
Appendix

A Distribution Shift in Graph-Structured Data

Distribution shift appears when the joint distribution differs between source domain and target domain
[7, 69]. Assuming that the relationship between the input and class variables is unchanged, there are
two kinds of distribution shift, i.e., covariate shift and label shift (prior probability shift) [70].

A.1 Covariate Shift

Covariate shift [71] refers to changes in the distribution of the input variables, which can be defined
formally as follows:

Definition 1 (Covariate Shift). Covariate shift appears when PS(G) →= PT (G) with the assumption
of PS(Y |G) = PT (Y |G), where PS and PT are the probability distributions of the source and target
domains, respectively.

To deal with covariate shift, it is essential to align PS(Y |H) and PT (Y |H), where H is the repre-
sentation after data attributes passing through the encoder. However, in graph-structured data, node
representation is not only affected by the data attributes but also graph structure. Thus, covariate shift
in graph data can be decoupled as feature shift and structure shift [26].

Definition 2 (Feature Shift). Given the joint distribution of the node attributes and node labels
PT (X,Y), the feature shift is then defined as PS(X,Y) →= PT (X,Y) with the assumption of
PS(Y |G) = PT (Y |G).

Definition 3 (Structure Shift). Given the joint distribution of the adjacency matrix and node labels
PT (A, Y), the structure shift is then defined as PS(A, Y) →= PT (A, Y) with the assumption of
PS(Y |G) = PT (Y |G).

A.2 Label Shift

Label shift refers to changes in the distribution of the class variable Y . It also appears with different
names in the literature and the definitions have slight differences between them.

Definition 4 (Label Shift). Label shift occurs when the distribution of labels changes across two
domains, which is defined as PS(Y) →= PT (Y) where PS(G|Y) = PT (G|Y).

In all, structure shift is unique to graph data due to the non-IID nature caused by node interconnections.
Moreover, the learning of node representations implemented by the GNN will mix the feature shift,
sutructure shift and label shift [32].

B Detailed Description of Datasets

In this section, we provide additional details about the datasets used in our benchmark.

B.1 Dataset Description

• Airport2: The Airport datasets consist of three separate collections corresponding to Brazil (B),
Europe (E), and the USA (U). In these datasets, nodes represent airports and edges denote flight
connections between them. The labels categorize airports by activity levels, measured in terms of
flights or passenger numbers.

• Blog3: Blog1 and Blog2 are disjoint social networks derived from the BlogCatalog dataset. In these
networks, nodes correspond to bloggers, and edges reflect friendships among them. The attributes
for each node consist of keywords from the blogger’s self-description, and each node is assigned
a label denoting its group affiliation. Given that both Blog1 and Blog2 originate from the same
underlying network, their data distributions are nearly identical.

2https://github.com/GentleZhu/EGI/tree/main/data
3https://github.com/shenxiaocam/ACDNE/tree/master/ACDNE_codes/input

16

Table 7: Dataset Statistics.

Dataset # Domains # Nodes # Edges # Homo # Avg Degree # Feat Dims # Labels

Airport
USA (U) 1,190 27,198 0.6978 22.86

241 4BRAZIL (B) 131 2,148 0.4683 16.40
EUROPE (E) 399 11,990 0.4048 30.05

Blog Blog1 (B1) 2,300 66,942 0.3991 29.11 8,189 6Blog2 (B2) 2,896 107,672 0.4002 37.18

ArnetMiner
DBLPv7 (D) 5,484 16,234 0.8198 2.96

6,775 5ACMv9 (A) 9,360 31,112 0.7998 3.32
Citationv1 (C) 8,935 30,196 0.8598 3.38

Twitch

England (EN) 7,126 35,324 0.5560 4.96

3,170 2

Germany (DE) 9,498 153,138 0.6322 16.14
France (FR) 6,549 112,666 0.5595 17.20
Russia (RU) 4,385 37,304 0.6176 8.51
Spain (ES) 4,648 59,382 0.5800 12.78

Porutgal (PT) 1,912 31,299 0.5708 16.40

MAG

China (CN) 101,952 285,991 0.5307 2.81

128 20

Germany (DE) 43,032 127,704 0.5311 2.97
France (FR) 29,262 79,182 0.5732 2.71
Janpan (JP) 37,498 91,412 0.5645 2.44
Russia (RU) 32,833 68,294 0.7682 2.08
USA (US) 132,558 702,482 0.5174 5.30

• ArnetMiner4: These datasets comprise paper citation networks sourced from three distinct origins
as provided by ArnetMiner [72]: "ACMv9" (A), "Citationv1" (C), and "DBLPv7" (D). Each
dataset’s nodes symbolize papers, while edges reflect their citation relationships. Specifically,
"ACMv9" (A) includes papers from ACM spanning 2000 to 2010, "Citationv1" (C) consists of
papers from the Microsoft Academic Graph up to 2008, and "DBLPv7" (D) contains papers from
DBLP collected between 2004 and 2008. The aim is to categorize all papers into five specific
research areas: Databases, Artificial Intelligence, Computer Vision, Information Security, and
Networking.

• Twitch5: Twitch gamer networks from six regions—Germany (DE), England (EN), Spain (ES),
France (FR), Portugal (PT), and Russia (RU)—comprise nodes representing users and connections
that signify friendships among them. Node features include data on users’ preferred games,
geographical location, and streaming habits, among others. Users within these networks are
categorized into two groups based on their use of explicit language.

• MAG6: The MAG dataset, a subset of the Microsoft Academic Graph, is a heterogeneous network
featuring four distinct types of entities: papers (736,389 nodes), authors (1,134,649 nodes), in-
stitutions (8,740 nodes), and fields of study (59,965 nodes). It includes four varieties of directed
relationships linking pairs of entity types: an author’s affiliation with an institution, an author’s
authorship of a paper, paper citations, and papers’ association with fields of study. Each paper
node is enriched with a 128-dimensional word2vec feature vector, while the other entities lack
input node features. The primary task within this dataset involves predicting the publication venue
(conference or journal) for each paper, leveraging information about its content, cited references,
authors, and the affiliations of these authors. Following PairAlign [26], we split the original dataset
into six countries.

B.2 Shift Statistics of Datasets

According to dataset statistics, shown in Table 7 and Figure 4, we measure the degree of domain
shift exhibited in the datasets for each tasks using statistical methods. We use MMD [41], CSS [26],
Kullback-Leibler Divergence to characterize the degree of feature shift, structure shift and label shift.
The results of each tasks is shown in Table 13. We take the average results of all tasks as the shift
statistics for the datasets, shown in Table 8. The 74 tasks compiled by the five carefully selected
datasets can cover all combinations of domain shift scenarios.

