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Abstract

Overparameterized stochastic differential equation (SDE) models have achieved
remarkable success in various complex environments, such as PDE-constrained
optimization, stochastic control and reinforcement learning, financial engineering,
and neural SDEs. These models often feature system evolution coefficients that
are parameterized by a high-dimensional vector θ ∈ Rn, aiming to optimize ex-
pectations of the SDE, such as a value function, through stochastic gradient ascent.
Consequently, designing efficient gradient estimators for which the computational
complexity scales well with n is of significant interest. This paper introduces a
novel unbiased stochastic gradient estimator–the generator gradient estimator–for
which the computation time remains stable in n. In addition to establishing the
validity of our methodology for general SDEs with jumps, we also perform nu-
merical experiments that test our estimator in linear-quadratic control problems
parameterized by high-dimensional neural networks. The results show a significant
improvement in efficiency compared to the widely used pathwise differentiation
method: Our estimator achieves near-constant computation times, increasingly
outperforms its counterpart as n increases, and does so without compromising esti-
mation variance. These empirical findings highlight the potential of our proposed
methodology for optimizing SDEs in contemporary applications.

1 Introduction

We consider a family of jump diffusions
{
Xx

θ (t, s) ∈ Rd : s ∈ [t, T ]
}

that are generated by stochastic
differential equations (SDEs) and indexed by the initial condition x ∈ Rd at time s and a parameter
θ ∈ Θ ⊂ Rn. In modern applications, the parameter θ, encoding characteristics of an engineering
model, often represents the weights of a deep neural network. This paper focuses particularly on
scenarios where the dimension n of θ is significantly greater than the dimension d of the space. This
setting naturally arises in the implementation of large AI architectures in modern applications.
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Concretely, for each 1 ≤ i ≤ d, the i’th entry of Xx
θ (t, ·), denoted by Xx

θ,i(t, ·), satisfies the Itô SDE:

Xx
θ,i(t, s) = xi +

∫ s

t

µθ,i(r,X
x
θ (t, r))dr

+

∫ s

t

d′∑
k=1

σθ,i,k(r,X
x
θ (t, r−))dBk(r) +

∫ s

t

dJθ,i(r)

(1.1)

Here, {µθ,i : 1 ≤ i ≤ d} and {σθ,i,k : 1 ≤ i, k ≤ d} are the drift and volatility, respectively, satisfy-
ing suitable regularity conditions (to be discussed). For simplicity in our introductory explanations,
we will assume that the jump term Jθ is zero. However, incorporating this jump feature is valuable
in many applied settings, and arises in various fields such as financial engineering [17], stochastic
control [6], and neural SDE models [7]. Accordingly, we will fully integrate and discuss the jump
components in our main results in Section 3.

The primary objective of this paper is to develop an efficient gradient estimator, with respect to θ, for
a large class of path-dependent expectations derived from an SDE. Concretely, we consider

vθ(t, x) = E

[∫ T

t

ρθ(s,X
x
θ (t, s))ds+ gθ(X

x
θ (t, T ))

]
. (1.2)

The value vθ(t, x) represents the expected cumulative reward running Xx
θ from time t to T . Here, ρθ

and gθ represents the reward rate and the terminal reward, respectively. This formulation encompasses
a wide range of science and engineering problems including PDE-constrained optimization [22, 20],
stochastic control and reinforcement learning [8], and neural SDE models [23].

The gradient ∇θvθ(t, x) = (∂θ1vθ(t, x), . . . , ∂θnvθ(t, x)) ∈ Rn is of significant interest in the
sensitivity analysis, learning, and optimization of these models. In particular, finding an efficient
unbiased estimator for ∇θvθ(t, x) with low variance is essential if one is to apply stochastic gradient
descent to find near optimal policies or model parameters within the parametric class θ ∈ Θ.

Under reasonable smoothness and integrability conditions, it is natural to consider the pathwise
differentiation estimator obtained by applying infinitesimal perturbation analysis (IPA) to the sample
path of Xx

θ w.r.t. the ith coordinate of θ. For instance, if ρθ(·) = ρ(·) independent of θ and g = 0,
then we have a representation

∂θivθ(0, x) = E

∫ T

0

d∑
j=1

∂xjρθ(t,X
x
θ (t))∂θiX

x
θ,j(t)dt

 . (1.3)

where ∂θiX
x
θ (t) is the pathwise derivative of the process Xx

θ w.r.t. θi. The processes {Xx
θ,j , ∂θiX

x
θ,j :

i = 1, . . . , n; j = 1, . . . , d} satisfy a system of d+ d · n SDEs [11, Equation (3.31)], which must be
jointly simulated. Therefore, to estimate the gradient, the pathwise differentiation method requires
simulating this d + d · n dimensional SDE. Note that the dimension is linear in n, the dimension
of the parameter space. Contemporary applications of SDEs in physics-informed and data-driven
environments such as deep neural SDEs and deep RL where overparameterization excel, necessitate
a model with exceptionally large n that is often many orders of magnitude larger than d. Hence,
simulating the SDE of dimension d+ d ·n becomes extremely resource-intensive. Motivated by these
applications, we ask the following question:

Can we device an efficient, unbiased, and finite variance estimator
for ∇θvθ(t, x) with a computation time insensitive to n?

The answer is affirmative. Precisely, our main contribution is designing the unbiased generator
gradient estimator of ∇θvθ(t, x) that requires only simulating O(d2) SDEs when the volatility
parameters σθ do not depend on θ and O(d3) SDEs in the general setting, as summarized in Table 1.

We remark that in addition to pathwise differentiation, likelihood ratio-based estimators are also
popular for sensitivity analysis in SDEs; see e.g. Yang and Kushner [26]. However, typically they
are only applicable if σθ is independent of θ and under more restrictive jump structures. When
applicable, likelihood ratio-based estimators could be appealing alternatives as they introduce a
change of measure that represents the derivatives as a functional of the d-dimensional processes Xx

θ .
Nevertheless, these estimators typically have significantly higher variance.
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Table 1: Comparison of the dimensions of SDEs needed to be simulated.

Estimator
If the volatility depends on θ

Yes No

Pathwise Differentiation d+ d · n d+ d · n
Generator Gradient d+ d2 + 1

2d
3 d+ d2

Finally, we apply our estimator to linear-quadratic control problems and test its performance in
optimizing neural-network-parameterized controls. As we increase the number of network parameters
n, the results in Figure 1a and Table 2 highlight a substantial improvement in computational efficiency,
as compared to the pathwise differentiation method, while still maintaining competitive variance
levels. Furthermore, Figure 1a confirms that the computation time of our estimator is robust to
increases in n, even in extremely high-dimensional scenarios with n approaching 108.

1.1 Literature Review

Gradient Estimation: Gradient estimation, particularly likelihood ratios and IPA methods, is crucial
in sensitivity analysis. Foundational works in the late 20th century by Glynn [5, 4] and further
adaptations to the SDE setting [26, 3] highlight these developments. IPA has evolved to apply
stochastic flow techniques to SDEs, both with and without reflecting boundaries [23, 12, 16, 24, 14].

Applications of Gradient Estimators: Gradient estimators are widely used in stochastic control
and reinforcement learning (RL) models. Policy gradient methods in discrete-time RL, including
REINFORCE and deep policy gradient approaches, are notable applications [25, 13, 21]. Continuous-
time RL have been explored using policy gradients in settings with continuous diffusion dynamics [8].
Jump diffusions are important models in financial engineering and stochastic control [17, 15, 9, 6].
Gradient estimators can also be used for optimizing these models. Neural SDE models are modern
computational frameworks that model the dynamics of stochastic systems using a neural-network-
parameterized SDE. Chen et al. [1], Tzen and Raginsky [23], Kidger [10] focus on the continuous
case, while Jia and Benson [7] consider ODEs modulated by compound Poisson jumps. Efficient
gradient estimators in high-dimensional settings are crucial for fitting these SDE models.

Diffusion with Jumps and Stochastic Flow: The main technical tools for this paper are SDEs with
jumps and stochastic flows. Our references are Protter [19], Kunita [11], Øksendal and Sulem [18].

1.2 Remarks on Paper Organizations

The paper is structured as follows: Section 2 outlines the core concepts of our estimator in a zero-jump
setting, focusing on intuitive understanding over technical detail. In Section 3, we introduce the
SDE model with jumps and provide a set of sufficient conditions that rigorously support the earlier
insights. While more general and complex assumptions exist that lead to similar conclusions, these are
presented in Appendix A to align with the concise format of the conference proceedings. The paper
concludes with Section 4, where we conduct numerical experiments on neural-network-parameterized
linear-quadratic control problems, demonstrating the effectiveness of our methodology.

2 Key Methodological Insights

In this section, we motivate our proposed generator gradient estimator by first providing a non-
rigorous derivation. We assume the SDE model (1.1) where the jumps Jθ ≡ 0 and Θ ⊂ Rn is a
bounded open neighbourhood of the origin. W.l.o.g, we are interested in estimating the gradient at
θ = 0 ∈ Θ and t = 0; i.e. ∇θv0(0, x) = ∇θvθ(0, x)|θ=0.

To simplify notation, we denote Xx
θ (t) := Xx

θ (0, t) and Xx
θ (t−) := Xx

θ (0, t−), and the function

aθ,i,j(t, x) :=
1

2

d′∑
k=1

σθ,i,k(t, x)σθ,j,k(t, x). (2.1)
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Also, for function vθ(t, x), we use ∂ivθ(t, x) to denote the space derivative ∂iv
∂x

∣∣
θ,t,x

and ∇ the space
gradient. Similarly, ∂θi and ∇θ denotes the θ partials.

Under sufficient regularity conditions, by the Feynman-Kac formula, vθ in (1.2) is the solution to the
partial differential equation (PDE)

∂tvθ + Lθvθ + ρθ = 0, vθ(T, ·) = gθ (2.2)

for all θ ∈ Θ, where Lθ is the generator of Xx
θ given by

Lθf(t, x) :=

d∑
i=1

µθ,i(t, x)∂if(t, x) +

d∑
i,j=1

aθ,i,j(t, x)∂i∂jf(t, x)

for f that is twice differentiable in x. Assuming enough smoothness, we formally differentiate the
PDE (2.2) w.r.t. θi and then set θ = 0 to obtain

∂t∂θiv0 + L0∂θiv0 + (∂θiL0v0 + ∂θiρ0) = 0, ∂θiv0(T, ·) = ∂θig0. (2.3)

Here, the operator ∂θiL0 is defined as

∂θiL0f(t, x) :=

d∑
j=1

∂θiµ0,j(t, x)∂jf(t, x) +

d∑
j,l=1

∂θia0,j,l(t, x)∂j∂lf(t, x). (2.4)

Interpreted as the derivative of Lθ w.r.t. θ at 0, this inspires the name "generator gradient" method.

Next, define u0 = ∂θiv0. Treating ∂θiL0v0 as fixed, we observe that u0 solves the PDE (2.3) which
is of the form (2.2). Hence, applying the Feynman-Kac formula again to ∂θiv0(0, x) = u0(0, x)
yields the following expectation representation

∂θiv0(0, x) = E

[∫ T

0

∂θiL0v0(t,X
x
0 (t)) + ∂θiρ0(t,X

x
0 (t))dt+ ∂θig0(X

x
0 (T ))

]
. (2.5)

Note that the expression inside the expectation contains only space derivatives (due to ∂θiL0) of the
value function v0 but not the θ derivatives. In particular, if we can estimate the gradient ∇v0(t, x) and
the Hessian matrix H[v0](t, x) := {∂i∂jv0(t, x) : 1 ≤ i, j ≤ d} efficiently, then the representation
in (2.5) will lead to a natural estimator of ∂θiv0(0, x).

To estimate ∇v0(t, x) and H[v0](t, x), we employ the pathwise differentiation estimator from (1.3).
Specifically, under enough regularity conditions, we can interchange the derivatives and integration

∇v0(t, x)⊤ = EZ(t, x)⊤ := E

[∫ T

t

∇ρ⊤0 ∇Xx
0 (t, r)dr +∇g⊤0 ∇Xx

0 (t, T )

]
,

H[v0](t, x) = EH(t, x) := E
[
∇Xx

0 (t, T )
⊤H[g0]∇Xx

0 (t, T ) +
〈
∇g0, H[Xx

0,·](t, T )
〉]

+ E

[∫ T

t

∇Xx
0 (t, r)

⊤H[ρ0]∇Xx
0 (t, r) +

〈
∇ρ0, H[Xx

0,·](t, r)
〉
dr

]
.

(2.6)

Here, we write ∇Xx
0 :=

{
∂aX

x
0,i : i, a = 1, . . . d

}
and H[Xx

0 ] :=
{
∂b∂aX

x
0,i : i, a, b = 1, . . . d

}
.

The notation
〈
∇h,H[Xx

0,·]
〉
:=
∑d

a=1 ∂ahH[Xx
0,a] ∈ Rd×d for h = ρ0, g0. The dependence of

ρ0, g0 on time and the state process is hidden.

We estimate these expectations by simulating the SDEs for {Xx
0 ,∇Xx

0 , H[Xx
0 ]} given by (1.1) and

∂aX
x
0,i = δi,a +

∫ s

t

d∑
l=1

∂lµ0,i∂aX
x
0,ldr +

∫ s

t

d∑
l=1

d′∑
k=1

∂lσ0,i,k∂aX
x
0,ldBk(r)

∂b∂aX
x
0,i =

∫ s

t

d∑
l=1

[
∂lµ0,i∂b∂aX

x
0,l +

d∑
m=1

∂m∂lµ0,i∂aX
x
0,l∂bX

x
0,m

]
dr

+

∫ s

t

d′∑
k=1

d∑
l=1

[
∂lσ0,i,k∂b∂aX

x
0,l +

d∑
m=1

∂m∂lσ0,i,k∂aX
x
0,l∂bX

x
0,m

]
dBk(r)

(2.7)
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where the dependence of the coefficients on r, Xx
0 (t, r−), and z, as well as the dependence of

Xx
0 , ∂aX

x
0 , ∂a∂bX

x
0 on (t, s), (t, r−) are suppressed.

The dimension of these SDEs is d+ d2 + 1
2d

3, where the 1
2 comes from the Hessian being symmetric.

Moreover, when the volatility σ is independent of θ, our method only necessitates estimating ∇v0.
This reduction leads to simulating the SDEs for {Xx

0 ,∇Xx
0 } of dimension only d+ d2.

Assuming sufficient integrability, the unbiasedness of Z implies

E

[∫ T

0

∂θkµ
⊤
0 Z(t,X

x
0 (0, t))dt

]
= E

[∫ T

0

∂θkµ
⊤
0 ∇v0(t,Xx

0 (0, t))dt

]
(2.8)

which we will elaborate upon in (A.1). The same holds for the H(t, x) process as well. Therefore, we
can replace the derivatives ∇v0 with Z and H[v0] with H in (2.5) without changing the expectation.

Also note that producing a sample of Z(t, x) requires simulating the solution to SDEs (1.1) and (2.7)
within time [t, T ] starting from x, I, 0. So, it is not very efficient to compute Z(t,Xx

0 (0, t)) for every
t; a similar issue exists for H as well. This can be addressed by randomizing the integral.

With these considerations, we proceed to define the generator gradient estimator. First, let
∇θL0V0(t, x) be defined by replacing ∂iv(t, x) with Zi(t, x) and ∂j∂iv with Hi,j(t, x) in the defini-
tion (2.4) of ∂θiL0v0(t, x). Then, define the generator gradient estimator as

D(x) := T∇θL0V0(τ,X
x
0 (0, τ)) +

∫ T

0

∇θρ0(t,X
x
0 (t))dt+∇θg0(X

x
0 (T )). (2.9)

where τ ∼ Unif[0, T ] is sampled independently. We can also randomize the integral of
∇θρ0(t,X

x
θ (t)) if the gradient is hard to compute. With the derivation in (2.8), it is easy to see that

ED(x) = ∇θv0(0, x) is unbiased.

In summary, due to the observation in (2.5), we are able to "move" the estimation of ∇θv0 onto that
of ∇v0 and H[v0]. This results in a significant reduction in the dimension of the SDEs we need to
simulate, underlying the remarkable efficiency of our methodology, especially when the dimension n
of θ significantly exceeds d.

