
DiffusionBlend: Learning 3D Image Prior through
Position-aware Diffusion Score Blending for 3D

Computed Tomography Reconstruction

Bowen Song ∗ Jason Hu∗ Zhaoxu Luo Jeffrey A. Fessler Liyue Shen

Department of Electrical and Computer Engineering
University of Michigan
Ann Arbor, MI 48109

{bowenbw, jashu, luozhx, fessler, liyues}@umich.edu

Abstract

Diffusion models face significant challenges when employed for large-scale medi-
cal image reconstruction in real practice such as 3D Computed Tomography (CT).
Due to the demanding memory, time, and data requirements, it is difficult to train a
diffusion model directly on the entire volume of high-dimensional data to obtain
an efficient 3D diffusion prior. Existing works utilizing diffusion priors on single
2D image-slice with hand-crafted cross-slice regularization would sacrifice the
z-axis consistency, which results in severe artifacts along the z-axis. In this work,
we propose a novel framework that enables learning the 3D image prior through
position-aware 3D-patch diffusion score blending for reconstructing large-scale 3D
medical images. To the best of our knowledge, we are the first to utilize a 3D-patch
diffusion prior for 3D medical image reconstruction. Extensive experiments on
sparse view and limited angle CT reconstruction show that our DiffusionBlend
method significantly outperforms previous methods and achieves state-of-the-art
performance on real-world CT reconstruction problems with high-dimensional 3D
image (i.e., 256×256×500). Our algorithm also comes with better or comparable
computational efficiency than previous state-of-the-art methods. Code is available
at: https://github.com/efzero/DiffusionBlend.

1 Introduction

Diffusion models learn the prior of an underlying data distribution, which enables sampling from the
distribution to generate new images [1–3]. By starting with a clean image and gradually adding noise
of different scales, diffusion sampler eventually obtains an image that is indistinguishable from pure
noise. Let xt be the image sequence where t = 0 represents the clean image and t = T is pure noise.
The score function of the image distribution, denoted as s(xt) = ∇ log p(xt), can be learned by a
neural network parametrization, which takes xt as input and then approximates ∇ log p(xt). The
reverse process then starts with pure noise and uses the learned score function to iteratively remove
noise, ending with a clean image sampled from the target distribution p(x).

Leveraging the learned score function as a prior, it is efficient to solve the inverse problems based
on diffusion priors. Previous works have proposed to use diffusion inverse solvers for deblurring,
super-resolution, and medical image reconstruction such as in magnetic resonance imaging (MRI)
and computed tomography (CT), and many other applications [4–16].

∗These authors contributed equally to the work

38th Conference on Neural Information Processing Systems (NeurIPS 2024).

https://github.com/efzero/DiffusionBlend

Figure 1: Overview of DiffusionBlend++ compared to previous 3D image reconstruction works.
Previous work used a hand-crafted TV term to “regularize” adjacent slices, whereas the proposed
approach uses learned diffusion score blending between groups of slices. Here i is the slice index,
and t is the reconstruction iteration.

Computed tomography (CT) reconstruction is an important inverse problem that aims at reconstructing
the volumetric image x from the measurements y, which is acquired from the projections at different
view angles [17]. To reduce the radiation dose delivered to the patient, sparse-view CT uses a
smaller fraction of X-rays compared to the full-view CT [18]. Additionally, limited-angle CT is
useful in cases where patients may have mobility issues and cannot use full-angle CT scans [19].
Although previous works have discussed and proposed diffusion-based methods for solving the 2D
CT image reconstruction problem to demonstrate the proof-of-concept [9, 10], there is very limited
work focusing on solving inverse problems for 3D images due to the practical difficulty in capturing
3D image prior. Learning efficient 2D image priors using diffusion models is already computationally
expensive, which requires large-scale of training data, training time, and GPU memory. For example,
previous works [2, 3] require training for several days to weeks on over a million training images in the
ImageNet [20] and LSUN [21] datasets to generate high-quality 2D natural images of size 256× 256.
Hence, directly learning a 3D diffusion prior on the entire CT volume would be practically infeasible
or prohibitively expensive due to the demanding requirements of training data and computational
cost. In addition, real clinical CT data is usually limited and scarce and often has a resolution larger
than 256× 256× 400, which makes directly training the data prior very challenging. The problem
of tackling 3D image inverse problems, especially for medical imaging remains a challenging open
research question.

A few recent works [13–15] have discussed and proposed to solve 3D image reconstruction problems
either through employing some hand-crafted regularization to enforce consistency between 2D slices
when reconstructing 3D volumetric images [13, 15], or through training several diffusion models for
2D images on each plane (axial, coronal, and sagittal), and performing reverse sampling with each
model alternatively [14]. However, all of these works only learn the distribution of a single 2D slice
via the diffusion model, while having not yet explored the dependency between slices that is required
to better model the real 3D image prior.

To overcome these limitations, we propose a novel method, called DiffusionBlend, that enables
learning the distribution of 3D image patches (a batch of nearby 2D slices), and blends the scores of
patches to model the entire 3D volume distribution for image reconstruction. Specifically, we firstly
propose to train a diffusion model that models the joint distribution of 3D image patches (nearby 2D
slices) in the axial plane conditioning on the slice thickness. Then, we introduce a random blending
algorithm that approximates the score function of the entire 3D volume by using the trained 3D-patch
score function. Moreover, we can either directly use the trained model to predict the noise of a single
2D slice by taking its corresponding 3D patch as input, or applying a random blending algorithm
that firstly randomly partitions the volume into different 3D patches at each time step and then
computes the score of each 3D patch during reverse sampling. Through either way, we can output
the predicted noise of the entire 3D volume. In this way, our proposed method is able to enforce
cross-slice consistency without any hand-crafted regularizer. Our method has the advantage of being
fully data-driven and can enforce slice consistency without the TV regularizer as demonstrated in
Fig. 1. Through exhaustive experiments of ultra-sparse-view and limited-angle 3D CT reconstruction
on different datasets, we validate that our proposed method achieves superior reconstruction results
for 3D volumetric imaging, outperforming previous state-of-the-art (SOTA) methods. Furthermore,
our method achieves better or comparable inference time than SOTA methods, and requires minimum
hyperparameter tuning for different tasks and settings.

2

In summary, our main contributions are as follows:

• We propose DiffusionBlend(++): a novel method for 3D medical image reconstruction
through 3D diffusion priors. To the best of our knowledge, our method is the first diffusion-
based method that learns the 3D-patch image prior incorporating the cross-slice dependency,
so as to enforce the consistency for the entire 3D volume without any external regularization.

• Specifically, instead of independently training a diffusion model only on separated 2D slices,
we propose a novel method that first trains a diffusion model on 3D image patches (a batch of
nearby 2D slices) with positional encoding, and at inference time, employs a new approach
of random partitioning and diffusion score blending to generate an isotropically smooth 3D
volume.

• Extensive experiments validate our proposed method achieves state-of-the-art reconstruc-
tion results for 3D volumetric imaging for the task of ultra-sparse-view and limited-angle
3D CT reconstruction on different datasets, with improved inference time efficiency and
minimal hyperparameter tuning.

2 Background and Related Work

Diffusion models. Diffusion models consists of a forward process that gradually adds noise to a
clean image, and a reverse process that denoises the noisy images [1, 22]. The forward model is
given by xt = xt−1− βt∆t

2 xt−1+
√
βt∆tω where ω ∈ N(0, 1) and β(t) is the noise schedule of the

process. The distribution of x(0) is the data distribution and the distribution of x(T) is approximately
a standard Gaussian. When we set ∆t → 0, the forward model becomes dxt = − 1

2βtxtdt+
√
βtdωt,

which is a stochastic differential equation. The solution of this SDE is given by

dxt =

(
−β(t)

2
− β(t)∇xt

log pt(xt)

)
dt+

√
β(t)dw. (1)

Thus, by training a neural network to learn the score function ∇xt
log pt(xt), one can start with noise

and run the reverse SDE to obtain samples from the data distribution.

Although diffusion models have achieved impressive success for image generation, a bottleneck
of large-scale computational requirements including demanding training time, data, and memory
prevents training a diffusion model directly on high-dimensional high-resolution images. Many
recent works have been studying how to improve the efficiency of diffusion models to extend them to
large-scale data problem. For example, to reduce the computational burden, latent diffusion models
[23] have been proposed, aiming to perform the diffusion process in a much smaller latent space,
allowing for faster training and sampling. However, solving inverse problems with latent diffusion
models is still a challenging task and may have sub-par computational efficiency [24]. Very recently,
various methods have been proposed to perform video generation using diffusion models, generally
by leveraging attention mechanisms across the temporal dimension [25–28]. However, these methods
only focus on video synthesis. Utilizing these complicated priors for posterior sampling is still a
challenge because if these methods were applied to physical 3D volumes, continuity would only be
maintained across slices in the XY plane and not the other two planes. Finally, work has been done to
perform sampling faster [29–31], which is unrelated to the training process and network architecture.
However, although these methods effectively promote the efficiency of training a diffusion model,
current works are not yet able to tackle the large-scale 3D image reconstruction problem in real world
settings.

