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Abstract

The Benjamini-Hochberg (BH) procedure is widely used to control the false de-
tection rate (FDR) in multiple testing. Applications of this control abound in
drug discovery, forensics, anomaly detection, and, in particular, machine learning,
ranging from nonparametric outlier detection to out-of-distribution detection and
one-class classification methods. Considering this control could be relied upon in
critical safety/security contexts, we investigate its adversarial robustness. More
precisely, we study under what conditions BH does and does not exhibit adversarial
robustness, we present a class of simple and easily implementable adversarial
test-perturbation algorithms, and we perform computational experiments. With our
algorithms, we demonstrate that there are conditions under which BH’s control can
be significantly broken with relatively few (even just one) test score perturbation(s),
and provide non-asymptotic guarantees on the expected adversarial-adjustment
to FDR. Our technical analysis involves a combinatorial reframing of the BH
procedure as a “balls into bins” process, and drawing a connection to general-
ized ballot problems to facilitate an information-theoretic approach for deriving
non-asymptotic lower bounds.

1 Introduction

Multiple testing has broad applications in drug discovery, forensics, candidate screening, anomaly
detection, and in particular, machine learning. Indeed, recent works [5, 18, 28, 32], in nonparametric
outlier detection, out-of-distribution detection (OOD), and one-class classification have all adopted
multiple testing methodology in developing principled decision rules with statistical guarantees.
In fact, the Benjamini-Hochberg (BH) multiple testing procedure, widely used to control the false
detection rate (FDR), is either used or modified in all these recent methods. Considering this FDR
control could be relied upon in some critical (safety/security) contexts, for which false positives incur
costs, we investigate its adversarial robustness.

Adversarial corruption presents a challenge to statistical methodology, and is a modern-day concern
due to not only the ease with which high volumes of data can now be accessed/processed but
also the increasingly widespread use of statistical procedures. This threat poses vulnerabilities to
machine learning tasks like OOD, which would aim to fortify security systems like fraud detection [5].
∗website: https://louislchen.github.io/
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Manipulation of data and experimental results are common means by which incorrect conclusions
can be reached. Worse, strategic perturbation can dramatically decrease the fidelity of the models
and methods used. A burgeoning field of adversarial corruption has gained traction in recent years to
meet this concern, most notably in the area of (deep) machine learning; see, for example, [27, 16, 20].
In this work we address adversarial corruption in hypothesis testing, specifically in the large-scale
context in which the primary focus is on the aggregate metric: FDR.

BH [6] is one of the most widely used multiple testing procedures, which upon input of a collection
of p-values, outputs a rejection region ensuring that the FDR is no greater than a user-defined
threshold q ∈ (0,1). This control of FDR holds under independently generated p-values – as well
as some restricted forms of dependency like positive regression dependent on a subset (PRDS) [7]
– but it generally holds without strong assumptions on the alternative distributions. This degree of
distributional robustness, however, could be said to come at the cost of adversarial robustness, as we
show in this work.

1.1 Literature Review

Although OOD methods [23, 12, 21, 22] are often complex and not always supported by statistical
guarantees, conformal inference has made possible the use of one-class classifiers to generate
conformal p-values for which OOD can now be conducted via multiple testing. This has led to
the adoption of the BH procedure in OOD. Indeed, [5] leverages the FDR control afforded by BH
over conformal p-values (shown to be PRDS) to test for outliers. More precisely, given a test set of
observations for which we wish to identify as inliers or outliers (out of distribution), a conformal
p-value is generated for each observation, which is then processed by BH to decide which are likely
outliers. We refer the reader to [18, 28] for other recent works along this vein.

In recent years, concerns have risen over the possibility of adversarial manipulation of statistical
methodologies. This manipulation commonly occurs at the level of data collection and training, often
invalidating the assumptions made regarding how data is drawn, but it can also occur at test time.
There is a growing literature on adversarial robustness, which is concerned with securing statistical
methods like (deep) machine learning [27, 16, 20], linear regression [8], M-estimation [9], and online
learning [26, 17, 1]. In particular, [13] considers contamination models that incorporate (adaptive)
adversarial perturbation of up to an ϵ− fraction of drawn data. Indeed, we adopt this modeling in our
own study - see (c-Perturb). As well, a similar concept to the notion of adversarial robustness that
we adopt in this paper is one the literature refers to as perturbation resilience. Generally speaking,
a problem instance is called α− perturbation resilient when despite a degree (parameterized by α)
of perturbation to the instance, the optimal solution does not change. First introduced in [10] for
combinatorial optimization (in particular, MAX-CUT), the concept has since also inspired research
into devising resilient unsupervised learning, particularly in clustering [4, 3, 2].

With respect to the hypothesis testing literature, there are recent adversarial robust studies focused
on simple [19] and sequential hypothesis testing [11] from a game theoretic perspective, in which
protection of statistical power, risk, or sample size from corruption is of chief concern. Comple-
menting the adversarial robust perspective are several distributionally robust studies, in which the
data-generating distribution is known only to lie in a parametric family. Recent works include
[11, 24, 15] which focus on test risk in single and sequential hypothesis testing settings employing
uncertainty sets of distributions of fixed distance (e.g. Wasserstein, phi-divergence) for the null and
alternative hypotheses. In contrast to these works, this paper is focused on FDR, not individual test
risk. Furthermore, distributional robustness is not equivalent to the perturbation-robustness that this
paper and other adversarial robust studies seek in general. Indeed, [30] shows that the BH procedure’s
FDR control exhibits a distributional robustness to possible dependence between null and non-null
hypotheses. On the other hand, our work would illustrate that, distributional robustness aside, BH
can lack adversarial robustness.

1.2 Preliminaries

Let N ∶= {1, . . . ,N}, where N ∈ Z+ , be a finite set for which each member i ∈ N denotes a binary
hypothesis test deciding between a null and alternative hypothesis. Further, there exists a partitioning,
N = H0 ⊍H1, such that the correct decision for test i ∈ N is either null if i ∈ H0, or alternative if
i ∈ H1. Here, H0 and H1 are the (unknown) sets of null and alternative test indices, respectively;
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consequently, for any test i, the correct decision (i.e. set membership) is unknown to the decision
maker. In fact, while the number of tests N is known (and large, on the order of thousands), neither
N0 ∶= ∣H0∣ nor π0 ∶=

N0

N
is known to the decision maker, although π0 ≥ 0.90 “is reasonable in most

large-scale testing situations" - ([14], p. 285).

