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A Dataset Documentation and Additional Information563

Below, we include all information required for dataset submissions to the NeurIPS Datasets and564

Benchmarks Track:565

Dataset Documentation and Intended Uses The dataset documentation is provided at the Croissant566

and Huggingface URLs mentioned below. The dataset is mainly intended for evaluating foundational567

VLMs and their shape recognition abilities. The dataset can also be used for learning invariant568

representations using Domain Generalization techniques. Other uses may be possible.569

Dataset URL Our datasets are available for viewing and full download at the following permanent570

link: https://huggingface.co/datasets/arshiahemmat/IllusionBench. The “dataset571

viewer” allows one to select a specific split (i.e., IllusionBench-IN, IllusionBench-LOGO, or572

IllusionBench-ICON). All images are provided in the .png format. The HuggingFace Datasets573

repository service (where our dataset is hosted) automatically generates structured Web standard574

metadata for dataset discovery.575

Croissant Metadata URL Our Croissant metadata record is available at https://huggingface.576

co/api/datasets/arshiahemmat/IllusionBench/croissant.577

Author Statement The authors have collected the conditioning images and generated this dataset578

for research purposes. For this reason, the data usage is allowed under the fair use law and is not579

intended to yield any copyright infringement. There is no warranty of fitness for a particular purpose580

or noninfringement. The authors remain available to edit the dataset to comply with the law. In no581

event shall the authors or the NeurIPS conference be liable for any claim, damages, or other liability582

arising from, out of, or in connection with the usage or release of this dataset.583

Data License This work is openly licensed under CC BY-NC 4.0 (https://creativecommons.584

org/licenses/by-nc/4.0/deed.en).585

Long-Term Hosting, Licensing, and Maintenance Plan We have uploaded our dataset to Hugging-586

Face Datasets (link above). The Licensing information and Croissant metadata URL are available587

above and also available in the HuggingFace URL. Regarding Maintenance of the dataset on the588

HuggingFace servers please refer to the https://huggingface.co/content-guidelines.589

Reproducibility The code for generating the dataset and the experiments are publicly available in590

the following repository https://github.com/arshiahemmat/IllusionBench.591

Haman Annotations We have provided screenshots of annotation forms which were distributed592

among participants in Appendix A.1.593

Attributions This work utilizes stock images to condition generators (as described in Section 3).594

IllusionBench-ICON conditioning images are taken from icons8.com, which makes them freely595

available provided they are attributed using a link (as we do here).596

A.1 Human Annotation Details597

Subsampling for Annotation Given the size of our dataset ( more than 32K samples) performing598

a complete annotation of it would be expensive. Furthermore, since the data is synthesized and we599

perfectly know the class of the shapes represented in each image, the purpose of the annotation600

is simply to verify that the generated images have shapes that are recognisable by humans. For601

this reason, we subsample the generated dataset by enforcing that, for each dataset (i.e., each of602

IllusionBench-IN, IllusionBench-ICON, and IllusionBench-LOGO), at least one conditioning603

image from each class and scene choice is annotated.604

Furthermore, we observe that the difficulty in perceiving an object depends on the choice of the605

hyperparameters that control the diffusion process. For this reason, we additionally enforce that606

images are uniformly sampled from each hyperparameter setting so that annotators are exposed to607

images encompassing the full range of difficulty.608
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Figure 8: Human Annotation screenshots from GoogleForm through which the images are annotated
by human annotators.

