
ActFusion: a Unified Diffusion Model
for Action Segmentation and Anticipation

Dayoung Gong Suha Kwak Minsu Cho
Pohang University of Science and Technology (POSTECH)

{dayoung.gong, suha.kwak, mscho}@postech.ac.kr

Abstract

Temporal action segmentation and long-term action anticipation are two popular
vision tasks for the temporal analysis of actions in videos. Despite apparent rele-
vance and potential complementarity, these two problems have been investigated
as separate and distinct tasks. In this work, we tackle these two problems, ac-
tion segmentation and action anticipation, jointly using a unified diffusion model
dubbed ActFusion. The key idea to unification is to train the model to effectively
handle both visible and invisible parts of the sequence in an integrated manner;
the visible part is for temporal segmentation, and the invisible part is for future
anticipation. To this end, we introduce a new anticipative masking strategy during
training in which a late part of the video frames is masked as invisible, and learnable
tokens replace these frames to learn to predict the invisible future. Experimental
results demonstrate the bi-directional benefits between action segmentation and
anticipation. ActFusion achieves the state-of-the-art performance across the stan-
dard benchmarks of 50 Salads, Breakfast, and GTEA, outperforming task-specific
models in both of the two tasks with a single unified model through joint learning.

1 Introduction

In everyday life, when interacting with people, we anticipate their future actions while recognizing
their actions observed in the present and the past. Similarly, for effective human-robot interaction,
robotic agents must recognize ongoing actions while anticipating future behaviors. Two essential
tasks in computer vision for such a temporal understanding of human actions are temporal action
segmentation (TAS) [38, 19, 32, 61, 12, 65, 3, 43, 63, 8] and long-term action anticipation (LTA) [2,
34, 25, 45]. The task of TAS aims at translating observed video frames into a sequence of action
segments, while the goal of LTA is to predict a plausible sequence of actions in the future based on
the observed video frames. These tasks are closely related in terms of understanding the relations
between actions; recognizing actions in the present and the past may improve anticipating action in
the future, and the ability to anticipate the future may also enhance recognizing observable actions
when facing visual ambiguities.

Despite the apparent relevance and potential complementarity, these two problems have been investi-
gated as separate and distinct tasks. While a growing body of work has shown remarkable progress
on both TAS and LTA, these methods are primarily designed for one task (see Fig. 1a) and show
poor generalization when applied to the other (e.g., see FUTR [25] and DiffAct [43] in Fig. 1c).
Some prior methods tackle both tasks simultaneously, but they rely on task-specific architectures and
require separate training for each individual task (e.g., see TempAgg [52] in Fig. 1c).

In this paper, we introduce ActFusion, a unified diffusion model that addresses TAS and LTA through
a single architecture and training process, as illustrated in Fig. 1b. The core idea of our unification
lies in training the model to effectively handle two different parts of the sequence: visible parts
for action segmentation and invisible parts for action anticipation. Accordingly, we propose a

38th Conference on Neural Information Processing Systems (NeurIPS 2024).

(a) task-specific models

TAS model

?

LTA model

Seg.

observation observation anticipation

Ant.

ActFusion

?

Ant.Seg. Seg.

observation observation anticipation

(b) ActFusion (ours) (c) evaluation on TAS & LTA

DiffAct FUTR TempAgg Ours

TAS LTA
75.575.1

54.3

12.6
14.1

26.6
23.1

28.5

Figure 1: Task-specific models vs. ActFusion (ours). (a) Conventional task-specific models for
TAS and LTA. (b) Our unified model ActFusion to address both tasks. (c) Performance comparison
across tasks. Tasks-specific models such as DiffAct [43] for TAS and FUTR [25] for LTA exhibits
poor performance on cross-task evaluations. ActFusion outperforms task-specific models on both
TAS and LTA, including TempAgg [52], which trains separate models for each task. Note that the
performance of ActFusion is evaluation result of a single model through a single training process.
The reported performance represents the average of each task in the original paper or evaluated with
the official checkpoint (See Sec. G for details).

new anticipative masking strategy in which a late part of the video frames is masked as invisible,
and learnable tokens replace it. We also introduce a random masking strategy to help the model
accurately identify actions when some parts of the video are ambiguous [59], drawing inspiration
from previous methods [15, 6, 28, 59]. ActFusion generates action sequences from Gaussian noise
through iterative denoising, conditioned on both visual features and mask tokens. Through this
process, the model jointly learns to classify action labels of visual features and predict future
actions of mask tokens. As shown in Fig. 1c, ActFusion achieves superior performance in both
action segmentation and anticipation, demonstrating stronger cross-task generalization compared to
previous methods [43, 25, 52].

Furthermore, we find that the benchmark evaluation of some prior LTA methods [2, 20, 25] has
exploited the ground-truth length of input videos in testing time, which makes the evaluation unrealis-
tic and problematic since the duration of future actions is supposed to be unknown in advance. To
address this issue, we conduct comprehensive experiments both with and without ground-truth length
information, providing insights into more realistic deployment scenarios.

Our contribution can be summarized as follows: 1) We introduce ActFusion, a unified diffusion model
that jointly addresses TAS and LTA through a single training process. 2) We present anticipative
masking for effective task unification, along with random masking to enhance robustness against
visual ambiguities. 3) Comprehensive experimental results show that jointly learning both tasks
provides bi-directional benefits. ActFusion achieves state-of-the-art performance on TAS and LTA
across benchmark datasets - 50 Salads and Breakfast, and GTEA - demonstrating the effectiveness of
the proposed method.

2 Related work

Temporal action segmentation (TAS). The goal of TAS [19, 65, 43, 63, 12, 23, 5, 8, 32, 3, 16]
is to classify frame-wise action labels in a video. Earlier approaches employ temporal sliding
windows [50, 33] for action segment detection, grammar-based methods [37, 36] have been intro-
duced to incorporate a temporal hierarchy of actions during segmentation. Temporal convolution
networks [38, 19] and Transformer-based models [65, 8] are introduced based on deep learning
methods. Since learning long-term relations of actions from activity videos is challenging, a series of
work has been proposed to develop refinement strategies [30, 32, 23, 12, 57, 63, 3, 24] that can be
applied to the TAS models [19, 65]. Recently, DiffAct [43] is proposed to iteratively denoising action
predictions conditioned on the input video features adopting the diffusion process. In a similar spirit,
the proposed ActFusion is based on the diffusion process, focusing on unifying TAS and LTA through
anticipative masking. We demonstrate the bidirectional benefits between the two tasks, showing that
learning segmentation along with anticipation is effective.

Long-term action anticipation (LTA). LTA [2, 1, 34, 20, 52, 25, 44, 26] has recently emerged as a
crucial task for predicting a sequence of future actions in long-term videos. Initial models use RNNs

2

and CNNs [2], while time-conditioned anticipation [34] introduces one-shot anticipation of specific
future timestamps. A GRU-based model [20] used cycle-consistent relations of past and future
actions. Sener et al. [52] proposed TempAgg, a multi-granular temporal aggregation method for
action anticipation and recognition, utilizing different model architectures and task-specific losses for
the two tasks. Gong et al. [25] propose a transformer model for parallel anticipation, dubbed FUTR,
empirically showing that learning action segmentation as an auxiliary task is helpful for anticipation.
Nawhal et al. [44] propose a two-stage learning approach for LTA and Zhang et al. [66] present
object-centric representations using visual-language pre-trained models for LTA. While previous
work [52, 20, 25, 44] adopts TAS as an auxiliary task to help learn LTA, a unified model evaluated on
both tasks is rarely explored, often showing poor cross-task generalization performance (Fig. 1c).
The exception is TempAgg, which requires separate training and model architecture for the two tasks.
In this work, we present a unified model that tackles both TAS and LTA in a single training process.

Diffusion models. Recent success in denoising diffusion models [55, 29, 56] opens a new era
of computer vision research. The diffusion models learn the original data distribution through the
iterative denoising process. Diffusion models have recently shown notable success in various domains,
such as image generation [51, 14], video generation [42, 27, 64], object detection [13], semantic
segmentation [7], temporal action segmentation [43], self-supervised learning [62], and etc [18].
Recently, DiffMAE [62] integrates masked autoencoders with the diffusion models, where the model
learns to denoise masked input while learning data distributions through generative pre-training of
visual representations. In this work, we present a unified diffusion model that effectively integrates
TAS and LTA through masking, where the model learns to denoise action labels conditioned on both
visual and mask tokens. In this way, the model can effectively learn temporal relations between
actions by classifying visual tokens and inferring missing actions of the mask tokens.

3 Preliminary

In this section, we give a brief overview of diffusion models [29, 54]. The diffusion models learn a
data distribution by mapping and denoising noises from the original data distribution. The training
process of diffusion models involves forward and reverse processes from random noise. During the
forward process, Gaussian noise is added to the original data, while in the reverse process, a neural
network learns to reconstruct the original data by iteratively removing noise.

The forward process, or diffusion process, transforms the original data x0 into noisy data xs:

xs =
√
γ(s)x0 +

√
1− γ(s)ϵ. (1)

Here, a noise ϵ ∼ N(0, I) is added to the original data distribution x0 following the decreasing
function γ(s) of time step s ∈ {1, 2, ..., S}, where S represents the entire forward time-step. Note
that the function γ(s) determines the intensity of the noise added to the original data following the
pre-defined variance schedule [29].

In the reverse process, a neural network f(xs, s) is trained to recover the original data x0 from noisy
data xs using l2 regression loss:

L =
1

2
||f(xs, s)− x0||2. (2)

During inference, the model f iteratively denoises pure noise xS to reconstruct the original data x0,
i.e., xS → xS−∆ → ... → x0, following the updating rule [29, 54]. We refer the reader to [29, 54]
and Sec. A for more details.

In our context, the neural network learns to generate action sequences from Gaussian noise, condi-
tioned on visible features for action segmentation and mask tokens for action anticipation.

4 Proposed approach

We present ActFusion, a unified diffusion model for action segmentation and anticipation. This
section describes the problem setup in Sec. 4.1, the model architecture in Sec. 4.2, and the proposed
masking strategies and training objectives in Sec. 4.3 and Sec. 4.4, respectively.