4https://github.com/yuntaodu/ASN/tree/main/data
5http://snap.stanford.edu/data/twitch-social-networks.html
6https://zenodo.org/records/10681285

17

Table 8: Domain shifts statistics of GDABench datasets.

Dataset Size Feature Shift Structure Shift Label Shift Domain Num

Blog S 0.0132 0.0802 0.2532 2
Airport S 0 0.2769 0.0351 3
ArnetMiner M 0.0241 0.2074 1.1519 3
Twitch M 0.0468 0.3264 8.6949 6
MAG L 0.0499 0.3960 25.7725 6

0 1 2 3

Labels

24

24.5

25

25.5

26

26.5

27

P
er

ce
n

ta
g
e(

%
)

USA(U)
BRAZIL(B)
EUROPE(E)

0 1 2 3 4 5

Labels

14

15

16

17

18

19

P
er

ce
n

ta
g
e(

%
)

Blog1(B1)
Blog2(B2)

0 1 2 3 4

Labels

10

15

20

25

30

P
er

ce
n

ta
g
e(

%
)

DBLPv7(D)
ACMv9(A)
Citationv1(C)

0 1

Labels

20

30

40

50

60

70

P
er

ce
n

ta
g
e(

%
)

England(EN)
Germany(DE)
France(FR)
Russia(RU)
Spain(ES)
Porutgal(PT) 0 1 2 3 4 5 6 7 8 9 1

0
1
1

1
2

1
3

1
4

1
5

1
6

1
7

1
8

1
9

Labels

0

20

40

60

80

P
er

ce
n

ta
g
e(

%
)

China(CN)
Germany(DE)
France(FR)
Janpan(JP)
Russia(RU)
USA(US)

Figure 4: Label distribution of GDABench datasets.

• Feature shift determined: Tasks ES ↑ PT, PT↑ES, EN↑DE, ED↑EN, FR↑ES, FR↑PT,
ES↑FR, PT↑FR, RU↑ES, ES↑RU, RU↑PT, PT↑RU, RU↑FR and FR↑RU in Twitch. Tasks
JP↑US, US↑JP, JP↑CN and CN↑JP in MAG.

• Sturcture shift determined: Tasks E↑B, B↑E, U↑B, B↑U, U↑E and E↑U in Airport.
Tasks GP↑DE and US↑DE in MAG. Tasks FR↑DE, RU↑EN, RU↑DE, ES↑DE, EN↑RU,
DE↑RU, DE↑ES and DE↑PT in Twitch.

• Lable shift determined: Task FR↑DE in MAG.
• Determined by both feature and structure shift: Tasks D↑A, D↑C, A↑D and C↑D in

ArmetMiner. Tasks FR↑EN, EN↑FR, PT↑EN, EN↑PT, DE↑FR, FR↑DE, PT↑DE and
EN↑ES in Twitch. Tasks JP↑FR, RU↑PT, RU↑CN and DE↑JP in MAG.

• Determined by both feature and label shift: Tasks EN↑US, US↑EN in MAG.
• Determined by both structure and label shift: Tasks DE↑US, FR↑US, US↑FR, FR↑RU in

MAG.
• All shifts effects: Tasks B1↑B2 and B2↑B1 in Blog. Tasks A↑C and C↑A in ArnetMiner.

Tasks DE↑FR, CN↑FR, JP↑RU, RU↑FR, CN↑RU, FR↑JP, RU↑DE, CN↑DE, RU↑US,
DE↑CN, FR↑CN, DE↑RU and US↑RU in MAG.

C GDA Baselines

MLP, GCN [47], GAT [49], and GIN [50] are classical GNN models. We directly adopt the imple-
mentation from Pytorch Geometric. The publicly available implementations of baselines can be
found at the following URLs:

• DANE [10] uses shared weight GCNs to get node representations and then handles distribution
shift via least square generative adversarial network. The source code is available at https:
//github.com/Jerry2398/DANE-Simple-implementation.

18

https://github.com/Jerry2398/DANE-Simple-implementation
https://github.com/Jerry2398/DANE-Simple-implementation

Figure 5: The compared performance of vanilla DA with 6 GNN variants.

• ACDNE [11] utilizes two feature extractors to jointly preserve attributed affinity and topological
proximities as deep network embedding module and incorporates a domain classifier to make
node representations label-discriminative. The source code is available at https://github.com/
shenxiaocam/ACDNE.

• UDAGCN [12] develops a dual graph convolutional network with attention mechanism to jointly
exploit local and global consistency for effective graph representation learning. The source code is
available at https://github.com/GRAND-Lab/UDAGCN.

• ASN [44] separates domain-private and domain-shared information and combines local and global
consistency to capture network topology information. The source code is available at https:
//github.com/yuntaodu/ASN.

• AdaGCN [13] leverages GCN to integrate network topology and combines adversarial domain
adaptation with graph convolution. The source code is available at https://github.com/
daiquanyu/AdaGCN_TKDE.

• StruRW [17] investigates different types of distribution shifts of graph-structured data and
reweights edges in the source graph to reduces the conditional shift of neighborhoods. The
source code is available at https://github.com/Graph-COM/StruRW.

• GRADE [15] introduces graph subtree discrepancy as a metric to measure the graph distribution
shift by connecting GNNs with WL subtree kernel [45]. The source code is available at https:
//github.com/jwu4sml/GRADE.

• SpceReg [16] finds the OT-based bound for graph is closely coupled with the Lipschitz constant of
GNN and proposes spectral regularization to modulate the Lipschitz constant to restrict the target
risk bound. The source code is available at https://github.com/Shen-Lab/GDA-SpecReg.

• A2GNN [25] further investigates the GNN’s underlying generalization capability behind its archi-
tecture and finds propagation operation plays a pivotal role. Based on this observation, A2GNN
proposes a simple yet effective GNN which stacks more propagation layers on target branch. The
source code is available at https://github.com/Meihan-Liu/24AAAI-A2GNN.

• JHGDA [18] designs a hierarchical pooling model to extract meaningful and adaptive hierarchi-
cal structures and jointly minimizes marginal and class conditional distribution shifts on each
hierarchical level. The source code is available at https://github.com/Skyorca/JHGDA.

• KBL [19] redefines the aggregate mechanism as learning a knowledge-enhanced posterior distribu-
tion for target domains, which learns the scope of knowledge transfer by connecting knowledgeable
samples between domains. The source code is available at https://github.com/wendongbi/
Bridged-GNN.