Participants Our human evaluation involved 106 participants. The annotators were first instructed609

about the task and required to perform a simple test on 10 images, in order to make sure they610

understood the task to be performed. Annotators participated on a purely volunteer basis and were611

awarded with in-course credit. Participation was not mandatory for any student or course. No risks612

were identified for the annotation process.613

A.2 Generation Hyperparameters614

Data Generator Hyperparameters For data generation, we focused on the Illusion Diffusion615

generative models (demo available here), containing three major components:616

• ControlNet [Zhang et al., 2023a], specifically: controlv1p sd15 qrcode monster617

• Base Model, specifically: RealisticVision V5.1 noVAE, built using Stable Diffusion [Rom-618

bach et al., 2022]619

• Stable Diffusion-guided VAE, specifically: sd-vae-ft-mse620

We used the following generation hyperparameters:621

• Prompts were simply a single word corresponding to the scene types (e.g., “city” or “mu-622

seum”)623

• Guidance-scale was always set to default value 7.5624

• Illusion_strength, which can be used to modulate the strength of abstract shape patterns, was625

selected based on our anecdotal observations regarding an appropriate difficulty level for626

each dataset (see below) and validated using human data annotation (as described above)627

• Sampler was always set to default value Euler628
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The Illusion_strength for the different datasets are as follows:

• {Illusion_strength} of the IllusionBench-LOGO and IllusionBench-IN: [0.75,
0.80, 0.85, 0.90, 1.05, 1.10, 1.15, 1.20, 1.25, 1.35, 1.40, 1.50, 1.60]

• {Illusion_strength} of the IllusionBench-ICON: [0.85, 1.05, 1.25, 1.40]
629

A.3 Limitations630

For future work, we will create more complex images and define more tasks in order to challenge631

models. We have also increased the size of our dataset so that we can train large models using our632

dataset. A current limitation is that we only hide a single shape in each image. Future work could633

extend this to incorporating several objects within the same background. Finally, we also plan to634

experiment with further tasks for compositional understanding and scene understanding of SOTA635

models. We leveraged prompt engineering to report the best possible performance of each model636

in the zero-shot case as described in Appendix B and Section 4, however, improvements may be637

possible. We describe several limitations of the methods explored in this work in Sections 4 and 5.638

A.4 Data Samples639

To illustrate the quality of abstract shape recognition images created for this dataset, we sample 1640

image from each scene type in each dataset and display them in Fig. 9.641

Figure 9: Image Samples from each dataset in our benchmark.
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B Zero-Shot Experiments Details642

B.1 Zero-shot Experiments643

We test our models zero-shot to evaluate their abstract shape recognition abilities. To leverage all644

capabilities of these models, we describe the conditions of our experiments in our prompt. The645

models are then asked to choose the correct shape type among a closed set of options, which include646

both shapes and scene names.647

Let us focus on the predictive task ⌧C . Analogous formulations hold for ⌧S and ⌧C,S . Given that the648

model can correctly assign the class yC
i⇤ to the hidden shape in the scene xC

i⇤ , we provide it with a set649

of options O, which includes all the shapes and scene names considered in the dataset split. We then650

ask the model to predict the shape name from these options.651

Define O = {shape1, shape2, . . . , scene1, scene2, . . .} as the set of possible options. The model’s652

response is evaluated based on whether the correct shape name is present in its output.653

B.2 Models654

In our zero-shot experiments, we evaluate each of the following large vision language models (VLMs):655

• BlipV2-T5 [Li et al., 2023c], a VLM utilizing the T5 architecture [Raffel et al., 2020] for text656

encoding and a state-of-the-art vision encoder, designed for high-performance multimodal657

tasks.658

• CogVLM [Wang et al., 2024], an advanced VLM leveraging a Vision Transformer (ViT)659

[Dosovitskiy et al., 2021] and a powerful language model fine-tuned for vision-language660

reasoning tasks.661

• InstructBlip-T5 [Dai et al., 2023], a model combining the T5 architecture [Raffel et al.,662

2020] for text processing with a highly efficient vision encoder, fine-tuned for instructional663

prompts and multimodal interactions.664

• LLaVA-Next (Vicuna-7b) [Liu et al., 2024b], a VLM using Vicuna-7b-v1.5 [Zheng et al.,665

2024] and CLIP ViT-L/14 [Radford et al., 2021] as text and visual encoders, respectively.666