3

InferenceTraining

0

𝑇

enc
𝑔

Conditioning

dec
ℎ

#𝑨! 𝑨"

0

𝑇

Masking

ant randomnone boundary rel

[M]

[M]

[M]

: mask tokens[M]: visual tokens

𝑭 𝑬𝑭′
• Training: all masks
• Inference: none (TAS), ant (LTA)

dec
ℎ

#𝑨"#∆ #𝑨"

0

𝑇
iterative denoising

[M]

[M]

[M]

[M]

[M] [M]

[M]

[M]

[M]

[M] [M]

[M]

Figure 2: Overall pipeline of ActFusion. During training, we randomly select one of five masking
strategies and apply it to input video frames F , replacing masked regions with learnable tokens
to obtain masked features F ′. These features are processed by the encoder g to produce visual
embeddings E, which condition the decoder h to denoise action labels from As to Â0 at time-step
s. For inference, we use different masking strategies depending on the task: no masking for TAS
and anticipative masking for LTA. The decoder then iteratively denoises action labels following
ÂS → ÂS−∆ → ... → Â0 using the DDIM update rule [54].

4.1 Problem setup

Temporal action segmentation (TAS) aims to classify input video frames into a sequence of predefined
action classes, while long-term action anticipation (LTA) predicts future actions based on partially
observed video sequences. Formally, given a video sequence F = [F1, F2, · · · , FT] of length T ,
TAS predicts frame-wise action labels A = [A1, A2, · · · , AT], where each Ai is a one-hot vector
representing the action class. In LTA, given the first NO = ⌈αT ⌉ observed frames, the goal is to
anticipate action labels for the subsequent NA = ⌈βT ⌉ frames, where α ∈ [0, 1] and β ∈ [0, 1− α]
represent the observation and anticipation ratios, respectively. Here, ⌈·⌉ denotes the ceiling function.

4.2 ActFusion

ActFusion aims to unify TAS and LTA by leveraging an encoder-decoder architecture with adaptive
masking strategies. Figure 2 illustrates the overall pipeline, where ActFusion consists of a masked
encoder g and a denoising decoder h. The encoder obtains visual features and mask tokens as input
and generates embedded tokens as output. The decoder then progressively reduces noises through an
iterative denoising process conditioned on the embedded tokens.

During training, we randomly sample a time step s ∈ {1, 2, ..., S} for each iteration and add noise
ϵ ∼ N(0, I) to the ground-truth action labels A0 following Eq. 1, resulting in noisy action labels As.
The decoder then aims to denoise As to reconstruct the original action labels Â0. During inference,
the decoder starts with Gaussian noise ÂS and progressively denoises it following the DDIM [54]
update rule to generate final predictions Â0, i.e., ÂS → ÂS−∆ → ... → Â0.

The key to our unified approach lies in training the model to effectively process both visible and
invisible parts of the sequence, where the visible part corresponds to observed video frames and
the invisible part represents future frames to be anticipated. To this end, we introduce anticipative
masking that replaces unobserved frames with learnable mask tokens, enabling the model to learn
future predictions. We apply this masking strategy consistently during both training and inference
to achieve joint learning of action segmentation and anticipation. We further incorporate random
masking, where video frames are randomly masked to enhance robustness against visual ambiguities.
Both masking strategies are detailed in Sec. 4.3.

Input structuring. Given input video features F ∈ RT×C with T frames of C feature dimensions,
we start by defining a binary mask matrix M ∈ {0, 1}T×1. This mask serves as a frame selector,
where a value of 0 indicates a frame to be masked and replaced by mask tokens, while a value of 1
indicates an unmasked frame. The learnable mask token, denoted as m ∈ R1×C , replaces the visual

4

features in frames selected for masking, producing the input features F ′ for the encoder:
F ′ = F ⊙M + (1T×C −M)⊙m, (3)

where ⊙ denotes element-wise multiplication and 1i×j represents a matrix of ones with dimensions
i× j. Here, M and m are broadcasted along the channel and temporal dimensions, respectively.

For our model architecture, we use a modified version of ASFormer [65] used in DiffAct [43], which
employs dilated attention to capture both local and global relations in the input sequence (See Fig. S2
for the detailed model architecture).

Encoder. The encoder consists of the NE layers, each consisting of a dilated 1-d convolution
followed by instance normalization, dilated attention, and a feed-forward network [65]. In the dilated
attention mechanism, the receptive field is limited to a local window size w = 2i for the i-th layer,
where the increasing dilation captures progressively broader temporal relations. The output of each
layer is combined with its input via a residual connection before proceeding to the subsequent layer.
Given the input features F ′, the encoder g produces embedded tokens E ∈ RT×D as:

E = g(F ′), (4)
where D represents the dimensions of embedded tokens. A fully-connected (FC) layer W enc ∈
RD×K is applied to E to obtain frame-wise classification logits from the encoder followed by a
softmax:

Âenc = σ(EW enc), (5)
where K is the number of action classes and σ is the softmax.

Decoder. The decoder is composed of ND sequential layers. Each layer consists of dilated 1-d
convolution, dilated attention, instance normalization, and feed-forward networks. As in the encoder,
the dilation ratio for the i-th layer is set to w = 2i. The output of each layer is combined with its
input through a residual connection before being passed into the subsequent layer.
Given a time step s, noisy action labels As at time step s, and encoder embeddings E, the decoder h
produces output embeddings Y ∈ RT×D according to:

Y = h(As, s,E). (6)

The final action label predictions Â0 ∈ RT×K are obtained by projecting Y through a fully-connected
layer W dec ∈ RD×K followed by softmax:

Â0 = σ(Y W dec). (7)

4.3 Masking strategy

We introduce two distinct masking strategies: anticipative masking and random masking.

Anticipative masking. Anticipative masking enables joint learning of TAS and LTA by separating
visible and invisible parts of the input sequence. This strategy masks the latter portion of video frames,
requiring the model to predict future actions based on observed frames. Given a video length T , we
define a binary anticipation mask M A ∈ {0, 1}T that sets visible frames to 1 and invisible frames to
0: M A

i = 1
(
i ≤ NO

)
, where 1 is an indicator function and No represents the number of observed

frames. Unlike causal masking [60] that prevents attending to future tokens, our anticipative masking
allows interactions among visible tokens while maintaining a clear boundary for anticipation.

Random masking. Random masking aims to provide robustness in prediction when parts of video
frames are missing or ambiguous [59]. A video is first divided into pre-defined clips of size Q,
resulting in NP = ⌈ T

Q⌉ total clips. Then, NR clips are randomly selected to be masked. A binary
random mask is defined by M R

i = 1(∃j ∈ P, (j − 1)Q < i ≤ jQ), where P is a randomly selected
subset of {1, · · · , NP} with |P| = NR.

For fully observable scenarios, we utilize a no mask strategy M N where all frames remain visible.
Additionally, we adopt two masking strategies [43], the relation mask M S and the boundary mask
M B, as illustrated in Fig. 2. The relation mask M S randomly masks segments associated with an
action class to learn inter-action dependencies. The boundary mask M B masks frames at action
transitions to enhance boundary detection. See Sec. C for the detailed formulations of the masks.

During training, one of five masking strategies is randomly selected: no mask M N, anticipative mask
M A, random mask M R, relation mask M S, and boundary mask M B. For inference, no mask M N is
used for TAS and anticipative mask M A for LTA.

5

Table 1: Comparison with state of the art on TAS. The overall results demonstrate the efficacy of
ActFusion on TAS, achieving state-of-the-art performance across benchmark datasets. Bold values
represent the highest accuracy, while underlined values indicate the second-highest accuracy.

methods
50 Salads [58] Breakfast [36] GTEA [21]

F1@{10, 25, 50} edit Acc. Avg. F1@{10, 25, 50} edit Acc. Avg. F1@{10, 25, 50} Edit Acc. Avg.

MS-TCN [19] 76.3 / 74.0 / 64.5 67.9 80.7 72.7 52.6 / 48.1 / 37.9 61.7 66.3 53.3 85.8 / 83.4 / 69.8 79.0 76.3 78.9
MS-TCN++ [41] 80.7 / 78.5 / 70.1 74.3 83.7 77.5 64.1 / 58.6 / 45.9 65.6 67.6 60.4 88.8 / 85.7 / 76.0 83.5 80.1 82.8
SSTDA [12] 83.0 / 81.5 / 73.8 75.8 83.2 79.5 75.0 / 69.1 / 55.2 73.7 70.2 68.6 90.0 / 89.1 / 78.0 86.2 79.8 84.6
GTRM [30] 75.4 / 72.8 / 63.9 67.5 82.6 72.4 57.5 / 54.0 / 43.3 58.7 65.0 55.7 - / - / - - - -
BCN [61] 82.3 / 81.3 / 74.0 74.3 84.4 79.3 68.7 / 65.5 / 55.0 66.2 70.4 65.2 88.5 / 87.1 / 77.3 84.4 79.8 83.4
MTDA [11] 82.0 / 80.1 / 72.5 75.2 83.2 78.6 74.2 / 68.6 / 56.5 73.6 71.0 68.8 90.5 / 88.4 / 76.2 85.8 80.0 84.2
Global2local [23] 80.3 / 78.0 / 69.8 73.4 82.2 76.7 74.9 / 69.0 / 55.2 73.3 70.7 68.6 89.9 / 87.3 / 75.8 84.6 78.5 83.2
HASR [3] 86.6 / 85.7 / 78.5 81.0 83.9 83.1 74.7 / 69.5 / 57.0 71.9 69.4 68.5 90.9 / 88.6 / 76.4 87.5 78.7 84.4
ASRF [32] 84.9 / 83.5 / 77.3 79.3 84.5 81.9 74.3 / 68.9 / 56.1 72.4 67.6 67.9 89.4 / 87.8 / 79.8 83.7 77.3 83.6
ASFormer [65] 85.1 / 83.4 / 76.0 79.6 85.6 81.9 76.0 / 70.6 / 57.4 75.0 73.5 70.5 90.1 / 88.8 / 79.2 84.6 79.7 84.5
ASFormer + KARI [24] 85.4 / 83.8 / 77.4 79.9 85.3 82.4 78.8 / 73.7 / 60.8 77.8 74.0 73.0 - / -/ - - - -
Temporal Agg. [52] - / - / - - - - 59.2 / 53.9 / 39.5 54.5 64.5 54.3 - / - / - - - -
UARL [10] 85.3 / 83.5 / 77.8 78.2 84.1 81.8 65.2 / 59.4 / 47.4 66.2 67.8 61.2 92.7 / 91.5 / 82.8 88.1 79.6 86.9
DPRN [46] 87.8 / 86.3 / 79.4 82.0 87.2 84.5 75.6 / 70.5 / 57.6 75.1 71.7 70.1 92.9 / 92.0 / 82.9 90.9 82.0 88.1
SEDT [35] 89.9 / 88.7 / 81.1 84.7 86.5 86.2 - / - / - - - - 93.7 / 92.4 / 84.0 91.3 81.3 88.5
TCTr [4] 87.5 / 86.1 / 80.2 83.4 86.6 84.8 76.6 / 71.1 / 58.5 76.1 77.5 72.0 91.3 / 90.1 / 80.0 87.9 81.1 86.1
FAMMSDTN [17] 86.2 / 84.4 / 77.9 79.9 86.4 83.0 78.5 / 72.9 / 60.2 77.5 74.8 72.8 91.6 / 90.9 / 80.9 88.3 80.7 86.5
DTL [63] 87.1 / 85.7 / 78.5 80.5 86.9 83.7 78.8 / 74.5 / 62.9 77.7 75.8 73.9 - / - / - - - -
UVAST [8] 89.1 / 87.6 / 81.7 83.9 87.4 85.9 76.9 / 71.5 / 58.0 77.1 69.7 70.6 92.7 / 91.3 / 81.0 92.1 80.2 87.5
BrPrompt [40] 89.2 / 87.8 / 81.3 83.8 88.1 86.0 - / - / - - - - 94.1 / 92.0 / 83.0 91.6 81.2 88.4
MCFM [31] 90.6 / 89.5 / 84.2 84.6 90.3 87.8 - / - / - - - - 91.8 / 91.2 / 80.8 88.0 80.5 86.5
LTContext [5] 89.4 / 87.7 / 82.0 83.2 87.7 86.0 77.6 / 72.6 / 60.1 77.0 74.2 72.3 - / - / - - - -
DiffAct [43] 90.1 / 89.2 / 83.7 85.0 88.9 87.4 80.3 / 75.9 / 64.6 78.4 76.4 75.1 92.5 / 91.5 / 84.7 89.6 82.2 88.1
ActFusion (ours) 91.6 / 90.7 / 84.8 86.0 89.3 88.5 81.0 /76.2 / 64.7 79.3 76.4 75.5 94.1 / 93.3 / 86.9 91.6 81.9 89.6