• DMGNN [21] employes a GNN encoder with dual feature extractors to separate ego-embedding
learning from neighbor-embedding learning and then a label propagation node classifier is employed

19

https://github.com/shenxiaocam/ACDNE
https://github.com/shenxiaocam/ACDNE
https://github.com/GRAND-Lab/UDAGCN
https://github.com/yuntaodu/ASN
https://github.com/yuntaodu/ASN
https://github.com/daiquanyu/AdaGCN_TKDE
https://github.com/daiquanyu/AdaGCN_TKDE
https://github.com/Graph-COM/StruRW
https://github.com/jwu4sml/GRADE
https://github.com/jwu4sml/GRADE
https://github.com/Shen-Lab/GDA-SpecReg
https://github.com/Meihan-Liu/24AAAI-A2GNN
https://github.com/Skyorca/JHGDA
https://github.com/wendongbi/Bridged-GNN
https://github.com/wendongbi/Bridged-GNN

Table 9: We evaluated the Micro-F1 score on Airport and ArnetMiner.

Models Airport ArnetMiner

B → E B → U E → B U → B A → C A → D C → D D → C

DANE 33.00 41.23 41.98 39.44 64.40 62.52 66.13 71.30
ACDNE 46.45 56.30 55.73 64.12 79.07 74.27 75.47 79.06
UDAGCN 43.78 35.49 45.29 37.91 78.21 72.98 76.14 72.15
ASN 53.05 46.58 62.34 49.36 78.68 72.02 75.57 77.58
AdaGCN 50.63 43.47 60.56 61.32 73.87 66.91 72.56 71.20
DMGNN 33.92 29.92 35.37 34.10 81.59 76.62 76.77 80.65
CWGCN 46.37 46.58 58.78 44.27 80.00 74.29 76.23 76.95
SAGDA 35.51 37.76 47.33 48.35 77.5 70.56 74.03 59.49
DGDA 49.71 33.56 44.02 49.36 64.48 57.85 63.29 57.98

StruRW 56.06 43.36 65.65 61.32 77.24 67.51 74.37 73.96
KBL 45.28 45.52 51.40 33.84 77.71 69.16 74.48 74.62
JHGDA 48.87 40.59 65.14 43.51 73.74 69.13 71.71 71.59
PairAlign 39.93 42.18 51.91 54.96 68.29 61.80 62.89 63.28

GRADE 52.88 49.22 75.83 49.62 74.09 69.18 72.57 73.12
SpecReg 48.87 44.20 63.36 40.97 80.81 73.16 74.60 71.96
A2GNN 53.13 54.54 62.34 59.29 82.64 77.43 78.13 81.54

SimGDA 55.64 53.11 60.31 62.60 79.91 75.16 75.95 77.31
SimGDA+ 58.40 57.56 72.14 67.18 82.97 76.60 77.50 82.09

to refine label prediction. The source code is available at https://github.com/shenxiaocam/
DM_GNN.

• CWGCN [22] puts forward a two-step correntropy-induced Wasserstein GCN, which first sup-
presses the noisy nodes in the source graph and then learns the target GCN based on extending the
Wasserstein distance. The source code is available at https://github.com/CocoLab-2022/
CW-GCN.

• SAGDA [23] proposes a spectral augmentation module to enhance the node representation learning,
which combines the target domain spectral information within the source domain. Since the authors
did not release the source code, we try our best to reproduce their results.

• DGDA [24] addresses graph domain adaptation in a generative view, which disentangles the
generation process into the semantic latent variables, the domain latent variables, and the random
latent variables. The source code is available at https://github.com/rynewu224/GraphDA.

• PairAlign [26] not only uses edge weights to recalibrate the influence among neighboring nodes to
handle conditional structure shift but also adjusts the classification loss with label weights to handle
label shift. The source code is available at https://github.com/Graph-COM/Pair-Align.

D Other Information in GDABench

We implement our GDABench library in PyTorch [73] and provide an infrastructure to run all
the experiments to generate corresponding results. We have stored all models and logged all hy-
perparameters to facilitate reproducibility. Our framework can be easily extended to include new
algorithms.

D.1 Metrics

Following previous works [44, 12], we present the experiment performance on target domain. We
select Area Under the Receiver Operating Characteristic Curve (AUROC) for Twitch, Micro-F1 for
Airport, Blog and ArnetMiner and Macro-F1 for MAG.

• AUROC measures how well a model can distinguish between positive and negative classes by
looking at the area under the ROC curve. This curve shows the true positive rate versus the false
positive rate at various thresholds. An AUROC score of 1 means perfect distinction, while a score
of 0.5 indicates the model does no better than guessing randomly.

• Macro-F1 calculates the F1 score for each category independently and then taking the average of
these scores. This method treats all categories equally, regardless of their frequency in the dataset.

20

https://github.com/shenxiaocam/DM_GNN
https://github.com/shenxiaocam/DM_GNN
https://github.com/CocoLab-2022/CW-GCN
https://github.com/CocoLab-2022/CW-GCN
https://github.com/rynewu224/GraphDA
https://github.%20com/Graph-COM/Pair-Align

32 64 128 256 512

Number of node representation dimension

40

50

60

70

80

A
cc

u
ra

cy

ASN ACDNE AdaGCN

UDAGCN CWGCN DANE

DGDA DMGNN SAGDA

(a) Group 1

32 64 128 256 512

Number of node representation dimension

40

45

50

55

60

65

70

75

A
cc

u
ra

cy

StruRW PairAlign

KBL JHGDA

(b) Group 2

32 64 128 256 512

Number of node representation dimension

40

50

60

70

80

A
cc

u
ra

cy

GRADE SpecReg A2GNN

(c) Group 3

1 2 3 4 5

Number of layers

40

50

60

70

80

A
cc

u
ra

cy

ASN ACDNE AdaGCN

UDAGCN CWGCN DANE

DGDA DMGNN SAGDA

(d) Group 1

1 2 3 4 5

Number of layers

40

45

50

55

60

65

70

75

A
cc

u
ra

cy

StruRW PairAlign

KBL JHGDA

(e) Group 2

1 2 3 4 5

Number of layers

40

50

60

70

80

A
cc

u
ra

cy

GRADE SpecReg A2GNN

(f) Group 3

Figure 6: The impact of node representation dimension and the number of layers on ArnetMiner
dataset (D↑A). We classify all baselines into three groups: DA incorporated node embedding
methods (Group 1), structure shift directed alignment (Group 2) and domain adaptive message
passing (Group 3). The first row illustrates the impact of node representation dimension, while the
second row presents the effect of the number of layers.

It is particularly useful when you want to understand the model’s performance across smaller
or less frequent categories, ensuring that performance on rare categories has as much weight as
performance on more common ones.