3D CT reconstruction Computed tomography (CT) is a medical imaging technique that allows
a 3D object to be imaged by shooting X-rays through it [17]. The measurements consist of a set
of 2D projection views obtained from setting up the source and detector at different angles around
the object. By definition, y is the (known) set of projection views, A is the (in most cases assumed
to be) linear forward model of the CT measurement system, and x is the unknown image. The CT
reconstruction problem then consists of reconstructing x given y. Traditional methods for solving
this include regularization-based methods that enforce a previously held belief on x and likelihood
based methods [17, 32–34].

Data-driven methods have shown tremendous success in signal and image processing in recent
years [35–39]. In particular, for solving inverse problems, when large amounts of training data

3

Figure 2: Overview of slice blending process during reconstruction for DiffusionBlend++. At each
iteration, we partition the slices of the volume in a different way; slices of the same color are
inputted into the network independently. Positional encoding (PE) is also inputted to the network as
information about the separation between the slices.

is available, a learned prior can be much stronger than the hand-crafted priors used in traditional
methods [40, 41]. For past few years, many deep learning-based method have been proposed for
solving the 3D CT reconstruction problem [42–45]. These methods train a convolutional neural
network, such as a U-Net [42], that maps the partial-view filtered backprojection (FBP) reconstructed
image to the ground truth image, that is, full-view CT reconstruction. However, these methods often
generate blurry images and generalizes poorly for out-of-distribution data [46].

3D CT reconstruction with diffusion models. Diffusion models serve as a very strong prior as
they can generate entire images from pure noise. Most methods that use diffusion models to solve
inverse problems formulate the task as a conditional generation problem [47–49] or as a posterior
sampling problem [4–6, 9, 50]. In the former case, the network requires the measurement y (or
an appropriate resized transformation of y) during training time. Thus, at reconstruction time, that
trained network can only be used for solving the specific inverse problem with poor generalizability.
In contrast, for the posterior sampling framework, the network learns an unconditional image prior
for x that can help solve various inverse problem related to x without retraining. Although these
diffusion-based methods have shown great performance for solving inverse problems for 2D images
in different domains, there are seldom methods that are able to tackle inverse problems for 3D images
because of the infeasible computational and data requirements as aforementioned. Specifically, for
3D CT reconstruction, DiffusionMBIR [13] trains a diffusion model on the axial slices of volumes; at
reconstruction time, it uses the total variation (TV) regularizer with a posterior sampling approach to
encourage consistency between adjacent slices. Similarly, DDS [15] builds on this work by using
accelerated methods of sampling and data consistency to greatly reduce the reconstruction time.
However, although the TV regularizer has shown some success in maintaining smoothness across
slices, it is not a data-driven method and does not properly learn the 3D prior. TPDM [14] addresses
this problem by training a separate prior on the coronal slices of volumes with a conditional sampling
approach, which serves as a data-driven method of maintaining slice consistency at reconstruction
time, but requires that all the volumes have the same cubic shape. In exchange, this method sacrifices
the speed gains made by DDS, requiring alternating updates between the two separate priors, and
is also twice as computationally expensive at training time. To overcome these limitations, we aim
to propose a more flexible and robust approach that can learn the 3D data prior properly for CT
reconstruction, maintaining slice consistency while not sacrificing inference time.

3 Methods

Instead of modeling the 2D slices of the 3D volume as independent data samples during training time,
and then applying regularization between slices at reconstruction time, we propose incorporating
information from neighboring slices at training time to enforce consistency between slices. More
precisely, our first approach models the data distribution of a 3D volume with H slices in the z

4

dimension as follows:

p(x) ≈
∏H

i=1
p(x[:, :, i] |x[:, :, i− j : i− 1],x[:, :, i+ 1 : i+ j])/Z, (2)

where j is a positive integer indicating the number of neighboring slices above and below the target
slice that are being used as conditions to predict the target slice, and Z is a normalizing constant. To
deal with boundary conditions where the third index may exceed the bounds of the original volume,
we apply repetition padding above and below the main volume.

For training, we simply concatenate each of the conditioned slices with the target slice along the
channel dimension to serve as an input to the neural network. Then we apply denoising score
matching to predict the noise of the target slice as the loss function of the neural network:

Et∼U(0,T)Ex∼p(x)Eϵ∼N (0,I)Ei∈[1,H]∥ϵθ(xt[:, :, i− j : i+ j], σt)− ϵ[:, :, i]∥22. (3)

At reconstruction time, the score function of the entire volume decomposes as a sum of score functions
of each of the slices:

∇ log p(x) ≈
∑H

i=1
∇ log p(x[:, :, i] |x[:, :, i− j : i− 1],x[:, :, i+ 1 : i+ j]). (4)

In this way, we have rewritten the score of the 3D volume as sums of the scores of the 2D slices
learned by the network. This means that we can now apply any algorithm that uses diffusion models
to solve inverse problems to solve the 3D CT reconstruction problem. Furthermore, this method of
blending together information from different slices allows us to learn a prior for the entire volume
that combines information from different slices. We call this method DiffusionBlend.

To learn an even better 3D image prior, instead of learning the conditional distribution of individual
target slices, we can learn the joint distribution of several neighboring slices at once, which we call
a 3D patch. Letting k be the number of slices in each patch, we can partition the volume into 3D
patches and approximate the distribution of the volume as

p(x) ≈ (
∏H/k

i=1
p(x[:, :, (i− 1)k + 1 : ik]))/Z, (5)

where Z is a normalizing constant. Comparing this with (2), the main difference is instead of
conditioning on neighboring slices, we are now incorporating the neighboring slices as a joint
distribution. This allows for much faster reconstruction, as k slices are updated simultaneously
according to their score function. However, this method faces similar slice consistency issues as in
[13], since certain pairs of adjacent slices (namely, pairs whose slice indices are congruent to 0 and 1
modulo k) are never updated simultaneously by the network.

To deal with this issue, we propose two additional changes. Firstly, instead of using the same partition
(updating the same k slices) at once for each iteration, we can use a different partition so that the
previous border slices can be included in another partition. For example, we can randomly sample
the end index of the first 3D patch for adjacency slices. Let m be uniformly sampled from 1, 2, ..., k,
we can use the partition

S = {1, 2, . . . ,H} = {1, . . . ,m} ∪ {m+ 1, . . . ,m+ k} ∪ . . . ∪ {H − k + 1, . . . ,H}, (6)

instead of S = {1, 2, . . . ,H} = {1, . . . , k}∪{k+1, . . . , 2k}∪ . . .∪{H−k+1, . . . ,H}, where m
is the offset index number in the new partition. We can then compute the score on the new partition.
More generally, we can choose an arbitrary partition of S into H/k sets, each containing k elements
for each iteration, updating each slice in the small set simultaneously for that iteration.

Secondly, to better capture information between nonadjacent slices, we apply relative positional
encoding as an input to the network. More precisely, if a 3D patch has a slice thickness (the distance
between two slices) of p, then we let p be input of the positional encoding for that 3D patch. The
positional encoding block consists of a sinusoidal encoding module and several dense connection
modules, which has the same architecture as the timestamp embedding module of the same diffusion
model. In this manner, the network is able to learn how to incorporate information from nonadjacent
slices and captures more global information about the entire volume. Recall that for 3D patches
of adjacent slices, the border between patches may have inconsistencies. To address this, we can
concatenate each border as a new 3D patch, and then compute the score from it. If there are k slices
in an adjacency-slice 3D patch, then the new 3D patch has the relative positional encoding of k, and
also has a size of k. For instance, if the previous partition is (1,2,3),(4,5,6),(7,8,9), the new partition

5

is (1,4,7),(2,5,8),(3,6,9). Here we are forming a new partition with jumping slices. In practice, since
we need a pretrained natural image checkpoint due to scarcity of medical image data, we set k = 3
for facilitating fine tuning from natural image checkpoints.

We call the partitioning by 3D patch with adjacent slices as Adjacency Partition, and the partitioning
by 3D patch with jumping slices as Cross Partition. Letting r = H/k be the number of 3D
patches, with a random partition, this method is stochastically averaging the different estimations
of the ∇ log p(x) by different parititions. Specifically, the estimation of score by a single partition
S1 ∪ . . . ∪ Sr is given by

∑r
i=1 ∇ log p(x[:, :,Si]). Ideally, we want to compute

|S|−1
∑

S=S1∪...∪Sr

∑r

i=1
∇ log p(x[:, :,Si]). (7)

Similar to [4, 13, 51], we can share the summation in (7) across different diffusion steps since the
difference between two adjacent iterations xi and xi+1 is minimal.