These are connected via simple projections.667

• Qwen-VL-Chat [Bai et al., 2023], a 9B parameter model employing a cross-attention module668

to link an OpenClip ViT-bigG [Ilharco et al., 2021] vision encoder to a Qwen-7b [Bai et al.,669

2023] text backbone.670

• Llava1.5-7b and 13-b [Liu et al., 2024a], a VLM employing a 7-billion parameter language671

model and advanced visual encoder, connected via efficient projections.672

• InstructBlip-7b and 13b [Dai et al., 2023, 2024], a BLIP [Li et al., 2022] model fine-tuned673

using instruction tuning, using a 7-billion parameter language model and a high-resolution674

vision encoder for precise multimodal understanding.675

• MoE-StableLM, MoE-Qwen, MoE-Phi2 [Lin et al., 2024], a mixture of experts (MoE)676

model combining StableLM architecture [Raffel et al., 2020] with multiple expert models677

for dynamic task specialization and improved performance.678

• GPT-4o, a multimodal version of GPT-4 [OpenAI, 2023], incorporating optimized end-679

to-end multimodal encoding of images, text, and audio for improved multimodal task680

performance.681

• Gemini-Flash [Gemini Team et al., 2023], a high-speed VLM combining the latest advance-682

ments in vision transformers [Dosovitskiy et al., 2021] and language models for rapid and683

accurate multimodal analysis.684

Note that, for the last two models in this list, we are unable to provide any specific information685

regarding their respective architectures or training regimes, as this information has not been made686

publicly available.687

B.3 Prompts688

We use the following general prompt template for our ICL experiments:689
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• T1 Prompt: This image contains a {shape} integrated into a
background, where elements of the background contribute to
forming the {shape}. Identify the {shape} that is represented
in the image by choosing exclusively among the following
options: {shape_options}, {background_classes}. Provide
your response by stating only the single, most accurate class
name that represents the {shape}. You have to respond with a
single word.

• Texture Question Bias: This image contains a {shape} integrated
into a background, where elements of the background contribute
to forming the {shape}. Identify the background that is
represented in the image by choosing exclusively among the
following options: {shape_options}, {background_classes}.
Provide your response by stating only the single, most
accurate class name that represents the background. You have
to respond with a single word.

690

where shape 2 {logo, shape, icon}for the dataset IllusionBench-LOGO, IllusionBench-IN and691

IllusionBench-CI respectively.692
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B.4 Individual Dataset Splits Zero-shot performance (compared Stylized ImageNet)693

Figure 10: Zero-shot Results on IllusionBench-IN. zero-shot shape and scene recall of VLMs on
the IllusionBench-IN dataset.
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Figure 11: Zero-shot Results on IllusionBench-LOGO. zero-shot shape and scene recall of VLMs
on the IllusionBench-LOGO dataset.

Figure 12: Zero-shot Results on IllusionBench-ICON. zero-shot shape and scene recall of VLMs
on the IllusionBench-ICON dataset.
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Figure 13: Zero-shot Results on Stylized ImageNet. zero-shot shape and texture decision of VLMs
on the Stylized ImageNet dataset.

C In-Context Learning Experiments Details694

C.1 In-Context Learning (ICL)695

ICL is a method of adapting a model for an unseen task without any additional training or696

fine-tuning. Specifically, n-shot ICL consists of sequence of labelled demonstrations C =697

{(xi1 , yi1), · · · , (xin , yin)}. These are supplied to a model p✓(y|x) for an unseen task. The la-698

bel corresponding to a test query x⇤ is predicted through the predictive distribution of the model699

conditioned on the demonstration set C alongside an instruction I for the new task:700

p✓(y|C, I) = p✓(y|xi1 , yi1 , · · · xin , yin , I). (1)

This learning method has proven to be an efficient and low-cost method for adapting LLMs to701

downstream tasks [Brown et al., 2020, Schick and Schütze, 2021, Winata et al., 2021, Liu et al.,702