3 Jump Diffusions and the Generator Gradient Estimator

In this section, we rigorously formulate a jump diffusion process driven by an SDE. We extend
the generator gradient estimator to this context by first rigorously establishing an expectation rep-
resentation of the derivative as in (2.5). Then, we also validate the representation (2.6) using the
jump version of (2.7). These lead to our generator gradient estimator in the jump diffusion context.
To improve the clarity of the paper (at a cost of generalizability), we will state a set of sufficient
assumptions that are easy to verify. However, we will state and prove our theorems using a set of
more general assumptions in the Appendix A.

We consider jump diffusions on the canonical probability space of càdlàg functions [0, T ] → Rd

generated by SDEs of the form (1.1) where the jump term is given by

Xx
θ,i(t, s) = xi +

∫ s

t

µθ,i(r,X
x
θ (t, r))dr +

∫ s

t

d′∑
k=1

σθ,i,k(r,X
x
θ (t, r−))dBk(r)

+

∫ s

t

∫
Rd′

0

χθ,i(t,X
x
θ (s, r−), z)dÑ(dr, dz).

(3.1)

In this expression, B is a standard Brownian motion in Rd′
; Ñ is a compensated Poisson random

measure with intensity measure dt× ν(dz) with ν a Lévy measure on (Rd′

0 := Rd′\ {0} ,B(Rd′

0 )),
i.e.
∫
Rd′

0
1 ∧ |z|2ν(dz) <∞; the −r notation in Xx

θ (t, r−) denotes the left limit; and the stochastic

integrations are Itô integrals. Here, for a vector/matrix/tensor v ∈ Rd1×d2×d3 , we denote |v|2 :=∑
i,j,k |vi,j,k|2. We further define γ(z) = |z| ∧ 1 and µ(dz) = γ(z)2ν(dz). Then µ is a finite

measure on (Rd′

0 ,B(Rd′

0 )). Also, since we are interested in the gradient at θ = 0, we can assume
w.l.o.g. that Θ is a bounded open neighbourhood of 0.
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The generator of this system of SDEs is Lθ := LC
θ + LJ

θ , where

LC
θ f(t, x) =

d∑
i=1

µθ,i(t, x)∂if(t, x) +

d∑
i,j=1

aθ,i,j(t, x)∂i∂jf(t, x)

LJ
θ f(t, x) =

∫
Rd′

0

[
f(t, x+ χθ(t, x, z))− f(t, x)−

d∑
i=1

χθ,i(t, x, z)∂if(t, x)

]
ν(dz).

(3.2)

for f ∈ C1,2([0, T ],Rd). We remark that for open subsets W,X, the space Ci,j,k([0, T ],W,X)
represents the set of functions f on [0, T ] ×W × X that has continuous mixed partial derivatives
∂at ∂

b
w∂

c
xf on (0, T )×W×X for every a ≤ i, b ≤ j, c ≤ k. Moreover, these mixed partial derivatives

have continuous extensions on [0, T ]×W× X.

3.1 Probabilistic Representation of the Gradient

In this section, we rigorously establish the probabilistic representation of the gradient ∇θv0(0, x)
as outlined in equation (2.5). Our approach leverages the continuous dependence of θ → Xx

θ of
the solutions to (3.1) in a neighbourhood of 0, given sufficient regularity conditions. This behavior
extends the properties associated with stochastic flows, as explained in the work by Kunita [11].

Recall that Θ is a bounded neighbourhood of 0 ∈ Rn. To clarify the assumptions, we enlarge Θ and
consider Θϵ = {θ + v : θ ∈ Θ, v ∈ Bn(0, ϵ)} where Bn(0, ϵ) is the open ball in Rn at 0 of radius ϵ.
Assumption 1. For some ϵ > 0, the following regularity conditions hold

1. The mappings (s, θ, x) → µθ(s, x), σθ(s, x), ρθ(s, x), gθ(s, x) are C0,1,1([0, T ],Θϵ,Rd).
For each z ∈ Rd′

0 , (s, θ, x) → χθ(s, x, z)/γ(z) is C0,1,1([0, T ],Θϵ,Rd). Moreover,
|χθ(s, 0, z)/γ(z)| is uniformly bounded in s ∈ [0, T ] and z ∈ Rd′

0 .

2. The spacial derivatives |∇µθ|, |∇σθ|, and |∇χθ| are uniformly bounded. The θ derivatives
satisfy linear growth

|∇θµθ(s, x)|+ |∇θσθ(s, x)|+
∣∣∣∣∇θχθ(s, x, z)

γ(z)

∣∣∣∣ ≤ ℓ(|x|+ 1)

for all s ∈ [0, T ], x ∈ Rd, z ∈ Rd′
, and θ ∈ Θ.

3. The θ derivatives of the rewards satisfy polynomial growth: for some m ≥ 1,

|∇θρθ(s, x)|+ |∇θgθ(x)| ≤ ℓ(|x|+ 1)m

for all s ∈ [0, T ], x ∈ Rd, and θ ∈ Θ.
Remark. Requirement 1 implies that for each fixed x, the θ derivatives of the coefficients are uniformly
bounded in [0, T ]×Θ, as Θ is assumed to be bounded. So, the seemingly strong requirements of the
θ derivative satisfying the growth condition in items 2 and 3 are not very restrictive. The boundedness
of χθ(s, x, z)/γ(z) in z is relaxed in Assumption 5 in the appendix, allowing unbounded jumps. The
strong condition is the uniform boundedness of |∇µθ|, |∇σθ|, and |∇χθ|. However, this is typically
necessary for the existence and uniqueness of strong solutions to the SDE (3.1).
Assumption 2. Assume that

{
vθ ∈ C1,2([0, T ],Rd) : θ ∈ Θ

}
are classical solutions to the partial-

integro-differential equations (PIDE)

∂tvθ + Lθvθ + ρθ = 0, vθ(T, ·) = gθ

where Lθ = LC
θ + LJ

θ are defined in (3.2). Moreover, vθ and its space derivatives satisfy polynomial
growth: for each θ ∈ Θ, there exists 0 < cθ <∞ and m ≥ 1 s.t.

sup
x∈Rd,t∈[0,T ]

|vθ(t, x)|
(|x|+ 1)m

≤ cθ, sup
x∈Rd,t∈[0,T ]

|∇vθ(t, x)|
(|x|+ 1)m

≤ cθ, sup
x∈Rd,t∈[0,T ]

|H[vθ](t, x)|
(|x|+ 1)m

≤ cθ.

Remark. By classical solution, we mean that vθ satisfies ∂tvθ + Lθvθ + ρθ = 0 on (0, T )×Rd with
its continuous extensions of satisfying vθ(T, ·) = gθ. This is possible, for example, in settings with
C2 terminal rewards. Note that is a stronger requirement compared to the definition in Evans [2].
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As we have motivated in Section 2, Assumption 2 follows from a generalized version of the Feynman-
Kac formula, under additional technical assumptions. Moreover, the growth of vθ and its space
derivatives can be derived from assumptions on the growth of the rewards. However, in order to
not obscure the main message of the paper and to streamline the proof, we directly assume these
properties. We refer interested readers to Kunita [11, Chapter 4] where stochastic flow techniques
similar to the proofs in the paper are employed to establish the PIDE and validate the growth rates.

Theorem 1 (Probabilistic Representation of the Gradient). If Assumptions 1 and 2 are in force, then
θ → vθ(0, x) is differentiable at 0. Moreover, the gradient

∇θv0(0, x) = E

[∫ T

0

∇θL0v0(s,X
x
0 (s)) +∇θρθ(X

x
0 (s))ds+∇θgθ(X

x
0 (T ))

]
,

where ∇θL0 := ∇θLC
0 +∇θLJ

0 s.t. for f(t, x) ∈ C1,2,

∇θLC
θ f(t, x) =

d∑
i=1

∇θµθ,i(t, x)∂if(t, x) +

d∑
i,j=1

∇θaθ,i,j(t, x)∂i∂jf(t, x), (3.3)

∇θLJ
θ f(t, x) =

∫
Rd′

0

[
d∑

i=1

∇θχθ,i(t, x, z) (∂if(t, x+ χθ(t, x, z))− ∂if(t, x))

]
ν(dz). (3.4)

In Theorem 1, we have successfully established an expectation representation of the gradient
∇θv0(0, x) of the form (2.5). This naturally leads to the consideration of using Monte Carlo to
estimate ∇θv0(0, x). However, one observes that the representation in Theorem 1 involves the space
derivatives ∂iv0(t, x) and ∂i∂jv0(t, x), which are usually hard to compute exactly.

In the next section section, following the heuristics in (2.6) we establish conditions on the model
primitives so that the space derivatives ∂iv0(t, x) and ∂i∂jv0(t, x) admit probabilistic representations
as expectations of random processes {Xx

0 ,∇Xx
0 , H[Xx

0 ]} that can be easily simulated.

3.2 Probabilistic Representation of the Space Derivatives

We proceed with introducing assumptions that guarantee Theorem 2, providing representations of
∂iv0(t, x) and ∂i∂jv0(t, x) as illustrated in (2.6). To achieve this, we first need to ensure that the
derivative of the mapping x→ Xx

0 is well defined. This is formally established in Proposition A.1.

Assumption 3. For each z ∈ Rd′

0 , the SDE coefficients (s, x) → (µ0(s, x), σ0(s, x), χ0(s, x, z))
are C0,2([0, T ],Rd). For each i, j = 1, . . . , d, the coefficients and derivatives, seen as functions
(s, x) → (α(s, x), β(s, x), ζ(s, x, ·)) where (α, β, ζ) = (µ0, σ0, χ0/γ), (∂iµ0, ∂iσ0, ∂iχ0/γ), and
(∂j∂iµ0, ∂j∂iσ0, ∂j∂iχ0/γ) are uniformly Lipschitz; i.e. there exists 0 ≤ ℓ < ∞ s.t. for all
s ∈ [0, T ], z ∈ Rd′

|α(s, x)− α(s, x′)|+ |β(s, x)− β(s, x′)|+ |ζ(s, x, z)− ζ(s, x′, z)| ≤ ℓ |x− x′| .

Moreover, |ζ(s, 0, z)| is uniformly bounded for s ∈ [0, T ] and z ∈ Rd′

0 .

In view of this assumption, we consider the following SDEs, as jump versions of (2.7), for which the
strong solutions should be the space derivatives of Xx

0 . Again, the dependence of the coefficients
on r, Xx

0 (t, r−), and z, as well as the dependence of Xx
0 , ∂aX

x
0 , ∂a∂bX

x
0 on (t, s), (t, r−) has been
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suppressed.

∂aX
x
0,i = δi,a +

∫ s

t

d∑
l=1

∂lµ0,i∂aX
x
0,ldr +

∫ s

t

d∑
l=1

d′∑
k=1

∂lσ0,i,k∂aX
x
0,ldBk(r)

+

∫ s

t

d∑
l=1

∂lχ0,i∂aX
x
0,ldÑ(dr, dz)

∂b∂aX
x
0,i =

∫ s

t

d∑
l=1

[
∂lµ0,i∂b∂aX

x
0,l +

d∑
m=1

∂m∂lµ0,i∂aX
x
0,l∂bX

x
0,m

]

+

∫ s

t

d′∑
k=1

d∑
l=1

[
∂lσ0,i,k∂b∂aX

x
0,l +

d∑
m=1

∂m∂lσ0,i,k∂aX
x
0,l∂bX

x
0,m

]
dBk(r)

+

∫ s

t

d∑
l=1

[
∂lχ0,i∂b∂aX

x
0,l +

d∑
m=1

∂m∂lχ0,i∂aX
x
0,l∂bX

x
0,m

]
dÑ(dr, dz).

(3.5)

As we will show in Proposition A.1, under Assumption 3 the process Xx
0 (t, s) has a version that is

twice continuously differentiable in x for every 0 ≤ t < s ≤ T . The processes {∇Xx
0 , H[Xx

0 ]}, as
defined in (3.5), will then correspond to the derivatives. Moreover, these processes, as well as Xx

0 ,
will possess desirable integrability properties.

To guarantee sufficient integrability and to provide a variance bound for our estimator, we also need
to assume growth conditions on the rewards.
Assumption 4. Assume that the mapping x→ ρ0(t, x), g0(x) is C2 for all t ∈ [0, T ]. Moreover, for
h(t, x) = ρ0(t, x) and g0(x) there exists ch s.t.

sup
x∈Rd,t∈[0,T ]

|h(t, x)|
(|x|+ 1)m

≤ ch, sup
x∈Rd,t∈[0,T ]

|∇h(t, x)|
(|x|+ 1)m

≤ ch, sup
x∈Rd,t∈[0,T ]

|H[h](t, x)|
(|x|+ 1)m

≤ ch.

With these assumptions, we validate the representations in (2.6) using the following theorem.
Theorem 2 (Probabilistic Representation of the Space Derivatives). Under Assumptions 3 and 4, the
representations in (2.6) hold with the jump version of {Xx

0 ,∇Xx
0 , H[Xx

0 ]} in (3.1) and (3.5).

3.3 The Generator Gradient Estimator

With Theorems 1 and 2, we construct our generator gradient estimator and show that it is unbiased
with a variance that grows polynomially in x. Recall the estimators Z(t, x) and H(t, x) in (2.6).

By Theorem 2 and the integrability in Proposition A.1 under Assumption 3, the equality (2.8) holds.
Then, following the notation in (2.9), we define

∇θL0V0(t, x) := ∇θL
C
0 V0(t, x) +∇θL

J
0V0(t, x)

where ∇θL
C
0 V0(t, x) and ∇θL

J
0V0(t, x) are defined by replacing ∂iv(t, x) with Zi(t, x) and ∂j∂iv

with Hi,j(t, x) in (3.3) and (3.4), respectively. Then, our estimator D(x) is given by (2.9).
Theorem 3. Suppose Assumptions 1-4 are in force. Then, the generator gradient estimator D(x) is
unbiased; i.e. ED(x) = ∇θv0(0, x). Moreover, the variance Var(D(x)) ≤ C(|x|+ 1)2m+4 has at
most polynomial growth in x, where the constant C can be dependent on other parameters of the
problem but not x.
Remark. The m signifies the growth rate of the rewards and their derivatives. The extra additive
factor 2 in the variance is from the growth of the θ derivative of a0, the volatility squared.

4 Example: Linear System with Quadratic Loss

In this section, we illustrate some analytical properties and the effectiveness of our estimator by
considering a linear quadratic control problem.
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(a) Average runtime for different n. (b) Estimator statistics with n = 102.

Figure 1: Comparisons of 100-sample estimation statistics and averaged runtime.

Let X ∈ Rd be the controlled process, given by the solution to the SDE

Xx(t) = x+

∫ t

0

AXx(s) +BU(t)ds+

∫ t

0

CdB(s),

where B(t) ∈ Rd′
is a standard Brownian motion, U(t) ∈ Rm is the control process that is adapted

to the filtration generated by X , A ∈ Rd×d, B ∈ Rd×m, C ∈ Rd×d′
are non-random matrices. The

objective is to choose an admissible control U(t) that minimizes the quadratic loss

E

[∫ T

0

Xx(t)⊤QXx(t) + U(t)⊤RU(t)dt+Xx(T )⊤QTX
x(T )

]
where Q,QT ∈ Rd×d and R ∈ Rm×m are non-random matrices.

In various applications of interests, the admissible control U(t) is a parameterized function of time
and state U(t) = uθ(t,X

x
θ (t)) where the state process under control uθ is denoted by Xx

θ . The
dimension of θ could potentially be very high—e.g. when uθ is a neural network. To achieve an
optimized loss in this over-parameterized setting, one common approach is to run gradient descent.
Hence, an efficient gradient estimator that scales well with the dimension n of θ is highly desirable.

We compare the performance of the proposed generator gradient estimator and the pathwise differen-
tiation estimator. In this context, these estimators take the following form. The detailed derivations
are presented in Appendix F.1.

The Generator Gradient Estimator: In this setting, our generator gradient estimator in (2.9) is

Di(x) = T∂θiuθ(τ,X
x
θ (τ))

⊤B⊤Z(τ,Xx
θ (τ)) + Tuθ(τ,X

x
θ (τ))

⊤(R+R⊤)∂θiuθ(τ,X
x
θ (τ))

where the definition of Z follows from (2.6), and is given by (F.1) in Appendix F.1. As explained in
(2.9), we also randomize the integral corresponding to the gradient of the reward rate ∇θρ0.