• Micro-F1 computes the average F1 score. This is achieved by summing up the true positives,
false positives, and false negatives of the model across all categories and then calculating the F1
score using these totals. As a result, Micro-F1 gives a higher weight to the performance on more
frequent categories, making it a useful metric when you’re interested in understanding how the
model performs on the majority of cases or the overall dataset.

D.2 Additional Experimental Details
• Hardware Specifications. The experiments were conducted on a Linux server equipped with an

Intel(R) Xeon(R) Platinum 8163 CPU operating at 2.50GHz, running Ubuntu 18.04.5 LTS. For
GPU resources, we utilized a single NVIDIA Tesla V100 graphics card with 32GB of memory.
The Python libraries employed for implementing our experiments include Python 3.8, PyTorch
1.13.1, PyTorch Geometric 2.4.0, PyTorch Sparse 0.6.15, and PyTorch Scatter 2.1.0.

• Hyperparameter Settings. To control the effect of hyperparameter selection and ensure fairness,
we standardize the evaluation process with hyperparameter tuning. We utilize grid search to form
the predefined search space for each models. We use all the source nodes and target nodes for
model training. The experiments are repeated three times, and we report the mean performance.
Table 14 provides a comprehensive list of all hyperparameters used in our grid search.

• More Experimental Results. In accordance with Table 2 and 3, we provide the performance for all
tasks of each model in Table 9, 11 and 12. In accordance with Figure 3, we provide the compared
performance of vanilla DA with 6 GNN variants in Figure 5.

• Exploration of Hyperparameter Impact. We investigate how various hyperparameters in common
modules influence the performance of different UGDA methods on ArnetMiner dataset (task D ↑
A). We focus on two key aspects: the number of GNN layers and the representation dimensions.
Results are shown in Figure 6.

• Running Time and Memory Consumption. We also demonstrate the running time and memory
consumption of each model on S/M/L datasets respectively. For time consumption, we evaluate the

21

efficiency of baselines by measuring the time it takes to converge. As shown in Figure 7, we can
observe that some algorithms (e.g. A2GNN) can achieve relatively good performance with less
complexity.

D.3 The PyGDA Library

PyGDA is a Python library for Graph Domain Adaptation built upon PyTorch and PyG to easily train
graph domain adaptation models in a sklearn style. PyGDA includes 15+ graph domain adaptation
models. See examples with PyGDA below!

Graph Domain Adaptation Using PyGDA with 5 Lines of Code

PyGDA is featured for:

• Consistent APIs and comprehensive documentation.
• Cover 15+ graph domain adaptation models.
• Scalable architecture that efficiently handles large graph datasets through mini-batching and

sampling techniques.
• Seamlessly integrated data processing with PyG, ensuring full compatibility with PyG data struc-

tures.

E Experiments on Graph Classification

To expand our research scope, we take graph-level shifts into consideration and add a pooling layer
to evaluate capabilities of baselines in graph-level domain adaptation. We employ three TUdatasets:
Proteins, Mutagenicity, and Frankenstein, partitioning each dataset into 2 equally sized disjoint
groups based on density shifts. Detailed statistics are shown in Table 10.

Table 10: Statistics of graph-level datasets in GDABench.

Dataset # Nodes # Edges # Feature # Class Num of graphs

Proteins 39.06 72.82 4 2 1,113
Mutagenicity 30.32 30.77 14 2 4,337
Frankenstein 16.90 17.88 780 2 4,337

The results are detailed in Table 15 and Table 16. Among the methods, GRADE and A2GNN are
domain adaptive message passing methods and the remaining are DA incorporated node embedding
methods. Key observations are as follows:

DA incorporated node embedding methods shows task-inconsisteny across node and graph-level

tasks. For example, DANE performs averagely in node-level tasks, but its performance improves sig-
nificantly in graph-level tasks. This disparity highlights a challenge in predicting the performance of
unsupervised graph domain adaptation (UGDA) models in real-world applications. The inconsistency
suggests that models optimized for node-level tasks may not generalize well to graph-level tasks and

22

2 4 6 8 10 12 14 16

Time(s)

30

35

40

45

50

55

60

M
ic

ro
-F

1

GRADE StruRW ASN ACDNE AdaGCN UDAGCN SpecReg A2GNN
PairAlign KBL CWGCN DANE DGDA DMGNN JHGDA SAGDA

(a) Running time of B → U in Airport.

0 100 200 300 400 500 600 700 800 900

Time(s)

55

60

65

70

75

M
ic

ro
-F

1

GRADE StruRW ASN ACDNE AdaGCN UDAGCN SpecReg A2GNN
PairAlign KBL CWGCN DANE DGDA DMGNN JHGDA SAGDA

(b) Running time of D → A in ArnetMiner.

0 500 1000 1500 2000 2500

Time(s)

0

5

10

15

20

25

30

M
a
cr

o
-F

1

GRADE StruRW ASN ACDNE AdaGCN UDAGCN SpecReg A2GNN
PairAlign KBL CWGCN DANE DGDA DMGNN JHGDA SAGDA

(c) Running time of FR → JP in MAG.

450 500 550 600 650 700 750 800 850 900

Memory(MB)

30

35

40

45

50

55

60

M
ic

ro
-F

1

GRADE StruRW ASN ACDNE AdaGCN UDAGCN SpecReg A2GNN
PairAlign KBL CWGCN DANE DGDA DMGNN JHGDA SAGDA

(d) Memory consumption of B → U in Airport.

0 0.5 1 1.5 2 2.5 3 3.5

Memory(MB) 10
4

55

60

65

70

75

M
ic

ro
-F

1

GRADE StruRW ASN ACDNE AdaGCN UDAGCN SpecReg A2GNN
PairAlign KBL CWGCN DANE DGDA DMGNN JHGDA SAGDA

(e) Memory consumption of D → A in ArnetMiner.

0 1 2 3 4 5 6 7 8 9

Memory(MB) 10
4

0

5

10

15

20

25

30

M
a
cr

o
-F

1

GRADE StruRW ASN ACDNE AdaGCN UDAGCN SpecReg A2GNN
PairAlign KBL CWGCN DANE DGDA DMGNN JHGDA SAGDA

(f) Memory consumption of FR → JP in MAG.

Figure 7: Running time and memory consumption of baselines.

23

Table 11: We evaluated the AUROC score on Twitch.