2022]. The success of ICL for LLMs has led to recent research aiming to extend ICL to multi-modal703

models, where labeled demonstrations now contain interleaved image and text modalities [Alayrac704

et al., 2022, Bertini Baldassini et al., 2024, Zhao et al., 2023, Zong et al., 2024].705

C.2 ICL Further Experimental Details706

Considering we restrict evaluations to classes recognised in a zero-shot manner, we use the following707

class counts: 10 for the IllusionBench-LOGO split, 14 for the IllusionBench-IN split, and 6 for708

the icons split, utilizing all 11 scenes of the dataset. To overcome ICL biases like majority voting709

and recency bias, each shape and scene class is represented at most once within the context, with no710

repetitions, and new demonstrations are randomly sampled for each test sample.711
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C.3 Models Description712

In our zero-shot experiments, we evaluate each of the following large vision language models (VLMs):713

714

• LLaVA-Next (Vicuna-7b) [Liu et al., 2024b], a VLM operating at an input image resolution715

of 3362, using Vicuna-7b-v1.5 [Zheng et al., 2024] and CLIP ViT-L/14 [Radford et al.,716

2021] as text and visual encoders, respectively. These are connected via simple projections.717

• Qwen-VL-Chat [Bai et al., 2023], a 9B parameter model with an input resolution of 4482,718

employing a cross-attention module to link an OpenClip ViT-bigG [Ilharco et al., 2021]719

vision encoder to a Qwen-7b [Bai et al., 2023] text backbone.720

• Otter-MPT [Li et al., 2023a], a 9B parameter VLM based on the OpenFlamingo architecture721

[Awadalla et al., 2023], featuring an input image resolution of 2242 and utilizing LLaMA-722

7B [Touvron et al., 2023] and CLIP-ViT-L/14 as text and image backbones, respectively,723

connected through cross-attention.724

• IDEFICS-9B-Instruct [Laurençon et al., 2024], an open-source reproduction of Flamingo725

[Alayrac et al., 2022], with an input image resolution of 2242, using cross-attention trans-726

former blocks to connect LLaMA and OpenClip text and image backbones.727

• MMICL-T5-XXL [Zhao et al., 2023], a 12B parameter model that employs a Q-former [Li728

et al., 2023b] to integrate language and image components within an InstructBlip-FLANT5-729

XXL [Dai et al., 2024] backbone. This model can handle complex prompts with interleaved730

text and images, allowing for text-image references through dummy demonstration tokens,731

and operates at an input image resolution of 2242.732

C.4 Prompts733

We use the following general prompt template for our ICL experiments:734

{TASK_INSTRUCTION}
{demonstration_image_1}
Answer: {demonstration_label_1}
{demonstration_image_2}
Answer: {demonstration_label_2}
...
{demonstration_image_n}
Answer: {demonstration_label_n}
{query_image}
Answer:

735

where demonstration_image_i and demonstration_label_i refer to the image and label for736

the ith demonstration used as the context for predicting the answer for the query image query_image.737

TASK_INSTRUCTION is the instruction used based on the prediction target and the dataset. We used738

the following TASK_INSTRUCTION prompts for predicting the shape, texture, and both the texture739

and shape simultaneously respectively:740
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# Predict shape
TASK_INSTRUCTION =‘This image contains a {shape} integrated into a
background, where elements of the background contribute to forming
the image.
background options: [{BG_OPTIONS}]
{shape} options: [{SHAPE_OPTIONS}]
Identify the {shape} that is represented in the image by choosing
among the provided options. Provide your response by stating only
the single, most accurate option that represents the {shape} in the
image. You have to respond with a single word.’

# Predict texture
TASK_INSTRUCTION = ‘This image contains a {shape} integrated into a
background, where elements of the background contribute to forming
the image.
background options: [{BG_OPTIONS}]
{shape} options: [{SHAPE_OPTIONS}]
Identify the background that is represented in the image by choosing
among the provided options. Provide your response by stating only
the single, most accurate option that represents the background in
the image. You have to respond with a single word.’