The Pathwise Differentiation Estimator: From (1.3), we find the following IPA estimator that
randomizes the time integral

D̃i(x) = Tuθ(τ,X
x
θ (τ))(R+R⊤)∇uθ(τ,Xx

θ (τ))∂θiX
x
θ (τ) + TXx

θ (τ)
⊤(Q+Q⊤)∂θiX

x
θ (τ)

+ Tuθ(τ,X
x
θ (τ))

⊤(R+R⊤)∂θiuθ(τ,X
x
θ (τ)) +Xx

θ (T )
⊤(QT +Q⊤

T )∂θiX
x
θ (T ).

Here, the pathwise derivatives ∂θiX
x
θ (t) is the solution to (F.3).

We deploy these estimators in an environment where the state variable x ∈ R4 represents the x-y
positions and velocities of a point mass on a 2D plane. The controller applies a force to this mass.
The cost function is designed to encourage the controller to swiftly move the point mass to the origin
with minimal force. The force is state-time-dependent and parameterized through a 4-layer fully
connected neural network with variable width. All computation times are recorded from a Tesla V100
GPU. Further details about the setup of our numerical experiments can be found in Appendix F.2.
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In Figure 1a, we present a comparison of the average runtime for computing a single sample of the
generator gradient and the pathwise differentiation estimators D(x), D̃(x) ∈ Rn, across increasing
values of n the dimension of θ. Our findings indicate that the generator gradient estimator not only
outperforms the widely used pathwise differentiation method across all tested values of n but also
surpasses it by more than an order of magnitude for larger values of n. Additionally, the computation
time for our estimator shows remarkable stability with respect to increases in n, displaying only a
slight uptrend when n ≳ 107.

Figure 1b confirms that, at n = 102, the estimated values by the two estimators are very similar with
high confidence. This confirms that our estimator is consistently estimating the gradient ∇θvθ(0, x).

Table 2: 400-sample standard error (SE) comparison between generator gradient (GG) and pathwise
differentiation (PD) estimators.

n (dimension of θ) 102 1002 5502 21002 3.24e5 1.29e6 5.14e6 1.15e7

Avg SE of GG 5.253 5.785 3.533 1.205 0.965 0.729 0.600 0.407
Avg SE of PD 6.424 5.710 4.453 1.191 1.110 0.935 0.786 0.466
Avg SE ratios 0.971 0.932 0.946 0.903 0.902 0.914 0.926 0.961

Finally, Table 2 presents the standard errors (SE) (F.4) from 400 replications of both estimators,
averaged over the gradient coordinates. It also displayed the averaged ratios of the standard errors
(F.5). We observe averaged SE ratios that are consistently less than 1 for all n, suggesting that our
generator gradient estimator not only provides significantly faster computations as shown in Figure 1a
but also achieves lower estimation variances. Further analysis of the SEs for each gradient coordinate
is conducted and displayed in Figure 2 in Appendix F.2, highlighting similar histogram shapes and
observable reduction in large values of SEs of our estimator.

5 Concluding Remarks

The theoretical results in this paper have the limitation of requiring second-order continuous differ-
entiability and uniform boundedness of the space derivatives of the parameters of the underlying
jump diffusion. These strong conditions, which are standard in the literature of stochastic flows
(cf. [19, 11]) to guarantee global existence and uniqueness of the derivative processes in (3.5), are
necessary to achieve the generality of the results presented in this paper.

However, our generator gradient estimator often works even when coefficients are not continuously
differentiable. This is true if the generator and rewards gradients are defined almost everywhere, and
the derivative processes in (3.5), with almost everywhere derivatives of the SDE parameters, exist
for every t ∈ [0, T ] and satisfy some integrability conditions. Examples include neural networks
parameterized stochastic control with ReLU activation functions, heavy-traffic limits of controlled
multi-server queues, and the Cox–Ingersoll–Ross (CIR) model. For these models, the existence
and integrability of the derivative processes can be checked on a case-by-case basis, allowing the
consistency and unbiasedness of the generator gradient estimator to be established. We confirm this
by numerically investigating the CIR process and an SDE with ReLU drift in Appendix G.
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Appendices
A Generalizations of the Assumptions

A.1 Probabilistic Representation of the Gradient

In this section, we develop a generalized version of Theorem 1, weakening Assumptions 1 and 2.
In particular, we allow discontinuities in time of the SDE coefficients. This flexibility is especially
relevant in applications in data-driven decision-making environments where non-homogeneous SDE
models with estimated drift, volatility, and jump parameters could be piece-wise constant. Moreover,
we also relax the differentiability of the coefficients in the space variable to Lipschitz continuity. We
will state the new set of assumptions, and establish a generalized version of Theorem 1 as in Theorem
1’

We proceed by presenting a critical theorem, along with the necessary assumptions, that forms the
foundation of our probabilistic representation in Theorem 1’.
Assumption 5. Assume that for each θ the coefficients µθ(·, ·), σθ(·, ·), and χθ(·, ·, ·) are jointly
Borel measurable. Moreover, assume the following holds true:

1. At x = 0, the coefficients are bounded: for all p ≥ 2,

sup
θ∈Θ,s∈[0,T ]

[
|µθ(s, 0)|+ |σθ(s, 0)|+

∫
Rd′

0

∣∣∣∣χθ(s, 0, z)

γ(z)

∣∣∣∣p µ(dz)
]
<∞

2. The coefficients are uniform Lipschitz in x, uniformly in s, θ in the following sense: there
exists constants c and {cp : p ≥ 2} s.t.

|µθ(s, x)− µθ(s, x
′)| ≤ c |x− x′| , |σθ(s, x)− σθ(s, x

′)| ≤ c |x− x′| ,
and for any p ≥ 2(∫

Rd′
0

∣∣∣∣χθ(s, x, z)

γ(z)
− χθ(s, x

′, z)

γ(z)

∣∣∣∣p µ(dz)
) 1

p

≤ cp|x− x′|

for all s ∈ [0, T ], x, x′ ∈ Rd, θ ∈ Θ.

3. The coefficients are weakly Lipschitz in θ the following sense: for each p ≥ 2, there
exists a time-dependent positive field

{
κpθ,θ′(s) ∈ R>0 : s ∈ [0, T ], θ, θ′ ∈ Θ

}
s.t. for some

constant ℓp, (∫ T

0

κpθ,θ′(s)ds

) 1
p

≤ ℓp |θ − θ′|

for all θ, θ′ ∈ Θ, and the coefficients satisfy

|µθ(s, x)− µθ′(s, x)|p ≤ κpθ,θ′(s)(|x|+1)p, |σθ(s, x)− σθ′(s, x)|p ≤ κpθ,θ′(s)(|x|+1)p,

and ∫
Rd′

0

∣∣∣∣χθ(s, x, z)

γ(z)
− χθ′(s, x, z)

γ(z)

∣∣∣∣p µ(dz) ≤ κpθ,θ′(s)(|x|+ 1)p

for all s ∈ [0, T ], θ, θ′ ∈ Θ, x ∈ Rd.
Theorem K (Theorem 3.3.1 of Kunita [11]). If Assumption 5 is in force, then
the family of solutions Xx := {Xx

θ (t) : t ∈ [0, T ], θ ∈ Θ} has a version X̂x (i.e.{
∃t ∈ [0, T ], θ ∈ Θ : Xx

θ (t) ̸= X̂x
θ (t)

}
⊂ N with P (N) = 0) that is B([0, T ]) × B(Θ) × F mea-

surable. Moreover, w.p.1, for each θ ∈ Θ, Xx
θ (ω, t) is cadlag in t, and θ → X̂x

θ (ω, ·) seen as a
mapping Θ → (D[0, T ], ∥ · ∥∞) is uniformly continuous on compacts. Furthermore, for any p ≥ 2
there exists bp ∈ (0,∞) s.t.

sup
θ∈Θ

E sup
t∈[0,T ]

|Xx
θ (t)|p ≤ bpp(|x|+ 1)p.
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Remark. Theorem K is an extension of Kunita [11, Theorem 3.3.1] using the a.s. version of
Kolmogorov’s continuity criterion; see Corollary 1 of Protter [19, Theorem 73].

To guarantee that Theorem 1’ holds, the requirement that Assumption 5 holds for all p ≥ 2 can be
relaxed to all p ≤ n + ϵ where n is the dimension of θ. However, the intended application of our
theory focuses on a regime where n ≫ d. So, we adopted this stronger version of Assumption 5.
This also clarifies the presentations of the following assumptions: To guarantee the main results of
this paper, a weaker version of this assumption requires that the assumption holds for all p ≤ 4m+ ϵ,
where m is the growth rate of v, r, g, and their derivatives as in Assumption 8 and 7.

Next, we present additional regularities that implies the probabilistic representation in Theorem 1’.

Assumption 6. For each s ∈ [0, T ] and z ∈ Rd′

0 , the mappings (θ, x) →
µθ(s, x), σθ(s, x), χθ(s, x, z), ρθ(s, x), gθ(s, x) are C1,0(Θ,Rd).
Assumption 7. The measurable reward rate ρθ and terminal reward gθ functions are Lipschitz in θ
in the following sense:

1. There exist m ≥ 1, α > 1, and
{
καθ,θ′(s) ∈ R>0 : s ∈ [0, T ], θ, θ′ ∈ Θ

}
s.t.(∫ T

0

καθ,θ′(s)ds

) 1
α

≤ ℓα |θ − θ′|

for all θ, θ′ ∈ Θ, and the reward rate satisfies

|ρθ(s, x)− ρθ′(s, x)|α ≤ καθ,θ′(s)(|x|+ 1)mα

for all s ∈ [0, T ], θ, θ′ ∈ Θ, x ∈ Rd.

2. For some ℓ ≥ 0, the terminal reward satisfies

|gθ(x)− gθ′(x)| ≤ ℓ|θ − θ′|(|x|+ 1)m.

for all s ∈ [0, T ], θ, θ′ ∈ Θ, x ∈ Rd.

Note that for notation simplicity, w.l.o.g. we use the same καθ,θ′ and ℓα as in part 3 of Assumption 5
to denote the Lipschitz coefficient, and the same m as in Assumption 9.
Remark. It is not hard to see that Assumptions 6 along with 5 and 7 are generalization of Assumption
1; i.e. if Assumption 1 holds then so will Assumptions 6, 5, and 7.

Next, we slightly generalize the growth part in Assumption 2 as in Assumption 9.
Assumption 8. Assume that

{
vθ ∈ C1,2([0, T ],Rd) : θ ∈ Θ

}
is a family of classical solution to the

PIDEs

∂tvθ + Lθvθ + ρθ = 0

vθ(T, ·) = gθ

where Lθ = LC
θ + LJ

θ as defined in (3.2).
Assumption 9. There exists 0 < cv <∞ and m ≥ 1 s.t.

sup
x∈Rd,t∈[0,T ]

|v0(t, x)|
(|x|+ 1)m

≤ cv, sup
x∈Rd,t∈[0,T ]

|∇v0(t, x)|
(|x|+ 1)m

≤ cv, and sup
x∈Rd,t∈[0,T ]

|H[v0](t, x)|
(|x|+ 1)m

≤ cv.

Moreover, for each θ, there exists cθ,v s.t.

sup
x∈Rd,t∈[0,T ]

|∇vθ(t, x)|
(|x|+ 1)m

≤ cθ,v

Theorem 1’. If Assumptions 5, 6, 7, 8, and 9 are in force, then the statement in Theorem 1 hold; i.e.

∇θv0(0, x) = E

[∫ T

0

∇θL0v0(s,X
x
0 (s)) +∇θρθ(X

x
0 (s))ds+∇θgθ(X

x
0 (T ))

]
where ∇θL0 := ∇θLC

0 +∇θLJ
0 are define in (3.3) and (3.4), respectively.
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A.2 Probabilistic Representation of the Space Derivatives

Following the same spirit, in this section, we develop a generalized version of Theorem 2, weakening
the Assumption 3 to the following Assumption:
Assumption 10. For each s ∈ [0, T ], z ∈ Rd′

0 , the coefficients x→ (µ0(s, x), σ0(s, x), χ0(s, x, z))
is second continuously differentiable. Moreover, for each i, j = 1, . . . , d, the coefficients and
derivatives, seen as functions (s, x) → (α(s, x), β(s, x), ζ(s, x, ·)) where (α, β, ζ) = (µ0, σ0, χ0),
(∂iµ0, ∂iσ0, ∂iχ0), and (∂j∂iµ0, ∂j∂iσ0, ∂j∂iχ0) satisfies the following conditions:

1. At x = 0, the coefficients are uniformly bounded in time: for all p ≥ 2,

sup
s∈[0,T ]

[
|α(s, 0)|+ |β(s, 0)|+

∫
Rd′

0

∣∣∣∣ζ(s, 0, z)γ(z)

∣∣∣∣p µ(dz)
]
<∞

2. The coefficients are uniform Lipschitz in x: There exists constants c and {cp : p ≥ 2} s.t.
|α(s, x)− α(s, x′)| ≤ c |x− x′| , |β(s, x)− β(s, x′)| ≤ c |x− x′| ,

and for any p ≥ 2(∫
Rd′

0

∣∣∣∣ζ(s, x, z)γ(z)
− ζ(s, x′, z)

γ(z)

∣∣∣∣p µ(dz)
) 1

p

≤ cp|x− x′|

for all s ∈ [0, T ], x, x′ ∈ Rd.
Proposition A.1. Suppose that Assumption 10 is in force. Then, the family of stochastic flow solutions{
Xx

0 (s, t), 0 ≤ s ≤ t ≤ T : x ∈ Rd
}

of the SDEs (3.1) has a version X̂0 that is second differentiable

in x at any time. Moreover,
{
X̂x

0 ,∇X̂x
0 , H[X̂x

0 ] : x ∈ Rd
}

is a version of the solutions of the systems
of SDEs (3.1) and (3.5). Further, the family of solutions of (3.1) and (3.5) satisfies the following
properties:

1. For each p ≥ 1, there is 0 < bp <∞ s.t.
E sup

t∈[0,T ]

|Xx
0 (t)|p ≤ bpp(|x|+ 1)p

and the derivatives
sup
x∈Rd

E sup
0≤s≤t≤T

|∇Xx
0 (s, t)|p ≤ bpp, sup

x∈Rd

E sup
0≤s≤t≤T

|H[Xx
0 ](s, t)|p ≤ bpp.

2. For any p ≥ 1, there exists 0 < lp <∞ s.t. for all x, x′ ∈ Rd,

E sup
0≤s≤t≤T

|Xx
0 (s, t)−Xx′

0 (s, t)|p ≤ lpp|x− x′|p,

E sup
0≤s≤t≤T

|∇Xx
0 (s, t)−∇Xx′

0 (s, t)|p ≤ lpp|x− x′|p.

A proof of Proposition A.1 is provided in Appendix C.
Remark. We observe that part 2 of Assumption 10 will imply the space derivatives of the coefficients
are bounded, which is used to get the Lp boundedness and Lipschitzness of the derivative processes.
Assumption 10 also ensures that the second derivative is uniformly Lipschitz as well. This is not used
in the proof for the upcoming results.

We establish the following Theorem 2’ generalizing 2. The proof is deferred to Appendix D.
Theorem 2’. Under Assumptions 10 and 4, then (2.6) holds; i.e.

∇v0(t, x)⊤ = E

[∫ T

t

∇ρ⊤0 ∇Xx
0 (t, r)dr +∇g⊤0 ∇Xx

0 (t, T )

]
,

H[v0](t, x) = E

[∫ T

t

∇Xx
0 (t, r)

⊤H[ρ0]∇Xx
0 (t, r) +

〈
∇ρ0, H[Xx

0,·](t, r)
〉
dr

]
+ E

[
∇Xx

0 (t, T )
⊤H[g0]∇Xx

0 (t, T ) +
〈
∇g0, H[Xx

0,·](t, T )
〉]
.

where {Xx
0 ,∇Xx

0 , H[Xx
0 ]} are the strong solutions to (3.1) and (3.5).
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A.3 The Estimator

With Proposition A.1 and Theorem 2’, we are ready to define our generator gradient estimator for
∇θv0(0, x) and show that it is unbiased and has a variance that grows polynomially in x.