In summary, we have shown how the score function of the entire volume can be written in terms of
scores of the slices of the volume. Hence, similar to DiffusionBlend, this method can be coupled
with any inverse problem solving algorithm. The scores of the slices can be approximated using a
neural network. Training this network consists of randomly selecting k slices from a volume and
concatenating them along the channel dimension to get the input to the network (along with the
positional encoding of the slices), and then using denoising score matching as in (3) as the loss
function; Section A.1 provides a theoretical justification for this procedure.

Sampling and reconstruction. With Eq. 7, each reconstruction step would require computing the
score functions corresponding to each of the partitions of S , and then summing them to get the score
function s(x). We propose the variable sharing technique for this method, and only need to compute
the score of one partition per time step. Hence, each iteration, we instead randomly choose one of
the partitions of S and update the volume of intermediate samples by the score function. Finally, we
use repetition padding if H is not a multiple of k. This method incorporates a similar slice blending
strategy as DiffusionBlend, but allows for significant acceleration at reconstruction time as k slices
are updated at once. Furthermore, it allows the network to learn joint information between slices that
are farther apart without requiring the increase in computational cost associated with increasing k.
We call this method DiffusionBlend++. The pseudocode of the algorithm can be found in Alg. 1.

In practice, we choose not to select from all possible partitions, but instead select from those where
the indices in each Si are not too far apart, as the joint information between slices that are very far
apart is hard to capture. Table 12 summarizes the different 3D image prior models. The appendix
provides more details about the partition selection scheme.

Krylov subspace methods. Following the work of [15], we apply Krylov subspace methods to
enforce data consistency with the measurement. At each timestep t, by using Tweedie’s formula [52],
we compute x̂t = E[x0|xt], and then apply the conjugate gradient method

x̂′
t = CG(A∗A,A∗y, x̂t,M), (8)

where in practice, the CG operator involves running M CG steps for the normal equation
A∗y = A∗Ax. We combine this method with the DDIM sampling algorithm [29] to decrease
reconstruction time. To summarize, we provide the algorithm for DiffusionBlend++ below. The
Appendix provides the training algorithms for our proposed method as well as the reconstruction
algorithm for DiffusionBlend.

4 Experiments

Experimental setup. We used the public CT dataset from the AAPM 2016 CT challenge [53] that
consists of 10 volumes. We rescaled the images in the XY-plane to have size 256 × 256 without
altering the data in the Z-direction and used 9 of the volumes for training data and the tenth volume
as test data. The training data consisted of approximately 5000 2D slices and the test volume had
500 slices. We also performed experiments on the LIDC-IDRI dataset [54]. For this dataset, we first
applied data preprocessing by setting the entire background of the volumes to zero. We rescaled the
images in the XY-plane to have size 256× 256, and, to compare with the TPDM method, only took

6

Algorithm 1 DiffusionBlend++

Require: Forward model A, sinogram y, hyperparameter k, CG iteration numbers M
Initialize xT ∼ N (0, σ2

T I)
for t = T : 1 do

Randomly select a partition S = S1 ∪ . . . ∪ Sr (if t mod k = 0, then use cross partition,
otherwise use random adjacency partitions)

Compute the relative positional encoding PEt

For each i compute ϵθ(xt[:, :,Si], PEt)
Compute s = ∇ log p(xt) using (7)
Compute x̂t = E[x0|xt] using Tweedie’s formula
Set x̂′

t = CG(A∗A,A∗y, x̂t,M)
Sample xt−1 using x̂′

t and s via DDIM sampling
end for

Return x.

Figure 3: Results of CT reconstruction with 4 views on AAPM dataset, axial view.

the volumes with at least 256 slices in the Z-direction, truncating the Z-direction to have exactly 256
slices. This resulted in 357 volumes which we used for training and one volume used for testing.

We performed experiments for sparse view CT (SVCT) and limited angle CT (LACT). The detector
size was set to 512 pixels for all cases. For SVCT, we ran experiments on 4, 6, and 8 views. We also
ran additional experiments on 20, 40, 60, 80, and 100 views and report the quantitative results in the
Appendix. For LACT, we used the full set of views but only spaced around a 90 degree angle. In all
cases, implementations of the forward and back projectors can be found in [13].

For a fair comparison between DiffusionBlend and DiffusionBlend++, we selected j = 1 for
DiffusionBlend and each Si to contain 3 elements for DiffusionBlend++. In this manner, both
methods involve learning a prior that involves products of joint distributions on 3 slices. To train the
score function for DiffusionBlend, we started from scratch using the LIDC dataset. Since this dataset
consisted of over 90000 slices, the network was able to properly learn this prior. We then fine tuned
this network on the much smaller AAPM dataset. For DiffusionBlend++, the input and output images
both had 3 channels from stacking the slices, so we fine-tuned the existing checkpoint from [22]. All
networks were trained on PyTorch using the Adam optimizer with A40 GPUs. For reconstruction,
we used 200 neural function evaluations (NFEs) for all the results. The appendix provides the full
experiment hyperparameters. We observe that DiffusionBlend++ can reconstruct very high quality
images that are free of artifacts as demonstrated in Fig.4 and Fig.3.

Comparison methods. We compared our proposed method with baseline methods for CT recon-
struction and state of the art 3D diffusion model methods. We used the filtered back projection
implementation found in [13]. For the other baseline, we used FBP-UNet [42] which is a supervised
method that involves training a network for each specific task mapping the FBP reconstruction to the

7

Figure 4: Results of DiffusionBlend++ reconstruction with multiple views on AAPM dataset, axial
view.

Method
Sparse-View CT Reconstruction on AAPM Sparse-View CT Reconstruction on LIDC
8 views 6 views 4 views 8 Views 6 Views 4 Views

PSNR↑ SSIM↑ PSNR↑ SSIM↑ PSNR↑ SSIM↑ PSNR↑ SSIM↑ PSNR↑ SSIM↑ PSNR↑ SSIM↑
FBP 14.66 0.359 13.65 0.293 11.94 0.222 14.79 0.217 14.11 0.191 13.18 0.169
FBP-UNet 26.00 0.849 24.15 0.782 23.37 0.761 28.58 0.848 26.48 0.781 25.19 0.731
DiffusionMBIR 26.30 0.863 24.99 0.827 23.66 0.789 32.67 0.922 31.18 0.901 29.02 0.863
TPDM - - - - - - 27.51 0.816 25.60 0.776 21.99 0.695
DDS 2D 32.89 0.946 31.40 0.934 28.77 0.906 30.82 0.897 29.38 0.867 27.54 0.826
DDS 33.19 0.945 31.94 0.942 29.22 0.916 31.65 0.915 30.12 0.888 27.20 0.808
DiffusionBlend (Ours) 34.29 0.955 33.26 0.949 31.84 0.944 33.34 0.933 30.94 0.905 27.96 0.849
DiffusionBlend++ (Ours) 35.69 0.966 34.68 0.960 32.93 0.952 34.46 0.947 33.03 0.932 30.98 0.912

Table 1: Comprehensive comparison of quantitative results on Sparse-View CT Reconstruction on
Axial View for AAPM and LIDC datasets. Best results are in bold.

clean image. Since this is a 2D method, we learned a mapping between 2D slices and then stacked the
2D slices to get the final 3D volume. We also compared with classical CT reconstruction techniques
such as SBTV, SIRT, and CGLS [55] to benchmark our algorithm against traditional methods. Results
for these methods are reported in the Appendix. For DiffusionMBIR [56], we fine-tuned the score
function checkpoints on our data and used the same hyperparameters as the original work. We did
the same for TPDM [14]; however, we ran TPDM only on the LIDC dataset because TPDM requires
cubic volumes. Finally, we ran two variants of DDS [15]: one in which all the hyperparameters
were left unchanged (DDS), and another in which no TV regularizer between slices was enforced
(DDS 2D). Both of these methods were run with 200 NFEs. The appendix provides the experiment
parameters.

Sparse-view CT. The results for different numbers of views and across different slices are shown
in Tables 1, 11, and 3. DiffusionBlend++ exhibits much better performance over all the previous
baseline methods (usually by a few dB) and outperforms DiffusionBlend. The second best method
for each experiment is underlined and was, in most cases, DiffusionBlend. The exceptions are when
the second best method is DiffusionMBIR, but this method was run with 2000 NFEs and took about
20 hours to run compared to 1-2 hours for both of our methods. The two DDS methods required
similar runtime as our methods but in all cases exhibited inferior reconstruction results. Furthermore,
DDS 2D generally performed worse than DDS. Thus, DDS failed to properly learn a 3D volume
prior and still relied on the TV regularizer. Additionally, although TPDM should learn a 3D prior,
the results were very poor compared to the other baselines. Our proposed method learned a fully 3D
prior and achieved the best results in the sagittal and coronal views.