# Predict both texture and shape
TASK_INSTRUCTION = ‘This image contains a {shape} integrated into a
background, where elements of the background contribute to forming
the image.
background options: [{BG_OPTIONS}]
{shape} options: [{SHAPE_OPTIONS}]
Identify BOTH the background AND the {shape} that are represented
in the image by choosing among the provided options. Provide your
response by stating only the single, most accurate options that
represent the background and the {shape} in the image respectively.
You have to respond with two words, one predicting the background and
one predicting the {shape}’

741

where shape 2 {logo, object, icon}for the dataset IllusionBench-LOGO, IllusionBench-IN and742

IllusionBench-CI respectively.743

C.5 ICL Results: Exceptions744

We list the exceptions to the general treneds reported in Section 5. We maintain the key takeaway745

headings and format in Section 5 and discuss key exceptions.746

• ICL does not mitigate tendency to predict scene over shape. LLaVA on the task ⌧C (along747

the first row) stands as an exception, where the model demonstrates low scene prediction748

accuracy and non-trivial performance shape accuracy on ICL2 and ICL4.749

• Context selection strategy effects prediction tasks differently.750

– ⌧C : For LLaVA, including the shape through ICL2 or ICL4 for 1 or 2 shots leads to a751

significant performance increase over all other models. This is especially evident for752

1-shot, where we see high shape accuracy values of ICL2: 97.9% and ICL4: 99.9%.753

These high accuracy values indicate that the model exhibits a copying phenomenon754

[Bertini Baldassini et al., 2024], where for 1-shot, it simply copies the label from the755

ICL demonstration, which will have the same test label.756

– ⌧S : QWEN shows an improvement in scene accuracy (for 4-shot, scene accuracies are757

ICL1: 51.4% and ICL3: 88.1%) when the scene is included in the context. Additionally,758

LLaVA exhibits a similar copying phenomenon for scene prediction in ICL3 and ICL4759

as discussed for ⌧C but also shows some improvements over zero-shot for 2-shots.760
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– ⌧C,S : As an exception, OTTER and QWEN show a general increase in scene accuracy761

on ⌧C,S compared to ⌧S , while their shape accuracy remains similar to ⌧C . This762

suggests that predicting both shape and scene and including demonstrations with such763

predictions can help these models better disentangle scene from shape. Again, we764

observe the copying mechanisms in LLaVA described for ⌧C and ⌧S .765

C.6 Individual Dataset Splits ICL Results766

Figure 14: ICL Results on IllusionBench-LOGO. Few-shot shape and texture accuracy of VLMs on
the IllusionBench-LOGO dataset across the different ICL learning tasks and the different prediction
tasks.

Figure 15: ICL Results on IllusionBench-IN. Few-shot shape and texture accuracy of VLMs on
the IllusionBench-IN dataset across the different ICL learning tasks and the different prediction
tasks.
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Figure 16: ICL Results on IllusionBench-ICON. Few-shot shape and texture accuracy of VLMs on
the IllusionBench-ICON dataset across the different ICL learning tasks and the different prediction
tasks.
C.7 Responses From Low Performing Models767

We often observe close to 0% shape accuracy of the LLaVA model on shape prediction tasks across768

all four ICL-constrained ICL prediction tasks when using a higher number of ICL demonstrations.769

Figure 17 illustrates three example responses from the LLaVA model using 4-shot ICL for ICL3,770

which includes the test query background in the ICL demonstrations. From the example model771

responses R1, R2, and R3, it is evident that the LLaVA model tends to produce descriptive and verbose772

responses. Specifically, it fails to be concise and accurate, unlike the other models we investigate773

that usually respond with a single class prediction even with more shots. This verbosity leads to poor774

accuracy as the model fails to adhere to the prompt instructions of predicting a single class, resulting775

in the test class rarely being included in the model’s responses.776

• R1: The image shows a paper sculpture that resembles a stylized
• R2: The image shows a logo integrated into a background that
features a mountainous landscape

• R3: The image shows a beautiful natural scene with a large rock
formation in the ocean

Figure 17: LLaVA verbose responses. Example responses from the LLaVA model for 4-shot shape
prediction (T1) on the ICL3 learning task.