First, recall the definition of Z and H in (2.6)

Z(t, x)⊤ :=

∫ T

t

∇ρ⊤0 ∇Xx
0 (t, r)dr +∇g⊤0 ∇Xx

0 (t, T ),

H(t, x) :=

∫ T

t

∇Xx
0 (t, r)

⊤H[ρ0]∇Xx
0 (t, r) +

〈
∇ρ0, H[Xx

0,·](t, r)
〉
dr

+∇Xx
0 (t, T )

⊤H[g0]∇Xx
0 (t, T ) +

〈
∇g0, H[Xx

0,·](t, T )
〉
.

Observe that by Theorem 2’, the integrability in Proposition A.1,

E

∫ T

0

∂θkµ0(t,X
x
0 (0, t))

⊤Z(t,Xx
0 (0, t))dt

=

∫ T

0

dtE

[
∂θkµ0(t,X

x
0 (0, t))

⊤E

[∫ T

t

∇ρ⊤0 ∇X
Xx

0 (0,t)
0 (t, r)dr +∇g⊤0 ∇X

Xx
0 (0,t)

0 (t, T )

∣∣∣∣∣Xx
0 (0, t)

]]

= E

∫ T

0

∂θkµ0(t,X
x
0 (0, t))

⊤∇v0(t,Xx
0 (0, t))dt;

(A.1)
a similar property hold for the H(t, x) process as well. Therefore, we can replace the derivatives ∇v0
with Z and H[v0] with H in Theorem 1’ without changing the expectation, showing the validity of
(2.8). In particular, this implies that the generator gradient estimator defined in (2.9) is unbiased.

Finally, we establish a generalized version Theorem 3 using the assumptions in this section. The
additional proof of this theorem is presented in Appendix E.
Theorem 3’. Suppose Assumptions 4-10 are in force. Then, the generator gradient estimator (2.9) is
unbiased; i.e. ED(x) = ∇θv0(0, x). Moreover, if the α > 1 in item 1 of Assumption 7 is replaced by
α > 2, then the variance Var(D(x)) ≤ C(|x|+ 1)2m+4 has at most polynomial growth in x, where
C can be dependent on other parameters of the problem but not x.
Remark. The m signifies the growth rate of the rewards and their derivatives. The extra additive
factor 2 in the variance is from the growth of the θ derivative of a0, the volatility squared.

B Proof of Theorem 1’

In this section, we prove Theorem 1’ and hence the simplified Theorem 1.

Proof of Theorem 1’. First, we recall Itô’s formula. For f ∈ C1,2([0, T ]× Rd),

df(t,Xx
θ (t)) =

[
∂tf(t,X

x
θ (t)) + (LC

θ f)(t,X
x
θ (t))

]
dt+

d∑
i=1

d′∑
k=1

∂if(t,X
x
θ (t−))σθ,i,k(t,X

x
θ (t))dBk(t)

+ (LJ
θ f)(t,X

x
θ (t))dt+

∫
Rd′

0

[f(t,Xx
θ (t−) + χθ(t,X

x
θ (t−), z))− f(t,Xx

θ (t−))] dÑ(dt, dz),

(B.1)
where the operators LC

θ and LJ
θ are defined in (3.2).

Then, an application of Itô’s formula (B.1) under Assumption 8 and 9 yields the following result for
which the proof is presented in Section B.1.

Lemma 1. For any θ ∈ Θ,

Mθ,θ(t) = vθ(t,X
x
θ (t))− vθ(0, x) +

∫ t

0

ρθ(s,X
x
θ (s))ds

M0,θ(t) = v0(t,X
x
θ (t))− v0(0, x)−

∫ t

0

∂sv0(s,X
x
θ (s)) + Lθv0(s,X

x
θ (s))ds

are martingales for 0 ≤ t ≤ T .
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Therefore,

0 = E[Mθ,θ(T )−M0,θ(T )].

Then, rearranging terms, one gets

vθ(0, x)− v0(0, x)

= Evθ(T,X
x
θ (T ))− v0(T,X

x
θ (T )) +

∫ T

0

ρθ(s,X
x
θ (s))± ρ0(s,X

x
θ (s)) + ∂sv0(s,X

x
θ (s)) + Lθv0(s,X

x
θ (s))ds

(i)
= Egθ(X

x
θ (T ))− g0(X

x
θ (T )) +

∫ T

0

ρθ(s,X
x
θ (s))− ρ0(s,X

x
θ (s)) + Lθv0(s,X

x
θ (s))− L0v0(s,X

x
θ (s))ds

(ii)
= E

∫ T

0

(
LC
θ − LC

0

)
v0(s,X

x
θ (s))ds+

∫ T

0

(
LJ
θ − LJ

0

)
v0(s,X

x
θ (s))ds

+ Egθ(X
x
θ (T ))− g0(X

x
θ (T )) +

∫ T

0

ρθ(s,X
x
θ (s))− ρ0(s,X

x
θ (s))ds

(B.2)
where (i) follows from Assumption 8 that vθ(T, ·) = gθ(·) and ρ0(s, x) = −∂sv0(s, x)−L0v0(s, x)
for all x ∈ Rd and 0 ≤ s < T , and (ii) recalls the definition that Lθ = LC

θ + LJ
θ .

To conclude Theorem 1’, we analyze the finite difference approximations of the above three expecta-
tions, where they correspond to the continuous, the jump, and the rewards part, respectively. The
results are summarized by the following Proposition B.1, whose proof is deferred to Appendix B.2.

Proposition B.1. Under the assumptions of Theorem 1’, for K = C, J ,

lim
θ→0

1

|θ|

∣∣∣∣∣E
[∫ T

0

(
LK
θ − LK

0

)
v0(s,X

x
θ (s))ds

]
− θTE

[∫ T

0

∇θLK
0 v0(s,X

x
0 (s))ds

]∣∣∣∣∣ = 0.

where ∇θLC
0 and ∇θLJ

0 are defined in (3.3) and (3.4) respectively. Moreover,

lim
θ→0

1

|θ|

∣∣∣∣∣E
[∫ T

0

ρθ(s,X
x
θ (s))− ρ0(s,X

x
θ (s))ds

]
− θTE

[∫ T

0

∇θρ0(s,X
x
0 (s))ds

]∣∣∣∣∣ = 0

and

lim
θ→0

1

|θ|
∣∣E [gθ(X

x
θ (T ))− g0(X

x
θ (T ))]− θTE∇θg0(X

x
0 (T ))

∣∣ = 0.

With Proposition B.1 handling each term in (B.2), we conclude that

lim
θ→0

1

|θ|

∣∣∣∣∣vθ(0, x)− v0(0, x)− θTE

[∫ T

0

∇θL0v0(s,X
x
0 (s)) +∇θρ0(X

x
0 (s))ds+∇θg0(X

x
0 (T ))

]∣∣∣∣∣ = 0

B.1 Proof of Lemma 1

Apply Itô’s formula (B.1) to vθ(t,Xx
θ (t)) yield

0 = vθ(t,X
x
θ (t))− vθ(0, x)−

∫ t

0

∂svθ(t,X
x
θ (s))− Lθvθ(t,X

x
θ (s))dt

−
d∑

i=1

d′∑
k=1

∫ t

0

∂ivθ(s,X
x
θ (s−))σθ,i,k(s,X

x
θ (s−))dBk(t)

−
∫ t

0

∫
Rd′

0

[vθ(s,X
x
θ (s−) + χθ(s,X

x
θ (s−), z))− vθ(s,X

x
θ (s−))] dÑ(ds, dz)

=:Mθ,θ(t)− I1(t)− I2(t)
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by Assumption 8, where I1(t) and I2(t) denotes the Itô stochastic integrals on the previous lines,
respectively. Since the integrands are a.s. finite, I1(t) and I2(t) are local martingales. We show that
they are true martingales. First, for I1, apply the Burkholder-Davis-Gundy inequality

E|I1(t)|2 ≤ E sup
t≤T

|I1(t)|2

≤ C

d∑
i=1

d′∑
k=1

E

∫ T

0

|∂ivθ(s,Xx
θ (s))σθ,i,k(s,X

x
θ (s))|

2
ds

≤ CE

∫ T

0

|∇vθ(s,Xx
θ (s))|

2 |σθ(s,Xx
θ (s))|

2
ds

≤ CE

∫ T

0

|∇vθ(s,Xx
θ (s))|

4
dsE

∫ T

0

|σθ(s,Xx
θ (s))− σθ(s, 0) + σθ(s, 0)|4 ds

where C is some constant that could change line by line. Notice that by Assumption 5,

sup
θ∈Θ,t∈[0,T ]

|σθ(t, 0)| =: σ∨ <∞. (B.3)

Therefore, by Assumption 5 item 2, Assumption 9, and Theorem K

E|I1(t)|2 ≤ CE

∫ T

0

(|Xx
θ (s)|+ 1)4mdsE

∫ T

0

(|Xx
θ (s)|+ σ∨)

4ds <∞.

Therefore, I1 is a martingale. For I2, by Kunita [11, Proposition 2.6.1]

E|I2(t)|2 ≤ CE

∫ t

0

∫
Rd′

0

(
vθ(s,X

x
θ (s) + χθ(s,X

x
θ (s), z))− vθ(s,X

x
θ (s−))

γ(z)

)2

µ(dz)ds

(i)
= CE

∫ t

0

∫
Rd′

0

(
∇vθ(s,Xx

θ (s) + ξχθ(s,X
x
θ (s), z))

⊤χθ(s,X
x
θ (s), z)

γ(z)

)2

µ(dz)ds

(ii)
= CE

∫ t

0

∫
Rd′

0

∣∣∣∣χθ(s,X
x
θ (s), z)

γ(z)

∣∣∣∣4 µ(dz)ds · E ∫ t

0

∫
Rd′

0

|∇vθ(s,Xx
θ (s) + ξχθ(s,X

x
θ (s), z))|

4
µ(dz)ds

where (i) follows from the mean value theorem with ξ := ξθ(s,X
x
θ (s), z) ∈ [0, 1], and (ii) follows

from the Cauchy-Schwartz inequality applied to the integral w.r.t. the finite measure P × Leb× µ.
By Assumption 5,

χ4
θ,∨ := sup

s∈[0,T ]

∫
Rd′

0

|χθ(s, 0, z)|4

γ(z)4
µ(dz) <∞

Again, by Assumption 5 item 2 and Theorem K,

E

∫ t

0

∫
Rd′

0

∣∣∣∣χθ(s,X
x
θ (s), z)

γ(z)

∣∣∣∣4 µ(dz)ds ≤ CE

∫ t

0

∫
Rd′

0

∣∣∣∣χθ(s,X
x
θ (s), z)− χθ(s, 0, z)

γ(z)

∣∣∣∣4 µ(dz)ds+ Cχ4
θ,∨

≤ C

(
χ4
θ,∨ + E

∫ t

0

|Xx
θ (s)|4ds

)
<∞.

Also, by Assumption 9 and ξ ∈ [0, 1]

E

∫ t

0

∫
Rd′

0

|∇vθ(s,Xx
θ (s) + ξχθ(s,X

x
θ (s), z))|

4
µ(dz)ds

≤ cθ,vE

∫ t

0

∫
Rd′

0

(|Xx
θ (s)|+ |χθ(s,X

x
θ (s), z))|+ 1)

4m
µ(dz)ds

(i)

≤ C

(
E

∫ t

0

|Xx
θ (s)|4mds+ E

∫ t

0

∫
Rd′

0

|χθ(s,X
x
θ (s), z))|4m

γ(z)4m
µ(dz)ds+ 1

)
<∞
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where (i) follows from µ being a finite measure and γ(z) = |z| ∧ 1 ≤ 1. This shows that I2, hence
Mθ,θ(t) is a martingale.

To show that M0,θ(t) is a martingale, we employ the same derivation with vθ replaced by v0. This
completes the proof of Lemma 1.

B.2 Proof of Proposition B.1

Since Xx is indistinguishable from X̂x, we can use Xx and X̂x interchangeably when evaluating
expectations. Therefore, it is understood that we use X̂x when we need continuity in θ, while we
keep the notation Xx.

In this proof, for notation simplicity, the letter C will denote a constant that could change from line
to line. C can be dependent on the dimensions d, d′, the growth rate m, the horizon T , the Lévy
measure ν, and polynomial power p or α. But it doesn’t depend on θ (or sometimes δ) and x.

The Continuous Part: We prove the claim that the derivative for the continuous part should be

E

∫ T

0

∇θLC
0 v0(s,X

x
0 (s))ds, (B.4)

where ∇θL0 is defined in (3.3).

To proceed, we also claim that

E

∣∣∣∣∣
∫ T

0

(
LC
θ − LC

0

)
v0(s,X

x
θ (s))ds

∣∣∣∣∣ <∞, E

∣∣∣∣∣
∫ T

0

∇θLC
0 v0(s,X

x
0 (s))ds

∣∣∣∣∣ <∞ (B.5)

so that the derivative ratio and the derivative are well-defined. The finiteness of these expectations is
shown below.

To prove the claimed expression (B.4) is indeed the derivative, we consider the limit

lim
θ→0

1

|θ|

∣∣∣∣∣E
[∫ T

0

(
LC
θ − LC

0

)
v0(s,X

x
θ (s))ds

]
− θTE

[∫ T

0

∇θLC
0 v0(s,X

x
0 (s))ds

]∣∣∣∣∣
≤ T lim

θ→0
E

1

T

∫ T

0

1

|θ|
∣∣(LC

θ − LC
0

)
v0(s,X

x
θ (s))− θT∇θLC

0 v0(s,X
x
0 (s))

∣∣ ds (B.6)

To show the r.h.s. go to 0, we first show what’s inside the two integrals is U.I. Consider for α > 1,

E
1

T

∫ T

0

1

|θ|α
∣∣(LC

θ − LC
0

)
v0(s,X

x
θ (s))− θT∇θLC

0 v0(s,X
x
0 (s))

∣∣α ds
≤ 2α−1E

1

T

∫ T

0

1

|θ|α
∣∣(LC

θ − LC
0

)
v0(s,X

x
θ (s))

∣∣α + 2α−1E
1

T

∫ T

0

∣∣∇θLC
0 v0(s,X

x
0 (s))

∣∣α ds
(B.7)

For the first term, consider∣∣(LC
θ − LC

0

)
v0(t, x)

∣∣
= (µθ(t, x)− µ0(t, x))

⊤∇xv0(t, x) +

d∑
i,j=1

(aθ,i,j(t, x)− a0,i,j(t, x)∂i∂jv0(t, x).