4.4 Training objective

The model is trained with three types of losses: cross-entropy loss Lce for frame-wise classification,
boundary smoothing loss Lsmo [19], and boundary alignment loss Lbd [43]. These losses are applied
to both encoder and decoder, where the encoder serves as an auxiliary task to enhance discrimination
ability. Given the ground-truth action label A0 ∈ RT×K and the predictions Â ∈ RT×K , the cross
entropy loss is defined by:

Lce(A
0, Â) = − 1

T

T∑
i=1

K∑
j=1

A0
i,j log Âi,j . (8)

To prevent over-segmentation errors, a temporal smooth loss [19] between adjacent frames based on
a truncated mean squared error over the frame-wise log probabilities are defined by:

Lsmo(Â) =
1

(T − 1)K

T−1∑
i=1

K∑
j=1

(log Âi,j − log Âi+1,j)
2, (9)

where the difference of the log probabilities of two adjacent frames is truncated with a threshold
value. For precise boundary detection, the boundary alignment loss [43] is employed based on the
binary cross-entropy loss:

Lbd(B̄, Â) =
1

T − 1

T−1∑
i=1

{−B̄i log(1− Âi · Âi+1)− (1− B̄i) log(Âi · Âi+1)}, (10)

where B̄ = κ(B) represents a softened version of the ground-truth action boundary Bi = 1(A0
i ̸=

A0
i+1), achieved through a Gaussian kernel κ. The encoder and decoder losses are defined by

Lenc = λenc
ce Lenc

ce (A0, Âenc) + λenc
smoLenc

smo(Â
enc) + λenc

bd Lenc
bd (B̄, Âenc), (11)

Ldec = λdec
ce Ldec

ce (A0, Âdec) + λdec
smoLdec

smo(Â
dec) + λdec

bd Ldec
bd (B̄, Âdec), (12)

where λ denotes a scaling factor. The total loss is defined as Ltotal = Lenc + Ldec.

5 Experiments

In this section, we conduct experiments to demonstrate the effectiveness of our model. All reported
experimental results are obtained from inference using a single unified model. We evaluate our

6

Table 2: Comparison with the state of the art on LTA. The overall results demonstrate the
effectiveness of ActFusion, achieving new SOTA performance in LTA. Bold values represent the
highest accuracy, while underlined values indicate the second-highest accuracy.

dataset input type methods
β (α = 0.2) β (α = 0.3)

0.1 0.2 0.3 0.5 0.1 0.2 0.3 0.5

50 Salads

label

RNN [2] 30.06 25.43 18.74 13.49 30.77 17.19 14.79 09.77
CNN [2] 21.24 19.03 15.98 09.87 29.14 20.14 17.46 10.86
UAAA (mode) [1] 24.86 22.37 19.88 12.82 29.10 20.50 15.28 12.31
Time-Cond. [34] 32.51 27.61 21.26 15.99 35.12 27.05 22.05 15.59

feature

Temporal Agg. [52] 25.50 19.90 18.20 15.10 30.60 22.50 19.10 11.20
Cycle Cons. [20] 34.76 28.41 21.82 15.25 34.39 23.70 18.95 15.89
A-ACT [26] 35.40 29.60 22.50 16.10 35.70 25.30 20.10 16.30
FUTR [25] 39.55 27.54 23.31 17.77 35.15 24.86 24.22 15.26
ObjectPrompt [66] 37.40 28.90 24.20 18.10 28.00 24.00 24.30 19.30
ActFusion (ours) 39.55 28.60 23.61 19.90 42.80 27.11 23.48 22.07

Breakfast

label

RNN [2] 18.11 17.20 15.94 15.81 21.64 20.02 19.73 19.21
CNN [2] 17.90 16.35 15.37 14.54 22.44 20.12 19.69 18.76
UAAA (mode) [1] 16.71 15.40 14.47 14.20 20.73 18.27 18.42 16.86
Time-Cond. [34] 18.41 17.21 16.42 15.84 22.75 20.44 19.64 19.75

feature

Temporal Agg. [52] 24.20 21.10 20.00 18.10 30.40 26.30 23.80 21.20
Cycle Cons. [20] 25.88 23.42 22.42 21.54 29.66 27.37 25.58 25.20
A-ACT [26] 26.70 24.30 23.20 21.70 30.80 28.30 26.10 25.80
FUTR [25] 27.70 24.55 22.83 22.04 32.27 29.88 27.49 25.87
ActFusion (ours) 28.25 25.52 24.66 23.25 35.79 31.76 29.64 28.78

method on three widely-used benchmark datasets: 50 Salads [58], Breakfast [36], and GTEA [21]
(see Sec. F for details). All three datasets are used to evaluate on TAS, while 50 Salads and Breakfast
are used for evaluating LTA, following the protocols of the previous work [19, 65, 43, 20, 52, 25].

Evaluation metrics. For evaluation metrics for TAS, we report F1@{10, 25, 50} scores, the edit
score, and frame-wise accuracy [19, 65, 43]. The F1 scores and the edit score are segment-wise
metrics, and accuracy is a frame-wise metric. Mean over classes accuracy (MoC) is adopted as an
evaluation metric for LTA [2, 34, 52, 25].

Implementation details We utilize the pre-trained I3D features [9] as input video features for all
datasets provided by [19]. For the diffusion process, we set the entire time step S as 1000 [29, 54],
with a skipped time step for inference set to 25 [54]. For the anticipation mask M A, we set the
observation ratio α ∈ {0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8}. For the random mask M R, we fix the size
of patch w to 10 for both tasks and randomly select the number of masked patches NR to 25, 10,
and 20 for 50 Salads, Breakfast, and GTEA, respectively. For the encoder and decoder, we adopt a
modified version of ASFormer [65] using relative positional bias where the maximum number of
neighbors is set to 100. During inference, we set α to 1 and β to 0 for TAS [65, 19, 43]. For LTA,
we set α ∈ {0.2, 0.3} and β ∈ {0.1, 0.2, 0.3, 0.5}, following the evaluation protocols [2, 20, 52, 25].
See Sec. G for more details.

5.1 Comparison with the state of the art on TAS and LTA

Tables 1 and 2 present performance comparisons across benchmark datasets, where our single
unified model achieves superior results on both tasks. Table 1 shows the results on TAS, where
ActFusion outperforms all task-specific models demonstrating the benefits of joint learning. Table 2
compares LTA performance across different datasets and input types: predicted action labels of the
visual features [49] and pre-trained I3D features [9]. Overall, ActFusion achieves state-of-the-art
performance on two benchmark datasets, demonstrating the efficacy of joint learning for TAS and LTA
based on the diffusion process. Note that we do not include the performance of ANTICIPATR [44]
due to differences in evaluation setup, as reported in [67].

5.2 Analysis

We conduct comprehensive analyses to validate the effectiveness of the proposed method. In the
following experiments, we evaluate our approach on the 50 Salads dataset. All experimental settings
are the same as explained in Sec. 5 unless otherwise specified.

7

Table 3: Segmentation helps anticipation

Lenc Ldec
O Ldec

A

β (α = 0.2) β (α = 0.3)

0.1 0.2 0.3 0.5 0.1 0.2 0.3 0.5

(1) - - ✓ 27.32 21.97 18.04 17.47 17.78 14.82 13.23 14.24
(2) - ✓ ✓ 34.51 26.26 19.69 15.84 28.75 20.33 20.03 16.95
(3) ✓ ✓ ✓ 39.55 28.60 23.61 19.90 42.80 27.11 23.48 22.07

Table 4: Ablation studies on masking

(a) Results on TAS

M N M A M R M B M S F1@{10, 25, 50} Edit Acc. Avg.