However, Fig. 18 shows example responses from the LLaVA model on the same task and for the777

same test queries as in Fig. 17 but using 2-shots. Observations from responses R1’, R2’, and R3’778

indicate that with fewer shots, the model is much more likely to produce single-class predictions779

or responses that are generally more concise and less descriptive. The differences observed with780

increasing numbers of shots suggest that LLaVA’s ability to correctly process and learn both the781

expected answer format and the task diminishes with a greater number of shots, highlighting its782

limitation as an in-context learner.783
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• R1’: The logo in the image is Tesla.
• R2’: The logo in the image is Starbucks.
• R3’: Audi

Figure 18: LLaVA concise responses. Example responses from the LLaVA model for 2-shot shape
prediction (T1) on the ICL3 learning task for the same test query as in Fig. 17.

D Domain Generalisation Experiments Details784

D.1 Background Details785

Domain generalisation has been a challenging task for image recognition. Several methods have been786

developed to improve training strategies for better generalisability of early specialist visual models,787

which are also applicable to CLIP models. Data augmentation strategies such as MixUp [Yan et al.,788

2020] and RegMixUp [Pinto et al., 2022b] are known to improve generalisation capacity through789

interpolation or extrapolation of data samples outside the training domain for diversity. GroupDRO790

[Sagawa et al., 2019] performs ERM with a re-weighting of classes with larger errors, making them791

more significant. VREx [Krueger et al., 2021] reduces differences in risk across training domains,792

which can decrease a model’s sensitivity. Additionally, prompt learning, a promising approach for793

CLIP-style models, can also be leveraged for domain generalisation. Specifically, we adopt DPLCLIP794

[Zhang et al., 2023b], which trains a prompt generator during the training phase and infers unseen795

domains.796

D.2 Further Experiment Details797

CLIP Model For all experiments, the image encoder backbone of CLIP model is a ResNet50 [He798

et al., 2016]. For full-parameter fine-tuning, we train the whole image encoder, whereas for linear799

probing we only train the projection layer. The inferent prompt template for all methods is “A photo800

of [Class name]”.801

Training Hyperparameters For all experiments, we use a batch size of 32 and the Adam optimiser802

[Kingma and Ba, 2014] with a learning rate of 5e-5. For full parameter fine-tuning, we train the803

model for 1000 steps, and for linear probing, we train the model for 800 steps. For MixUp [Yan et al.,804

2020] and RegMixUp [Pinto et al., 2022b], the alpha and beta are both set to 0.2. For GroupDRO805

[Sagawa et al., 2019], the eta is set to 1e-2. For VREx [Krueger et al., 2021], the penalty weight is set806

to 1.0. For DPLCLIP [Zhang et al., 2023b], the number of domain tokens is 16.807

E Compute Resources808

All experiments are performed on our internal cluster.809

Resources for image generation For the Image generation, we used three A40 GPUs with 45 GB810

RAM with around 65h to generate all of the images in the dataset.811

Resources for zero-shot experiments For the zero-shot experiments, we used eight A40 GPUs with812

45 GB RAM for around 250h total to cover all Zero-shot experiments experiments.813

Resources for in-context learning experiments We perform ICL inference using 8 A40 GPUs with814

45GB RAM for around 168h total to cover all ICL experimental settings.815

Resources for domain generalisation experiments For each fine-tuning CLIP we use a single A40816

GPUs with 45GB RAM for an hour on average for full parameter fine-tuning and half an hour for817

linear probing.818
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