≤ |µθ(t, x)− µ0(t, x)| |∇xv0(t, x)|+ |aθ(t, x)− a0(t, x)| |H[v0](t, x)|
(i)

≤ cv(|x|+ 1)m (|µθ(t, x)− µ0(t, x)|+ |aθ(t, x)− a0(t, x)|)

(B.8)
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where (i) follows from Assumption 9. For the second term, recall the definition in (2.1):

|aθ(t, x)− a0(t, x)|

≤
d∑

i,j=1

|aθ,i,j(t, x)− a0,i,j(t, x)|

=
1

2

d∑
i,j=1

∣∣∣∣∣∣
d′∑

k=1

σθ,i,k(t, x)σθ,j,k(t, x)− σ0,i,k(t, x)σ0,j,k(t, x)

∣∣∣∣∣∣
=

1

2

d∑
i,j=1

∣∣∣∣∣∣
d′∑

k=1

[σθ,i,k(t, x)− σ0,i,k(t, x)]σθ,j,k(t, x) + σ0,i,k(t, x) [σθ,j,k(t, x)− σ0,j,k(t, x)]

∣∣∣∣∣∣
≤ 1

2

d∑
i,j=1

d′∑
k=1

|σθ,i,k(t, x)− σ0,i,k(t, x)| |σθ,j,k(t, x)|+ |σ0,i,k(t, x)| |σθ,j,k(t, x)− σ0,j,k(t, x)|

The two terms can be handled in the same way as follows:

1

2

d∑
i,j=1

d′∑
k=1

|σθ,i,k(t, x)− σ0,i,k(t, x)| |σθ,j,k(t, x)|

≤ 1

2

d∑
j=1

|σθ,j,·(t, x)|
d∑

i=1

|σθ,i,·(t, x)− σ0,i,k(t, x)|

≤ 1

2

d d∑
j=1

1

d

√√√√ d′∑
k=1

|σθ,j,·(t, x)|2

d d∑
i=1

1

d

√√√√ d′∑
k=1

|σθ,i,k(t, x)− σ0,i,k(t, x)|2


≤ d

2

√√√√ d∑
j=1

d′∑
k=1

|σθ,j,k(t, x)|2

√√√√ d∑
i=1

d′∑
k=1

|σθ,i,k(t, x)− σ0,i,k(t, x)|2

=
d

2
|σθ(t, x)| |σθ(t, x)− σ0(t, x)|

≤ d

2
(|σθ(t, x)− σθ(t, 0)|+ |σθ(t, 0)|) |σθ(t, x)− σ0(t, x)|

(i)

≤ d

2
(c|x|+ σ∨) |σθ(t, x)− σ0(t, x)| .

where (i) follows from Assumption 5 item 2 and the constant bound for σθ(t, 0) in (B.3). Going back
to inequality (B.7), these bounds implies that

∣∣(LC
θ − LC

0

)
v0(t, x)

∣∣α ≤ 2α−1cv(|x|+ 1)mα (|µθ(t, x)− µ0(t, x)|α + |aθ(t, x)− a0(t, x)|α)
≤ C(|x|+ 1)mα (|µθ(t, x)− µ0(t, x)|α + (c|x|+ σ∨)

α |σθ(t, x)− σ0(t, x)|α)
(i)

≤ C(|x|+ 1)mα
(
καθ,0(t)(|x|+ 1)α + καθ,0(t)(|x|+ 1)2α

)
≤ Cκαθ,0(t)(|x|+ 1)(m+2)α
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for some C that doesn’t depend on θ, where (i) follows from item 3 of Assumption 5. Therefore,

1

|θ|α
E

1

T

∫ T

0

∣∣(LC
θ − LC

0

)
v0(s,X

x
θ (s))

∣∣α ds
≤ C

|θ|α
E

1

T

∫ T

0

καθ,0(s)(|Xx
θ (s)|+ 1)(m+2)αds

(i)
=

C

|θ|α
1

T

∫ T

0

καθ,0(s)E(|Xx
θ (s)|+ 1)(m+2)αds

≤ C

|θ|α

∫ T

0

καθ,0(s)ds sup
θ∈Θ,s∈[0,T ]

E(|Xx
θ (s)|+ 1)(m+2)α

≤ Clαα sup
θ∈Θ

2(m+2)α−1

(
E sup

s∈[0,T ]

|Xx
θ (s)|(m+2)α + 1

)
(ii)

≤ C
(
b
(m+2)α
(m+2)α(|x|+ 1)(m+2)α + 1

)
≤ C(|x|+ 1)(m+2)α

(B.9)

where (i) applies Fubini’s theorem due to the positivity of καθ,0, and (ii) follows from Theorem K.
We have shown that this expectation above is finite and independent of θ. Note that, in particular, this
implies that the first expectation in (B.5) is finite as well.

For the second term in the last line of (B.7), we first consider for matrix M ∈ Rn×d and vector
v ∈ Rd,

|Mv|α =

 n∑
l=1

∣∣∣∣∣
d∑

i=1

Ml,ivi

∣∣∣∣∣
2
α/2

≤ ∥v∥α∞

 n∑
l=1

(
d∑

i=1

|Ml,i|

)2
α/2

≤ |v|α
(

n∑
l=1

d∑
i=1

|Ml,i|

)α

≤ (nd)α−1 |v|α
n∑

l=1

d∑
i=1

|Ml,i|α

Apply this inequality, we obtain

E
1

T

∫ T

0

∣∣∇θLC
0 v0(s,X

x
0 (s))

∣∣α ds
≤ 2α−1E

1

T

∫ T

0

∣∣∣∣∣
d∑

i=1

∇θµ0,i(s,X
x
0 (s))∂iv0(s,X

x
0 (s))

∣∣∣∣∣
α

+

∣∣∣∣∣∣
d∑

i,j=1

∇θa0,i,j(s,X
x
0 (s))∂i∂jv0(s,X

x
0 (s))

∣∣∣∣∣∣
α

ds

(i)

≤ CE
1

T

∫ T

0

(|Xx
0 (s)|+ 1)(m+1)α

 n∑
l=1

d∑
i=1

|∂θlµ0,i(s,X
x
0 (s))|

α
+

n∑
l=1

d∑
i,j=1

|∂θla0,i,j(s,Xx
0 (s))|

α

 ds

(ii)

≤ C

E 1

T

∫ T

0

n∑
l=1

d∑
i=1

|∂θlµ0,i(s,X
x
0 (s))|

2α
+

n∑
l=1

d∑
i,j=1

|∂θla0,i,j(s,Xx
0 (s))|

2α
ds

1/2

(B.10)
where (i) uses Assumption 9 and the previous matrix norm inequality, and (ii) uses Cauchy-Schwartz
inequality. Let el ∈ Rn be the unit vector with the l’th coordinate equal to 1. Now by Assumption 5,
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we have that for fixed ϵ > 0 and l = 1, 2, . . . , n

E
1

T

∫ T

0

|µδel,i(s,X
x
0 (s))− µ0,i(s,X

x
0 (s))|2α+ϵ

δ2α+ϵ
ds ≤ δ−2α−ϵE

1

T

∫ T

0

κ2α+ϵ
δel,0

(s)(1+|Xx
0 (s)|)2α+ϵds.

By the same argument as in (B.9), this is uniformly bounded in δ. Hence

E
1

T

∫ T

0

|∂θlµ0,i(s,X
x
0 (s))|2αds = E

1

T

∫ T

0

lim
δ↓0

∣∣∣∣µδel,i(s,X
x
0 (s))− µ0,i(s,X

x
0 (s))

δ

∣∣∣∣2α ds
= lim

δ↓0
E

1

T

∫ T

0

∣∣∣∣µδel,i(s,X
x
0 (s))− µ0,i(s,X

x
0 (s))

δ

∣∣∣∣2α ds
≤ sup

θ∈Θ

1

|θ|2α
E

1

T

∫ T

0

κ2αθ,0(s)(1 + |Xx
0 (s)|)2αds

≤ ψ1

(B.11)
where, again, by the same argument as in (B.9), ψ1 is chosen to be finite. For the second term in the
last line of (B.10), we consider the quantity

ϕ(p, δ, t, x) :=

d∑
i,j=1

∣∣∣∣∣∣12
d′∑

k=1

σ0,j,k(t, x)
σδel,i,k(t, x)− σ0,i,k(t, x)

δ
+ σ0,i,k(t, x)

σδel,j,k(t, x)− σ0,j,k(t, x)

δ

∣∣∣∣∣∣
p

(i)

≤ d′
p−1

2

d∑
i,j=1

d′∑
k=1

|σ0,j,k(t, x) + σ0,i,k(t, x)|p
κpδel,0(t)

δp
(|x|+ 1)p

(ii)

≤ dd′
p−1√

dd′
κpδel,0(t)

δp
(|x|+ 1)p|σ0(t, x)|p

(iii)

≤ C
κpδel,0(t)

δp
(|x|+ 1)p(|σ0(t, x)− σ0(t, 0)|+ σ∨)

p

≤ C
κpδel,0(t)

δp
(|x|+ 1)2p

(B.12)
where (i) follows from Assumption 5 and (ii) applies Jensen’s inequality and (iii) recalls the
definition in (B.3). Note that the reason we define ϕ(p, δ, t, x) is because

d∑
i,j=1

|∂θla0,i,j(t, x)|
2α

=

d∑
i,j=1

∣∣∣∣∣∣12
d′∑

k=1

σ0,j,k(t, x)∂θlσ0,i,k(t, x) + σ0,i,k(t, x)∂θlσ0,j,k(t, x)

∣∣∣∣∣∣
2α

= lim
δ↓0

ϕ(2α, δ, t, x).

From (B.12), we see that the same argument in (B.9) implies the [0, T ] × Ω integrability of
ϕ(2α + ϵ, δ, s,Xx

0 (s)), uniformly in δ. This then implies that ϕ(2α, ·, s,Xx
0 (s)) is U.I. for δ in

a neighbourhood of 0. Therefore, we see that

E
1

T

∫ T

0

d∑
i,j=1

|∂θla0,i,j(s,Xx
θ (s))|

2α
ds = lim

δ↓0
E

1

T

∫ T

0

ϕ(2α, δ, s,Xx
0 (s))ds

≤ C sup
θ∈Θ

E
1

T

∫ T

0

κθ,0(s)
2α

|θ|2α
(|Xx

0 (s)|+ 1)4αds

≤ ψ2 <∞

(B.13)

Combining these with (B.10), we have establish that

E
1

T

∫ T

0

∣∣∇θLC
0 v0(s,X

x
0 (s))

∣∣α ds ≤ C
√
ndψ1 + nψ2 <∞. (B.14)

In particular, this shows the second expectation in (B.5) is finite as well.
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Therefore, in view of (B.7), (B.9), and (B.14), we conclude that
1

|θ|
∣∣(LC

θ − LC
0

)
v0(s,X

x
θ (s))− θT∇θLC

0 v0(s,X
x
0 (s))

∣∣
is U.I. on (Ω× [0, T ],F × B([0, T ]), P × 1

T Leb). Hence,

lim
θ→0

E
1

T

∫ T

0

1

|θ|
∣∣(LC

θ − LC
0

)
v0(s,X

x
θ (s))− θT∇θLC

0 v0(s,X
x
0 (s))

∣∣ ds
= E

1

T

∫ T

0

lim
θ→0

1

|θ|
∣∣(LC

θ − LC
0

)
v0(s,X

x
θ (s))− θT∇θLC

0 v0(s,X
x
0 (s))

∣∣ ds
We use the mean value theorem to get that for some C > 0 and ξi = ξθ,i(s,X

x
θ (s)) ∈ (0, 1), ηi,j =

ηθ,i,j(s,X
x
θ (s)) ∈ (0, 1),

lim
θ→0

1

|θ|
∣∣(LC

θ − LC
0

)
v0(s,X

x
θ (s))− θT∇θLC

0 v0(s,X
x
0 (s))

∣∣
≤ C lim

θ→0

∣∣∣∣∣
d∑

i=1

∇θµξiθ,i(s,X
x
θ (s))∂iv0(s,X

x
θ (s))−∇θµ0,i(s,X

x
0 (s))∂iv0(s,X

x
0 (s))

∣∣∣∣∣
+ C lim

θ→0

d∑
i,j=1

∣∣∇θaηi,jθ,i,j(s,X
x
θ (s))∂i∂jv0(s,X

x
θ (s))−∇θa0,i,j(s,X

x
0 (s))∂i∂jv0(s,X

x
0 (s))

∣∣
= 0

where the last equality follows from the continuity of (θ, x) → ∇θµθ,i(s, x) and ∇θaθ,i,j(s, x),
x→ ∂iv0(s, x) (Assumption 6) and ∂i∂jv0(s, x) (Assumption 8), and θ → Xx

θ (s) (Theorem K).

Therefore, going back to the limit ratio in (B.6), we have shown that

lim
θ→0

1

|θ|

∣∣∣∣∣E
[∫ T

0

(
LC
θ − LC

0

)
v0(s,X

x
θ (s))ds

]
− θTE

[∫ T

0

∇θLC
0 v0(s,X

x
0 (s))ds

]∣∣∣∣∣ = 0

The Jump Part: Similar to the continuous part, we claim that the derivative should be

E

∫ T

0

∇θLJ
0 v0(s,X

x
0 (s))ds (B.15)

where ∇θLJ
0 is defined in (3.4).

To simplify notation, write(
LJ
θ − LJ

0

)
v0(s,X

x
θ (s)) =

∫
Rd′

0

D1 −D2ν(dz)

where

D1 := v0(s,X
x
θ (s) + χθ(s,X

x
θ (s), z))− v0(s,X

x
θ (s) + χ0(s,X

x
θ (s), z))

D2 :=

d∑
i=1

[χθ,i(s,X
x
θ (s), z)− χ0,i(s,X

x
θ (s), z)] ∂iv0(s,X

x
θ (s)).

Further, we write χθ := χθ(s,X
x
θ (s), z) and χθ,i := χθ,i(s,X

x
θ (s), z) when there is no ambiguity

in the dependence on s,Xx
θ (s), z. Then, apply the mean value theorem to ρ→ v0(s,X

x
θ (s) + ρχθ +

(1− ρ)χ0), there exists ξ = ξθ(s,X
x
θ (s), z) ∈ (0, 1) s.t.

D1 =

d∑
i=1

[χθ,i − χ0,i] ∂iv0(s,X
x
θ (s) + ξχθ + (1− ξ)χ0),

Therefore,

D1 −D2 =

d∑
i=1

[χθ,i − χ0,i] [∂iv0(s,X
x
θ (s) + ξχθ + (1− ξ)χ0)− ∂iv0(s,X

x
θ (s))] . (B.16)
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Again, we consider the limit

lim
θ→0

1

|θ|

∣∣∣∣∣E
[∫ T

0

(
LJ
θ − LJ

0

)
v0(s,X

x
θ (s))ds

]
− θTE

[∫ T

0

∇θLJ
0 v0(s,X

x
0 (s))ds

]∣∣∣∣∣
≤ lim

θ→0
E

∫ T

0

1

|θ|
∣∣(LJ

θ − LJ
0

)
v0(s,X

x
θ (s))− θT∇θLJ

0 v0(s,X
x
0 (s))

∣∣ ds
≤ lim

θ→0
E

∫ T

0

∫
Rd′

0

1

|θ|γ(z)2

∣∣∣∣∣D1 −D2 −
d∑

i=1

θT∇θχ0,i (∂iv0(t, x+ χ0)− ∂iv0(t, x))

∣∣∣∣∣µ(dz)ds
(B.17)

where, as we will show below, the two pre-limit expectations in the first line are finite.

As before, we proceed show that the limit in θ can be exchanged into the triple integration by showing
U.I. of

1

|θ|γ(z)2

∣∣∣∣∣D1 −D2 −
d∑

i=1

θT∇θχ0,i(s,X
s
0(s), z) (∂iv0(s,X

s
0(s) + χ0)− ∂iv0(s,X

s
0(s)))

∣∣∣∣∣ .
(B.18)

on Ω× [0, T ]× Rd′

0 w.r.t. the probability measure P × 1
T Leb× 1

µ(Rd′
0 )
µ. We consider

E
1

T

∫ T

0

1

µ(Rd′
0 )

∫
Rd′
0

1

|θ|αγ(z)2α

∣∣∣∣∣D1 −D2 −
d∑

i=1

θT∇θχ0,i(s,X
s
0(s), z) (∂iv0(s,X

s
0(s) + χ0)− ∂iv0(s,X

s
0(s)))

∣∣∣∣∣
α

µ(dz)ds

≤ E
1

T

∫ T

0

1

µ(Rd′
0 )

∫
Rd′
0

|D1 −D2|α

|θ|αγ(z)2α µ(dz)ds

+ E
1

T

∫ T

0

1

µ(Rd′
0 )

∫
Rd′
0

1

γ(z)2α

∣∣∣∣∣
d∑

i=1

∇θχ0,i(s,X
s
0(s), z) (∂iv0(s,X

s
0(s) + χ0)− ∂iv0(s,X

s
0(s)))

∣∣∣∣∣
α

µ(dz)ds

=: E1 + E2

(B.19)
We consider the two terms separately. For E1, applying the mean value theorem again to (B.16),
there exists ηi = ηθ,i(s,X

x
θ (s), z, ξ) s.t.