(1) ✓ ✓ ✓ ✓ ✓ 91.6 / 90.7 / 84.8 86.0 89.3 88.5
(2) ✓ - ✓ ✓ ✓ 90.0 / 88.9 / 83.9 84.7 88.6 87.2
(3) ✓ ✓ - ✓ ✓ 89.9 / 89.0 / 82.4 83.9 88.7 86.8
(4) ✓ ✓ ✓ - ✓ 89.9 / 89.3 / 83.9 83.7 88.3 87.0
(5) ✓ ✓ ✓ ✓ - 90.2 / 89.2 / 83.7 85.0 87.7 87.2

(b) Results on LTA

M N M A M R M B M S β (α = 0.2)

0.1 0.2 0.3 0.5

(1) ✓ ✓ ✓ ✓ ✓ 42.80 27.11 23.48 22.07
(2) ✓ - ✓ ✓ ✓ 35.24 23.15 15.72 9.38
(3) ✓ ✓ - ✓ ✓ 38.60 25.57 20.42 18.62
(4) ✓ ✓ ✓ - ✓ 37.23 25.29 20.82 20.35
(5) ✓ ✓ ✓ ✓ - 41.42 27.38 22.54 19.32

Segmentation helps anticipation. To validate the impact of learning TAS on LTA, we conduct
loss ablation experiments by removing the action segmentation loss on the observed NO frames.
Table 3 shows the results. Specifically, we exclude the encoder loss Lenc in Eq. 11, while omitting
the decoder loss Ldec in Eq. 12 on the observed frames. For simplicity, we denote the decoder loss
for the observed frames and unobserved frames to be anticipated as Ldec

O and Ldec
A , respectively. Note

that Ldec
O are utilized for effective anticipation learning. By comparing (1) and (3) in Table 3, we

observe a significant performance drop when removing the loss on the observed frames. We observe
that applying segmentation loss on the observed frames in the decoder improves performance when
comparing (1) and (3). The overall results show that learning action segmentation plays a crucial role
in improving action anticipation.

Anticipation helps segmentation. To validate the effect of jointly learning anticipation along with
segmentation, we conduct ablation studies on anticipative masking M A in Table 4. Comparing
(1) and (2) in Table 4a, we find that using anticipation masking helps improve the performance of
TAS. In comparison to the results in Table 4, where segmentation greatly enhances anticipation, the
performance improvement without using anticipation masking is slightly lower. Nevertheless, we
find that anticipation does contribute positively to the overall metrics of segmentation.

Ablation studies on masking types. To evaluate the effects of different types of masking on TAS
and LTA, we conduct ablation studies in Table 4. The performance on TAS and LTA are presented in
Table 4a and 4b, respectively. We observe that anticipative masking M A plays a significant role in
the joint learning of TAS and LTA, as evidenced by the substantial performance drop in LTA when
comparing row (2) with the other rows in Table 4b. Random masking M R significantly reduces
performance in both TAS and LTA, as shown in row (3) of Table 4. Furthermore, the use of boundary
masking M B and relation masking M S is also essential for both tasks. Due to the limited space, we
only report the performance on LTA when the observation ratio α is set to 0.3.

Effects of learnable mask tokens. To verify the effects of learnable mask tokens m, we replace m
with zero vectors. Table 5 shows the overall results. Comparing rows (1) and (2) in Table 5, we find
that using learnable mask tokens is more effective for both TAS and LTA. We conjecture that this
is due to the mask tokens being embedded with the visual tokens within the encoder, which aids in
effectively anticipating the invisible parts.

Position of mask tokens. Instead of providing mask tokens as input to the encoder, we conduct
experiments on providing mask tokens as input to the decoder, as shown in row (3) in Table 5. In this
experiment, only the visible frames are given as input to the encoder, while mask tokens m′ ∈ R1×D

are applied in the decoder to fill the original masked positions, similar to the approach used in masked
auto-encoder [28]. By comparing rows (2) and (3) in Table 5, we observe that using mask tokens
in the encoder is more effective than using them in the decoder. We hypothesize that embedding
mask tokens alongside visual tokens within the encoder benefits joint learning of TAS and LTA.
Furthermore, when mask tokens are provided only to the decoder, they do not receive the encoder
loss Lenc, which may negatively impact performance.

8

Table 5: Analysis on mask tokens

(a) Results on TAS

Pos. Learn. F1@{10, 25, 50} Edit Acc. Avg.

(1) enc - 90.5 / 89.1 / 83.3 84.3 87.4 86.9
(2) enc ✓ 91.6 / 90.7 / 84.8 86.0 89.3 88.5
(3) dec ✓ 89.9 / 88.9 / 82.1 84.2 88.1 86.7

(b) Results on LTA

Pos Learn. β (α = 0.2) β (α = 0.3)

0.1 0.2 0.3 0.5 0.1 0.2 0.3 0.5

(1) enc - 35.89 27.51 21.48 20.70 38.03 26.91 22.69 21.88
(2) enc ✓ 39.55 28.60 23.61 19.90 42.80 27.11 23.48 22.07
(3) dec ✓ 33.99 23.61 18.50 12.13 38.25 23.46 17.87 14.05

87.8
88.5

86.9 86.6

10 25 50 100A
vg

. p
er

fo
rm

an
ce

The number of masked clips

TAS

27.2

28.4
27.6

26.9

10 25 50 100A
vg

. p
er

fo
rm

an
ce

The number of masked clips

LTA

𝑁R 𝑁R

Figure 3: The number of masked clips NR

86.0

87.9
88.5 88.3

1 10 25 50A
vg

. p
er

fo
rm

an
ce

The number of inference steps

TAS

26.2

27.8
28.4 28.5

1 10 25 50A
vg

. p
er

fo
rm

an
ce

The number of inference steps

LTA

Figure 4: Inference steps of diffusion process

The number of masked clips NR in random masking. To determine the number of masked clips
NR in random masking, we conduct experiments by adjusting NR from 10 to 100 while fixing
the window size Q of each masked clip NP to 10. Figure 3 illustrates the result, suggesting that
employing an appropriate amount of masking is crucial.

The number of inference steps in the diffusion process. We compare performance according to
the number of inference steps of the diffusion process in Fig. 4. We observe consistent performance
increases as the number of inference steps increases. As the increasing step requires more computation,
we choose to use 25 steps for inference in all of our experiments.

5.3 Qualitative results

Figure 5 presents qualitative results evaluated on both TAS and LTA using a single model. Each
figure includes video frames, ground-truth action sequences, and predicted results for TAS and LTA.
Only the visible parts (observed frames) are used as input during inference on LTA. Overall results
show that ActFusion effectively handles both visible and future segments, accurately classifying
current actions and anticipating future ones. Additional results are provided in Fig. S3 and S4.

5.4 Evaluation without using ground truth prediction length on LTA

Benchmark evaluations in previous work, including those of [20, 25] and our results presented above,
have been typically conducted following the evaluation protocol of [2] where prediction length NA is
set to βT in testing; β and T are the prediction ratio and the ground-truth video length, respectively.
This can be seen as a leakage of ground-truth information in testing because the exact length of
future actions is supposed to be inherently unknown during inference in real-world scenarios. In this
subsection, we thus rectify the evaluation setting by determining the prediction length as rNO based
solely on the number of observed frames NO, where r is a hyperparameter that adjusts the relative
length of future predictions. We then train our method with this modified anticipation masking
strategy, denoted as ActFusion†. In this experiment, r is set to 4.

Using the rectified evaluation protocol, we compare ours with Cycle Cons. [20] and FUTR [25],
whose codes are available1. For a fair comparison, we modify both models to use the same prediction
length rNO, denoted as Cycle Cons.† and FUTR†. The results are summarized in Table 6 where
the numbers in parentheses indicate relative performance changes compared to those in Table 2.
Table 6 shows that all the methods exhibit overall performance degradation when ground-truth length
information is not used. These observations reveal that previous results have benefited from the use
of ground-truth length T , leading to information leakage in testing. Therefore, we suggest that future
research avoid relying on this information for a more realistic and fair comparison. On the other
hand, the results also show that our approach consistently outperforms the methods across benchmark
datasets, demonstrating its effectiveness even without ground-truth prediction length information.
Please refer to Sec. G for further details of the experimental setup.

1The official code for Cycle Cons. [20] was obtained directly from the authors, and the official code repository
for FUTR [25] is available at https://github.com/gongda0e/FUTR.

9

https://github.com/gongda0e/FUTR

GT

SIL butter pan add saltnpepper fry egg

activity: fried egg

BF, Split1, P07_stereo01_P07_friedegg

put egg2platecrack egg

TAS

LTA

observation

(a) Breakfast

GT

TAS

LTA

action start cut tomato place tomato into bowl cut cheese place cheese into bowl cut lettuce

peel cucumber
place lettuce into bowl

add vinegarplace cucumber into bowl mix ingredients add oil

activity: making a salad

cut cucumber add salt

add pepper serve salad onto plate add dressing action endmix dressing

observation

SUP rgb-25-2

anticipation

(b) 50 Salads

Figure 5: Qualitative results
Table 6: Evaluation without using ground truth prediction length on LTA

dataset methods
β (α = 0.2) β (α = 0.3)

0.1 0.2 0.3 0.5 0.1 0.2 0.3 0.5

50 Salads
Cycle Cons.† [20] 31.85 (2.91↓) 28.19 (0.22↓) 23.98 (2.16↓) 16.02 (0.77↓) 26.54 (7.85↓) 18.36 (5.34↓) 14.52 (4.43↓) 10.34 (5.55↓)
FUTR† [25] 32.29 (4.71↓) 24.49 (3.33↓) 20.00 (2.46↓) 13.89 (2.87↓) 21.52 (11.83↓) 15.74 (9.44↓) 11.89 (8.25↓) 7.48 (8.04↓)
ActFusion (ours)† 35.86 (3.69↓) 28.09 (0.51↓) 24.20 (0.59↑) 20.13 (0.23↑) 41.14 (1.66↓) 25.68 (1.43↓) 23.12 (0.36↓) 18.35 (3.71↓)

Breakfast
Cycle Cons.† [20] 25.65 (0.23↓) 23.10 (0.32↓) 21.66 (0.76↓) 19.73 (1.82↓) 29.08 (0.59↓) 25.68 (1.7↓) 23.00 (2.59↓) 20.84 (4.36↓)
FUTR† [25] 27.85 (0.16↑) 24.68 (0.15↑) 22.91 (0.09↑) 20.98 (1.06↓) 32.36 (0.09↑) 28.96 (0.92↓) 25.49 (2.02↓) 23.56 (2.33↓)
ActFusion (ours)† 27.90 (0.70↓) 24.69 (0.82↓) 22.99 (2.58↓) 22.42 (0.84↓) 33.47 (1.75↓) 30.28 (1.22↓) 30.69 (1.12↑) 26.77 (2.02↓)

6 Conclusion
We have presented ActFusion, a unified diffusion model that jointly addresses temporal action
segmentation and long-term action anticipation in videos. The key to our method is anticipative
masking, where learnable mask tokens replace unobserved frames, enabling simultaneous action
segmentation of visible parts and anticipation of invisible parts. Our comprehensive experiments
demonstrate that this unified approach not only outperforms existing task-specific models on both
tasks but also reveals the mutual benefits of joint learning. Additionally, by evaluating our method both
with and without ground-truth length information during LTA inference, we hope to motivate future
research toward not using this information during testing. We believe that ActFusion demonstrates the
potential of unifying complementary tasks in temporal action understanding, opening new directions
for future research.