For each test i ∈ N , p-value pi ∈ [0,1] is randomly generated (independent of all other pj , j ≠ i),
which we model as a draw from either U(0,1) when i ∈H0 (pi then referred to as a null p-value) or
some alternative distribution P1

i on [0,1] when i ∈H1 (pi then referred to as an alternative p-value).
A multiple-testing algorithmA takes as input a randomly generated collection of p-values p = {pi}i∈N
and outputs for each test i a determination A(i) ∈ {0,1} with A(i) = 1 iff the determination is to
reject the null hypothesis (i.e., claim i ∈ H1), or sometimes referred to as “make a discovery" for
the i-th test. With ap ∶= ∑i∈H0

A(i) denoting the number of false discoveries, and Rp ∶= ∣A
−1(1)∣

denoting the number of rejections/discoveries made, we refer to FDP [A;p] ∶=
ap

Rp∨1 as the false
detection proportion summarizingA’s decisions on p-values p, where x∨y is shorthand for max(x, y)
for any x, y ∈R. We refer to its expectation with respect to the random generation of p as the false
detection rate, FDR(A) ∶= EpFDP [A;p].

In this work, we focus on the Benjamini Hochberg procedure, a widely-used multiple-testing algo-
rithm.

1.3 The Benjamini Hochberg (BH) Procedure

Given a collection of p-values p = {pi}i∈N and desired control level q ∈ (0,1) to bound FDR, the BH
procedure BHq operates as follows:

1. The p-values are sorted in increasing order, p(1) ≤ p(2) ≤ . . . ≤ p(N).

2. The index imax ∶=max{i ∈ [0,N]Z ∶ p(i) ≤ i
q
N
} is identified, with p(0) ∶= 0.

3. Reject the tests corresponding to the smallest imax p-values: p(1), p(2), . . . , p(imax).

BHq provides provable FDR control at the level of q without any assumptions on the alternative
distributions {P1

i }i∈H1 .

Lemma 1.1 (Theorem 4.1 from [14]). If every null p-value is super-uniform, equiv., pi ∼ P0
i ≽

U(0,1) for all i ∈H0, and the collection is jointly independent, then regardless of the collection of
alternative distributions {P1

i }i∈H1 ,

FDR(BHq) = π0q ≤ q, ∀q ∈ (0,1). (1)

Remark 1.2. In fact, the assumption of joint independence of the null p-values can be relaxed to a
form of dependency known as PRDS - see [7] for this generalization of Lemma 1.1.

1.4 The Adversary and the c-Perturbation Problem

We model an (omniscient) adversary with knowledge ofH0,H1, and that knows the decision maker’s
choice of control level q. The adversary receives the p-values p = (pi)Ni=1 after they are generated but
before they are received by the decision maker, or before test time. Given the ability to perturb c ≥ 1
p-values, the adversary solves

max
p′∶∥p−p′∥0≤c

FDP [BHq;p
′
], (c-Perturb)

where p′ denotes the p-values derived from an adjusted collection of p-values p′ = (p′i)
N
i=1. In words,

the adversary finds the perturbation of at most c−many p-values before the execution of BHq so as
to maximize the adversarially-adjusted false detection proportion FDP [BHq, p

′]. Perturbation of
p-values is implicitly the result of data perturbation, and we refer to both Remark 4.6 and Section 5.2
for examples and experiments involving direct perturbation of data.

While we assume omniscience for the adversary throughout, we will briefly address modifications in
analysis for an oblivious adversary that has no knowledge ofH0, norH1. Indeed, our algorithms to
be presented can be modified naturally for implementation by an oblivious adversary (see comments
in Section 3); further, there is nearly equivalent performance when π0 is large, as is typical. Hence, it
is for the sake of brevity that we omit explicit analysis of the oblivious adversary.
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1.5 Main Results

Intuitively, the effect of a small number of p-value perturbations becomes insignificant in settings
where a large number of tests are rejected (see Theorem 3.2). This happens, for instance, when either
the number of tests N , or the control level q, or the distance (e.g. KL-divergence) between the null
and alternative distributions, is large. For this reason, we focus on results that are non-asymptotic in
the number of tests N .

In Section 3, we present the algorithm INCREASE-c that uses strategic increases to c null p-values to
induce expansion of the BH rejection region. We also present an efficient, optimal algorithm MOVE-1
(Appendix Section 7.2) for the adversary’s maximization of FDR with at most one (i.e. c = 1) p-value
perturbation.

In Section 4 we discuss the adversarial robustness of BH through study of the adversarial adjustments
to FDR by the INCREASE-c algorithms, revealing where its control is and isn’t adversarially robust.

In Section 5 we provide accompanying numerical experiments on i.i.d. as well as PRDS p-values.

2 BH as Balls into Bins

In this section we will establish important notation for the discussions to follow. We reduce the real
line to a collection of N + 1 “bins". N0 and N1 balls will each be assigned to one of these bins
independently of each other, from discrete distributions that are specified in the next subsection. The
main motivation for this reduction is to facilitate discussion of effective perturbations in Section 3,
and for the technical analysis in Section 4.

2.1 The Balls into Bins System

We partition the segment [0,1] into N equiprobable segments that will be referred to as bins. We
define the i-th bin Bi ∶= {p ∈R ∶ (i−1)

q
N
≤ p < i q

N
}, for i = 1, . . . ,N. What remains forms bin N+1,

i.e., BN+1 ∶= {p ∈R ∶ 1 ≥ p ≥ 1− q}. For shorthand, we write B1∶i ∶= ∪
i
l=1Bl = {p ∈R ∶ 0 ≤ p < i

q
N
},

Finally, we write B0
i ∶= ∣Bi ∩ {pj}j∈H0 ∣ and BNi ∶= ∣Bi ∩ {pj}j∈N ∣ for bin i’s, respectively, null-load

and total load. The alternative- load B1
i is defined analogously, as are B0

1∶i B
N
1∶i, and B1

1∶i.