Models DE → EN DE → FR EN → DE EN → ES EN → FR EN → PT EN → RU ES → DE ES → EN

DANE 56.95 59.67 67.10 60.67 62.29 62.11 53.64 64.37 58.96
ACDNE 51.29 53.61 52.78 52.83 53.45 52.52 50.65 56.21 55.96
UDAGCN 54.70 54.51 56.95 53.80 54.64 51.55 50.76 55.35 56.58
ASN 51.00 51.79 55.17 53.95 50.64 54.56 51.01 56.96 54.64
AdaGCN 51.64 57.33 56.28 53.05 52.37 56.23 50.52 59.02 56.34
DMGNN 53.08 51.44 53.94 53.70 51.09 52.09 50.46 51.90 52.41
CWGCN 54.85 52.81 60.47 56.97 51.14 60.09 52.52 65.00 56.66
SAGDA 54.39 53.58 54.82 51.99 54.75 52.57 50.95 54.48 53.34
DGDA 56.67 52.63 62.77 60.47 56.37 57.75 52.25 62.64 54.00

StruRW 51.31 56.26 51.87 58.65 51.68 59.41 52.92 58.60 53.90
KBL 52.01 63.93 66.43 60.34 61.01 52.48 55.42 68.86 61.87
JHGDA 57.50 59.04 62.43 57.67 56.96 56.85 51.16 52.22 53.36
PairAlign 51.05 52.12 52.13 51.93 51.62 51.52 50.56 59.86 53.18

GRADE 53.66 57.61 52.31 50.77 53.04 54.60 50.49 62.48 57.54
SpecReg 54.67 54.55 58.35 51.94 54.88 50.70 51.02 59.18 55.43
A2GNN 53.84 51.17 53.45 59.31 51.15 53.43 52.64 52.42 53.24

SimGDA 58.64 57.91 59.21 58.48 55.97 57.73 52.95 60.03 53.98
SimGDA+ 58.64 59.97 63.01 60.34 59.44 60.06 53.67 63.61 57.69

Models ES → FR ES → PT ES → RU FR → DE FR → EN FR → ES FR → PT FR → RU PT → DE

DANE 55.36 62.22 51.71 65.58 57.48 58.45 53.49 50.43 57.66
ACDNE 52.55 53.61 51.74 54.68 53.91 52.76 54.33 51.57 52.82
UDAGCN 52.49 62.08 52.49 56.71 56.52 59.47 58.27 54.37 53.78
ASN 53.02 55.38 51.68 55.55 53.03 53.49 51.39 51.20 55.38
AdaGCN 53.82 62.24 52.93 59.52 57.47 61.22 56.42 51.37 57.82
DMGNN 50.07 50.71 51.06 51.72 52.51 51.86 50.76 51.21 51.65
CWGCN 50.92 61.59 51.83 62.45 56.55 58.15 60.44 52.87 58.30
SAGDA 53.42 52.36 50.70 54.34 54.69 51.25 52.66 50.92 55.11
DGDA 54.95 51.72 50.95 62.74 57.39 61.17 60.90 52.12 59.19

StruRW 53.70 53.74 52.17 56.96 53.62 56.29 51.23 51.38 55.85
KBL 63.05 62.26 55.29 64.37 60.01 63.02 62.08 54.03 66.22
JHGDA 51.62 53.98 51.01 57.57 53.98 56.94 55.36 50.92 51.35
PairAlign 54.07 50.95 52.60 53.88 53.81 53.28 51.93 52.05 54.10

GRADE 57.72 60.46 53.56 59.25 56.58 55.08 55.71 50.34 57.54
SpecReg 55.00 50.81 51.52 59.58 55.50 54.05 50.89 51.08 56.18
A2GNN 51.39 54.59 50.34 53.38 54.05 53.89 53.91 50.63 52.27

SimGDA 54.05 61.91 60.35 61.09 56.00 65.66 60.93 62.65 59.47
SimGDA+ 59.73 62.07 60.37 62.99 58.08 65.96 61.57 62.85 61.23

Models PT → EN PT → ES PT → FR PT → RU RU → DE RU → EN RU → ES RU → FR RU → PT

DANE 55.74 53.11 51.90 52.46 68.75 59.79 59.34 57.42 66.34
ACDNE 54.34 54.46 52.51 51.52 52.46 51.32 53.05 50.96 50.78
UDAGCN 53.01 57.08 51.63 51.19 54.74 51.32 51.30 53.21 55.47
ASN 52.13 52.03 52.80 51.71 51.97 52.87 51.86 51.24 51.77
AdaGCN 51.80 58.28 53.98 51.23 58.35 54.78 57.76 54.35 57.23
DMGNN 52.63 51.89 50.20 50.83 52.21 52.69 52.43 50.34 51.29
CWGCN 52.39 55.46 54.98 51.58 61.25 57.48 54.90 50.46 62.36
SAGDA 53.92 51.58 53.92 50.37 54.84 53.62 51.41 53.83 52.67
DGDA 54.64 50.74 55.66 52.51 62.34 57.31 60.86 56.15 60.88

StruRW 52.78 53.50 53.96 50.77 52.27 51.77 52.73 50.67 51.03
KBL 56.53 64.56 52.92 53.16 59.17 55.15 59.35 58.15 59.23
JHGDA 51.38 54.64 52.12 51.36 55.20 51.37 51.12 55.43 54.31
PairAlign 53.97 53.79 54.42 50.88 52.29 50.94 52.87 50.90 50.80

GRADE 54.52 57.04 55.15 50.14 50.22 53.90 60.48 57.54 55.08
SpecReg 53.12 53.34 51.71 50.13 58.77 53.59 52.17 55.42 51.01
A2GNN 50.49 53.80 50.99 51.21 51.54 52.15 54.70 51.60 53.53

SimGDA 55.48 60.17 63.02 54.20 51.16 51.43 55.31 52.64 62.27
SimGDA+ 57.57 61.29 63.07 55.20 61.96 56.14 59.17 56.47 62.78

24

Table 12: We evaluated the Macro-F1 score on MAG. OOM indicates out of memory.