Limited-angle CT. Table 4 shows all results for limited angle CT reconstruction for both the AAPM
and LIDC datasets. Our DiffusionBlend++ method obtains superior performance over all the baseline
methods and DiffusionBlend obtains the second best results. Similar to the SVCT experiments,
DiffusionMBIR performed the best out of the baseline methods, but took approximately 40 hours to

8

Method
Sparse-View CT Reconstruction on AAPM Sparse-View CT Reconstruction on LIDC
8 views 6 views 4 views 8 Views 6 Views 4 Views

PSNR↑ SSIM↑ PSNR↑ SSIM↑ PSNR↑ SSIM↑ PSNR↑ SSIM↑ PSNR↑ SSIM↑ PSNR↑ SSIM↑
FBP 12.30 0.345 10.14 0.277 6.78 0.204 14.88 0.234 14.30 0.207 13.43 0.187
FBP-UNet 26.13 0.860 24.14 0.798 23.47 0.779 28.56 0.848 26.52 0.783 25.29 0.732
DiffusionMBIR 26.64 0.869 25.08 0.834 23.71 0.789 32.79 0.922 31.30 0.900 28.98 0.862
TPDM - - - - - - 27.66 0.819 25.57 0.784 21.87 0.708
DDS 2D 33.22 0.949 31.69 0.937 29.39 0.909 30.98 0.894 29.40 0.862 27.54 0.819
DDS 33.43 0.945 32.18 0.947 29.86 0.924 31.80 0.915 30.13 0.889 27.26 0.818
DiffusionBlend (Ours) 35.09 0.958 33.97 0.952 32.38 0.943 33.73 0.934 31.16 0.907 27.93 0.855
DiffusionBlend++ (Ours) 36.48 0.968 35.38 0.963 33.22 0.954 34.86 0.946 33.20 0.932 30.97 0.913

Table 2: Comprehensive comparison of quantitative results on Sparse-View CT Reconstruction on
Sagittal View for AAPM and LIDC datasets. Best results are in bold.

Method
Sparse-View CT Reconstruction on AAPM Sparse-View CT Reconstruction on LIDC
8 views 6 views 4 views 8 Views 6 Views 4 Views

PSNR↑ SSIM↑ PSNR↑ SSIM↑ PSNR↑ SSIM↑ PSNR↑ SSIM↑ PSNR↑ SSIM↑ PSNR↑ SSIM↑
FBP 14.64 0.325 13.18 0.268 11.16 0.236 14.78 0.206 14.10 0.181 13.10 0.165
FBP-UNet 27.34 0.878 25.12 0.827 24.10 0.810 28.87 0.858 26.59 0.793 25.37 0.744
DiffusionMBIR 29.86 0.908 28.12 0.875 25.68 0.843 33.29 0.922 31.69 0.903 29.21 0.868
TPDM - - - - - - 28.12 0.833 25.78 0.804 22.29 0.735
DDS 2D 33.64 0.950 32.33 0.939 30.25 0.916 31.60 0.898 29.99 0.871 28.03 0.830
DDS 33.97 0.934 32.95 0.930 30.89 0.932 32.51 0.920 30.83 0.898 27.61 0.828
DiffusionBlend (Ours) 36.45 0.958 35.23 0.952 33.98 0.944 34.47 0.934 31.48 0.908 28.24 0.859
DiffusionBlend++ (Ours) 37.87 0.968 36.66 0.963 34.27 0.955 35.66 0.947 33.97 0.935 31.38 0.913

Table 3: Comprehensive comparison of quantitative results on Sparse-View CT Reconstruction on
Coronal View for AAPM and LIDC datasets. Best results are in bold.

Method
AAPM Dataset LIDC Dataset

Axial Sagittal Coronal Axial Sagittal Coronal
PSNR↑ SSIM↑ PSNR↑ SSIM↑ PSNR↑ SSIM↑ PSNR↑ SSIM↑ PSNR↑ SSIM↑ PSNR↑ SSIM↑

FBP 16.36 0.643 16.36 0.524 15.62 0.531 18.79 0.672 19.84 0.675 20.01 0.676
FBP-UNet 27.38 0.910 27.81 0.918 28.44 0.930 29.42 0.885 29.50 0.884 29.54 0.887
DiffusionMBIR 25.98 0.872 27.14 0.877 27.74 0.903 30.52 0.906 30.57 0.906 30.68 0.907
TPDM - - - - - - 14.44 0.141 14.06 0.141 14.54 0.313
DDS 2D 28.05 0.916 27.99 0.916 28.82 0.922 27.92 0.843 27.89 0.835 27.96 0.842
DDS 28.20 0.918 28.17 0.926 29.03 0.934 28.12 0.865 28.06 0.869 28.13 0.879
DiffusionBlend (Ours) 35.38 0.971 35.85 0.972 37.62 0.972 30.43 0.917 31.24 0.920 31.02 0.924
DiffusionBlend++ (Ours) 35.86 0.975 36.03 0.976 37.45 0.976 34.33 0.957 34.48 0.957 34.64 0.956

Table 4: Comprehensive comparison of quantitative results on Limited-Angle CT Reconstruction on
All Views for AAPM and LIDC datasets. Best results are in bold.

run. FBP-UNet performed reasonably well, but is a supervised method where the network must be
retrained for each specific task. DDS is the most directly comparable to our method in runtime and
methodology, but performed much worse quantitatively.

Algorithm TV value Difference with gt
DDS 2D 0.0104 0.0044

DDS 0.0031 -0.0034
DiffusionBlend++ (Ours) 0.0043 -0.0022

Ground Truth 0.0065 -

Table 5: TV values of different reconstruction algorithms
on the AAPM test set

Inter-slice smoothness We demon-
strate that DiffusionBlend++ learns
the 3D prior internally, and achieves
consistency and smoothness between
2D axial-plane slices without any
external regularizations. In Table 5,
we present the total variation (TV)
value of the reconstructed images of
different reconstruction algorithms on
the test set of AAPM dataset, given by

1
C×W×H ||Dz(x)||1, where x is the image, Dz is the total variation operator in z direction, and C,
W , H are number of channels, width, and height. We find that both DiffusionBlend++ and DDS
have TV less than the ground truth image, which implies that the reconstructed images are smooth
in the z direction. However, we observe that DDS over-smooths the images as demonstrated in
Fig. 5, which is represented by a much lower TV value than the ground truth. On the other hand, Dif-
fusionBlend++ has smoothness level close to the ground truth without sacrificing sharpness of images.

9

Figure 5: Results of CT reconstruction with 8 views on AAPM dataset, coronal view. DiffusionPatch
refers to Algorithm 1 with the same partition for every timestsep, and DiffusionBlend+ refers to
Algorithm 1 only with partitions of adjacency slices.

Effectiveness of adjacency-slice blending and cross-slice blending We demonstrate that both
the adjacency-slice blending and the cross-slice blending module are instrumental to a better re-
construction quality. Table 7 demonstrates the effectiveness of adding blending modules to the
reverse sampling. Given the pretrained diffusion prior over slice patches, we observe that adding the
adjacency-slice blending module improves the PSNR over a fixed partition by 1.17dB, and adding
an additional cross-slice blending module further improves the PSNR by 1.63dB. Fig. 5 demon-
strates that adding the cross-slice blending module removes artifacts and recovers sharper edges.

Adjacency Cross PSNR ↑ SSIM ↑
34.85 0.954

✓ 36.02 0.965
✓ ✓ 36.48 0.968

Table 6: Effectiveness of Blending Mod-
ules, Sagittal view performance on AAPM

Ablation Studies We investigated the performance gain
due to individual components. Details can be found in
Appendix A.3.

5 Conclusion

In this work, we proposed two methods of using score-
based diffusion models to learn priors of three dimen-
sional volumes and used them to perform CT recon-
struction. In both cases, we learn the distributions of multiple slices of a volume at once and blend the
distributions together at inference time. Extensive experiments showed that our method substantially
outperformed existing methods for 3D CT reconstruction both quantitatively and qualitatively in the
sparse view and limited angle settings. In the future, more work could be done on other 3D inverse
problems and acceleration through latent diffusion models. Image reconstruction methods like those
proposed in this paper have the potential to benefit society by reducing X-ray dose in CT scans.

Acknowledgments and Disclosure of Funding

The authors acknowledge support from Michigan Institute for Computational Discovery and Engi-
neering (MICDE) Catalyst Grant, and Michigan Institute for Data Science (MIDAS) PODS Grant.

References

[1] Y. Song and S. Ermon. “Generative Modeling by Estimating Gradients of the Data Distribution”. In:
Advances in Neural Information Processing Systems. Vol. 32. 2019.