Rejection Count: Borrowing terminology from the classic balls into bins problem of probability
theory [29], this framework facilitates a re-interpretation of the random drawing of p-values as balls
being randomly placed into an ordered collection of bins, enumerated 1 up to N + 1. Framed in this
way, we see that BHq operates by identifying the rejection count

k̃ =max{i ∈ [0,N]Z ∶ B
N
1∶i = i}, (2)

which corresponds to the largest collection of consecutive bins 1, . . . , i that collectively contain
precisely i balls, so that BHq rejects all tests with p-values lying in the first k̃ bins. The case k̃ = 0

corresponds to rejecting no tests. In fact, k̃ is a stopping time under a filtration F that we define next.

Filtration F = {Fi}
N
i=0: Let Ω ∶= [0,1]N be a sample space with the classical Borel σ- algebra

B and (with slight abuse of notation) probability measure P ∶= (⊗i∈H0U(0,1))⊗ (⊗i∈H1P
1
i ). We

define a filtration beginning with FN ∶= σ(B
N
N+1,B

0
N+1), and continuing inductively (N towards 0),

let Fi be the σ-algebra generated by {BNj }
N+1
j=i+1 and {B0

j }
N+1
j=i+1. In words, this filtration corresponds

to what is cumulatively learned about the bin loads (null and total) upon examination of the bins in
sequence starting with bin N + 1 and concluding with bin 1, assuming each observed p value comes
with correct identification of whether or not i ∈H0.

We note the fact that for ℓ > i, it follows that E [B
0
1∶i
i
∣∣Fℓ] = E [

B0
1∶i
i
∣∣
B0

1∶ℓ
ℓ
] =

B0
1∶ℓ
ℓ

a.s., so that
B0

1∶N
N

,
B0

1∶N−1
N−1 , . . . ,

B0
1∶1
1

form a martingale sequence adapted to the filtration. This fact will prove
useful when combined with the optional stopping theorem to facilitate several results in this work.

Under this lens, the adversary’s (algorithmic) task reduces to reshuffling p-values among the bins, and
in Section 3 we demonstrate there are indeed simple, tractable ways of performing this to manipulate
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BH, with potentially great effect on FDR control. The key insight is that there exist alternative
stopping times that present alternative rejection counts (/regions) that can break FDR control.

3 Adversarial Algorithm: INCREASE-c

Throughout this section, we don the role of the adversary and study the c-Perturb problem, in which
we are given q ∈ (0,1), a realized collection p = {pi}i∈N (along with the labels of null or alternative
for each pi), and a budget c ≥ 1, and our task is to produce a perturbed collection p′. Toward this, we
focus on a procedure called INCREASE-c that despite its sub-optimality (see Appendix Section 7.2)
is intuitive and simple to execute; further, as theoretical and empirical analysis in sections 4 and 5
respectively show, it has strong performance in expectation.

We begin by defining a random variable that is a stopping time adapted to F ; given an integer c ≥ 1,
let

k̃+c ∶= {
max{i ∈ [c,N]Z ∶ B

N
1∶i = i − c} B0

N+1 ≥ c

k̃ B0
N+1 < c,

(3)

and we choose to write k̃+ in place of k̃+1.

Increasing the Rejection Count The interest in k̃+c is that if we moved any selection of c null
p-values from bin N + 1 into bin k̃+c (in fact any bin i ≤ k̃+c), then BHq would output a new,
increased rejection count k̃+c. We formally study this in Section 4. In the meantime, we comment on
the increase k̃+c − k̃, which is a difference between two stopping times

It is easy to see that k̃+c − k̃ ≥ c whenever B0
N+1 ≥ c; hence, the increase in the rejection count is at

least c, but possibly more. We provide a stronger lower bound on this increase by utilizing the ratio
between the number B0

k̃+2∶N of nulls not rejected by BHq and the number N − (k̃ + 1) of bins left
outside of the BHq rejection region in the case of no corruption. Computational experiments indicate
comparable performance of this bound with those of simulations presented in Section 5’s Table 1.
Theorem 3.1. If c ≥ 1, then

E [k̃+c − k̃∥B
0
N+1 ≥ c] ≥

c − 1

1 −E [
B0

k̃+2∶N
N−(k̃+1) ∣∣ B

0
N+1 ≥ c]

+ 1 (4)

for any collection of alternative hypothesis distributions {P1
i }i∈H1 .

INCREASE-c runs as follows:

1. IF B0
N+1 ≥ c, then move the largest c (ties broken arbitrarily) in the (N+1)-th bin to bin k̃+c.

2. ELSE leave the p-values unperturbed.

It in fact suffices for the c−many p-values to be placed in any bin i ≤ k̃+c. We remark that since an
oblivious adversary cannot discern null-drawn from alternative-drawn in the collection p, INCREASE-
c as written is unimplementable in such a case. Hence, for the oblivious adversary, we modify
INCREASE-c’s criterion to BNN+1 ≥ c and have the oblivious adversary now take the c−many
p-values uniformly at random from among the p-values in the (N + 1)-th bin. Intuitively, this
modification for the oblivious adversary should yield nearly c null p-values being moved (on average)
just as in the non-oblivious case, assuming the proportion of nulls among the BNN+1 - many p-values
is high, as a typically large π0 would entail.

We conclude this section with a characterization of the average increase in FDR, denoted ∆c that
INCREASE-c induces.
Theorem 3.2. Given c ≥ 1, let p+c denote the perturbed form of p that INCREASE-c produces. Then
the adversarially-adjusted FDR induced by INCREASE-c is

EFDP [BHq;p+c] = EFDP [BHq;p] +∆c,

for any collection of alternative distributions {P1
i }i∈H1 , where

∆c ∶= E [
c

k̃+c
;B0

N+1 ≥ c] . (5)
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In Section 4 to follow, we provide analytical lower bounds for ∆c as part of a discussion on BH’s
adversarial robustness. Section 5 presents computational experiments (e.g. Table 1). We remark
that INCREASE-c is not optimal for all instances of c-Perturb; indeed, for c = 1, we present a
provably optimal algorithm MOVE-1 in Appendix Section 7.2, which in contrast to INCREASE-
1 sometimes induces a reduced rejection count. However, INCREASE-c remains a formidable
adversarial procedure, as the results of Section 5 demonstrate on not only i.i.d. p-values but also
PRDS conformal p-values.