7 Acknowledgement

This work was supported by Samsung Electronics (IO201208-07822-01) and IITP grants (RS-2022-
II220959: Few-Shot Learning of Causal Inference in Vision and Language for Decision Making
(50%), RS-2022-II220264: Comprehensive Video Understanding and Generation with Knowledge-
based Deep Logic Neural Network (45%), RS-2019-II191906: AI Graduate School Program at
POSTECH (5%)) funded by Ministry of Science and ICT, Korea. We thank reviewers for pointing
out the issue of the evaluation protocol and providing insightful discussions.

10

References
[1] Y. Abu Farha and J. Gall. Uncertainty-aware anticipation of activities. In Proceedings of the

IEEE/CVF International Conference on Computer Vision Workshops, pages 0–0, 2019. 2, 7

[2] Y. Abu Farha, A. Richard, and J. Gall. When will you do what?-anticipating temporal occur-
rences of activities. In Proc. IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), pages 5343–5352, 2018. 1, 2, 3, 7, 9

[3] H. Ahn and D. Lee. Refining action segmentation with hierarchical video representations. In
Proc. IEEE International Conference on Computer Vision (ICCV), pages 16302–16310, 2021.
1, 2, 6

[4] N. Aziere and S. Todorovic. Multistage temporal convolution transformer for action segmenta-
tion. Image and Vision Computing, 128:104567, 2022. 6

[5] E. Bahrami, G. Francesca, and J. Gall. How much temporal long-term context is needed for
action segmentation? In Proceedings of the IEEE/CVF International Conference on Computer
Vision, pages 10351–10361, 2023. 2, 6

[6] H. Bao, L. Dong, S. Piao, and F. Wei. Beit: Bert pre-training of image transformers. arXiv
preprint arXiv:2106.08254, 2021. 2

[7] D. Baranchuk, A. Voynov, I. Rubachev, V. Khrulkov, and A. Babenko. Label-efficient semantic
segmentation with diffusion models. In International Conference on Learning Representations,
2021. 3

[8] N. Behrmann, S. A. Golestaneh, Z. Kolter, J. Gall, and M. Noroozi. Unified fully and times-
tamp supervised temporal action segmentation via sequence to sequence translation. In Proc.
European Conference on Computer Vision (ECCV), pages 52–68. Springer, 2022. 1, 2, 6, 21

[9] J. Carreira and A. Zisserman. Quo vadis, action recognition? a new model and the kinetics
dataset. In Proc. IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pages
6299–6308, 2017. 7

[10] L. Chen, M. Li, Y. Duan, J. Zhou, and J. Lu. Uncertainty-aware representation learning for
action segmentation. In IJCAI, volume 2, page 6, 2022. 6

[11] M.-H. Chen, B. Li, Y. Bao, and G. AlRegib. Action segmentation with mixed temporal domain
adaptation. In Proc. IEEE Winter Conference on Applications of Computer Vision (WACV),
pages 605–614, 2020. 6

[12] M.-H. Chen, B. Li, Y. Bao, G. AlRegib, and Z. Kira. Action segmentation with joint self-
supervised temporal domain adaptation. In Proc. IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), pages 9454–9463, 2020. 1, 2, 6

[13] S. Chen, P. Sun, Y. Song, and P. Luo. Diffusiondet: Diffusion model for object detection. In
Proceedings of the IEEE/CVF International Conference on Computer Vision, pages 19830–
19843, 2023. 3

[14] T. Chen, R. ZHANG, and G. Hinton. Analog bits: Generating discrete data using diffusion
models with self-conditioning. In The Eleventh International Conference on Learning Repre-
sentations, 2022. 3

[15] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova. Bert: Pre-training of deep bidirectional
transformers for language understanding. In NAACL-HLT (1), 2019. 2, 18, 19

[16] G. Ding, F. Sener, and A. Yao. Temporal action segmentation: An analysis of modern techniques.
IEEE Transactions on Pattern Analysis and Machine Intelligence, 2023. 2

[17] Z. Du and Q. Wang. Dilated transformer with feature aggregation module for action segmenta-
tion. Neural Processing Letters, pages 1–17, 2022. 6

11

[18] W.-C. Fan, Y.-C. Chen, D. Chen, Y. Cheng, L. Yuan, and Y.-C. F. Wang. Frido: Feature
pyramid diffusion for complex scene image synthesis. In Proceedings of the AAAI Conference
on Artificial Intelligence, volume 37, pages 579–587, 2023. 3

[19] Y. A. Farha and J. Gall. Ms-tcn: Multi-stage temporal convolutional network for action
segmentation. In Proc. IEEE Conference on Computer Vision and Pattern Recognition (CVPR),
pages 3575–3584, 2019. 1, 2, 6, 7, 17, 19

[20] Y. A. Farha, Q. Ke, B. Schiele, and J. Gall. Long-Term Anticipation of Activities with Cycle
Consistency. In Proc. German Conference on Pattern Recognition (GCPR). Springer, 2020. 2,
3, 7, 9, 10, 17, 20

[21] A. Fathi, X. Ren, and J. M. Rehg. Learning to recognize objects in egocentric activities. In
CVPR 2011, pages 3281–3288. IEEE, 2011. 6, 7, 20

[22] C. Feichtenhofer, Y. Li, K. He, et al. Masked autoencoders as spatiotemporal learners. Advances
in neural information processing systems, 35:35946–35958, 2022. 19, 21

[23] S.-H. Gao, Q. Han, Z.-Y. Li, P. Peng, L. Wang, and M.-M. Cheng. Global2local: Efficient
structure search for video action segmentation. In Proc. IEEE Conference on Computer Vision
and Pattern Recognition (CVPR), pages 16805–16814, 2021. 2, 6

[24] D. Gong, J. Lee, D. Jung, S. Kwak, and M. Cho. Activity grammars for temporal action
segmentation. Advances in Neural Information Processing Systems, 36, 2024. 2, 6

[25] D. Gong, J. Lee, M. Kim, S. J. Ha, and M. Cho. Future transformer for long-term action
anticipation. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 3052–3061, 2022. 1, 2, 3, 7, 9, 10, 17, 20, 21

[26] A. Gupta, J. Liu, L. Bo, A. K. Roy-Chowdhury, and T. Mei. A-act: Action anticipation through
cycle transformations. arXiv preprint arXiv:2204.00942, 2022. 2, 7

[27] W. Harvey, S. Naderiparizi, V. Masrani, C. Weilbach, and F. Wood. Flexible diffusion modeling
of long videos. Advances in Neural Information Processing Systems, 35:27953–27965, 2022. 3

[28] K. He, X. Chen, S. Xie, Y. Li, P. Dollár, and R. Girshick. Masked autoencoders are scalable
vision learners. In Proceedings of the IEEE/CVF conference on computer vision and pattern
recognition, pages 16000–16009, 2022. 2, 8, 19, 21

[29] J. Ho, A. Jain, and P. Abbeel. Denoising diffusion probabilistic models. In Proceedings of the
34th International Conference on Neural Information Processing Systems, pages 6840–6851,
2020. 3, 7, 15

[30] Y. Huang, Y. Sugano, and Y. Sato. Improving action segmentation via graph-based temporal
reasoning. In Proc. IEEE Conference on Computer Vision and Pattern Recognition (CVPR),
pages 14024–14034, 2020. 2, 6

[31] K. Ishihara, G. Nakano, and T. Inoshita. Mcfm: Mutual cross fusion module for intermediate
fusion-based action segmentation. In 2022 IEEE International Conference on Image Processing
(ICIP), pages 1701–1705. IEEE, 2022. 6

[32] Y. Ishikawa, S. Kasai, Y. Aoki, and H. Kataoka. Alleviating over-segmentation errors by
detecting action boundaries. In Proc. IEEE Winter Conference on Applications of Computer
Vision (WACV), pages 2322–2331, 2021. 1, 2, 6

[33] S. Karaman, L. Seidenari, and A. Del Bimbo. Fast saliency based pooling of fisher encoded
dense trajectories. In ECCV THUMOS Workshop, volume 1, page 5, 2014. 2

[34] Q. Ke, M. Fritz, and B. Schiele. Time-conditioned action anticipation in one shot. In Proc.
IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pages 9925–9934,
2019. 1, 2, 3, 7

[35] G.-h. Kim and E. Kim. Stacked encoder–decoder transformer with boundary smoothing for
action segmentation. Electronics Letters, 58(25):972–974, 2022. 6

12

[36] H. Kuehne, A. Arslan, and T. Serre. The language of actions: Recovering the syntax and
semantics of goal-directed human activities. In Proc. IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), pages 780–787, 2014. 2, 6, 7, 20

[37] H. Kuehne, A. Richard, and J. Gall. Weakly supervised learning of actions from transcripts.
Computer Vision and Image Understanding, 163:78–89, 2017. 2, 21

[38] C. Lea, M. D. Flynn, R. Vidal, A. Reiter, and G. D. Hager. Temporal convolutional networks for
action segmentation and detection. In Proc. IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), pages 156–165, 2017. 1, 2

[39] J. Li, P. Lei, and S. Todorovic. Weakly supervised energy-based learning for action segmentation.
In Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV), October
2019. 21

[40] M. Li, L. Chen, Y. Duan, Z. Hu, J. Feng, J. Zhou, and J. Lu. Bridge-prompt: Towards ordinal
action understanding in instructional videos. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pages 19880–19889, 2022. 6