[2] Y. Song, J. Sohl-Dickstein, D. P. Kingma, A. Kumar, S. Ermon, and B. Poole. “Score-Based Generative
Modeling through Stochastic Differential Equations”. In: 9th International Conference on Learning
Representations, ICLR 2021, Virtual Event, Austria, May 3-7, 2021. 2021.

[3] J. Ho, A. Jain, and P. Abbeel. “Denoising Diffusion Probabilistic Models”. In: 33 (2020). Ed. by H.
Larochelle, M. Ranzato, R. Hadsell, M. Balcan, and H. Lin, pp. 6840–6851.

10

[4] H. Chung, J. Kim, M. T. Mccann, M. L. Klasky, and J. C. Ye. “Diffusion Posterior Sampling for General
Noisy Inverse Problems”. In: The Eleventh International Conference on Learning Representations. 2023.

[5] B. Kawar, M. Elad, S. Ermon, and J. Song. Denoising Diffusion Restoration Models. 2022.
[6] Y. Wang, J. Yu, and J. Zhang. Zero-Shot Image Restoration Using Denoising Diffusion Null-Space Model.

2022.
[7] B. Kawar, G. Vaksman, and M. Elad. SNIPS: Solving Noisy Inverse Problems Stochastically. 2021.
[8] H. Chung, B. Sim, and J. C. Ye. Come-Closer-Diffuse-Faster: Accelerating Conditional Diffusion Models

for Inverse Problems through Stochastic Contraction. 2022.
[9] H. Chung, B. Sim, D. Ryu, and J. C. Ye. Improving Diffusion Models for Inverse Problems using Manifold

Constraints. 2022.
[10] Y. Song, L. Shen, L. Xing, and S. Ermon. “Solving Inverse Problems in Medical Imaging with Score-Based

Generative Models”. In: International Conference on Learning Representations. 2022.
[11] A. Jalal, M. Arvinte, G. Daras, E. Price, A. G. Dimakis, and J. Tamir. “Robust compressed sensing

mri with deep generative priors”. In: Advances in Neural Information Processing Systems 34 (2021),
pp. 14938–14954.

[12] W. Xia, H. W. Tseng, C. Niu, W. Cong, X. Zhang, S. Liu, R. Ning, S. Vedantham, and G. Wang. Parallel
Diffusion Model-based Sparse-view Cone-beam Breast CT. 2024.

[13] H. Chung, D. Ryu, M. T. McCann, M. L. Klasky, and J. C. Ye. Solving 3D Inverse Problems using
Pre-trained 2D Diffusion Models. 2022.

[14] S. Lee, H. Chung, M. Park, J. Park, W.-S. Ryu, and J. C. Ye. Improving 3D Imaging with Pre-Trained
Perpendicular 2D Diffusion Models. 2023.

[15] H. Chung, S. Lee, and J. C. Ye. Decomposed Diffusion Sampler for Accelerating Large-Scale Inverse
Problems. 2024.

[16] W. Xia, W. Cong, and G. Wang. Patch-Based Denoising Diffusion Probabilistic Model for Sparse-View
CT Reconstruction. 2022.

[17] L. A. Feldkamp, L. C. Davis, and J. W. Kress. “Practical cone beam algorithm”. In: J. Opt. Soc. Am. A
1.6 (June 1984), pp. 612–619.

[18] E. Y. Sidky, C.-M. Kao, and X. Pan. “Accurate image reconstruction from few-views and limited-angle
data in divergent-beam CT”. In: Journal of X-Ray Science and Technology 14.2 (2006), pp. 119–139.

[19] T. M. Buzug. “Computed tomography”. In: Springer handbook of medical technology. Springer, 2011,
pp. 311–342.

[20] O. Russakovsky et al. ImageNet Large Scale Visual Recognition Challenge. 2015.
[21] F. Yu, A. Seff, Y. Zhang, S. Song, T. Funkhouser, and J. Xiao. “LSUN: Construction of a Large-scale

Image Dataset using Deep Learning with Humans in the Loop”. In: arXiv preprint arXiv:1506.03365
(2016).

[22] J. Ho, A. Jain, and P. Abbeel. “Denoising diffusion probabilistic models”. In: Advances in Neural
Information Processing Systems 33 (2020), pp. 6840–6851.

[23] R. Rombach, A. Blattmann, D. Lorenz, P. Esser, and B. Ommer. High-Resolution Image Synthesis with
Latent Diffusion Models. 2022.

[24] B. Song, S. M. Kwon, Z. Zhang, X. Hu, Q. Qu, and L. Shen. Solving Inverse Problems with Latent
Diffusion Models via Hard Data Consistency. 2023.

[25] A. Blattmann et al. Stable Video Diffusion: Scaling Latent Video Diffusion Models to Large Datasets.
2023.

[26] J. Han, F. Kokkinos, and P. Torr. VFusion3D: Learning Scalable 3D Generative Models from Video
Diffusion Models. 2024.

[27] S. Yu, K. Sohn, S. Kim, and J. Shin. Video Probabilistic Diffusion Models in Projected Latent Space.
2023.

[28] Y. Oshima, S. Taniguchi, M. Suzuki, and Y. Matsuo. SSM Meets Video Diffusion Models: Efficient Video
Generation with Structured State Spaces. 2024.

[29] J. Song, C. Meng, and S. Ermon. “Denoising diffusion implicit models”. In: arXiv preprint
arXiv:2010.02502 (2020).

[30] T. Karras, M. Aittala, T. Aila, and S. Laine. Elucidating the Design Space of Diffusion-Based Generative
Models. 2022.

[31] C. Lu, Y. Zhou, F. Bao, J. Chen, C. Li, and J. Zhu. “DPM-Solver: A Fast ODE Solver for Diffusion
Probabilistic Model Sampling in Around 10 Steps”. In: arXiv preprint arXiv:2206.00927 (2022).

[32] J.-B. Thibault, K. Sauer, C. Bouman, and J. Hsieh. “A three-dimensional statistical approach to improved
image quality for multi-slice helical CT”. In: Med. Phys. 34.11 (Nov. 2007), pp. 4526–4544.

[33] J. Xu and B. M. W. Tsui. “Interior and sparse-view image reconstruction using a mixed region and
voxel-based ML-EM algorithm”. In: IEEE Trans. Nuc. Sci. 59.5 (Oct. 2012), pp. 1997–2007.

11

[34] J. H. Cho and J. A. Fessler. “Regularization designs for uniform spatial resolution and noise properties
in statistical image reconstruction for 3D X-ray CT”. In: IEEE Trans. Med. Imag. 34.2 (Feb. 2015),
pp. 678–689.

[35] J. Liu, Y. Sun, X. Xu, and U. S. Kamilov. Image Restoration using Total Variation Regularized Deep
Image Prior. 2018.

[36] Z. Li, X. Xu, J. Hu, J. Fessler, and Y. Dewaraja. “Reducing SPECT acquisition time by predicting missing
projections with single-scan self-supervised coordinate-based learning”. In: Journal of Nuclear Medicine
64.supplement 1 (2023), P1014–P1014.

[37] J. Hu, B. T.-W. Lin, J. H. Vega, and N. R.-L. Tsiang. “Predictive Models of Driver Deceleration and
Acceleration Responses to Lead Vehicle Cutting In and Out”. In: Transportation Research Record 2677.5
(2023), pp. 92–102. DOI: 10.1177/03611981221128277.

[38] X. Xu, W. Gan, S. V. V. N. Kothapalli, D. A. Yablonskiy, and U. S. Kamilov. CoRRECT: A Deep
Unfolding Framework for Motion-Corrected Quantitative R2* Mapping. 2022.

[39] X. Xu, J. Liu, Y. Sun, B. Wohlberg, and U. S. Kamilov. “Boosting the Performance of Plug-and-Play Priors
via Denoiser Scaling”. In: 54th Asilomar Conf. on Signals, Systems, and Computers. 2020, pp. 1305–1312.
DOI: 10.1109/IEEECONF51394.2020.9443410.

[40] X. Xu, Y. Sun, J. Liu, B. Wohlberg, and U. S. Kamilov. “Provable Convergence of Plug-and-Play
Priors With MMSE Denoisers”. In: IEEE Signal Processing Letters 27 (2020), pp. 1280–1284. DOI:
10.1109/lsp.2020.3006390.

[41] J. Liu, X. Xu, W. Gan, S. Shoushtari, and U. Kamilov. “Online Deep Equilibrium Learning for Reg-
ularization by Denoising”. In: Advances in Neural Information Processing Systems. Ed. by A. H. Oh,
A. Agarwal, D. Belgrave, and K. Cho. 2022.

[42] K. H. Jin, M. T. McCann, E. Froustey, and M. Unser. “Deep convolutional neural network for inverse
problems in imaging”. In: IEEE Transactions on Image Processing 26.9 (2017), pp. 4509–4522.