4 Theoretical Analysis: Performance Guarantees and Insights into
Adversarial Robustness

BH’s FDR control – Lemma 1.1 – is (distributionally) robust in the sense that it holds no matter
the alternative distributions {P1

i }i∈H1 . However, as Theorem 3.2 indicates, the degree to which
this control can withstand data perturbations at test time, i.e., its adversarial robustness, very much
depends on {P1

i }i∈H1 .

Recalling Lemma 1.1, we may assume without loss of generality that no alternative distribution P1
i

stochastically dominates U(0,1) (equiv., P1
i ≽ U(0,1)). That being said, the “degree" to which the

alternative distributions {P1
i }i∈H1 are (stoch.) dominated by the null distribution U(0,1) (equiv.,

P
1
i ≼ U(0,1)) is critical. We briefly preview two regimes of special interest for which each of the

next two subsections cover.

High sub-uniformity: When the alternatives are sub-uniformP1
i ≼ U(0,1) for all i ∈H1, and highly

so, such that for all i ∈H1 it holds that P1
i (pi < ϵ) ≈ 1 for some small ϵ > 0, then it follows that k̃ is

large and B1∶k̃ should contain most alternative p-values. Consequently, in order for INCREAES-c to
induce any sizeable increase to the FDR, the adversary will need to expand the BH rejection region
significantly so as to introduce a commensurate number of nulls. Table 1 indicates c may need to be
quite large to make a dent in FDR control. This message is made more precise in Theorem 4.1.

Low sub-uniformity: As we will see, when the alternative p-values are barely dominated by U(0,1),
∆c can be rather large. In fact, in the special case that there is no dominance such that P1

i = U(0,1)
for all i ∈H1, a strikingly vulnerable state occurs with high probability. Indeed, in this case where
nulls and alternatives are virtually indistinguishable, BHq (in fact any A) admits an FDR of π0

whenever any rejections are made (i.e., E [FDP [BHq;p]∣∣k̃ ≥ 1] = π0) so that BHq accordingly
compensates by making no rejections with high probability (P (k̃ = 0) = 1 − q), which follows by
the distributional robust control (1) from Lemma 1.1. But those times when k̃ = 0 is precisely when
INCREASE-c’s simultaneous expansion of the rejection region and injection of nulls into this region
is most damaging. That this event and other similarly vulnerable events occurs with high probability is
the fault of the distributional robustness. This message is made rigorous in the forthcoming Theorem
4.5.

4.1 Case of High Sub-Uniformity in Alternatives {P1
i }i∈H1

If P1
i ≼ U(0,1) for all i ∈H1, with P1

i (pi < ϵ) ≈ 1 for some small ϵ > 0, then it is clear that the num-
ber of alternatives rejected by BHq should be nearly the maximum number N1 of correct rejections
possible (i.e., B1

1∶k̃ ≈ N1) with high probability, limiting any potential impact of INCREASE-c.

The following bounds are formulated to elaborate on such dynamics in this case of large separation
between alternatives and nulls, for which the event [B1

1∶c = N1] has probability close to 1.

Theorem 4.1. If c ≥ 1, then

∆c ≤ P (B
1
1∶c = N1)E [

c

c +N1 +B0
1∶N1+c

∥B0
N+1 ≥ c] + 1 −P (B

1
1∶c = N1)

and

E [k̃+c∥B
0
N+1 ≥ c] ≥

(N1 + c) ⋅P (B
1
1∶c = N1)

1 −E [
B0

1∶N
N
∥B0

1∶N ≤ N0 − c]
. (6)
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In words, for fixed c, as the alternative distributions concentrate more and more on 0, it follows
that P (B1

1∶c = N1) ↑ 1, so that the effect ∆c of INCREASE-c on BH’s FDR is dampened. And
this occurs despite the fact that the increase k̃+c − k̃ in rejection count produced by INCREASE-c
consists of mostly the introduction of nulls, and tends to a magnification of (N1 + c) by at least
a factor of the inverse of 1 −E [B

0
1∶N
N
∥B0

1∶N ≤ N0 − c] , which is straightforward to compute since
B0

1∶N ∼ Binom(N0, q). We refer the reader to Section 5’s Table 1 for simulations illustrating the
above.

4.2 Case of Low Sub-Uniformity in Alternatives {P1
i }i∈H1

In the study of this regime, we aim to demonstrate that the adversarial increase ∆c can be rather large.
We provide a lower bound Lc on ∆c that will be a function of parameters q,N,N0, as well as the
alternative distributions {P1

i }i∈H1 .

4.2.1 Lower Bounding ∆c

In view of 5, the event [k̃+c = c] is clearly of significance in the computation of ∆c. In words,
this event describes the case that the BHq rejection region captures nothing, and yet when the
adversary successfully executes INCREASE-c the rejection will now capture only nulls - generating
a false detection proportion of 1. Hence, we lower bound the adjustment ∆c of Theorem 3.2 by
lower-bounding the probability of this event.

Our strategy: (1) first, characterize this probability under the special case that P1
i = U(0,1) for all

i ∈H1; (2) second, to handle when P1
i ≼ U(0,1) for some i ∈H1, we translate the KL divergence of

the resulting discrete, bin-assignment distributions into a bound via Pinsker’s Inequality.

The key to the first step will be to recognize that when P1
i = U(0,1) for all i ∈ H1, the vector of

total loads (BN1 , . . . ,BNN ) is exchangeable (i.e., its law is invariant under permutations), given BN1∶N .
Indeed, exchangeability, combined with the generalized Ballot Theorem of [31] yields the following
result:
Corollary 4.2. Let n ≥ 1, p ∈ [0,1], and x a non-negative integer such that 0 ≤ x ≤ n. If

B̃ = (B̃1, . . . , B̃n) ∼Multinomial(x, (p, . . . , p)), then PB̃ (∩
n
r=1 [∑

r
i=1 B̃i < r]) = 1 −

x
n
.