D1 −D2 =

d∑
i,j=1

[χθ,i − χ0,i] [ξχθ,j + (1− ξ)χ0,j ] ∂j∂iv0(s,X
x
θ (s) + ηiξχθ + ηi(1− ξ)χ0)

Therefore,

∫
Rd′
0

∣∣∣∣D1 −D2

γ(z)2

∣∣∣∣α µ(dz)

≤ d2(α−1)

∫
Rd′
0

(
d∑

i,j=1

|∂j∂iv0(s,X
x
θ (s) + ηiξχθ + ηi(1− ξ)χ0)|2

)α
2

1

γ(z)2α

√√√√ d∑
i,j=1

|χθ,i − χ0,i|2α |ξχθ,j + (1− ξ)χ0,j |2αµ(dz)

≤ C

(∫
Rd′
0

(
d∑

i,j=1

|∂j∂iv0(s,X
x
θ (s) + ηiξχθ + ηi(1− ξ)χ0)|2

)α

µ(dz)

d∑
i,j=1

∫
Rd′
0

|χθ,i − χ0,i|2α |ξχθ,j + (1− ξ)χ0,j |2α

γ(z)4α
µ(dz)

) 1
2

=: C(I1 · I2)1/2
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We look at I1 and I2 separately. By Assumption 9,

d∑
i=1

d∑
j=1

|∂j∂iv0(s,Xx
θ (s) + ηiξχθ + ηi(1− ξ)χ0)|2

≤
d∑

i=1

|H[v0](s,X
x
θ (s) + ηiξχθ + ηi(1− ξ)χ0)|2

≤
d∑

i=1

c2v (|Xx
θ (s) + ηiξχθ + ηi(1− ξ)χ0)|+ 1)

2m

≤ dc2v (|Xx
θ (s)|+ |χθ|+ |χ0|+ 1)

2m

≤ C

(
|Xx

θ (s)|
2m

+
|χθ|2m

γ(z)2m
+

|χ0|2m

γ(z)2m
+ 1

)
.

where we recall that γ(z) = |z| ∧ 1 ≤ 1. Then, we consider, by Assumption 5, for p ≥ 2

χp
p,∨ := sup

θ′∈Θ,s∈[0,T ]

E

∫
Rd′

0

|χθ′(s, 0, z)|p

γ(z)p
µ(dz) <∞ (B.20)

and for all θ, θ′ ∈ Θ∫
Rd′

0

|χθ′(s,Xx
θ (s), z)− χθ′(s, 0, z)|p

γ(z)p
µ(dz) ≤ cpp|Xx

θ (s)|p.

So, for p ≥ 2∫
Rd′

0

|χθ′(s,Xx
θ (s), z)|

p

γ(z)p
µ(dz) ≤ C|Xx

θ (s)|p +
∫
Rd′

0

|χθ′(s, 0, z)|p

γ(z)p
µ(dz)

≤ C|Xx
θ (s)|p + χp

p,∨.

(B.21)

As µ is a finite measure, we have

I1 =

∫
Rd′

0

(
C

(
|Xx

θ (s)|
2m

+
|χθ|2m

γ(z)2m
+

|χ0|2m

γ(z)2m
+ 1

))α

µ(dz)

≤ C(|Xx
θ (s)|+ 1)2αm.

For I2, we bound

I2 =

d∑
i,j=1

∫
Rd′

0

|χθ,i − χ0,i|2α |ξχθ,j + (1− ξ)χ0,j |2α

γ(z)4α
µ(dz)

≤
d∑

i,j=1

(∫
Rd′

0

|ξχθ,j + (1− ξ)χ0,j |4α

γ(z)4α
µ(dz)

∫
Rd′

0

|χθ,i − χ0,i|4α

γ(z)4α
µ(dz)

)1/2

≤ d

 d∑
j=1

∫
Rd′

0

|ξχθ,j + (1− ξ)χ0,j |4α

γ(z)4α
µ(dz)

d∑
i=1

∫
Rd′

0

|χθ,i − χ0,i|4α

γ(z)4α
µ(dz)

1/2

≤ d24α−1

 d∑
j=1

∫
Rd′

0

|χθ,j |4α + |χ0,j |4α

γ(z)4α
µ(dz)

d∑
i=1

∫
Rd′

0

|χθ,i − χ0,i|4α

γ(z)4α
µ(dz)

1/2

≤ C

(∫
Rd′

0

|χθ|4α + |χ0|4α

γ(z)4α
µ(dz)

∫
Rd′

0

|χθ − χ0|4α

γ(z)4α
µ(dz)

)1/2
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By Assumption 5,

∫
Rd′

0

|χθ − χ0|4α

γ(z)4α
µ(dz) ≤ κ4αθ,0(s)(|Xx

θ (s)|+ 1)4α.

Use this and inequality (B.21), we obtain

I2 =

d∑
i,j=1

∫
Rd′

0

|χθ,i − χ0,i|2α |ξχθ,j + (1− ξ)χ0,j |2α

γ(z)4α
µ(dz)

≤ C
[
2
(
C|Xx

θ (s)|4α + χ4α
4α,∨

)
κ4αθ,0(s)(|Xx

θ (s)|+ 1)4α
]1/2

≤ Cκ4αθ,0(s)
1/2(|Xx

θ (s)|+ 1)4α

In summary, we have

∫
Rd′

0

∣∣∣∣D1 −D2

γ(z)2

∣∣∣∣α µ(dz) ≤ C(I1 · I2)1/2

≤ Cκ4αθ,0(s)
1/4(|Xx

θ (s)|+ 1)(m+2)α.

Therefore, by the same argument as in the derivation (B.9), we conclude that

sup
θ∈Θ

E1 = sup
θ∈Θ

E
1

T

∫ T

0

1

µ(Rd′
0 )

∫
Rd′

0

|D1 −D2|α

|θ|αγ(z)2α
µ(dz)ds

≤ C sup
θ∈Θ

1

|θ|α
E

∫ T

0

κ4αθ,0(s)
1/4(|Xx

θ (s)|+ 1)(m+2)αds

≤ C sup
θ∈Θ

1

|θ|α

∫ T

0

κ4αθ,0(s)
1/4ds · sup

θ∈Θ,s∈[0,T ]

E(|Xx
θ (s)|+ 1)(m+2)α

(i)

≤ C sup
θ∈Θ

1

|θ|α

(∫ T

0

κ4αθ,0(s)ds

)1/4 (
b
(m+2)α
(m+2)α(|x|+ 1)(m+2)α + 1

)
≤ C(|x|+ 1)(m+2)α.

(B.22)

where (i) uses Jensen’s inequality and Theorem K. Note that, with α = 1, this also implies the
finiteness of the first expectation in (B.17).
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For the second term in (B.19), we use the same technique as in the derivation for that of the continuous
part. First, we consider

∫
Rd′

0

1

γ(z)2α

∣∣∣∣∣
d∑

i=1

∇θχ0,i(s, x, z) (∂iv0(s, x+ χ0(s, x, z))− ∂iv0(s, x))

∣∣∣∣∣
α

µ(dz)

≤ C

∫
Rd′

0

1

γ(z)2α

d∑
i=1

|∇θχ0,i(s, x, z) (∂iv0(s, x+ χ0(s, x, z))− ∂iv0(s, x))|α µ(dz)

≤ C

∫
Rd′

0

1

γ(z)2α

d∑
i=1

|∂iv0(s, x+ χ0(s, x, z))− ∂iv0(s, x)|α |∇θχ0,i(s, x, z)|αµ(dz)

(i)
= C

∫
Rd′

0

1

γ(z)2α

d∑
i=1

∣∣∣∣∣∣
d∑

j=1

∂j∂iv0(s, x+ ξiχ0(s, x, z))χ0,j(s, x, z)

∣∣∣∣∣∣
α

n∑
l=1

|∂θlχ0,i(s, x, z)|αµ(dz)

≤ C

∫
Rd′

0

1

γ(z)2α

d∑
i=1

|χ0(s, x, z)|α
∣∣∣∣∣∣

d∑
j=1

|∂j∂iv0(s, x+ ξiχ0(s, x, z))|2
∣∣∣∣∣∣
α
2 n∑

l=1

|∂θlχ0,i(s, x, z)|αµ(dz)

≤ C

∫
Rd′

0

1

γ(z)2α

d∑
i=1

|χ0(s, x, z)|α |H[v0](s, x+ ξiχ0(s, x, z))|α
n∑

l=1

|∂θlχ0,i(s, x, z)|αµ(dz)

(ii)

≤ C

∫
Rd′

0

|χ0(s, x, z)|α

γ(z)2α

d∑
i=1

(|x+ ξiχ0(s, x, z)|+ 1)mα
n∑

l=1

|∂θlχ0,i(s, x, z)|αµ(dz)

(iii)

≤ C

∫
Rd′

0

|χ0(s, x, z)|α

γ(z)2α

[
(|x|+ 1)mα +

|χ0(s, x, z)|mα

γ(z)mα

] d∑
i=1

n∑
l=1

|∂θlχ0,i(s, x, z)|αµ(dz)

≤ C(|x|+ 1)mα
d∑

i=1

n∑
l=1

∫
Rd′

0

|χ0(s, x, z)|α

γ(z)α
|∂θlχ0,i(s, x, z)|α

γ(z)α
µ(dz)

+ C

d∑
i=1

n∑
l=1

∫
Rd′

0

|χ0(s, x, z)|(m+1)α

γ(z)(m+1)α

|∂θlχ0,i(s, x, z)|α

γ(z)α
µ(dz)

≤ C(|x|+ 1)mα
d∑

i=1

n∑
l=1

(∫
Rd′

0

|χ0(s, x, z)|2α

γ(z)2α
µ(dz)

∫
Rd′

0

|∂θlχ0,i(s, x, z)|2α

γ(z)2α
µ(dz)

) 1
2

+ C

d∑
i=1

n∑
l=1

(∫
Rd′

0

|χ0(s, x, z)|2(m+1)α

γ(z)2(m+1)α
µ(dz)

∫
Rd′

0

|∂θlχ0,i(s, x, z)|2α

γ(z)2α
µ(dz)

) 1
2

(iv)

≤ C(|x|+ 1)(m+1)α
d∑

i=1

n∑
l=1

(∫
Rd′

0

|∂θlχ0,i(s, x, z)|2α

γ(z)2α
µ(dz)

) 1
2

where (i) applies the mean value theorem to ρ→ ∂iv0(s, x+ρχ0) to yield the existence of such ξi :=
ξi(s, x, z), (ii) follows from Assumption 9, and (iii) uses Hölder’s inequality ∥fg∥1 ≤ ∥f∥∞∥g∥1
as well as γ(z) ≤ 1, and (iv) follows from (B.21) where we have that for p ≥ 2

∫
Rd′

0

|χ0(s, x, z)|p

γ(z)p
µ(dz) ≤ C(|x|+ 1)p.
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Therefore, by Theorem K and Cauchy-Schwarz inequality,

E2 = E
1

T

∫ T

0

1

µ(Rd′
0 )

∫
Rd′

0

1

γ(z)2α

∣∣∣∣∣
d∑

i=1

∇θχ0,i(s,X
s
0(s), z) (∂iv0(s,X

s
0(s) + χ0)− ∂iv0(s,X

s
0(s)))

∣∣∣∣∣
α

µ(dz)

≤ C

d∑
i=1

n∑
l=1

E
1

T

∫ T

0

(|Xx
0 (s)|+ 1)(m+1)α

(∫
Rd′

0

|∂θlχ0,i(s,X
x
0 (s), z)|2α

γ(z)2α
µ(dz)

)1/2

ds

≤ Cb
(m+1)α
2(m+1)α(|x|+ 1)(m+1)α

d∑
i=1

n∑
l=1

(
E

1

T

∫ T

0

∫
Rd′

0

|∂θlχ0,i(s,X
x
0 (s), z)|2α

γ(z)2α
µ(dz)ds

)1/2

To bound this, as in the continuous part, we check the uniform integrability on Ω× [0, T ]×Rd′

0 w.r.t.
the probability measure P × 1

T Leb× 1
µ(Rd′

0 )
µ when δ is in a sufficiently small neighbourhood of 0

of the derivative ratio

1

γ(z)2α

(
|χδel,i(s,X

x
0 (s), z)− χ0,i(s,X

x
0 (s), z)|

δ

)2α

. (B.23)

To simplify notation, we again denote χθ,i := χθ,i(s,X
x
0 (s), z). To check this, we consider for ϵ ≥ 0

E
1

T

∫ T

0

1

µ(Rd′
0 )

∫
Rd′

0

1

γ(z)2α+ϵ

(
|χδel,i − χ0,i|

δ

)2α+ϵ

µ(dz)ds

=
1

µ(Rd′
0 )
E

1

T

∫ T

0

1

δ2α+ϵ

∫
Rd′

0

(
|χδel,i − χ0,i|

γ(z)

)2α+ϵ

µ(dz)ds

≤ 1

µ(Rd′
0 )

1

δ2α+ϵ
E

1

T

∫ T

0

κ2α+ϵ
δel,0

(s)(|Xx
0 (s)|+ 1)2α+ϵds

≤ C
1

δ2α+ϵ

∫ T

0

κ2α+ϵ
δel,0

(s)ds · E sup
s∈[0,T ]

(|Xx
0 (s)|+ 1)2α+ϵ

≤ Cl2α+ϵ
2α+ϵb

2α+ϵ
2α+ϵ((|x|+ 1)2α+ϵ + 1)

independent of δ. Choose ϵ > 0 will show the U.I. of (B.23). Therefore, we

E2 ≤ C(|x|+ 1)(m+1)α
d∑

i=1

n∑
l=1

(
E

1

T

∫ T

0

1

µ(Rd′
0 )

∫
Rd′

0

|∂θlχ0,i(s,X
x
0 (s), z)|2α

γ(z)2α
µ(dz)ds

)1/2

= C(|x|+ 1)(m+1)α
d∑

i=1

n∑
l=1

(
lim
δ↓0

E
1

T

∫ T

0

1

µ(Rd′
0 )

∫
Rd′

0

1

γ(z)2α

(
|χδel,i − χ0,i|

δ

)2α

µ(dz)ds

)1/2

≤ C(|x|+ 1)(m+2)α

where the last inequality follows from previous derivation with ϵ = 0. In particular, recalling the
definition of E2 in (B.19), this shows that

E

∣∣∣∣∣
∫ T

0

∇θLJ
0 v0(s,X

x
0 (s))ds

∣∣∣∣∣ <∞

as claimed above.
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Therefore, by bounding the two terms in (B.19), we conclude the uniform integrability of (B.18). So,
going back to (B.17), U.I. implies that

lim
θ→0

1

|θ|

∣∣∣∣∣E
[∫ T

0

(
LJ
θ − LJ

0

)
v0(s,X

x
θ (s))ds

]
− θTE

[∫ T

0

∇θLJ
0 v0(s,X

x
0 (s))ds

]∣∣∣∣∣
≤ lim

θ→0
E

∫ T

0

∫
Rd′

0

1

|θ|γ(z)2

∣∣∣∣∣D1 −D2 −
d∑

i=1

θT∇θχ0,i (∂iv0(s,X
x
0 (s) + χ0)− ∂iv0(s,X

x
0 (s)))

∣∣∣∣∣µ(dz)ds
= E

∫ T

0

∫
Rd′

0

1

γ(z)2
lim
θ→0

1

|θ|

∣∣∣∣∣D1 −D2 −
d∑

i=1

θT∇θχ0,i (∂iv0(s,X
x
0 (s) + χ0)− ∂iv0(s,X

x
0 (s)))

∣∣∣∣∣µ(dz)ds
= 0,

where the last step follows from

lim
θ→0

1

|θ|

[
D1 −D2 −

d∑
i=1

θT |θ|∇θχ0,i(s,X
x
0 (s), z) (∂iv0(s,X

x
0 (s) + χ0)− ∂iv0(s,X

x
0 (s)))

]

=

d∑
i=1

(∂iv0(s,X
x
0 (s) + χ0)− ∂iv0(s,X

x
0 (s))) lim

θ→0

1

|θ|
(
χθ,i(s,X

x
θ (s), z)− χ0,i(s,X

x
θ (s), z)− θT∇θχ0,i(s,X

x
0 (s), z)

)
(i)
=

d∑
i=1

(∂iv0(s,X
x
0 (s) + χ0)− ∂iv0(s,X

x
0 (s))) lim

θ→0

1

|θ|
θT (∇θχξiθ,i(s,X

x
θ (s), z)−∇θχ0,i(s,X

x
0 (s), z))

(ii)
= 0.

Here, (i) applies the mean value theorem and (ii) use the continuity of θ → ∇θχξiθ,i(s,X
x
θ (s), z)

as in Assumption 6.