[43] A. Lahiri, G. Maliakal, M. L. Klasky, J. A. Fessler, and S. Ravishankar. “Sparse-view cone beam CT
reconstruction using data-consistent supervised and adversarial learning from scarce training data”. In:
IEEE Transactions on Computational Imaging 9 (2023), pp. 13–28.

[44] M. Sonogashira, M. Shonai, and M. Iiyama. “High-Resolution Bathymetry by Deep-Learning-Based
Image Superresolution”. In: PloS One 15.7 (2020), e0235487–e0235487. DOI: 10.1371/journal.
pone.0235487.

[45] E. Whang, D. McAllister, A. Reddy, A. Kohli, and L. Waller. “SeidelNet: An Aberration-Informed Deep
Learning Model for Spatially Varying Deblurring”. In: SPIE. Vol. 12438. 2023, 124380Y–124380Y–6.
DOI: 10.1117/12.2650416.

[46] V. Antun, F. Renna, C. Poon, B. Adcock, and A. C. Hansen. “On instabilities of deep learning in image
reconstruction and the potential costs of AI”. In: Proceedings of the National Academy of Sciences 117.48
(2020), pp. 30088–30095.

[47] M. Delbracio and P. Milanfar. Inversion by Direct Iteration: An Alternative to Denoising Diffusion for
Image Restoration. 2024.

[48] G.-H. Liu, A. Vahdat, D.-A. Huang, E. A. Theodorou, W. Nie, and A. Anandkumar. I2SB: Image-to-Image
Schrödinger Bridge. 2023.

[49] H. Chung, J. Kim, and J. C. Ye. Direct Diffusion Bridge using Data Consistency for Inverse Problems.
2023.

[50] G. Cardoso, Y. J. E. Idrissi, S. L. Corff, and E. Moulines. Monte Carlo guided Diffusion for Bayesian
linear inverse problems. 2023.

[51] S. Lee, H. Chung, M. Park, J. Park, W.-S. Ryu, and J. C. Ye. “Improving 3D imaging with pre-trained
perpendicular 2D diffusion models”. In: Proceedings of the IEEE/CVF International Conference on
Computer Vision. 2023, pp. 10710–10720.

[52] B. Efron. “Tweedie’s formula and selection bias”. In: Journal of the American Statistical Association
106.496 (2011), pp. 1602–1614.

[53] C. H. McCollough et al. “Results of the 2016 Low Dose CT Grand Challenge”. English (US). In: Medical
physics 44.10 (Oct. 2017), e339–e352. DOI: 10.1002/mp.12345.

[54] S. G. Armato, G. McLennan, L. Bidaut, M. F. McNitt-Gray, and C. R. Meyer. “The lung image database
consortium (LIDC) and image database resource initiative (IDRI): A completed reference database of
lung nodules on CT scans.” In: Medical Physics 38 (2011), pp. 915–931.

[55] T. Goldstein and S. Osher. “The split Bregman method for L1-regularized problems”. In: SIAM journal
on imaging sciences 2.2 (2009), pp. 323–343.

[56] H. Chung, B. Sim, D. Ryu, and J. C. Ye. “Improving Diffusion Models for Inverse Problems using
Manifold Constraints”. In: Advances in Neural Information Processing Systems. Vol. 35. 2022, pp. 25683–
25696.

[57] Y. Han and J. C. Ye. “Framing U-Net via deep convolutional framelets: Application to sparse-view CT”.
In: IEEE transactions on medical imaging 37.6 (2018), pp. 1418–1429.

12

https://doi.org/10.1177/03611981221128277
https://doi.org/10.1109/IEEECONF51394.2020.9443410
https://doi.org/10.1109/lsp.2020.3006390
https://doi.org/10.1371/journal.pone.0235487
https://doi.org/10.1371/journal.pone.0235487
https://doi.org/10.1117/12.2650416
https://doi.org/10.1002/mp.12345

A Appendix / supplemental material

A.1 Score matching derivations for DiffusionBlend++

We show how the score matching method described in [1] can be simplified in the case of assumptions
such as the ones described in Table 12.

Product of distributions. Suppose first that the distribution of interest can be expressed as p(x) =
q(x)ar(x)b/Z for density functions q and r, constant positive scalars a and b, and a scaling factor Z.
Following [1], to learn the score function, we can minimize the loss function

Et∼U(0,T)Ex∼p(x)Ey∼N (x,σ2
t I)

∥sθ(y, σt)−
y − x

σ2
t

∥22, (9)

where sθ represents a neural network. Denoting the score functions of p, q, and r by s, sp, and sq,
we have s(x) = asq(x) + bsr(x). Hence, if we instead use neural networks to learn sp and sq , we
could minimize the loss function

L1 = Et∼U(0,T)Ex∼p(x)Ey∼N (x,σ2
t I)

∥asq,θ(y, σt) + bsr,θ(y, σt)−
y − x

σ2
t

∥22. (10)

However, this loss function is computationally expensive to work with, as backpropagation through
both networks is necessary. Thus, it would be ideal to derive a simpler form of this loss function.

Toward these ends, for simplicity we define X = asq,θ(y, σt)− a
a+b ·

y−x
σ2
t

and Y = bsr,θ(y, σt)−
b

a+b ·
y−x
σ2
t

, where all images have been vectorized. Now

∥X − Y ∥22 = ∥X∥22 + ∥Y ∥22 − 2⟨X,Y ⟩ ≥ 0. (11)

Thus, rearranging the inequality and adding ∥X∥22 + ∥Y ∥22 to both sides yields ∥X + Y ∥22 ≤
2∥X∥22 + 2∥Y ∥22.

Returning to the original loss function, we have

L1 = Et∼U(0,T)Ex∼p(x)Ey∼N (x,σ2
t I)

∥X + Y ∥22. (12)

By applying the inequality proven above, we get

L1 ≤ 2Et∼U(0,T)Ex∼p(x)Ey∼N (x,σ2
t I)

∥a · sq,θ(y, σt)−
a

a+ b
· y − x

σ2
t

∥22 (13)

+ 2Et∼U(0,T)Ex∼p(x)Ey∼N (x,σ2
t I)

∥b · sr,θ(y, σt)−
b

a+ b
· y − x

σ2
t

∥22. (14)

For the special case of a = b = 1
2 , this inequality is rewritten as

L1 ≤ Et∼U(0,T)Ex∼p(x)Ey∼N (x,σ2
t I)

∥sq,θ(y, σt)−
y − x

σ2
t

∥22 (15)

+ Et∼U(0,T)Ex∼p(x)Ey∼N (x,σ2
t I)

∥sr,θ(y, σt)−
y − x

σ2
t

∥22. (16)

Note that each of the two individual terms in the sum precisely represents the score matching equation
for learning the score functions sp and sq . Hence, to train the networks sq,θ and sr,θ by minimizing
L1, we may instead minimize the upper bound of L1 by separately training these two networks.

In practice, we may opt to use the same network for sq,θ and sr,θ but with an additional input
specifying which distribution between q and r to use. In this case, at each training iteration, we
randomly choose from one of the two distributions and perform backpropagation using this dis-
tribution. More precisely, we redefine our network sθ(x, σt, v) with v being either 0 or 1. When
v = 0, sθ(x, σt, v) = sq,θ(x, σt) and when v = 1, sθ(x, σt, v) = sr,θ(x, σt). Thus the loss bound
becomes

L1 ≤ Et∼U(0,T)Ex∼p(x)Ey∼N (x,σ2
t I)

Ev∈{0,1}∥sθ(y, σt, v)−
y − x

σ2
t

∥22. (17)

13

Finally, this derivation easily extends to the more general case where the distribution of interest can
be expressed as

p(x) =

k∏
i=1

pi(x)
1/k/Z. (18)

In this case, the similarly defined score matching loss function L1 can be upper bounded by an
expression similar to (17), but with v being randomly selected from k possible values.

In summary, we have shown that for the case of a decomposable distribution p(x), the score function
of p(x) can be learned simply through the score function of the individual components pi(x). In the
special case when each of the components have equal weight, it suffices to randomly choose one
of the components and backpropagate through the score matching loss function according to that
component.

Separable distributions. Next, we show how the score matching method is simplified for distri-
butions of the form p(x) =

∏r
i=1 p(x[:, :,Si])/Z, where the same notation as Table 12 is used and

S = S1 ∪ . . .∪ Sr denotes an arbitrary partition of {1, 2, . . . ,H}. The score function of p(x) can be
written as

s(x) =
H∑
i=1

∇ log p(x[:, :,Si]) =
H∑
i=1

si(x[:, :,Si]), (19)

where si represents the score function of the slices of x corresponding to Si. Then (9) becomes

L = Et∼U(0,T)Ex∼p(x)Ey∼N (x,σ2
t I)

∥∥∥∥∥
H∑
i=1

sθ,i(x[:, :,Si])−
y − x

σ2
t

∥∥∥∥∥
2

2

. (20)

Since each of the Si’s are disjoint, this can be broken up and rewritten as

L =

H∑
i=1

Et∼U(0,T)Ex∼p(x)Ey∼N (x,σ2
t I)

∥∥∥∥sθ,i(x[:, :,Si])−
y[:, :,Si]− x[:, :,Si]

σ2
t

∥∥∥∥2
2

. (21)

Thus, after replacing the outer sum with an expectation over i, this is equivalent to randomly choosing
one of the partitions Si and performing denoising score matching on only x[:, :,Si].