[41] S.-J. Li, Y. AbuFarha, Y. Liu, M.-M. Cheng, and J. Gall. Ms-tcn++: Multi-stage temporal
convolutional network for action segmentation. IEEE transactions on pattern analysis and
machine intelligence, 2020. 6

[42] X. Li, W. Chu, Y. Wu, W. Yuan, F. Liu, Q. Zhang, F. Li, H. Feng, E. Ding, and J. Wang. Videogen:
A reference-guided latent diffusion approach for high definition text-to-video generation. arXiv
preprint arXiv:2309.00398, 2023. 3

[43] D. Liu, Q. Li, A.-D. Dinh, T. Jiang, M. Shah, and C. Xu. Diffusion action segmentation. In
Proceedings of the IEEE/CVF International Conference on Computer Vision, pages 10139–
10149, 2023. 1, 2, 3, 5, 6, 7, 17, 19, 20, 21

[44] M. Nawhal, A. A. Jyothi, and G. Mori. Rethinking learning approaches for long-term action
anticipation. In European Conference on Computer Vision, pages 558–576. Springer, 2022. 2,
3, 7

[45] M. Nawhal and G. Mori. Activity graph transformer for temporal action localization. arXiv
preprint arXiv:2101.08540, 2021. 1

[46] J. Park, D. Kim, S. Huh, and S. Jo. Maximization and restoration: Action segmentation through
dilation passing and temporal reconstruction. Pattern Recognition, 129:108764, 2022. 6

[47] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan, T. Killeen, Z. Lin,
N. Gimelshein, L. Antiga, et al. Pytorch: An imperative style, high-performance deep learning
library. Advances in neural information processing systems, 32, 2019. 21

[48] C. Raffel, N. Shazeer, A. Roberts, K. Lee, S. Narang, M. Matena, Y. Zhou, W. Li, and P. J.
Liu. Exploring the limits of transfer learning with a unified text-to-text transformer. Journal of
machine learning research, 21(140):1–67, 2020. 17, 18

[49] A. Richard, H. Kuehne, and J. Gall. Weakly supervised action learning with rnn based fine-
to-coarse modeling. In Proc. IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), pages 754–763, 2017. 7, 21

[50] M. Rohrbach, S. Amin, M. Andriluka, and B. Schiele. A database for fine grained activity
detection of cooking activities. In Proc. IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), pages 1194–1201. IEEE, 2012. 2

[51] R. Rombach, A. Blattmann, D. Lorenz, P. Esser, and B. Ommer. High-resolution image synthesis
with latent diffusion models. In Proceedings of the IEEE/CVF conference on computer vision
and pattern recognition, pages 10684–10695, 2022. 3

[52] F. Sener, D. Singhania, and A. Yao. Temporal aggregate representations for long-range video
understanding. In Proc. European Conference on Computer Vision (ECCV), pages 154–171.
Springer, 2020. 1, 2, 3, 6, 7, 17, 20

13

[53] P. Shaw, J. Uszkoreit, and A. Vaswani. Self-attention with relative position representations.
arXiv preprint arXiv:1803.02155, 2018. 18

[54] J. Song, C. Meng, and S. Ermon. Denoising diffusion implicit models. In International
Conference on Learning Representations, 2020. 3, 4, 7, 15

[55] Y. Song and S. Ermon. Generative modeling by estimating gradients of the data distribution.
Advances in Neural Information Processing Systems, 32, 2019. 3

[56] Y. Song, J. Sohl-Dickstein, D. P. Kingma, A. Kumar, S. Ermon, and B. Poole. Score-based
generative modeling through stochastic differential equations. In International Conference on
Learning Representations, 2020. 3

[57] Y. Souri, Y. A. Farha, F. Despinoy, G. Francesca, and J. Gall. Fifa: Fast inference approximation
for action segmentation. In Pattern Recognition: 43rd DAGM German Conference, DAGM
GCPR 2021, Bonn, Germany, September 28–October 1, 2021, Proceedings, pages 282–296.
Springer, 2022. 2

[58] S. Stein and S. J. McKenna. Combining embedded accelerometers with computer vision for
recognizing food preparation activities. In Proceedings of the 2013 ACM international joint
conference on Pervasive and ubiquitous computing, pages 729–738, 2013. 6, 7, 20

[59] Z. Tong, Y. Song, J. Wang, and L. Wang. Videomae: Masked autoencoders are data-efficient
learners for self-supervised video pre-training. Advances in neural information processing
systems, 35:10078–10093, 2022. 2, 5

[60] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, Ł. Kaiser, and
I. Polosukhin. Attention is all you need. Proc. Neural Information Processing Systems
(NeurIPS), 30, 2017. 5

[61] Z. Wang, Z. Gao, L. Wang, Z. Li, and G. Wu. Boundary-aware cascade networks for temporal
action segmentation. In Proc. European Conference on Computer Vision (ECCV), pages 34–51.
Springer, 2020. 1, 6

[62] C. Wei, K. Mangalam, P.-Y. Huang, Y. Li, H. Fan, H. Xu, H. Wang, C. Xie, A. Yuille, and
C. Feichtenhofer. Diffusion models as masked autoencoders. arXiv preprint arXiv:2304.03283,
2023. 3

[63] Z. Xu, Y. S. Rawat, Y. Wong, M. Kankanhalli, and M. Shah. Don’t pour cereal into coffee: Dif-
ferentiable temporal logic for temporal action segmentation. In Advances in Neural Information
Processing Systems (NeurIPS). 1, 2, 6

[64] R. Yang, P. Srivastava, and S. Mandt. Diffusion probabilistic modeling for video generation.
Entropy, 25(10):1469, 2023. 3

[65] F. Yi, H. Wen, and T. Jiang. Asformer: Transformer for action segmentation. In Proc. British
Machine Vision Conference (BMVC), 2021. 1, 2, 5, 6, 7, 17, 19

[66] C. Zhang, C. Fu, S. Wang, N. Agarwal, K. Lee, C. Choi, and C. Sun. Object-centric video
representation for long-term action anticipation. In Proceedings of the IEEE/CVF Winter
Conference on Applications of Computer Vision, pages 6751–6761, 2024. 3, 7

[67] Z. Zhong, M. Martin, M. Voit, J. Gall, and J. Beyerer. A survey on deep learning techniques for
action anticipation. arXiv preprint arXiv:2309.17257, 2023. 7

14

Appendix

In this appendix, we offer detailed descriptions and additional results, which are omitted in the main
paper due to the lack of space. We provide a detailed explanation of diffusion models in Sec. A,
training and inference algorithms in Sec. B, masking types in Sec. C, encoder and decoder layers
in Sec. D, additional experimental results in Sec. E, more information of datasets in Sec. F, more
experimental details in Sec. G, more qualitative results in Sec. H, and discussions of limitations and
broader impacts in Sec. I.

A Diffusion models

In this section, we give an in-depth explanation of the diffusion models [29, 54] described in Sec. 3.
The forward process adds noise to a data distribution x0 ∼ q(x0), following the noise distribution
q based on the Markov property. Specifically, the forward process is defined by adding noise at an
arbitrary time step s with a variance γ(s) as follows:

q(x1, ..., xS |x0) :=

S∏
s=1

q(xs|xs−1), (13)

q(xs|xs−1) := N(xs;
√
1− γ(s)xs−1, γ(s)I), (14)

where S represents the entire time step. We can directly obtain the noisy data distribution xs at time
step s without iteratively applying q due to the Markov property:

q(xs|x0) := N(xs;
√

δ̄(s)x0, (1− δ̄(s))I), (15)

xs :=
√

δ̄(s)x0 +
√
1− δ̄(s)ϵ, (16)

where δ(s) := 1 − γ(s), δ̄(s) :=
∏s

i=1 δ(i), and ϵ ∼ N(0, I). Instead of using γ(s), 1 − δ(s) is
utilized [29]. The posterior q(xs−1|xs, x0) conforms to a Gaussian distribution and is expressed in
terms of mean m̃s(xs, x0) and variance γ̃(s) using Bayes Theorem:

q(xs−1|xs, x0) = N(xs−1; m̃(xs, x0), γ̃(s)I), (17)

where

m̃s(xs, x0) :=

√
δ̄(s− 1)γ(s)

1− δ̄(s)
x0 +

√
δ(s)(1− δ̄(s− 1))

1− δ̄(s)
xs, (18)

γ̃(s) :=
1− δ̄(s− 1)

1− δ̄(s)
γ(s). (19)

With a sufficiently large S and an appropriate variance schedule γ(s), the noisy data xS follows
an isotropic Gaussian distribution. Consequently, if we know the reverse distribution q(xs−1|xs),
we can sample xS ∼ N(0, I) and reverse the process to obtain a sample from q(x0). However,
since q(xs−1|xs) relies on the entire data distribution, we employ a neural network to approximate
q(xs−1|xs) as follows:

pθ(x
s−1|xs) := N(xs−1;mθ(x

s, s),Σθ(x
s, s)), (20)

where mθ and Σθ represent the predicted mean and co-variance, respectively, derived from the neural
network. Predicting ϵ or x0 in Eq. 16 is found to be effective [29]. In this work, we choose to predict
x0 using the neural network.

15

Algorithm 1 ActFusion Training

def train(f, a_gt):
"""
f: video features [B, T, C]
a_gt: ground-truth action labels [B, T, K]
B: batch
T: number of frames
C: video feature dimension
K: number of action classes
"""
masking input features
mask_types = [‘none’, ‘ant’, ‘random’, ‘boundary’, ‘rel’]
mask_type = random.choice(mask_types)
f_prime = mask(f, mask_type)

video embeddings and predictions from encoder
e, a_hat_enc = encoder(f_prime)

signal scaling
a_gt = (a_gt * 2 - 1) * scale

corrupt a_gt
s = randint(0, S) # time step
eps = normal(mean=0, std=1) # noise: [B, T, K]
a_crpt = sqrt(delta_cumprod(s)) * a_gt + sqrt(1 - delta_cumprod(s)) * eps

predictions from decoder
a_hat_dec = decoder(a_crpt, e, s)

training loss
loss_enc = cal_enc_loss(a_hat_enc, a_gt)
loss_dec = cal_dec_loss(a_hat_dec, a_gt)
loss_total = loss_enc + loss_dec

return loss_total

B Algorithms

We provide training algorithms of ActFusion in Alg. 1 and inference algorithms for TAS and LTA in
Alg. 2 and Alg. 3, respectively.

