastic differential equations. In585

International Conference on Learning Representations, ICLR, 2021.586

17

[48] Denis Tarasov, Alexander Nikulin, Dmitry Akimov, Vladislav Kurenkov, and Sergey Kolesnikov.587

CORL: Research-oriented deep offline reinforcement learning library. In 3rd Offline RL588

Workshop: Offline RL as a ”Launchpad”, 2022.589

[49] Patrick von Platen, Suraj Patil, Anton Lozhkov, Pedro Cuenca, Nathan Lambert, Kashif Rasul,590

Mishig Davaadorj, Dhruv Nair, Sayak Paul, William Berman, Yiyi Xu, Steven Liu, and Thomas591

Wolf. Diffusers: State-of-the-art diffusion models. https://github.com/huggingface/592

diffusers, 2022.593

[50] Zhendong Wang, Jonathan J Hunt, and Mingyuan Zhou. Diffusion policies as an expressive594

policy class for offline reinforcement learning. In The Eleventh International Conference on595

Learning Representations, ICLR, 2023.596

[51] Lvmin Zhang, Anyi Rao, and Maneesh Agrawala. Adding conditional control to text-to-image597

diffusion models. In Proceedings of the IEEE/CVF International Conference on Computer598

Vision, ICCV, 2023.599

[52] Tony Z. Zhao, Vikash Kumar, Sergey Levine, and Chelsea Finn. Learning Fine-Grained600

Bimanual Manipulation with Low-Cost Hardware. In Proceedings of Robotics: Science and601

Systems, RSS, 2023.602

18

https://github.com/huggingface/diffusers
https://github.com/huggingface/diffusers
https://github.com/huggingface/diffusers

	Foundation of Diffusion Models
	SDEs/ODEs and Solvers
	Guided Sampling Methods

	Related Works
	Details of Experimental Setup
	Offline Reinforcement Learning Environments and Datasets
	Offline Imitation Learning Environments and Datasets

	Additional Experiments
	Impact of Model Size in RL Benchmarks
	Impact of Diffusion Backbones and Sampling Steps (Full Results)
	Additional Analyses of DMs in IL Benchmarks

	Experimental Details
	Computing Resources
	Evaluation Metircs
	Algorithm Hyperparameters

	Implemented Diffusion Models
	DDPM/DDIM/DPM-Solver/DPM-Solver++
	EDM
	Rectified Flow

	Implemented Algorithms
	Diffusion Planners
	Diffusion Polices
	Diffusion Data Synthesizers.

	Limitations, Challenges, and Future Directions
	Potential Social Impact
	License