A very similar derivation holds for the general case where the 3D volume x can be partitioned into an
arbitrary number of smaller volumes of any shape x = x1∪x2∪. . .∪xH and p(x) =

∏H
i=1 p(xi)/Z.

For this case, training consists of randomly selecting one of the partitions at each iteration and
performing score matching on that partition. For example, when xi = x[:, :, i], it is common to select
2D slices from the training volumes and learn a two dimensional diffusion model on those slices [13,
14].

Applying to DiffusionBlend++. When p(x) follows the distribution in DiffusionBlend++ we can
combine the results of the previous two sections to show how to perform score matching. In the
first part of this section, we showed how to perform score matching for a distribution expressed as
a product of “simpler” distributions by performing score matching on the individual distributions.
DiffusionBlend++ follows this assumption where

pi(x) =

 r∏
j=1

p(x[:, :,Sj])

 /Zi. (22)

Here, i represents an index that can iterate through the ways of partitioning S = S1 ∪ . . . ∪ Sr.
The input v to the network specifying which of the simpler distributions is used is embedded as the
relative position encoding for each of the partitions as described in Section 3. Finally, to learn the
score function of pi(x), we can use the loss function in (21).

A.2 Additional Algorithms

The reconstruction algorithm for DiffusionBlend is provided below.

The training algorithms for DiffusionBlend and DiffusionBlend++ are provided below.

14

Algorithm 2 DiffusionBlend

Require: A, M , ζi > 0, j,y
Initialize xT ∼ N (0, σ2

T I)
for t = T : 1 do

For each i compute ϵθ(xt[:, :, i]|xt[:, :, i− j : i− 1],xt[:, :, i+ 1 : i+ j])
Compute s = ∇ log p(xt) using (4)
Compute x̂t = E[x0|xt] using Tweedie’s formula
Set x̂′

t = CG(A∗A,A∗y, x̂t)
Sample xt−1 using x̂′

t and s via DDIM sampling
end for

Return x.

Algorithm 3 DiffusionBlend training
repeat
Select x ∼ p(x)
Select t ∼ Uniform[1, T]
Set ϵ ∼ N (0, I)
Select i ∼ Uniform[1, H]
Take gradient descent step on ∇θ∥(ϵθ(xt[:, :, i− j : i+ j], σt)− ϵ[:, :, i])∥22
until converged

Return Dθ

Algorithm 4 DiffusionBlend++ training
repeat
Select x ∼ p(x)
Select t ∼ Uniform[1, T]
Set ϵ ∼ N (0, I)
Select a partition S = S1 ∪ . . . ∪ Sr

Select i ∼ Uniform[1, r]
Take gradient descent step on ∇θ∥(ϵθ(xt[:, :,Si], σt)− ϵ[:, :,Si])∥22
until converged

Return Dθ

15

A.3 Ablation studies

Adjacency Cross PSNR ↑ SSIM ↑
34.85 0.954

✓ 36.02 0.965
✓ ✓ 36.48 0.968

Table 7: Effectiveness of Blending Mod-
ules, Sagittal view performance on AAPM

We run the following ablation studies to examine each
of the individual components of our DiffusionBlend++
method. Firstly, we examine the performance gain of
adding adjacency slicue blending (DiffusionBlend+)
and adding cross-slice blending. Next, we examine the
effect of including the positional encoding as an input
to the network. Then we look at the quantitative metrics
of the reconstructed images when applying different numbers of NFEs for the comparison methods.
Finally, we examine the effect of choosing different slices for each partition.

Effectiveness of adjacency-slice blending and cross-slice blending We demonstrate that both
the adjacency-slice blending and the cross-slice blending module are instrumental to a better re-
construction quality. Table 7 demonstrates the effectiveness of adding blending modules to the
reverse sampling. Given the pretrained diffusion prior over slice patches, we observe that adding the
adjacency-slice blending module improves the PSNR over a fixed partition by 1.17dB, and adding an
additional cross-slice blending module further improves the PSNR by 1.63dB. Fig. 5 demonstrates
that adding the cross-slice blending module removes artifacts and recovers sharper edges.

Robust performance with low NFEs. Since DDS and DiffusionBlend++ both use the DDIM
sampler for acceleration, we performed experiments with both of these methods using different NFEs.
The left of Fig. 6 shows graphs of these two methods and Table 8 shows the quantitative results. DDS
is very sensitive to the number of NFEs used and there is a sharp dropoff in PSNR if too few or too
many NFEs are used. On the other hand, DiffusionBlend++ performs the best for the highest number
of NFEs due to the slice blending strategy while still obtaining superior results for 50 NFEs. Also,
this method is much more robust to varying NFEs, displaying only 1.4dB of variance in the shown
results compared to 2.4dB of varaince for DDS. For fair comparisons, we use 200 NFEs for all the
main experiments.

Table 8: Axial PSNR for 8 view SVCT re-
con for different NFEs

Method 50 100 200 334

DDS 30.8 32.2 33.2 32.7
DiffusionBlend++ 34.5 35.0 35.7 35.9

Frequency of applying slice jumps. To demonstrate
the use of jump slice partitions at reconstruction time,
we performed experiments varying the frequency of ap-
plying these jump slices. For instance, for a frequency
of 8, the reconstruction algorithm consisted of updating
the volume using jump slices for iteration numbers that
are a multiple of 8 and updating using adjacent slices
for all other iterations. The right of Fig. 6 shows a
graph of the results for different frequencies and the
quantitative results are presented in Table 9. The best results are obtained when the frequency is 2,
corresponding to alternating updates with adjacent slices and jump slices, and the PSNR decreases
monotonically as the frequency increases. This indicates that the jump slices capture more nonlocal
information across a volume and help to improve the image quality.

Table 9: Axial PSNR for 8 view SVCT recon for different slice jump frequencies

Frequency 2 4 8 12 16 32

PSNR 35.69 35.62 35.50 35.45 35.37 35.28

A.4 Additional Results

Classical Baselines and more Projection Angles We provide additional results with classical
baselines (without deep learning) such as SIRT, SBTV, and CGLS for the LDCT dataset. Results
show that our method outperforms the baselines significantly for every angle we evaluated on.
DiffusionBlend++ starts to reconstruct images very close to the ground truth with 20 projections or
more, but other baselines such as SIRT and CGLS still struggle to get a satisfying reconstruction with

16

Figure 6: Quantitative results (axial view) of CT reconstruction with 8 views on AAPM dataset for
different NFEs and slice blending methods.

Table 10: Wall times of various methods for 8 view 3D CT reconstruction

Method NFEs Wall time (min)

DiffusionMBIR 2000 1400
TPDM 2000 1200
DDS 200 48

DiffusionBlend 200 70
DiffusionBlend++ 200 32

60 views or more. Fig. 7 shows the reconstruction performance on the coronal plane of different
methods. We observe that DiffusionBlend++ (ours) has a significant margin above baselines for every
view. Note that DiffusionBlend++ still outperforms DDS2D significantly with >40 views, which
demonstrates that our 3D prior is still very useful even with much more views. We also simulate
low-dose noise to the reconstruction, which showing our algorithm is robust to noise by a minor
decrease in reconstruction performance. Our method (DiffusionBlend++) is shown to outperforms all
baselines at every angle as in Fig. 8.

Error Bars We demonstrate the standard deviation of the results with sparse-view CT reconstruction
on AAPM and LIDC dataset here to demonstrate that the result is statistically sigificant.

Fig. 9 shows the visual results for SVCT reconstruction with 8 views on the LIDC dataset.

Fig. 10 shows the visual results for SVCT reconstruction with 6 views on the LIDC dataset.

Fig. 11 shows the visual results for SVCT reconstruction with 4 views on the LIDC dataset.

Fig. 12 shows the visual results for LACT reconstruction on the LIDC dataset.

Figure 7: Left: Performance of DiffusionBlend++ on more angles, Right: Reconstruction of Diffu-
sionBlend++ with low-dose noise

17

Figure 8: Comparison of DiffusionBlend++ with classical methods

Figure 9: Results of 3D CT reconstruction with 8 views on LIDC dataset. Top row is axial view,
middle row is sagittal view, bottom row is coronal view.