Algorithm 2 ActFusion TAS Inference

def inference(f, steps, S):
"""
f: [B, T, C]
steps: number of inference steps
S: number of time steps
"""

masking
f_prime = mask(f, ‘none’)

Encode video features
e = encoder(f_prime)

sample noisy action label
a_s = normal(mean=0, std=1)

uniform sampling step size
times = reversed(linspace(-1, S, steps))

[(S-1, S-2), (S-2, S-3), ..., (1,0), (0,-1)]
time_pairs = list(zip(times[:-1],times[1:]))
for t_now, t_next in zip(time_pairs):
predict a_0 from a_s
a_hat = decoder(a_s, e, t_now)

estimate a_s at t_next
a_s = ddim_step(a_s, a_hat, t_now, t_next)

return a_hat

delta_cumprod(s): cumulative product of δi, ,
∏s

i=1 δi

Algorithm 3 ActFusion LTA Inference

def inference(f, steps, S):
"""
f: [B, alpha*T, C]
steps: number of inference steps
S: number of time steps
"""

masking
f_prime = mask(f, ‘ant’)

Encode video features
e = encoder(f_prime)

sample noisy action label
a_s = normal(mean=0, std=1)

uniform sampling step size
times = reversed(linspace(-1, S, steps))

[(S-1, S-2), (S-2, S-3), ..., (1,0), (0,-1)]
time_pairs = list(zip(times[:-1],times[1:]))
for t_now, t_next in zip(time_pairs):
predict a_0 from a_s
a_hat = decoder(a_s, e, t_now)

estimate a_s at t_next
a_s = ddim_step(a_s, a_hat, t_now, t_next)

return a_hat

16

C Masking types

"!

""

"#

"$

"%

take cup pour coffee pour milk stir coffee

#': none #(: ant #): random

#*: boundary#+: relation

Figure S1: Masking types

dilated conv

add & IN

FFN

add

x 𝑁E

መ𝐴enc

𝑾enc

𝑭′

Q K V

⨂

+ ⨂

𝑬

𝑩

dilated conv

add & IN

FFN

add

x 𝑁D

መ𝐴0

𝑾dec

𝐀𝑠

Q K V

⨂

+ ⨂

𝒀

𝑩

𝑠

concat

: relative position bias𝑩 ⨁: addition ⨂: multiplication

(b) encoder and decoder layer

Figure S2: Encoder & decoder layer

Figure S1 illustrates five types of masking. In Sec. 5.3, we introduced two types of masking:
anticipative masking and random masking. The anticipation mask M A and the random mask M R

are defined for each masking, respectively. Additionally, we adopt the relation mask M S and the
boundary mask M B introduced in DiffAct [43]. The relation mask M S is proposed to help the model
learn relational dependencies between actions. It is defined by M S = 1(A0

i,a ̸= 1), i ∈ {1, 2, ..., T}
and a ∈ {1, 2, ...,K}, with T representing the number of frames and K denoting the number of
action classes. Here, a specific action class a is randomly selected for the mask. The boundary
mask M B hides visual features near the boundaries based on the soft ground truth B̄ to manage
the uncertainty associated with action transitions. Specifically, it is defined by M B

i = 1(B̄ < 0.5),
where i ∈ {1, 2, ..., T}.

During training, a masking type is randomly selected among five: no mask M N, anticipative mask
M A, random mask M R, relation mask M S, and boundary mask M B, for each iteration as detailed in
Sec. 4.4. During inference, the no mask M N and the anticipative mask M A are utilized following the
evaluation protocol [19, 65, 43, 20, 52, 25].

D Model architecture

We employ a modified version of ASFormer [65] utilized in DiffAct [43] as the baseline model.
An encoder g consists of NE number of layers and a decoder h consists of ND number of layers
as described in Sec.4.2. Figure S2 illustrates detailed operations of the encoder and the decoder
layers. An encoder layer consists of dilated convolution followed by dilated attention, instance
normalization, and a feed-forward network. Additionally, we add relative position bias B to attention
scores to consider relative position relations among actions [48]. Similarly, a decoder layer comprises
dilated convolution followed by dilated attention, instance normalization, and a feed-forward network.
The output embedding E from the encoder is concatenated to the input of the decoder after dilated
convolutions. Subsequently, they are embedded as queries and keys in the dilated attention operation.
We refer the reader to [65, 43] for more details.

17

Table S1: Conditioning features

(a) Results on TAS

conditioning features F1@{10, 25, 50} Edit Acc. Avg.

F ′ 85.6 / 83.6 / 74.8 79.8 82.8 81.3
E 91.6 / 90.7 / 84.8 86.0 89.3 88.5
Â 90.5 / 89.4 / 83.2 84.6 87.6 87.1

(b) Results on LTA

conditioning features
β (α = 0.2) β (α = 0.3)

0.1 0.2 0.3 0.5 0.1 0.2 0.3 0.5

F ′ 29.71 25.43 20.65 14.24 37.22 22.22 17.88 16.48
E 39.55 28.60 23.61 19.90 42.80 27.11 23.48 22.07
Â 39.45 29.33 24.23 19.98 37.96 25.41 22.76 21.18

Table S2: Position embedding

(a) Results on TAS

position embedding F1@{10, 25, 50} Edit Acc. Avg.

none 90.0 / 89.7 / 84.3 85.3 88.5 87.7
Rel. bias 91.6 / 90.7 / 84.8 86.0 89.3 88.5
Rel. Emb. 90.5 / 89.6 / 83.9 84.7 88.3 87.4
Abs. Emb. 87.4 / 86.2 / 78.7 80.5 83.9 83.3

(b) Results on LTA

position embedding
β (α = 0.2) β (α = 0.3)

0.1 0.2 0.3 0.5 0.1 0.2 0.3 0.5

none 35.33 26.41 22.74 17.89 41.52 27.60 22.53 18.69
Rel. bias 39.55 28.60 23.61 19.90 42.80 27.11 23.48 22.07
Rel. Emb. 37.37 27.32 22.44 18.50 42.47 26.62 22.51 20.78
Abs. Emb. 35.91 26.84 22.48 17.70 30.02 20.87 18.24 17.71

E Additional experiments

We provide additional experimental results, maintaining the same experimental settings as described
in Sec.5.2 unless otherwise specified. The evaluation is conducted on the 50 Salads dataset.

Conditioning features. We investigate different types of conditioning features: masked features F ′,
output embeddings E from the encoder, and the encoder prediction Â. Table S1 shows overall results,
where using E is more effective than using other features. The effectiveness of utilizing the encoder
in our approach becomes apparent when comparing the first and second rows, where a significant
performance drop is observed in the absence of the encoder. Since mask tokens replace visual tokens
before going into the encoder, it is crucial for them to learn action relations through the encoder.
Comparing the second and third rows, we also observe that utilizing features from intermediate layers
yields slightly better results than using encoder predictions for both TAS and LTA.

Position embedding. In Table S2, we explore different types of position embeddings: relative position
bias [48], relative position embedding [53], and absolute position embedding [15]. Comparing the
first and second rows, we find that employing relative position bias enhances the overall performance
in TAS and LTA. From the second and third rows, we observe that relative position bias is also more
effective than using learnable relative position embedding. Using absolute position embedding leads
to decreased performance in both TAS and LTA. We find that learnable embeddings often cause
overfitting problems during training. As a result, we adopt relative position bias in our model.

18

Table S3: Loss ablations

(a) Results on TAS

Lbd Lsmo Lce F1@10 F1@25 F1@50 Edit Acc. Avg.

✓ 88.4 86.5 79.1 82.5 84.9 84.3
✓ ✓ 91.3 90.0 84.5 86.3 88.8 88.2
✓ ✓ ✓ 91.6 90.7 84.8 86.0 89.3 88.5

(b) Results on LTA

Lbd Lsmo Lce
β (α = 0.2) β (α = 0.3)

0.1 0.2 0.3 0.5 0.1 0.2 0.3 0.5

✓ 35.62 27.04 20.17 15.93 34.38 22.33 19.96 16.94
✓ ✓ 39.19 28.99 23.13 19.45 39.53 25.19 22.67 19.88
✓ ✓ ✓ 39.55 28.60 23.61 19.90 42.80 27.11 23.48 22.07

Table S4: Effects of reconstruction loss Lrecon

(a) Results on TAS

Lrecon F1@{10, 25, 50} Edit Acc. Avg.

- 85.6 / 83.6 / 74.8 79.8 82.8 81.3
✓ 91.6 / 90.7 / 84.8 86.0 89.3 88.5

(b) Results on LTA

Lrecon
β (α = 0.2) β (α = 0.3)

0.1 0.2 0.3 0.5 0.1 0.2 0.3 0.5

- 39.55 28.60 23.61 19.90 42.80 27.11 23.48 22.07
✓ 40.80 31.02 25.59 13.94 46.56 26.22 18.56 16.15

Loss ablations. We conduct ablation studies on the loss functions: boundary loss, smoothing loss,
and cross-entropy loss. Table R4 presents the results, demonstrating that the combination of bounding
loss and smoothing loss is effective for both TAS and LTA. While the effectiveness of these losses
in TAS is well-documented in previous research [19, 43, 65], their impact on LTA has been less
explored. Notably, the smoothing loss leads to significant performance gains in both tasks, indicating
that smoothed predictions are beneficial.

Effects of reconstruction loss Lrecon Masked auto-encoding is a technique used in training NLP
models like BERT [15] and has recently been adapted to vision models [22, 28]. Inspired by this
approach, we train our model to reconstruct input video features from the masked tokens as an
auxiliary task. Specifically, we employ MLP layers on the encoder embeddings to reconstruct the
input video features and apply mean squared error (MSE) loss Lrecon during training.

Table S4 shows the overall results on both TAS and LTA tasks. In TAS, overall performance increases.
We conjecture that reconstruction helps the model gain a deeper understanding of the underlying data
structure and temporal dynamics by predicting the missing parts of the input. In LTA, we find that
reconstruction is more effective on relatively short-term anticipation. Since short-term predictions are
often based on more immediate context, there is less uncertainty. As a result, reconstructing masked
features helps the model capture immediate patterns and transitions more accurately. However,
for long-term predictions, as the model attempts to predict further into the future, the uncertainty
increases significantly. Long-term predictions involve more variables and potential changes, making
them inherently less predictable. This increased uncertainty might cause performance degradation,
making reconstruction less effective for action anticipation.