Armed with Corollary 4.2, we can begin to estimate the probability laws of k̃ and k̃+c.
Corollary 4.3. If P1

i = U(0,1) for all i ∈H1,

then P (k̃ = ℓ) = ( 1−q
1−q+ (N−ℓ)qN

) ⋅P (BN1∶ℓ = ℓ) for ℓ = 0, . . . ,N, where 00 = 1,

and P (BN1∶ℓ = ℓ) = (
N
ℓ
) (

qℓ
N
)
ℓ
(1 − qℓ

N
)N−ℓ.

If B0
N+1 ≥ c, then P (k̃+c = c ∣∣ B0

N+1) = (1 −
cq
N
)N1 ⋅ (1 − c

N
)N0−B0

N+1 (1 −
N0−B0

N+1
N−c −

N1q
N−cq).

Next, we carry out the second step of our plan. Towards this, we make the following assumption.
Assumption 4.4. Suppose the alternative p-values are independent and identically distributed,
with common distribution P1, i.e., {pi}i∈H1

iid
∼ P1. We write δ ∶= (1 − q) − P1 (pi ∈ BN+1),

and δj ∶= P
1 (pi ∈ Bj) −

q
N

, and we assume that P1 (pi ∈ Bj) > 0 for all j ∈ [N], as well as
P

1 (pi ∈ Bℓ∶N) > 0 for arbitrary ℓ < N .

This assumption not only reduces the notational burden (otherwise documenting N1 many alternative
distributions) but it also allows the leveraging of KL divergences between the different bin assignment
distributions implied by the alternative P1 versus the null U(0,1).
Theorem 4.5. Suppose Assumption 4.4. Then

∆c ≥ Lc(q,N,N0,P
1
) ∶= (1 −

cq

N
− δ1∶c)

N1

[(1 −
c

N
)
N0

(1 − πc − Vc)Mc +Zc]

where πc(q,N,N0,P
1) ∶=

N0+E[B1
c+1∶N ∣∣B

1
1∶c=0]

N−c , E [B1
c+1∶N ∣∣B

1
1∶c = 0] = N1

(N−c)q+Nδc+1∶N
N−cq−Nδ1∶c

,

Vc(q,N,N0,P
1) ∶=

√
ln2
2
E [B1

c+1∶N ∣∣B
1
1∶c = 0]DKL(P

1, c),
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Mc(q,N,N0) ∶=
N−cq
N−c −E [(1 −

c
N
)
−B0

N+1 ;B0
N+1 ≤ c − 1],

Zc(q,N,N0) ∶= P (B
0
N+1 ≥ c) (1 −

c
N
)
N0−E[B0

N+1∣∣B
0
N+1≥c] E[B0

N+1∣∣B
0
N+1≥c]

N−c
DKL(P

1, c) ∶= ∑j
1

N−c log (
q+δ−∑c

j=1(q/N+δj)
(N−c)(q/N+δj) )

Remark 4.6. For a more concrete application/example, consider when the p-values {pi}i∈N are
derived from z-scores {zi}i∈N via pi = P(Z > zi), where Z ∼ N(0,1), with null z-scores {zi}i∈H0

i.i.d. N(0,1) and alternative z-scores {zi ∼ N(µi
1,1)}i∈H1 (with all µi

1 ≥ 0). Indeed, under this
framework, we may view the µi

1 as the distance between P1
i and U(0,1).

Towards satisfying Assumption 4.4, we can assume throughout that there exists a nonnegative pa-
rameter µ1 such that the alternative parameters (µi

1, σ
i) = (µ1,1) for all i ∈ H1. Indeed, if every

member of the collection {µi
1}i∈H1 is in reality only close to zero, then the forthcoming estimates

(lower bounds) would provide close, conservative estimates when setting µ1 =max{µi
1 ∶ i ∈H1}.

When µ1 > 0, it follows that δ(µ1) ∶= (1 − q) − Φ (Φ
−1(1−q)−µ1

σ1
) > 0. As well, δj(µ1) ∶=

Φ(
Φ−1(1− (j−1)qN )−µ1

σ1
) −Φ(

Φ−1(1−j q
N )−µ1

σ1
) −

q
N

. Intuitively, BH is adversarially robust (∆c small)

when the alternative distributions are “far" (µ1 >> 0) from the theoretical null, and the opposite holds
when they are “close" (µ1 = 0) - see Figures 2 and 3.

5 Simulations and Data Experiments

In this section, we provide computations (performed in R and Python on a Macbook Air-M2 chip,
8GB memory, with no experiment time exceeding 5 minutes) to demonstrate the performance of
the adversarial algorithm INCREASE-c. We demonstrate its performance through simulation on
synthetic data to make comparisons to the theoretical estimates provided in Section 4. We then
demonstrate its performance on a real-data experiment in outlier detection.

5.1 INCREASE-c Simulations on Synthetic Data

5.1.1 INCREASE-c Simulations on i.i.d. p-values

Following the framework from Remark 4.6, we simulated 104 replications of the following experiment:
(1) N = 1000 p-values are generated, with {pi}i∈N0

iid
∼ U(0,1), and each pi among {pi}i∈N1 gen-

erated via pi = 1 −Φ(
zi−µ1

1
), with {zi}i∈N0

iid
∼ N(µ1,1); (2) FDP [BHq;p] and FDP [BHq;p+c]

are calculated. In Figure 1 each of the 104- many (FDP [BHq;p], FDP [BHq;p+c]) pairs are plot-
ted. As can be seen, the vast majority of the pairs satisfy FDP [BHq;p+c] > FDP [BHq;p], and,
further, all pairs lie above the horizontal line situated at the level of the BH control level π0 ⋅ q = .09,
i.e, FDP [BHq;p+c] > π0 ⋅ q.

In Table 1, we present the effectiveness of INCREASE-c over ranges of corruption budget c and
µ1 from small to large. As can be seen, when µ1 = 0, any amount of corruption budget c yields
large post-corruption FDR EzFDP [BHq; z+c]. When µ1 > 0 grows, however, the budget c must
correspondingly grow in order for there to be nontrivial post-corruption FDR. Finally, we note that
for any fixed c, the increase in rejection count k̃+c − k̃ is on the average larger when µ1 is larger. For
experiments on non- i.i.d., PRDS p-values, we refer the interested reader to Section 5.2 or Appendix
Section 7.4.