Figure 10: Results of 3D CT reconstruction with 6 views on LIDC dataset. Top row is axial view,
middle row is sagittal view, bottom row is coronal view.

18

Method
Sparse-View CT Reconstruction on AAPM Sparse-View CT Reconstruction on LIDC
8 views 6 views 4 views 8 Views 6 Views 4 Views

PSNR↑ SSIM↑ PSNR↑ SSIM↑ PSNR↑ SSIM↑ PSNR↑ SSIM↑ PSNR↑ SSIM↑ PSNR↑ SSIM↑
FBP 2.64 0.16 2.88 0.26 2.91 0.20 2.57 0.17 2.78 0.21 2.84 0.16
FBP-UNet 3.46 0.30 3.34 0.28 3.04 0.31 3.42 0.31 3.23 0.29 3.14 0.27
DiffusionMBIR 1.93 0.08 1.48 0.13 1.28 0.11 1.89 0.09 1.56 0.12 1.31 0.14
TPDM - - - - - - 2.32 0.14 2.02 0.16 2.52 0.19
DDS 2D 1.76 0.07 2.04 0.10 2.73 0.11 1.85 0.09 2.13 0.13 267 0.18
DDS 2D 1.76 0.07 2.04 0.10 2.73 0.11 1.85 0.09 2.13 0.13 2.67 0.18
DDS 2D 1.68 0.06 1.96 0.09 2.65 0.11 1.84 0.09 2.10 0.12 2.64 0.18
DiffusionBlend (Ours) 1.67 0.06 1.78 0.08 1.98 0.09 1.70 0.07 2.03 0.11 2.54 0.16
DiffusionBlend++ (Ours) 1.50 0.06 1.65 0.08 1.71 0.10 1.60 0.09 1.68 0.10 1.82 0.11

Table 11: Standard Deviation of Performance on Sparse-View CT Reconstruction on Sagittal View
for AAPM and LIDC datasets. Best results are in bold.

Figure 11: Results of 3D CT reconstruction with 4 views on LIDC dataset. Top row is axial view,
middle row is sagittal view, bottom row is coronal view.

A.5 Experiment parameters

Since axial slices belonging to the same volume that are far apart have limited correlation, Diffu-
sionBlend++ selects only partitions of S for training where slices belonging to the same partition
are fairly close to one another. Then the same range of possible partition schemes are used during
reconstruction time. More precisely, we take the size of each Si to be 3 and first repetition pad the
volume so that the number of axial slices is a multiple of 9. Then we consider the following partitions:

• S1 = {1, 2, 3}, S2 = {4, 5, 6}, S3 = {7, 8, 9}. Furthermore, for all integers k > 1,
Sk = Sk−3

⊕
9⌊(k − 1)/3⌋, where

⊕
represents adding the same number to each element

of the set. For example, S4 = {10, 11, 12}, S5 = {13, 14, 15}, S6 = {16, 17, 18}.

• S1 = {1, 4, 7}, S2 = {2, 5, 8}, S3 = {3, 6, 9}. Furthermore, for all integers k > 1,
Sk = Sk−3

⊕
9⌊(k − 1)/3⌋.

Table 12: 3D prior modeling methods

Method Distribution Model

DiffusionMBIR [13]
∏H

i=1 p(x[:, :, i])/Z

TPDM [14]
(∏N

i=1 qθ(x[:, :, i])
α
)(∏N

j=1 qϕ(x[j, :, :])
β
)
/Z

DiffusionBlend
∏H

i=1 p(x[:, :, i]|x[:, :, i− j : i− 1],x[:, :, i+ 1 : i+ j])/Z

DiffusionBlend++
∏r

i=1 p(x[:, :,Si])/Z

19

Figure 12: Results of limited angle 3D CT reconstruction on LIDC dataset. Top row is axial view,
middle row is sagittal view, bottom row is coronal view.

A.6 Comparison experiment details

FBP-UNet. We used the same neural network architecture as the original paper [57]. Individual
networks were trained for each of the 8 view, 6 view, 4 view, and LACT experiments for each of the
datasets. Each of the networks were trained from scratch with a batch size of 32 for 150 epochs.

DiffusionMBIR. We separately trained networks for the AAPM and LIDC datasets by fine-tuning
the original checkpoint provided in [13] for 100 and 10 epochs, respectively. The batch size was set to
4. For reconstruction, we used the same set of hyperparameters for all of the experiments: λ = 0.04,
ρ = 10, and r = 0.16 for the sampling algorithm. 2000 NFEs were used for the diffusion process.

TPDM. We fine-tuned the axial and sagittal checkpoints provided in [14] on the LIDC dataset for
10 epochs. For reconstruction, we used 2000 NFEs and alternated between updating the volume using
the axial checkpoint and sagittal checkpoint, with each checkpoint being used equally frequently.
The DPS step size parameter was set to ζ = 0.5.

DDS. We separately trained networks for the AAPM and LIDC datasets by fine-tuning the original
checkpoint provided in [15] for 100 and 10 epochs, respectively. We used 100 NFEs at reconstruction
as this was observed to give the best performance. The reconstruction parameters were set to η = 0.85,
λ = 0.4, and ρ = 10. Five iterations of conjugate gradient descent were run per diffusion step. For
DDS 2D, the parameters were left unchanged with the exception of using ρ = 0 to avoid enforcing
the TV regularizer between slices.

SBTV. We implement this algorithm with variables splitting of 3D anisotropic TV regularization
(Dz, Dx, and Dy). We first check number of iterations, note that the performance converges with
around 30 iterations. We did a grid search of hyperparameters on 9 validation images (not in the test
set) for every projection angles.

SIRT. This algorithm iteratively updates the reconstruction based on the residual between projection
of the reconstruction and the GT. It only has the number of iterations as its hyper-parameter. We
note that during inference, PSNR increases with more iterations, but saturates later. So we set the
total number iterations to be 1000, with an early stopping threshold of 1e-6 between two consecutive
iterations.

CGLS. This algorithm uses conjugate gradient for solving least square problems. In our case, we
use CG(ATA+ρxTx,AT y), ρ is set to be 1e-4 based on grid search for numerical stability. We tune
the number of iterations on validation set, and find that performance saturates at around 25 iterations.

20

A.7 Limitations

One limitation of our work is that we use noiseless simulated measurements for all our experiments.
The robustness of our method to noise added to the measurements should be explored further.
Likewise, future work should evaluate the accuracy of our method when applied to real measurement
data, which will contain measurement noise and mismatches between the true system model and used
forward model. Another limitation of our work is a lack of other types of 3D image reconstruction
applications shown. Although the proposed method is unsupervised and the reconstruction algorithm
can be readily be applied to other 3D linear inverse problems, future work should explore other
applications of DiffusionBlend.

21

NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: The abstract and introduction contain claims that are expounded upon in the
remainder of the paper.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: Section A.7 outlines the limitations of the proposed method.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [Yes]

22

Justification: The paper does not contain any theorems, but some theoretical foundations for
the algorithms used are provided in various appendices.

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental Result Reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: The pseudocode for the algorithms as well as hyperparameter selection and
datasets used are completely outlined in the main body and appendix.

Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

23

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [Yes]
Justification: We have released the code to a public Github repository linked in the abstract
and will be working over the next weeks to fully update it.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: All details of the experiments have been provided.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
We report the standard deviation of the main experimental results. Since our results is the
average of about hundreds of test samples, given the standard deviation of the result implies
statistical significancy. Uncertainty metrics are not reported for some other the experiments
that were run. Since we use large-scale 3D data for the experiments, it would be very time
consuming to run each experiment many times.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

24

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: The compute resources and runtime for the experiments are specified in the
paper.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: We have read the Code of Ethics and checked that the research conducted in
the paper conforms to it.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [Yes]
Justification: We have mentioned the broader impacts of the work in the conclusion.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.

25

https://neurips.cc/public/EthicsGuidelines

• If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

• Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [Yes]

Justification: The models used in the paper can generate images, but the datasets used have
been checked to be safe. Since the models can only generate images similar to the datasets
on which they have been trained, the images that can be generated should also conform to
this safety.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [NA]

Justification: Data used in this paper is from public domain.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.

26

• For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

• If assets are released, the license, copyright information, and terms of use in the package
should be provided. For popular datasets, paperswithcode.com/datasets has
curated licenses for some datasets. Their licensing guide can help determine the license
of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: We have cited all works and datasets that this paper uses.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: The paper does not involve crowdsourcing or research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: The paper does not involve crowdsourcing or research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

27

paperswithcode.com/datasets

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

28

	Introduction
	Background and Related Work
	Methods
	Experiments
	Conclusion
	Appendix / supplemental material
	Score matching derivations for DiffusionBlend++
	Additional Algorithms
	Ablation studies
	Additional Results
	Experiment parameters
	Comparison experiment details
	Limitations