Models CN → DE CN → FR CN → JP CN → RU CN → US DE → CN DE → FR DE → JP DE → RU

DANE OOM 12.56 19.50 11.04 OOM OOM 23.44 22.53 14.84
ACDNE 12.18 10.41 10.08 8.57 13.40 16.08 20.99 18.07 13.95
UDAGCN 12.84 6.85 10.69 7.32 12.23 15.01 23.26 21.82 14.48
ASN 9.52 OOM OOM OOM 10.64 14.67 24.08 22.60 13.99
AdaGCN 7.63 10.51 12.36 10.65 9.30 10.75 14.79 12.85 10.47
DMGNN OOM 7.64 11.18 6.99 OOM 12.11 17.82 11.52 11.43
CWGCN OOM 10.62 10.58 10.20 OOM 11.00 13.95 12.63 9.59
SAGDA OOM 6.14 9.05 6.09 OOM OOM OOM OOM OOM
DGDA OOM OOM OOM OOM OOM OOM 19.66 18.70 11.94

StruRW 3.32 3.54 3.75 4.59 7.69 10.55 4.94 6.08 4.63
KBL 15.79 14.03 16.53 11.69 16.98 13.14 19.51 17.26 12.60
JHGDA OOM OOM OOM OOM OOM OOM 25.10 21.69 12.52
PairAlign 10.52 20.90 18.70 12.13 9.33 11.53 17.61 13.80 12.45

GRADE 11.72 11.06 13.18 10.14 12.54 11.21 17.30 14.06 10.43
SpecReg 19.42 12.11 13.85 11.64 22.23 23.22 30.80 28.13 17.89
A2GNN 22.59 18.44 22.22 13.37 25.23 19.75 24.15 24.16 12.19

SimGDA 12.20 11.42 13.83 11.40 14.09 14.55 19.53 17.53 13.28
SimGDA+ 21.28 18.25 22.50 13.96 23.16 18.50 25.39 24.60 15.47

Models DE → US FR → CN FR → DE FR → RU FR → US JP → CN JP → DE JP → US RU → CN

DANE OOM 15.77 22.11 12.92 16.38 16.59 20.21 OOM 7.35
ACDNE 18.04 14.20 20.47 14.60 14.79 14.89 15.79 15.96 6.73
UDAGCN 25.24 16.27 25.97 8.47 24.25 17.34 21.31 18.57 8.70
ASN 23.11 15.22 25.62 10.92 21.22 15.36 22.27 20.77 8.88
AdaGCN 10.48 9.27 12.73 12.34 9.17 9.99 9.97 9.63 4.36
DMGNN 12.65 11.52 16.84 9.89 12.94 11.62 14.45 11.39 4.10
CWGCN 10.78 OOM 0.19 11.16 10.33 9.93 9.39 9.44 4.74
SAGDA OOM OOM OOM 2.98 OOM OOM OOM OOM OOM
DGDA OOM OOM 15.80 OOM OOM OOM 12.51 OOM OOM

StruRW 12.16 15.67 15.27 14.65 25.45 8.30 6.59 20.05 5.65
KBL 13.94 14.08 18.06 13.88 13.39 14.61 16.24 17.40 12.49
JHGDA OOM OOM 24.23 12.88 OOM OOM 21.96 0.00 0.00
PairAlign 13.44 8.67 15.78 12.49 11.65 12.99 12.49 12.87 4.51

GRADE 12.52 10.92 16.94 9.56 12.57 11.98 11.64 13.95 4.09
SpecReg 29.09 22.49 31.57 14.33 28.01 25.54 28.97 30.30 17.65
A2GNN 27.67 20.95 28.57 16.13 28.51 21.71 25.53 27.14 18.91

SimGDA 16.84 13.53 18.83 12.51 16.01 14.21 14.66 15.04 6.36
SimGDA+ 26.37 17.72 28.91 15.09 26.35 19.99 25.43 24.22 15.05

Models RU → DE RU → FR RU → JP RU → US US → CN US → DE US → FR US → JP US → RU

DANE 7.75 6.17 8.47 6.57 OOM OOM 22.27 OOM OOM
ACDNE 5.98 6.12 7.42 5.93 20.63 22.48 19.65 23.90 14.86
UDAGCN 8.42 7.96 8.92 8.38 19.01 28.24 25.17 25.80 15.37
ASN 9.69 9.73 8.99 10.88 15.99 24.52 21.09 22.93 12.27
AdaGCN 3.59 3.73 4.25 3.26 14.80 15.95 14.40 18.34 10.99
DMGNN 3.69 4.34 4.42 3.22 OOM OOM OOM OOM OOM
CWGCN 3.32 3.76 4.60 4.61 15.11 15.54 13.41 16.85 11.59
SAGDA OOM 5.61 OOM OOM 0.00 0.00 0.00 0.00 0.00
DGDA 4.17 4.52 6.98 OOM 0.00 0.00 0.00 0.00 0.00

StruRW 4.88 3.44 4.31 4.79 8.44 10.61 3.44 6.37 7.44
KBL 11.52 9.35 12.92 11.49 16.62 19.67 17.90 19.25 12.69
JHGDA 19.85 16.67 19.15 OOM OOM OOM OOM OOM OOM
PairAlign 3.61 4.21 4.60 3.51 16.12 17.85 16.66 19.28 11.93

GRADE 3.32 3.47 4.01 3.18 16.30 16.28 17.02 21.42 11.83
SpecReg 18.66 16.51 21.35 16.02 26.23 31.82 28.81 30.12 16.23
A2GNN 22.67 20.36 20.90 22.24 21.47 27.42 25.29 25.43 13.06

SimGDA 6.09 6.21 7.48 6.33 18.37 11.31 10.59 22.19 14.31
SimGDA+ 20.35 16.84 20.06 20.65 21.17 26.94 24.23 25.58 15.62

25

Table 13: Domain shifts statistics of each task.

Dataset Source Target Feature Shift Structure Shift Label Shift

Blog Blog1 Blog2 0.0140 0.0802 0.253
Blog2 Blog1 0.0137 0.0802 0.258

Airport

USA BRAZIL 0.0514 0.2331 0.065
USA EUROPE 0.0913 0.3983 0.005

BRAZIL USA 0.0523 0.2331 0.066
BRAZIL EUROPE 0.0549 0.1993 0.035
EUROPE USA 0.1000 0.3983 0.005
EUROPE BRAZIL 0.0582 0.1993 0.034

ArnetMiner

DBLPv7 ACMv9 0.0312 0.2327 0.997
DBLPv7 Citationv1 0.0245 0.1965 1.643
ACMv9 DBLPv7 0.0305 0.2327 1.062
ACMv9 Citationv1 0.0163 0.1931 0.780

Citationv1 DBLPv7 0.0244 0.1965 1.624
Citationv1 ACMv9 0.0166 0.1931 0.805

Twitch

EN DE 0.0493 0.1486 0.715
EN FR 0.0440 0.3148 6.449
EN RU 0.0368 0.5960 20.578
EN ES 0.0530 0.3836 13.883
EN PT 0.0790 0.3374 8.330
DE EN 0.0478 0.1486 0.707
DE FR 0.0408 0.4635 11.403
DE RU 0.0387 0.7446 28.985
DE ES 0.0283 0.5323 20.866
DE PT 0.0391 0.4860 13.871
FR EN 0.0463 0.3148 6.315
FR DE 0.0383 0.4635 11.302
FR RU 0.0503 0.2811 3.754
FR ES 0.0432 0.0688 1.335
FR PT 0.0733 0.0226 0.115
RU EN 0.0369 0.5960 18.693
RU DE 0.0355 0.7446 26.658
RU FR 0.0542 0.2811 3.479
RU ES 0.0426 0.2124 0.562
RU PT 0.0551 0.2586 2.363
ES EN 0.0525 0.3836 13.080
ES DE 0.0282 0.5323 19.901
ES FR 0.0406 0.0688 1.284
ES RU 0.0460 0.2124 0.583
ES PT 0.0320 0.0462 0.640
PT EN 0.0776 0.3374 8.080
PT DE 0.0407 0.4860 13.620
PT FR 0.0713 0.0226 0.114
PT RU 0.0554 0.2586 2.526
PT ES 0.0311 0.0462 0.660