5.1.2 INCREASE-1 Simulations versus Theoretical Bounds Under Small µ1

In Figures 2 and 3 we illustrate how well the insights discussed in Section 4.2 capture the sensi-
tivity of BH to adversarial perturbations when µ1 is near 0. Specifically, for each q in the grid
{.01, .02, . . . , .99}, we computed the difference FDP [BHq;p+] − FDP [BHq;p] across 103 repli-
cations of the setup as in Section 5.1.1, with the average of this difference being an estimate of ∆1.
The plot of these ∆1 estimates with respect to q is then compared with the plot of our lower bound
L1 as a function of q.

Figures 2 and 3 illustrate that the stricter the control, i.e., the smaller q is, the more effective
INCREASE-c becomes. In fact, the bound indicates high vulnerability for the typical use case
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Figure 1: 104 simulations of FDP by BHq before
and after INCREASE-10 is executed on the p-
values. N = 103, N0 = 900, and q = 0.10.

c ∣ µ1 0 1 2
1 .99 (1.11) .75 (1.39) .14 (1.9)
2 .99 (2.22) .77 (2.75) .18 (3.7)
5 .99 (5.6) .81 (6.67) .26 (9.0)
10 .99 (11.22) .84 (13.76) .36 (17.0)
100 .99 (111.30) .91 (121.48) .72 (136.2)
200 .99 (222.41) .93 (237.78) .81 (256.0)
500 .99 (555.59) .95 (580.75) .89 (601.5)

Table 1: Sample Average (104-batch) estimates
of EzFDP [BHq; z+c] and E [k̃+c − k̃] (in paren-
theses) when all {µi

1}i∈H1 commonly equal some
µ1 ∈ {0,1,2} and N = 103, q = 0.10, π0 = 0.90,
and all σi = 1.

Figure 2: Comparing the FDR increase ∆1 of
INCREASE-1 with the lower bound L1 of Theo-
rem 4.5 as functions of q when µ1 = 0, N = 1000

Figure 3: Comparing the FDR increase ∆1 of
INCREASE-1 with the lower bound L1 of The-
orem 4.5 as functions of q when µ1 = .25,
N = 1000

of q ∈ (0,0.10). On the other hand, as q increases, INCREASE-c’s effect weakens; however, for
increased q, the decision maker is accepting a higher FDR already.

5.2 Real-Data Experiment: Credit Card Fraud Detection

The Credit Card2 dataset D ∶= {(Xi, Yi)}
n
i=1 ⊆ R

30 × {0,1} contains n = 284,807 credit card
transactions in September 2013 by European cardholders over the course of two days - 492 of which
were frauds. Each Xi ∈ R

30 consists of numerical input variables that are the result of a PCA
transformation. The “Class" label Yi takes value 1 in case of fraud and 0 otherwise (/genuine),
yielding the partition [n] = n0 ⊍ n1, with ∣n0∣ = 284,315 and ∣n1∣ = 492.

Fraud Detection Experiment

Given a set of unlabeled transactions {Xi}i∈S , where S ⊆ [n], the fraud detection task is to identify
which members of S belong to n1, i.e., are fraudulent. We experiment with the BH-based, outlier
detection method of [5] on this fraud detection task - specifically, we consider the false detection
proportion of this method in the absence and presence of an adversary. The details of the experimental
setup will now be discussed.

2https://www.kaggle.com/datasets/mlg-ulb/creditcardfraud
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Training

We begin by training an unsupervised decision-tree-based algorithm on a training set. From the set
n0 of genuine transactions, we uniformly at random select a subset ntrain ⊆ n0 of size 141,758 to
form a training set Dtrain ∶= {Xi}i∈ntrain upon which we train an isolation forest [25] ŝ ∶R30 →R+
using the R library isotree3, where, in principle, ŝ(Xi) returns an isolation depth that is smaller if
Yi = 1 (i.e. is an outlier) and larger if Yi = 0 (i.e. is an inlier)

Calibration and (Adversarially-Perturbed) Testing

Then for each of 102 simulations, we uniformly at random selected a subset ñcal ⊆ n0 ∖ ntrain of
size 141,657 to form a calibration set D̃cal ∶= {Xi}i∈ñcal

of strictly genuine transactions. As well,
we uniformly at random selected a subset ñtest,1 ⊆ n1 of 100 fraudulent transactions to append to
the 900 remaining genuine transactions comprising ñtest,0 ∶= n0 ∖ ntrain ∖ ñcal to form a test set
D̃test ∶= {Xi}i∈ñtest , where ñtest ∶= ñtest,0 ∪ ñtest,1. Finally, we transformed Xi ↦ p̃i ∈ (0,1)

for each i ∈ ñtest via p̃i =
1+∣{j∈ñcal∶ŝ(Xj)≤ŝ(Xi)}∣

∣ñcal∣ . The resulting collection of conformal p-values
p̃ ∶= (p̃i)i∈ñtest is PRDS, as proven in [5], and hence the FDR control of Lemma 1.1 holds (see
[7]). In contrast, upon executing INCREASE-c to generate a corresponding adversarially-perturbed
collection p̃+c ∶= (p̃+c,i)i∈ñtest , we obtain a collection for which BH’s FDR control no longer holds.

Experimental Results

We executed BH0.1, on both p̃ and p̃+c, with an execution providing the decision for each i ∈ ñtest

whether to report it as genuine (null) or fraudulent (alternative). We report the average (over the 102

simulations) false detection proportion (FDP) produced by BH0.1, i.e., both E[FDP [BH0.1; p̃]]
and E[FDP [BH0.1; p̃+c]] (for c = 1,5,10). As well, we report the average number of alleged
frauds E [k̃] and E [k̃+c]. As Table 2 indicates, although the method of [5] can ordinarily control the

c E[FDP [BH0.1; p̃]] E[FDP [BH0.1; p̃+c]] E[k̃] E[k̃+c]
1 .09 .10 60.21 60.21
5 .08 .17 48.69 57.12
10 .09 .23 56.39 72.85
20 0.09 0.31 58.12 89.06

Table 2: Credit Card Fraud Detection Experiment

FDR below the explicit 0.10 level, INCREASE-c has the ability to push the FDR above this control
level.