19

Table S5: Hyperparameters. We provide the hyperparameters used during training for each dataset.
hyperparameters 50 Salads Breakfast GTEA

of epochs 5000 1000 10000
batch size 4 4 4

sample rate 8 1 1
optimizer Adam Adam Adam

learning rate 0.0005 0.0001 0.0005
weight decay 0 0 1e−06

of encoder layers 10 12 10
of decoder layers 8 8 8

dimension in encoder 64 256 64
dimension in decoder 24 128 24

conditioning features of E layers {5, 7, 9} {5, 7, 9} {7, 9}
λenc
ce 0.5 0.5 0.5

λenc
smo 0.1 0.025 0.1
λdec
bd 0.0 0.0 0.0

λdec
ce 0.5 0.5 0.5

λdec
smo 0.1 0.025 0.1
λdec
bd 0.1 0.1 0.1

F Datasets

The 50 Salads [58] dataset consists of 50 videos depicting 25 individuals preparing a salad. With over
4 hours of RGB-D video data, the annotations include 17 fine-grained action labels and 3 high-level
activities. Notably, 50 Salads videos are longer than those in the Breakfast dataset, averaging 20
actions per video. The dataset is partitioned into 5 splits for cross-validations, and we report the
average performance across all splits. The Breakfast dataset is under the license of Creative Commons
Attribution-NonCommercial-ShareAlike 4.0 International License.

The Breakfast [36] dataset consists of 1,712 videos featuring 52 individuals preparing breakfast in
18 different kitchens. Each video is assigned to one of the 10 activities associated with breakfast
preparation, utilizing 48 fine-grained action labels to define these activities. The average video
duration is approximately 2.3 minutes, encompassing around 6 actions per video. The dataset is
divided into 4 splits for cross-validations, and we report the average performance across all splits.
The Breakfast dataset is under the license of Creative Commons Attribution 4.0 International License.

The GTEA dataset [21] comprises 28 videos capturing 11 action classes related to cooking activities.
Each video includes 20 actions on average, and an average video duration is about a minute. The
dataset is divided into 4 splits for cross-validations, and we report average performance across all
splits. The GTEA dataset is under the license of Creative Commons Attribution 4.0 International
License.

G Experimental details

Cross-task generalization. In Fig.1-(c), we conduct experiments on cross-task evaluations with
DiffAct [43], FUTR [25], and TempAgg [52]. To evaluate DiffAct on LTA, we limit the input video
frames to F1:αT , with zero masks appended to future frame lengths concatenated to the encoder
output embeddings, adhering to DiffAct’s masking strategies. Subsequently, the decoder predicts
future actions based on the observed video frames. To evaluate FUTR on TAS, we utilize the encoder
of FUTR as an action segmentation model. Note that we report the performance of TempAgg on both
TAS and LTA as provided in the original paper [52].

Evaluation without using ground-truth prediction length on LTA. Baseline models of Cycle
Cons. [20] and FUTR [25] anticipate future actions and their corresponding durations. The predicted
durations are then directly multiplied by the ground-truth prediction length, βT , to generate the final
predictions. In Table 6, we also experimented with using a modified prediction length, rαT , instead

20

of the ground-truth length. Please note that we use a reproduced model for Cycle Cons. and the
official model checkpoints for FUTR2.

Implementation details. We provide additional implementation details to complement those de-
scribed in Sec. 5.2. Table S5 presents the specific hyperparameters used in our experiments for
each dataset. All experiments are conducted on a single NVIDIA RTX-3080 GPU. We implement
ActFusion using Pytorch [47] and some of the official code repository of DiffAct [43]3 licensed under
an MIT License.

H Qualitative results

We provide additional qualitative results for both successful and failure cases in Fig. S3 and Fig. S4,
respectively. Figure S3 demonstrates the promising results on both TAS and LTA, showing the
efficacy of joint learning these two tasks. In the failure cases, figure S4a highlights the importance of
accurate segmentation on anticipation, where inaccurate action segmentation of the observed frames
leads to wrong future anticipation. In Fig. S4b, ActFusion fails to detect the ‘take knife’ action class
in action segmentation. However, the model anticipates missing action classes that are not observed
in the observed frames. This implies that the model can infer missing actions based on the action
relations of the observed and unobserved actions.

I Discussion

In this paper, we have proposed a unified diffusion model for action segmentation and anticipation,
dubbed ActFusion. We have demonstrated the effectiveness of the proposed method through compre-
hensive experimental results, showing the bi-directional benefits of joint learning the two tasks. In
this section, we will discuss the limitations, future work, and broader impact of the proposed method.

Limitations and future work. The proposed method shows the state-of-the-art results on TAS
across three benchmark datasets. However, the frame-wise accuracy is slightly below compared
to DiffAct [43]. We hypothesize that this discrepancy arises from the different masking strategies
employed. In DiffAct, masking is applied to the output embeddings of the encoder, ensuring that the
encoder always fully observes the visual features from the entire video. However, in our approach,
masking is applied before the encoders, allowing for handling both visible and invisible tokens to
unify the two tasks effectively. Consequently, the encoder may not always observe the entire visual
features, potentially leading to slightly lower accuracy. This issue could potentially be addressed by
employing reconstruction methods for masked features, similar to masked autoencoders [28, 22]. By
further training the model to reconstruct the original features from the masked features, the encoder
could be empowered to handle the masked features better. We leave this as our future work.

In future work, additional activity information could be integrated, particularly focusing on segment-
wise action relations [8]. Moreover, exploring weakly-supervised learning approaches [39, 49, 37]
could be beneficial for further enhancing the capabilities of our method.

Broader impact. To the best of our knowledge, we are the first to integrate action segmentation and
anticipation within a unified model. We believe that our work lays the foundation for integrating
these two tasks, offering substantial potential for real-world applications such as robots.

2Official model checkpoints of FUTR [25] are available at https://github.com/gongda0e/FUTR.
3Official code repository of DiffAct [43] is available at https://github.com/Finspire13/DiffAct.

21

https://github.com/gongda0e/FUTR
https://github.com/Finspire13/DiffAct

Split1, P10_webcam01_P10_milkSUP

GT

TAS

SIL spoon powder stir milk

activity: milk

pour milk

LTA

observation anticipation

(a)

GT

TAS

LTA

SIL pour cereal pour milk

activity: cereals

take bowl

SUP P29_cam02_P29_cereals

observation anticipation

(b)

GT

TAS

SIL squeeze orange pour juice

activity: juice

cut orange

SUP

LTA

P42_stereo01_P42_juice

take glass
observation anticipation

(c)

Figure S3: Qualitative results on successful cases

22

GT

TAS

activity: tea

SIL take cup add teabag pour water

P33_stereo01_P33_teaSUP, failure

LTA

pour milkpour coffee
observation anticipation

(a)

SUP, failure

GT

TAS

activity: sandwich

LTA

observation anticipation

P04_stereo01_P04_sandwich

SIL take knife cut bun smear butter put toppingontop

P04_stereo01_P04_sandwich
['SIL', 'take_knife', 'cut_bun', 'smear_butter', 'put_toppingOnTop', 'put_bunTogether', 'SIL']
['SIL', 'cut_bun', 'take_knife', 'smear_butter', 'put_toppingOnTop', 'SIL']

(b)

Figure S4: Qualitative results on failure cases

23

NeurIPS Paper Checklist

The checklist is designed to encourage best practices for responsible machine learning research,
addressing issues of reproducibility, transparency, research ethics, and societal impact. Do not remove
the checklist: The papers not including the checklist will be desk rejected. The checklist should
follow the references and follow the (optional) supplemental material. The checklist does NOT count
towards the page limit.

Please read the checklist guidelines carefully for information on how to answer these questions. For
each question in the checklist:

• You should answer [Yes] , [No] , or [NA] .

• [NA] means either that the question is Not Applicable for that particular paper or the
relevant information is Not Available.

• Please provide a short (1–2 sentence) justification right after your answer (even for NA).

The checklist answers are an integral part of your paper submission. They are visible to the
reviewers, area chairs, senior area chairs, and ethics reviewers. You will be asked to also include it
(after eventual revisions) with the final version of your paper, and its final version will be published
with the paper.

The reviewers of your paper will be asked to use the checklist as one of the factors in their evaluation.
While "[Yes] " is generally preferable to "[No] ", it is perfectly acceptable to answer "[No] " provided a
proper justification is given (e.g., "error bars are not reported because it would be too computationally
expensive" or "we were unable to find the license for the dataset we used"). In general, answering
"[No] " or "[NA] " is not grounds for rejection. While the questions are phrased in a binary way, we
acknowledge that the true answer is often more nuanced, so please just use your best judgment and
write a justification to elaborate. All supporting evidence can appear either in the main paper or the
supplemental material, provided in appendix. If you answer [Yes] to a question, in the justification
please point to the section(s) where related material for the question can be found.

IMPORTANT, please:

• Delete this instruction block, but keep the section heading “NeurIPS paper checklist",

• Keep the checklist subsection headings, questions/answers and guidelines below.
• Do not modify the questions and only use the provided macros for your answers.

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: Our main claims presented in the abstract and introduction accurately reflect
the paper’s contributions and scope.

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

24

Justification: See Sec. I.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [Yes]
Justification: We provide theoretical explanation of diffusion models on Sec. 3 and A.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: We provide experimental details in Sec. 5 and Sec. G.
Guidelines:

• The answer NA means that the paper does not include experiments.

25

• If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: We include the code and instructions for reproduction in the supplementary.
The training and validation data is available online.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

26

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: We specify all the training details in the main and supplementary.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [No]

Justification: We do not report error bars due to the limited computational resources.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: We include the amount and type of resources used for training in Sec. G.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.

27

• The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

• The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: We follow the NeurIPS Code of Ethics.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [Yes]
Justification: We provide the broader impact in Sec. I.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: We do not release data or models that can be highly misused.
Guidelines:

• The answer NA means that the paper poses no such risks.

28

https://neurips.cc/public/EthicsGuidelines

• Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: We cite all the papers that are relevant to the code, models, and datasets. We
include the license of each asset in Sec. F and G.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [Yes]
Justification: We include trained models in the supplementary for reproduction of our main
results.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]

29

paperswithcode.com/datasets

Justification: We did not croudsource any information for this research.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: We did not croudsource any information for this research.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

30