MAG

CN DE 0.0750 0.3608 33.807
CN FR 0.0773 0.3902 26.427
CN JP 0.0451 0.2775 16.382
CN RU 0.0779 0.5454 30.058
CN US 0.0781 0.2858 28.992
DE CN 0.0727 0.3608 46.271
DE FR 0.0213 0.2041 2.316
DE JP 0.0464 0.3278 22.811
DE RU 0.0419 0.4778 48.632
DE US 0.0179 0.3561 16.266
FR CN 0.0702 0.3902 46.780
FR DE 0.0196 0.2041 2.241
FR JP 0.0508 0.3815 30.343
FR RU 0.0382 0.5091 49.558
FR US 0.0187 0.4210 23.644
JP CN 0.0486 0.2775 14.352
JP DE 0.0391 0.3278 12.240
JP FR 0.0467 0.3815 13.597
JP RU 0.0513 0.4968 27.544
JP US 0.0540 0.2893 8.235
RU CN 0.0776 0.5454 18.701
RU DE 0.0442 0.4778 31.345
RU FR 0.0416 0.5091 28.260
RU JP 0.0524 0.4968 18.269
RU US 0.0517 0.6171 35.979
US CN 0.0832 0.2858 35.273
US DE 0.0206 0.3561 14.702
US FR 0.0197 0.4210 19.245
US JP 0.0431 0.2893 10.104
US RU 0.0567 0.6171 60.803

26

Table 14: Parameter search space list.

Dataset Models Hyperparameter Search Space

Airport SimGDA+ SimGDA learning rate [0.0001, 0.0005, 0.001, 0.005]
weight decay [0.0001, 0.0005, 0.001, 0.005]
momentum [0.01, 0.99]
backbone gcn
backbone layers [1, 3, 4, 5]
dropout ratio 0.5
feature dimension 128
alpha [0.5, 1]
epochs 200

SimGDA + IM beta [0, 0.05, 0.1, 0.5]
epochs 200

SimGDA + AE beta [0, 0.05, 0.1, 0.5]
decoder dropout 0.1

SimGDA + CL beta [0, 0.05, 0.1, 0.5]
epochs 500
augment dropout [0.1, 0.9]
temperature [0.1, 0.9]

GDABench Baselines learning rate [0.0001, 0.001, 0.003]
weight decay [0.0001, 0.001, 0.003, 0.01]
backbone layers [1, 2, 3, 4, 5]
dropout ratio [0.1, 0.2, 0.3, 0.4, 0.5]
feature dimension 128
epochs [100, 200, 400]

Blog SimGDA+ SimGDA learning rate [0.0001, 0.0005]
weight decay [0.001, 0.005]
momentum [0.01, 0.99]
backbone gcn
backbone layers [1, 2, 3, 4, 5]
dropout ratio 0.5
feature dimension 128
alpha [0.5, 1]
epochs 200

SimGDA + AE beta [0, 0.05]
decoder dropout 0.1

GDABench Baselines learning rate [0.0001,0.0003, 0.001]
weight decay [0.001, 0.003, 0.01]
backbone layers [1, 2, 3, 4]
dropout ratio [0.1, 0.2, 0.3, 0.4, 0.5]
feature dimension 128
epochs [200, 300, 400]

ArnetMiner SimGDA+ SimGDA learning rate [0.0001, 0.0005, 0.001, 0.005]
weight decay [0.0005, 0.001, 0.005]
momentum [0.01, 0.99]
backbone gcn
backbone layers [1, 2, 3, 4, 5]
dropout ratio 0.5
feature dimension 128
alpha [0.5, 1]
epochs 200

SimGDA + IM beta [0.5, 1]
epochs 200

GDABench Baselines learning rate [0.0001, 0.001, 0.003, 0.01]
weight decay [0.0001, 0.001, 0.003, 0.01]
backbone layers [1, 2, 3, 4, 5]
dropout ratio [0.1, 0.2, 0.3, 0.4, 0.5]
feature dimension 128
epochs [100, 200, 400, 800]

Twitch SimGDA+ SimGDA learning rate [0.0001, 0.0005, 0.001, 0.005]
weight decay [0.0001, 0.0005, 0.001, 0.005]
momentum [0.01, 0.99]
backbone gcn
backbone layers [1, 2, 3, 4, 5]
dropout ratio 0.5
feature dimension 128
alpha [0.5, 1]
epochs 200

SimGDA + AE beta [0, 0.05, 0.1, 0.2, 0.5]
decoder dropout [0.1, 0.9]

SimGDA + CL beta [0, 0.05, 0.1, 0.5, 1, 1.5]
epochs 500
augment dropout [0.1, 0.9]
temperature [0.1, 0.9]

GDABench Baselines learning rate [0.0001, 0.001, 0.003]
weight decay [0.0001, 0.001, 0.003, 0.01]
backbone layers [1, 2, 3, 4, 5]
dropout ratio [0.1, 0.2, 0.3, 0.4, 0.5]
feature dimension 128
epochs [100, 200, 400]

MAG SimGDA+ SimGDA learning rate [0.0001, 0.0005, 0.001, 0.005]
weight decay [0.0001, 0.0005, 0.001, 0.005]
momentum [0.01, 0.99]
backbone gcn
backbone layers [1, 2, 3, 4, 5]
dropout ratio 0.5
feature dimension 128
alpha [0.5, 1]
epochs 200

GDABench Baselines learning rate [0.0001, 0.001, 0.003]
weight decay [0.0001, 0.001, 0.003]
backbone layers [1, 2, 3]
dropout ratio [0.1, 0.2, 0.3, 0.4, 0.5]
feature dimension 300
epochs [200, 400, 600, 800]

27

Table 15: To evaluate the baselines on graph-level shifts, we compared the Micro-F1 scores of each
model on the Proteins, Mutagenicity, and Frankenstein datasets. The best results are highlighted in
bold, and the second-best results are underlined.