6 Conclusions

This is the first work to consider adversarial corruption of the popular Benjamini Hochberg multiple
testing procedure to break its FDR control. While BH may exhibit robustness when the alternative
distributions are “far" from the null, it exhibits great sensitivity in practical cases when the alternatives
are “closer" to the null. In such cases, with the modification of few p-values (as few as one), the
attacker can increase the expected FDR well past the guarantee stipulated by the BH procedure. This
study suggests some caution may be necessary when using BH, especially in safety-security settings.
Numerical experiments support the analytical results. Finally, BH is but one member of the family of
step-up multiple testing procedures, which generally entail rejection regions decided via a stopping
time, which since our paper shows can be manipulated in the case of BH, it means other step-up
procedures can be similarly prone.

3https://cran.r-project.org/web/packages/isotree/vignettes/An_Introduction_to_Isolation_Forests.html
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7 Appendix / supplemental material

7.1 Adversarial Algorithm: INCREASE-c

Theorem 3.1. If c ≥ 1, then

E [k̃+c − k̃∥B
0
N+1 ≥ c] ≥

c − 1

1 −E [
B0

k̃+2∶N
N−(k̃+1) ∣∣ B

0
N+1 ≥ c]

+ 1 (4)

for any collection of alternative hypothesis distributions {P1
i }i∈H1 .

Proof. Since the statement in the case of c = 1 is trivially true, we henceforth assume that c > 1. Recall
k̃+c =max{i ∈ [c,N]Z ∶ B1∶i = i − c}. Let us define k̃0+c ∶=max{i ∈ [c,N]Z ∶ B

0
1∶i = i − (B

1
1∶k̃ + c)}.

Then we begin by establishing that
k̃+c ≥ k̃

0
+c > k̃ + 1.

To see why this holds, we note that B0
1∶k̃+1 = k̃ −B

1
1∶k̃+1 = k̃ + 1− (B

1
1∶k̃+1 + 1) > k̃ + 1− (B

1
1∶k̃+1 + c),

and this implies k̃ + 1 < k̃0+c. Further, B1∶k̃0
+c
= B0

1∶k̃0
+c
+ B1

1∶k̃0
+c
= k̃0+c − (B

1
1∶k̃ + c) + B1

1∶k̃0
+c
=

k̃0+c − c + (B
1
1∶k̃0
+c
−B1

1∶k̃) ≥ k̃
0
+c − c, which implies k̃+c ≥ k̃0+c.

Next, we justify the relation

E

⎡
⎢
⎢
⎢
⎣

B0
k̃+2∶N

N − (k̃ + 1)
∣∣ k̃,B1

1∶k̃, [B
0
N+1 ≥ c]

⎤
⎥
⎥
⎥
⎦
= E

⎡
⎢
⎢
⎢
⎢
⎣

B0
k̃+2∶k̃0

+c

k̃0+c − (k̃ + 1)
∣∣ k̃,B1

1∶k̃, [B
0
N+1 ≥ c]

⎤
⎥
⎥
⎥
⎥
⎦

.

It suffices to establish it for any fixed, joint realization of k̃,B1
1∶k̃ that occurs consistent with the event

[B0
N+1 ≥ c] with positive probability. With slight abuse of notation, we will continue to use k̃,B1

1∶k̃
for such a fixed realization, and write Ē [⋅] for E [⋅∥k̃,B1

1∶k̃, [B
0
N+1 ≥ c]]. The plan is to apply the

Optional Stopping Theorem on a martingale sequence. To do so, let us form a (backwards-running)
filtration: let FN be the sigma-algebra generated by the event [B0

N+1 ≥ c] as well as the random
variable B0

N+1, and let Fi be the sigma-algebra generated by the event [B0
N+1 ≥ c] as well as the

random variables {B0
j }

N+1
j=i+1. Then for any integers k, ℓ ∈ {N,N − 1, . . .1} such that ℓ > k,

Ē [B0
k̃+2∶[k∨(k̃+2)] ∣∣ Fℓ] = Ē [B

0
k̃+2∶[k∨(k̃+2)] ∣∣B

0
k̃+2∶[ℓ∨(k̃+2)]] =

[k − (k̃ + 1)] ∨ 1

[ℓ − (k̃ + 1)] ∨ 1
B0

k̃+2∶[ℓ∨(k̃+2)],

where B0
k̃+2∶[ℓ∨(k̃+2)] ∈ Fℓ since B0

k̃+2∶[ℓ∨(k̃+2)] = N0 − B
0
N+1 − (k̃ − B

1
1∶k̃) − B

0
(ℓ+1)∨(k̃+3)∶N is a

measurable function of the random variables in Fℓ. In other words, the collection {
B0

k̃+2∶[k∨(k̃+2)]

[k−(k̃+1)]∨1 }

forms a martingale under the filtration. As well, k̃0+c is a stopping time. Hence, by the Optional
Stopping Theorem,

E

⎡
⎢
⎢
⎢
⎣

B0
k̃+2∶N

N − (k̃ + 1)
∣∣ k̃,B1

1∶k̃, [B
0
N+1 ≥ c]

⎤
⎥
⎥
⎥
⎦
= Ē
⎡
⎢
⎢
⎢
⎣

B0
k̃+2∶N

N − (k̃ + 1)
∣∣ [B0

N+1 ≥ c]
⎤
⎥
⎥
⎥
⎦

= Ē

⎡
⎢
⎢
⎢
⎢
⎣

B0
k̃+2∶k̃0

+c

k̃0+c − (k̃ + 1)
∣∣ [B0

N+1 ≥ c]

⎤
⎥
⎥
⎥
⎥
⎦

= E

⎡
⎢
⎢
⎢
⎢
⎣

B0
k̃+2∶k̃0

+c

k̃0+c − (k̃ + 1)
∣∣ k̃,B1

1∶k̃, [B
0
N+1 ≥ c]

⎤
⎥
⎥
⎥
⎥
⎦

.

We note that the martingale property could be established even without the event [B0
N+1 ≥ c] in the

filtration but for the sake of forthcoming computations we have included it.