The Rewards Part: We first consider the reward rate r. As in the previous proof, we show the U.I.
of

I1(θ) :=
1

|θ|α
E

1

T

∫ T

0

|ρθ(s,Xx
θ (s))− ρ0(s,X

x
θ (s))|

α
ds

and the finiteness of

I2 :=
1

|θ|α
E

1

T

∫ T

0

|∇θρ0(s,X
x
θ (s))|

α
ds

for some α > 1. By Assumption 7 item 1 and the same derivation as in (B.9),

I1(θ) ≤
C

|θ|α
E

1

T

∫ T

0

καθ,0(s)(|Xx
θ (s)|+ 1)mαds

≤ C

|θ|α

∫ T

0

καθ,0(s)ds sup
θ∈Θ,s∈[0,T ]

E(|Xx
θ (s)|+ 1)mα

≤ C(|x|+ 1)mα

uniformly in θ. Moreover,

E
1

T

∫ T

0

|∂θlρ0(s,Xx
0 (s))|αds = E

1

T

∫ T

0

lim
δ↓0

∣∣∣∣rδel,i(s,Xx
0 (s))− r0,i(s,X

x
0 (s))

δ

∣∣∣∣α ds
= lim

δ↓0
E

1

T

∫ T

0

∣∣∣∣rδel,i(s,Xx
0 (s))− r0,i(s,X

x
0 (s))

δ

∣∣∣∣α ds
≤ sup

θ∈Θ

1

|θ|α
E

1

T

∫ T

0

καθ,0(s)(1 + |Xx
0 (s)|)αds

<∞.
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These results and the continuity of (θ, x) → ∇θr(s, x) and θ → Xx
θ (s) implies that

lim
θ→0

1

|θ|

∣∣∣∣∣E
[∫ T

0

ρθ(s,X
x
θ (s))− ρ0(s,X

x
θ (s))ds

]
− θTE

[∫ T

0

∇θρ0(s,X
x
0 (s))ds

]∣∣∣∣∣
≤ E

[∫ T

0

lim
θ→0

1

|θ|
∣∣ρθ(s,Xx

θ (s))− ρ0(s,X
x
θ (s))− θT∇θρ0(s,X

x
0 (s))

∣∣ ds]
= 0.

For the terminal reward g term, the same proof with the integral removed and s replaced by T will
yield the desired conclusion.

C Proof of Proposition A.1

We note that the statement for Xx
0 and its first derivative holds from directly applying Kunita [11,

Theorem 3.3.2] and the a.s. version of Kolmogorov’s continuity criterion as in Corollary 1 of Protter
[19, Theorem 73].

To show the statement for the second derivative, we apply the proof of Kunita [11, Theorem 3.4.2].
From display (3.43), we look at the random drift:

Mx
a,b,i(r,Ha,b) :=

d∑
l=1

[
∂lµ0,i(r,X

x
0 (s, r))Ha,b,l +

d∑
m=1

∂m∂lµ0,i(r,X
x
0 (s, r))∂aX

x
0,l(s, r)∂bX

x
0,m(s, r)

]

seen as a function of r ∈ [0, T ], H ∈ Rd×d×d, and show that it satisfies the conditions for Kunita
[11, Theorem 3.3.2] with λ = x; i.e. the conditions in Assumption 10.

We note that as µ0 and ∂mµ0(r, x) satisfying item 2 of Assumption 10 for any l,m = 1, . . . , d,

sup
r∈[0,T ]

|∂mµ0(r, x)| = sup
r∈[0,T ]

∣∣∣∣limδ↓0 µ0(r, x+ δem)− µ0(r, x)

δ

∣∣∣∣
≤ sup

r∈[0,T ]

lim
δ↓0

|µ0(r, x+ δem)− µ0(r, x)|
δ

≤ c

is bounded. Same for ∂m∂lµ0.

First, at Ha,b = 0.

sup
r∈[0,T ],x∈Rd

E|Mx
a,b,·(r, 0)|p ≤ C sup

r∈[0,T ],x∈R

d∑
m,l=1

E|∂aXx
0,l(s, r)||∂bXx

0,m(s, r)| <∞.

Second, Mx
a,b,i(r,Ha,b) is clearly uniformly Lipschitz in Ha,b as ∂lµ0 is bounded.

Third, using the boundedness of ∂mµ0 and ∂m∂lµ0, we have

d∑
l=1

|∂lµ0,i(r,X
x
0 (s, r))Ha,b,l − ∂lµ0,i(r,X

y
0 (s, r))Ha,b,l| ≤ C|Xx

0 (s, r)−Xy
0 (s, r)||Ha,b|
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and

d∑
m,l=1

∣∣∣∂m∂lµ0,i(r,X
x
0 (s, r))∂aX

x
0,l(s, r)∂bX

x
0,m(s, r)− ∂m∂lµ0,i(r,X

y
0 (s, r))∂aX

y
0,l(s, r)∂bX

y
0,m(s, r)

∣∣∣
≤

d∑
m,l=1

|∂m∂lµ0,i(r,X
x
0 (s, r))− ∂m∂lµ0,i(r,X

y
0 (s, r))|

∣∣∣∂aXy
0,l(s, r)∂bX

y
0,m(s, r)

∣∣∣
+ |∂m∂lµ0,i(r,X

x
0 (s, r))|

∣∣∣∂aXx
0,l(s, r)∂bX

x
0,m(s, r)− ∂aX

y
0,l(s, r)∂bX

y
0,m(s, r)

∣∣∣
≤

d∑
m,l=1

C|Xx
0 (s, r)−Xy

0 (s, r)|
∣∣∣∂aXy

0,l(s, r)∂bX
y
0,m(s, r)

∣∣∣+ C
∣∣∣∂aXx

0,l(s, r)− ∂aX
y
0,l(s, r)

∣∣∣ ∣∣∂bXx
0,m(s, r)

∣∣
+ C

∣∣∣∂bXx
0,l(s, r)− ∂bX

y
0,l(s, r)

∣∣∣ ∣∣∂aXx
0,m(s, r)

∣∣ .
Therefore, defining Kx,y(r,H) to be the sum of the two, we see that

E

∫ T

0

K(a,b)
x,y (r,H)pdr ≤ C|Ha,b|p|x− y|p + C|x− y|p ≤ C|x− y|p(|Ha,b|+ 1)p.

Here the first inequality follows from the first derivative satisfying the Proposition A.1, which follows
from a direct application of Kunita [11, Theorem 3.3.2].

Similar results can be established for the volatility and the jump coefficients. Therefore, we conclude
the proof by applying Kunita [11, Theorem 3.3.2] to the derivative and the second derivatives.

D Proof of Theorem 2’

Our proof of Theorem 2’ hinges on the ability to exchange the derivative with the expectation and
time integral. To achieve this, first, we use similar techniques as in the proof of Theorem 1’ to prove
the following lemma.

Lemma 2. Under the assumptions of Theorem 2’, for h(t, x) = ρ0(t, x) and g0(x), we have

∂xi
Eh(s,Xx

0 (t, s)) = E∂xi
h(s,Xx

0 (t, s)) = E∇h(s,Xx
0 (t, s))

⊤∂iX
x
0 (t, s) (D.1)

and

∂xj∂xiEh(s,X
x
0 (t, s)) = E∂xj∂xih(s,X

x
0 (t, s))

= E∂iX
x
0 (t, s)

⊤H[h](s,Xx
0 (t, s))∂jX

x
0 (t, s) +∇h(s,Xx

0 (t, s))
⊤∂j∂iX

x
0 (t, s)).

(D.2)
Moreover, there exists a constant C independent of t, s s.t.

E|∂xi
h(s,Xx

0 (t, s))| ≤ C(|x|+ 1)m, and E|∂xj
∂xi

h(s,Xx
0 (t, s))| ≤ C(|x|+ 1)m.

Lemma 2 directly implies that the derivatives of the expected terminal rewards in (2.6) satisfy

∇xEg
⊤
0 (t,X

x
0 (t, T )) = E∇g⊤0 ∇Xx

0 (t, T ),

Hx[Eg
⊤
0 (t,X

x
0 (t, T ))] = E

[
∇Xx

0 (t, T )
⊤H[g0]∇Xx

0 (t, T ) +
〈
∇g0, H[Xx

0,·](t, T )
〉]
.

(D.3)

By the same argument, to prove Theorem 2’, it suffices to show that for the cumulative reward parts
in (2.6), the time integral and space derivatives can be interchanged. First, by Lemma 2, we see that∫ T

t

E|∂xi
ρ0(s,X

x
0 (t, s))|ds <∞, and

∫ T

t

E|∂xj
∂xi

ρ0(s,X
x
0 (t, s))|ds <∞.
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So, by Fubini’s theorem and Lemma 2

E

∫ T

t

∂xi
ρ0(s,X

x
0 (t, s))ds =

∫ T

t

E∂xi
ρ0(s,X

x
0 (t, s))ds

=

∫ T

t

∂xi
Eρ0(s,X

x
0 (t, s))ds

(i)
= ∂xi

∫ T

t

Eρ0(s,X
x
0 (t, s))ds

= ∂xi
E

∫ T

t

ρ0(s,X
x
0 (t, s))ds

where (i) follows from dominated convergence that for y in a ϵ neighbourhood of x,

|∂yiEρ0(s,X
y
0 (t, s))| ≤ E|∂yiρ0(s,X

y
0 (t, s))| ≤ C(|x|+ ϵ+ 1)m

independent of s. Similarly,

E

∫ T

t

∂xj
∂xi

ρ0(s,X
x
0 (t, s))ds = ∂xj

∂xi
E

∫ T

t

ρ0(s,X
x
0 (t, s))ds.

This and (D.3) implies (2.6), completing the proof.

D.1 Proof of Lemma 2

First Space Derivatives: We first show equality (D.1). Consider

∂xi
Eh(s,Xx

0 (t, s)) = lim
δ→0

1

δ
E
[
h(s,Xx+δei

0 (t, s))− h(s,Xx
0 (t, s))

]
. (D.4)

We exchange the limit and the expectation by considering

Eδ−α
∣∣∣h(s,Xx+δei

0 (t, s))− h(s,Xx
0 (t, s))

∣∣∣α
= Eδ−α

∣∣∣∇h(s, ξXx+δej
0 (t, s) + (1− ξ)Xx

0 (t, s))
⊤
(
X

x+δej
0 (t, s)−Xx

0 (t, s)
)∣∣∣α

≤

E ∣∣∣∣∣X
x+δej
0 (t, s)−Xx

0 (t, s)

δ

∣∣∣∣∣
2α

E|∇h(s, ξXx+δej
0 (t, s) + (1− ξ)Xx

0 (t, s))|2α
1/2

where the mean value theorem implies the existence of such r.v. ξ ∈ [0, 1]. For the first term,
Proposition A.1 implies that

E

∣∣∣∣∣X
x+δej
0 (t, s)−Xx

0 (t, s)

δ

∣∣∣∣∣
2α

≤ l2α2α.

For the second term, by Assumption 4

E|∇h(s, ξXx+δej
0 (t, s) + (1− ξ)Xx

0 (t, s))|2α

≤ c2αh E(|Xx+δei
0 (t, s)|+ |Xx

0 (t, s)|+ 1)2αm

≤ c2αh E(|Xx+δei
0 (t, s)−Xx

0 (t, s)|+ 2|Xx
0 (t, s)|+ 1)2αm

≤ C(|x|+ 1)2αm + Cl2αm2αm|δ|2αm

≤ C(|x|+ 1)2αm.

(D.5)

where the last inequality considers |δ| ≤ 1 and C can be chosen so that it doesn’t depend on δ, s, and
t. Therefore, the limit in the r.h.s. of (D.4) can be interchanged with the expectation and we have that

∂xi
Eh(s,Xx

0 (t, s)) = E∂xi
h(s,Xx

0 (t, s))

= E∇h(s,Xx
0 (t, s))

⊤∂iX
x
0 (t, s).
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Also, the previous derivation with α = 1 and taking the limit δ → 0 implies that

E|∂xi
h(s,Xx

0 (t, s))| ≤ C(|x|+ 1)m

where C doesn’t depend on s and t.

Second Space Derivatives: Then, we show equality (D.2). Previous proof implies that

∂xj∂xiEh(s,X0(t, s, x)) = ∂xjE∇h(s,Xx
0 (t, s))

⊤∂iX
x
0 (t, s).

Hence we employ the same strategy to exchange the limit and expectations for the following expres-
sion

lim
δ→0

E
1

δ

[
∇h(s,Xx+δej

0 (t, s))⊤∂iX
x+δej
0 (t, s)−∇h(s,Xx

0 (t, s))
⊤∂iX

x
0 (t, s)

]
= lim

δ→0
E
1

δ
∂iX

x
0 (t, s)

⊤(∇h(s,Xx+δej
0 (t, s))−∇h(s,Xx

0 (t, s)))

+ lim
δ→0

E
1

δ
∇h(s,Xx+δej

0 (t, s))⊤(∂iX
x+δej
0 (t, s)− ∂iX

x
0 (t, s))

(D.6)

We show U.I. for the two terms in (D.6) separately. For the first term, consider

E

∣∣∣∣1δ ∂iXx
0 (t, s)

⊤(∇h(s,Xx+δej
0 (t, s))−∇h(s,Xx

0 (t, s)))

∣∣∣∣α
≤
(
E |∂iXx

0 (t, s)|
2α
E

1

δ2α

∣∣∣∇h(s,Xx+δej
0 (t, s))−∇h(s,Xx

0 (t, s))
∣∣∣2α)1/2

By Proposition A.1, the first expectation is bounded uniformly in s and t. For the second term,
consider

1

δ2α

∣∣∣∇h(s,Xx+δej
0 (t, s))−∇h(s,Xx

0 (t, s)))
∣∣∣2α

=
1

δ2α

(
d∑

i=1

∣∣∣∂ih(s,Xx+δej
0 (t, s))− ∂ih(s,X

x
0 (t, s))

∣∣∣2)α

(i)

≤ 1

δ2α

(∣∣∣Xx+δej
0 (t, s)−Xx

0 (t, s)
∣∣∣2 d∑

i=1

∣∣∣∇∂ih(s, ξiXx+δej
0 (t, s) + (1− ξi)X

x
0 (t, s))

∣∣∣2)α

=
1

δ2α

∣∣∣Xx+δej
0 (t, s)−Xx

0 (t, s)
∣∣∣2α ∣∣∣H[h](s, ξiX

x+δej
0 (t, s) + (1− ξi)X

x
0 (t, s))

∣∣∣2α
(ii)

≤ c2αh
δ2α

∣∣∣Xx+δej
0 (t, s)−Xx

0 (t, s)
∣∣∣2α (|Xx+δej

0 (t, s)−Xx
0 (t, s)|+ |Xx

0 (t, s)|+ 1)2αm

where (i) follows from the mean value theorem with r.v. ξi ∈ [0, 1], and (ii) applies Assumption 4.
Therefore, we have that

E
1

δ2α

∣∣∣∇h(s,Xx+δej
0 (t, s))−∇h(s,Xx

0 (t, s)))
∣∣∣2α

≤ CE
1

δ2α

∣∣∣Xx+δej
0 (t, s)−Xx

0 (t, s)
∣∣∣2α(m+1)

+ C

(
E
[
(|Xx

0 (t, s)|+ 1)4αm
]
E

1

δ4α

∣∣∣Xx+δej
0 (t, s)−Xx

0 (t, s)
∣∣∣4α)1/2

≤ C
[
δ2αml

2α(m+1)
2α(m+1) + C(1 + |x|)2αm

]
where the last inequality follows from Proposition A.1. This is uniformly bounded in δ as δ → 0,
showing U.I. for the first term in (D.6).
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For the second term in (D.6), we consider

E

∣∣∣∣1δ∇h(s,Xx+δej
0 (t, s))⊤(∂iX

x+δej
0 (t, s)− ∂iX

x
0 (t, s))

∣∣∣∣α
≤
(
E
∣∣∣∇h(s,Xx+δej

0 (t, s))
∣∣∣2α · E 1

δ2α

∣∣∣(∂iXx+δej
0 (t, s)− ∂iX

x
0 (t, s))

∣∣∣2α)1/2

≤ lα2αc
α
h

(
E(|Xx+δej

0 (t, s)|+ 1)2αm
)1/2

≤ C(b2αm2αm(|x+ δej |+ 1)2αm + 1)1/2

which is also uniformly bounded in δ as δ → 0.