Proteins Mutagenicity Frankenstein
Models P1 → P2 P2 → P1 M1 → M2 M2 → M1 F1 → F2 F2 → F1

DANE 60.14 ±3.58 75.66 ±0.98 67.25 ±0.14 76.92 ±0.35 54.77 ±0.53 56.96 ±2.89

UDAGCN 53.50 ±2.42 73.14 ±4.29 58.11 ±0.58 65.34 ±0.55 52.48 ±0.32 52.37 ±1.38

AdaGCN 52.60 ±0.78 78.12 ±0.37 58.89 ±0.06 56.18 ±0.02 56.28 ±0.75 53.01 ±3.63

CWGCN 50.45 ±4.81 44.84 ±8.20 55.60 ±1.27 56.72 ±0.67 49.76 ±0.27 51.92 ±0.71

SAGDA 53.14 ±4.80 46.22 ±2.99 57.06 ±3.54 56.00 ±8.85 50.35 ±0.26 51.01 ±8.37

GRADE 43.93 ±0.31 76.80 ±0.29 69.00 ±0.22 76.57 ±0.31 57.54 ±1.09 58.39 ±4.57

A2GNN 51.70 ±1.54 69.65 ±4.21 56.83 ±0.19 58.88 ±1.23 50.43 ±0.69 48.99 ±3.97

Table 16: To evaluate the baselines on graph-level shifts, we compared the Macro-F1 scores of each
model on the Proteins, Mutagenicity, and Frankenstein datasets. The best results are highlighted in
bold, and the second-best results are underlined.

Proteins Mutagenicity Frankenstein
Models P1 → P2 P2 → P1 M1 → M2 M2 → M1 F1 → F2 F2 → F1

DANE 59.14 ±3.06 56.30 ±6.09 67.11 ±0.17 76.50 ±0.35 52.24 ±1.02 54.94 ±2.13

UDAGCN 53.15 ±2.74 50.19 ±1.20 56.71 ±0.61 63.35 ±0.56 50.06 ±0.64 52.32 ±1.40

AdaGCN 49.33 ±1.62 57.99 ±2.82 58.00 ±0.10 35.97 ±0.10 55.99 ±0.94 51.76 ±4.43

CWGCN 40.57 ±3.13 42.75 ±6.01 39.00 ±4.96 37.32 ±1.66 39.46 ±0.22 51.68 ±0.67

SAGDA 46.65 ±6.14 33.42 ±1.01 56.26 ±3.74 54.95 ±8.22 36.89 ±4.93 38.03 ±6.81

GRADE 32.23 ±0.86 50.52 ±1.77 68.98 ±0.21 76.32 ±0.26 56.93 ±1.80 54.98 ±2.62

A2GNN 47.71 ±3.22 58.85 ±1.16 55.42 ±0.10 50.17 ±1.59 46.97 ±0.96 43.33 ±1.87

vice versa. Consequently, this variability complicates the task of assessing how well these models
will perform when deployed in diverse and complex real-world scenarios where both node-level and
graph-level information may be critical.

Domain adaptive message passing methods demonstrate superior and consistency performance

across a wide range of datasets and tasks. As shown in Table 3, 9, 16 and 15, methods designed
based on the inherent properties of GNN achieves the top-three best performance in 8 tasks out of 12
node-level tasks and top-two best performance in 5 tasks out of 6 graph-level tasks. This observation
verified our findings that establishing domain adaptation principles by leveraging inherent properties
of GNN can result in an effective and efficient approach to addressing the challenges of domain
variability in graph datasets.

To summarize, our observations underscore the importance of leveraging the intrinsic properties of
GNNs to devise effective domain adaptation strategies, which not only enhances performance but
also ensures consistency in real-world applications.

F Discussion

F.1 How these findings generalize to real-world scenarios

Our benchmark includes a range of datasets with varying characteristics to capture different aspects
of graph domain adaptation. This diversity aims to provide a broad perspective on the applicability of
our methods. In real-world scenarios, applying graph adaptation methods effectively involves several
key considerations: Firstly, it is imperative to develop tailored strategies specifically designed to
address the structural shifts observed in graphs. For example, if a graph is dynamic and changing
overtime, it is crucial to accord greater attention to its evolving structure. Secondly, recognizing the
importance of the aggregation scope and aggregation architecture in GNNs’ transferability within
unsupervised graph domain adaptation (UGDA) are crucial. In real-world graphs, noise is inevitable,
hence, strategically selecting effective neighbors not only improve performance but also avoid noise.

28

Thirdly, by leveraging the properties of GNNs that make them inherently adaptable to changes in
graph structure and data distribution, we can develop simple yet highly effective models.

F.2 A broader discussion on DA problem and other related UGDA scenarios

UDA vs UGDA. Unsupervised domain adaptation (UDA) entails transferring knowledge from a
labeled source domain to an unlabeled target domain. A prevalent strategy in domain adaptation is
to reduce domain discrepancies while learning domain-invariant representations, a method that has
seen considerable success in the fields of computer vision and natural language processing. However,
these techniques typically operate under the assumption that inputs are independently and identically
distributed (IID), making them unsuitable for tasks involving non-IID data, such as node classification
in graph-structured datasets.

UGDA vs muti-domain UGDA. Muti-domain UGDA extends the concept of domain adaptation
to situations where there are multiple source domains and a single target domain. This approach
aims to learn a model that can generalize well across multiple source domains, and then adapt it to
perform well on the target domain. Compared to standard UGDA, multi-domain UGDA can enhance
generalization by leveraging the diversity of multiple source domains. However, it may require more
complex models and additional computational resources.

UGDA vs source-free UGDA. Source-free UGDA advances domain adaptation by tackling the
challenge of adapting models without access to labeled data from the source domains. This setting is
more challenging as it involves learning to transfer knowledge without explicit supervision. Source-
free UGDA methods often employ techniques such as self-training or consistency regularization to
adapt the model to the target domain. Compared to UGDA, source-free UGDA may be more sensitive
to domain shift and require careful selection of adaptation techniques.

29

	Introduction
	Preliminaries and Related Work
	Problem Definition
	Related Work

	Datasets
	Compared Models
	Experimental Results and Analyses
	Overall Comparisons
	Understanding and unlocking the inherent power of GNN
	Do LLMs help mitigate distribution shift in graphs?

	Conclusion
	Distribution Shift in Graph-Structured Data
	Covariate Shift
	Label Shift

	Detailed Description of Datasets
	Dataset Description
	Shift Statistics of Datasets

	GDA Baselines
	Other Information in GDABench
	Metrics
	Additional Experimental Details
	The PyGDA Library

	Experiments on Graph Classification
	Discussion
	How these findings generalize to real-world scenarios
	A broader discussion on DA problem and other related UGDA scenarios