Therefore, exchanging the limits in (D.6), we obtain

∂xj
∂xi

Eh(s,X0(t, s, x)) = E∂iX
x
0 (t, s)

⊤H[h](s,Xx
0 (t, s))∂jX

x
0 (t, s) +∇h(s,Xx

0 (t, s))
⊤∂j∂iX

x
0 (t, s)).

Moreover, by setting α = 1 and taking the limit as δ → 0 in the preceding derivations, we see that

E|∂xj
∂xi

h(s,X0(t, s, x))| ≤ C(|x|+ 1)m.

where the constant C is uniform in s and t.

E Proof of Theorem 3’

From (A.1), we see that

E

∫ T

0

∇θL0V0(t,X
x
0 (0, t))dt = E

∫ T

0

∇θL0v0(t,X
x
0 (0, t))dt.

Moreover, since τ is independent of F ,

E

∫ T

0

∇θL0V0(t,X
x
0 (0, t))dt = T

∫ T

0

E[∇θL0V0(τ,X
x
0 (0, τ))|τ = t]

1

T
dt

= TEE[∇θL0V0(τ,X
x
0 (0, τ))|τ ]

= ET∇θL0V0(τ,X
x
0 (0, τ))

Therefore, by Theorem 1’, ED(x) = ∇θv0(0, x).

For the variance, we consider

E|T∇θL0V0(τ,X
x
0 (0, τ))|2 =

∫ T

0

E[|T∇θL0V0(t,X
x
0 (0, t))|2|τ = t]

1

T
dt

= TE

∫ T

0

|∇θL0V0(t,X
x
0 (0, t))|2dt

≤ C

∫ T

0

E|∇θµ0|2|Z(t,Xx
0 (0, t))|2 + |∇θa0|2|H(t,Xx

0 (0, t))|2dt

≤ C
1

T

∫ T

0

(
E|∇θµ0|4E|Z(t,Xx

0 (0, t))|4
)1/2

+
(
E|∇θa0|4|H(t,Xx

0 (0, t))|4
)1/2

dt

≤ C

(
1

T

∫ T

0

E|∇θµ0|4dt ·
1

T

∫ T

0

E|Z(t,Xx
0 (0, t))|4dt

)1/2

+ C

(
1

T

∫ T

0

E|∇θa0|4dt ·
1

T

∫ T

0

E|H(t,Xx
0 (0, t))|4dt

)1/2

By (B.11) and (B.13) with α = 2,

1

T

∫ T

0

E|∇θµ0|4dt ≤
1

T
sup
θ∈Θ

1

|θ|4

∫ T

0

κ4θ,0(s)ds sup
s∈[0,T ]

E(|Xx
0 (s)|+ 1)4 ≤ C(|x|+ 1)4
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and similarly
1

T

∫ T

0

E|∇θa0|4dt ≤ C(|x|+ 1)8.

By definition and Proposition A.1, we have that

E|Z(t,Xx
0 (0, t))|4 ≤ CE

∫ T

t

|∇ρ0|4|∇Xx
0 (t, r)|4dr + |∇g0|4|∇Xx

0 (t, T )|4

≤ CE

∫ T

t

(|Xx
0 (t, r)|+ 1)4m|∇Xx

0 (t, r)|4dr + (|Xx
0 (t, r)|+ 1)4m|∇Xx

0 (t, T )|4

≤ 2CT sup
r∈[0,T ]

E(|Xx
0 (t, r)|+ 1)4m|∇Xx

0 (t, r)|4

≤ C(|x|+ 1)4m.

Similarly, E|H(t,Xx
0 (0, t))|4 ≤ C(|x|+ 1)4m. These calculations imply that

E|T∇θL0V0(τ,X
x
0 (0, τ))|2 ≤ C(|x|+ 1)2m+4.

For the reward rate and terminal reward terms, we recall Assumption 10 with the additional Assump-
tion that α > 2. Note that since α > 2, for

|ρθ(t, x)− ρ0(t, x)|2 = |ρθ(t, x)− ρ0(t, x)|α·
2
α

≤ καθ,0(s)
2/α(|x|+ 1)α.

So, we have that

E

∫ T

0

|∇θρ0|2dt
(i)

≤ lim
θ→0

E

∫ T

0

1

|θ|2
|ρθ − ρ0|2dt

≤ sup
θ∈Θ

∫ T

0

E
1

|θ|2
|ρθ − ρ0|2dt

≤ sup
θ∈Θ

∫ T

0

1

|θ|2
καθ,0(s)

2/αdt sup
t∈[0,T ]

E(|Xx
0 (0, t)|+ 1)2m

(ii)

≤

(
sup
θ∈Θ

∫ T

0

1

|θ|2
καθ,0(s)dt

)2/α

C(|x|+ 1)2m

≤ C(|x|+ 1)2m

where (i) uses α > 0 so that the integrand is U.I. in θ ∈ Θ (see (B.11) for a similar proof), and
(ii) uses Jensen’s inequality with 2/α < 1. The same holds for the terminal reward term, with
καθ,θ′ = ℓα|θ − θ′|α integrable.

Therefore, we conclude that Var(|D(x)|) ≤ E|D(x)|2 ≤ C(|x|+1)2m+4,whereC can be dependent
on other parameters but not x.

F Supplementary Materials for Section 4

F.1 Calculating the Estimators

The Generator Gradient Estimator: We compute

∂iv(t, x) = E

∫ T

t

∂xi
ρθ(s,X

x
θ (t, s))ds+ ∂xi

g(Xx
θ (t, T ))

= E

∫ T

t

uθ(s,X
x
θ (t, s))

⊤(R+R⊤)∇uθ(s,Xx
θ (t, s))∂iX

x
θ (t, s)ds

+

∫ T

t

Xx
θ (t, s)

⊤(Q+Q⊤)∂iX
x
θ (t, s)ds+Xx

θ (t, T )
⊤(QT +Q⊤

T )∂iX
x
θ (t, T ).
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Here ∂iXx
θ (t, s) is a column vector. So, replacing it by the Jacobian will yield a row vector. Following

the definition of Z in (2.6), we define

Z(t, x)⊤ :=

∫ T

t

uθ(s,X
x
θ (t, s))(R+R⊤)∇uθ(s,Xx

θ (t, s))∇Xx
θ (t, s)ds

+

∫ T

t

Xx
θ (t, s)

⊤(Q+Q⊤)∇Xx
θ (t, s)ds+Xx

θ (t, T )
⊤(QT +Q⊤

T )∇Xx
θ (t, T ).

(F.1)

Here, the derivative process ∇Xx
θ satisfies the following ODE with random coefficients:

∂iX
x
θ (t, s) = ei +

∫ s

t

(A+B∇uθ(r,Xx
θ (t, r)))∂iX

x
θ (t, r)dr;

or in matrix form:

∇Xx
θ (t, s) = I +

∫ s

t

(A+B∇uθ(r,Xx
θ (t, r)))∇Xx

θ (t, r)dr.

Therefore, in this setting, our generator gradient estimator in (2.9) is

Di(x) = T∂θiuθ(τ,X
x
θ (τ))

⊤B⊤Z(τ,Xx
θ (τ))+Tuθ(τ,X

x
θ (τ))

⊤(R+R⊤)∂θiuθ(τ,X
x
θ (τ)) (F.2)

where Z is given by (F.1). As explained in (2.9), we also randomize the integral corresponding to the
gradient of the reward rate ∇θρ0.

The Pathwise Differentiation Estimator: From (1.3), we construct the following IPA estimator that
randomizes the time integral

D̃i(x) = Tuθ(τ,X
x
θ (τ))(R+R⊤)∇uθ(τ,Xx

θ (τ))∂θiX
x
θ (τ) + TXx

θ (τ)
⊤(Q+Q⊤)∂θiX

x
θ (τ)

+ Tuθ(τ,X
x
θ (τ))

⊤(R+R⊤)∂θiuθ(τ,X
x
θ (τ)) +Xx

θ (T )
⊤(QT +Q⊤

T )∂θiX
x
θ (T ).

Here, the pathwise derivatives ∂θiX
x
θ (t) is the solution the following ODE with random coefficient:

∂θiX
x
θ (t) =

∫ t

0

(A+B∇uθ(s,Xx
θ (s)))∂θiX

x
θ (s) +B∂θiuθ(s,X

x
θ (s))ds. (F.3)

F.2 Numerical Experimentation Details

We conducted the computation time and variance comparison for both estimators using PyTorch. The
computation time data was generated on a system equipped with a PCIE version of Nvidia Tesla
V100 GPU, featuring 32GB of VRAM. Additionally, the system includes a 2-core CPU and 16GB of
RAM, which are used to format and store data. The primary computational tasks are handled by the
GPU.

The data for Table 2 is produced as follows. For each n, we produce 400 i.i.d. GG and PD estimators{
D(j)(x0), D̃

(j)(x0) ∈ Rn : j = 1, . . . , 400
}

. Let

σ̂GG,i :=
1

20

400∑
j=1

D(j)
i (x0)−

1

400

400∑
j=1

D
(j)
i (x0)

2

,

σ̂PD,i :=
1

20

400∑
j=1

D̃(j)
i (x0)−

1

400

400∑
j=1

D̃
(j)
i (x0)

2

.

The “Avg SE of GG" and “Avg SE of PD" entries record

1

n

n∑
i=1

σ̂GG,i and
1

n

n∑
i=1

σ̂GG,i, (F.4)

respectively. The “Avg SE ratios" compute

1

n

n∑
k=1

σ̂GG,i

σ̂PD,i
. (F.5)

36



Figure 2: Histograms comparison of the distribution formed by the standard errors of coordinates of
the estimators. These plots use the same data as that produces Table 2.

The numerical values used for the matrices, initial conditions, and network initializations for the SDE
models can be found in the supplied code.

We further analyze variance by plotting histograms of the distribution formed by the standard errors
of the coordinates of the estimators, as shown in Figure 2. The standard error distribution of the
pathwise differentiation method exhibits a heavier tail compared to our proposed generator gradient
estimator. This aligns with the superior variance performance of our estimator demonstrated in Table
2. Figure 2 also provides insights into the confidence intervals in Figure 1b, which are barely visible
due to high confidence levels. In particular, the generator gradient estimator has tighter confidence
intervals in Figure 1b.
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G Experiments on SDEs with Non-Differentiable Parameters

G.1 CIR Model

In this section, we use the Cox-Ingersoll-Ross (CIR) diffusion as an example to test the validity of
the proposed generator gradient estimator when the differentiability assumptions of the coefficients
are violated. Specifically, consider the one-dimensional process:

Xx
θ (t, s) = x+

∫ s

t

(θ −Xx
θ (t, r))dr +

∫ s

t

√
Xx

θ (t, r)dB(r) (G.1)

for t, s ∈ [0, 2], where x, θ > 0. Note that the volatility σ(t, x) =
√
x is not differentiable at 0,

though it is C∞ for x > 0. A unique strong solution to (G.1) always exists. Moreover, if θ ≥ 1/2,
then Xθ(t) > 0 for all t ∈ [0, 2] almost surely.

We consider the following value function:

vθ(t, x) := E

[∫ T

t

Xx
θ (t, s)ds

]
. (G.2)

We aim to estimate the gradient ∇θvθ(0, x) evaluated at x = 0.1 for multiple values of θ.

Since the pathwise differentiation estimator also suffers from non-differentiability issues, we validate
the generator gradient (GG) estimator by comparing it with the finite difference (FD) estimator.
Specifically, the FD estimator computes

1

h
∆h(θ) :=

1

h

[
vθ+h

2
(0, x)− vθ−h

2
(0, x)

]
(G.3)

using Monte Carlo simulation of the SDE (G.1) and the value function. In this context, the FD
estimator should consistently estimate the gradient evaluated at any θ > 0. The GG estimator is
produced from (2.9). We use the Euler scheme to simulate the SDEs and the derivative processes.
To avoid numerical issues when the Euler discretization of the CIR process crosses 0, we take the
absolute value of the discretized process at each time step.

Table 3: Statistics for 106-sample averaged GG and FD estimator. For the FD estimator, we choose
h = 0.05 in (G.3), resulting in a bias of O(h2).

Value of θ 4 2 0.55

GG ± 95% CI 1.135± 0.0011 1.135± 0.0012 1.134± 0.0019
FD ± 95% CI 1.095± 0.064 1.097± 0.046 1.116± 0.026

Value of θ 0.45 0.2 0.1

GG ± 95% CI 1.134± 0.0023 1.179± 0.112 1.492± 9.759
FD ± 95% CI 1.112± 0.024 1.020± 0.018 0.895± 0.015

Table 3 summarizes the estimated value and confidence interval for both the GG and FD estimators.
We note that a bias of O(h2) is present in the FD case. When θ ≥ 1/2, we observe that even though
Assumptions 1 and 3 are violated, the GG estimator produces results consistent with the FD estimator.
This suggests the validity of the GG estimator even when Assumptions 1 and 3 don’t hold. This
consistency occurs because, in this case, the derivative processes are still well-defined up to the first
time Xx

θ (t) hits 0, which does not happen when θ > 1/2.

However, when θ < 1/2 (cases highlighted in blue in Table 3), the sample paths of the SDE (G.1)
can reach 0. Although the statistics in Table 3 appear consistent, we observe a significant increase in
the variance of the GG estimator as θ decreases. This increase may indicate that the GG estimator is
not consistently estimating the gradient in these cases.
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G.2 SDE with ReLU Drift

In this section, we use the following SDE with ReLU drift as an example to test the validity of the
proposed generator gradient estimator:

Xx
θ (t, s) = x+

∫ s

t

(ReLU(θXx
θ (t, r)) + 1)dr +

∫ s

t

dB(r) (G.4)

for t, s ∈ [0, 2], where θ > 0 and we choose x = −0.1. Note that the +1 in the drift makes it always
positive. So, starting from −0.1, the process should cross 0 (where the drift is non-differentiable)
before time 2 with high probability.

With vθ defined in (G.2), we aim to estimate the gradient ∇θvθ(0, x) evaluated at x = 0.1 for
multiple values of θ using the GG and FD (defined in (G.3)) estimators.

Table 4: Statistics for 106-sample averaged GG and FD estimators. For the FD estimator, we choose
h = 0.05 in (G.3), resulting in a bias of O(h2).

Value of θ 2 1 0.5

GG ± 95% CI 14.91± 0.031 4.087± 0.008 2.300± 0.005
FD ± 95% CI 14.78± 0.570 4.131± 0.192 2.394± 0.127

Table 4 summarizes the estimated values and confidence intervals for both the GG and FD estimators.
Note that a bias of O(h2) is present in the FD case. Despite violations of Assumptions 1 and 3, the
GG estimator still produces consistent results compared to the FD estimator. We note that in this
context, it should be possible to establish the existence and integrability of the derivative processes
for any value of θ.

39



NeurIPS Paper Checklist
1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: The context and contributions of this paper are clearly and accurately stated in
the abstract and the introduction.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We acknowledge the specific parts of the assumptions that could potentially be
stronger than what is necessary. See, for example, the remarks and discussion following
Assumption 1 and 2.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
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Answer: [Yes]
Justification: All theorems, propositions, and lemmas are either proved within the paper
or cited from other works. The assumptions are clearly labeled and discussed. We also
provided intuitive justification for our theoretical results in Section 2.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: The code attached to the submission, if run properly with system configurations
similar to that indicated in the appendix, will produce very similar qualitative results as
that presented in the paper. However, as the neural networks are randomly initialized, the
quantitative outcome might differ.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
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tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [Yes]
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versions (if applicable).
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parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer:[Yes]
Justification: The parameters of the control system in Section 4 are presented in the code.
There is no hyperparameter that needs fine-tuning.
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• The answer NA means that the paper does not include experiments.
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that is necessary to appreciate the results and make sense of them.
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material.
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dence intervals, or statistical significance tests, at least for the experiments that support
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• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: This is fully specified in Appendix F.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: We conform to the NeurIPS Code of Ethics. Anonymity is preserved in this
submission.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [NA]
Justification: This work makes methodological contributions to the SDE gradient estimation
problem. There is no direct social impact associated with this work.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
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• If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

• Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer:[NA]

Justification: There is no high-risk data in this paper.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [NA] .

Justification: The paper does not use existing assets.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
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• If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]

Justification: The paper does not release new assets

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: The paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: The paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

45

paperswithcode.com/datasets


• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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