Next we observe that

B0
k̃+2∶k̃0

+c
+ k̃ −B1

1∶k̃ = B
0
k̃+2∶k̃0

+c
+B0

1∶k̃ = B
0
1∶k̃0
+c
= k̃0+c − (B

1
1∶k̃ + c)

Ô⇒ B0
k̃+2∶k̃0

+c
= k̃0+c − (k̃ + c),
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we derive

B0
k̃+2∶k̃0

+c

k̃0+c − (k̃ + 1)
=
k̃0+c − (k̃ + c)

k̃0+c − (k̃ + 1)
=
k̃0+c − (k̃ + 1) − c + 1

k̃0+c − (k̃ + 1)
= 1 −

c − 1

k̃0+c − (k̃ + 1)

Ô⇒ 0 < E
⎡
⎢
⎢
⎢
⎣

B0
k̃+2∶N

N − (k̃ + 1)
∣∣ k̃,B1

1∶k̃, [B
0
N+1 ≥ c]

⎤
⎥
⎥
⎥
⎦
= 1 − (c − 1)E [

1

k̃0+c − (k̃ + 1)
∣∣ k̃,B1

1∶k̃, [B
0
N+1 ≥ c]] < 1

(*)

Ô⇒
1

E [k̃0+c − (k̃ + 1) ∣∣ k̃,B
1
1∶k̃, [B

0
N+1 ≥ c]]

≤ E [
1

k̃0+c − (k̃ + 1)
∣∣ k̃,B1

1∶k̃, [B
0
N+1 ≥ c]]

=

1 −E [
B0

k̃+2∶N
N−(k̃+1) ∣∣ k̃,B

1
1∶k̃, [B

0
N+1 ≥ c]]

c − 1
.

Hence,
c − 1

1 −E [
B0

k̃+2∶N
N−(k̃+1) ∣∣ k̃,B

1
1∶k̃, [B

0
N+1 ≥ c]]

+1 ≤ E [k̃0+c − k̃ ∣∣ k̃,B
1
1∶k̃, [B

0
N+1 ≥ c]] ≤ E [k̃+c − k̃ ∣∣ k̃,B

1
1∶k̃, [B

0
N+1 ≥ c]] .

It follows that
c − 1

1 −E [
B0

k̃+2∶N
N−(k̃+1) ∣∣ B

0
N+1 ≥ c]

+ 1 =
c − 1

E [1 −E [
B0

k̃+2∶N
N−(k̃+1) ∣∣ k̃,B

1
1∶k̃, [B

0
N+1 ≥ c]] ∣∣ B

0
N+1 ≥ c]

+ 1

≤ E

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

c − 1

1 −E [
B0

k̃+2∶N
N−(k̃+1) ∣∣ k̃,B

1
1∶k̃, [B

0
N+1 ≥ c]]

∣∣ B0
N+1 ≥ c

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

+ 1

≤ E [k̃+c − k̃ ∣∣ B
0
N+1 ≥ c] ,

where we have used (conditional) Jensen’s Inequality - valid because c > 1 and (*) ensures 1 −

E [
B0

k̃+2∶N
N−(k̃+1) ∣∣ k̃,B

1
1∶k̃, [B

0
N+1 ≥ c]] > 0.

Theorem 3.2. Given c ≥ 1, let p+c denote the perturbed form of p that INCREASE-c produces. Then
the adversarially-adjusted FDR induced by INCREASE-c is

EFDP [BHq;p+c] = EFDP [BHq;p] +∆c,

for any collection of alternative distributions {P1
i }i∈H1 , where

∆c ∶= E [
c

k̃+c
;B0

N+1 ≥ c] . (5)

Proof. We derive

EFDP [BHq;p+] = E

⎡
⎢
⎢
⎢
⎢
⎣

B0
1∶k̃+c
+ c

k̃+c
;B0

N+1 ≥ c

⎤
⎥
⎥
⎥
⎥
⎦

+E
⎡
⎢
⎢
⎢
⎣

B0
1∶k̃∨1
k̃ ∨ 1

;B0
N+1 < c

⎤
⎥
⎥
⎥
⎦

= E

⎡
⎢
⎢
⎢
⎢
⎣

B0
1∶k̃+c
k̃+c

;B0
N+1 ≥ c

⎤
⎥
⎥
⎥
⎥
⎦

+E [
c

k̃+c
;B0

N+1 ≥ c] +E
⎡
⎢
⎢
⎢
⎣

B0
1∶k̃∨1
k̃ ∨ 1

;B0
N+1 < c

⎤
⎥
⎥
⎥
⎦

= P (B0
N+1 ≥ c)E [

B0
1∶N
N
∣∣B0

N+1 ≥ c] +E [
c

k̃+c
;B0

N+1 ≥ c] +P (B
0
N+1 < c)E [

B0
1∶N
N
∣∣B0

N+1 < c]

= E [
B0

1∶N
N
] +E [

c

k̃+c
;B0

N+1 ≥ c] ,

as desired.
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7.2 MOVE-1

MOVE-1 is an efficient, optimal algorithm for an (omniscient) adversary with budget c = 1. We begin
with several small insights en route to describing MOVE-1 in full.

Perturbing the Rejection Count

If p′ = p, i.e., the sample statistics are left unperturbed, we obtain a false detection proportion of

FDP [BHq;p] =
B0

1∶k̃
k̃

. If it is possible to improve on this, it can be easily shown that in the case of
c = 1 we must induce an altered rejection count

k̃′ ∶=max{i ∈ [0,N]Z ∶ ∣{p
′
i}i∈N ∩B1∶i}∣ = i}, (7)

henceforth referred to as the (adversarially) adjusted rejection count resulting from the adversary’s
choice of p′. As it turns out, for the special case of c = 1, k̃′ ≠ k̃ is necessary if a larger FDP is to be
obtained, as the following lemma indicates.

Lemma 7.1. If ∣∣p − p′∣∣0 ≤ 1 and FDP [BHq;p
′] ≠ FDP [BHq;p] , then k̃′ ≠ k̃.

Proof. We suppose the contrary for the sake of a contradiction, i.e., k̃′ = k̃. It follows that

∣{j ∈ N ∶ 0 ≤ p′j < k̃
q

N
}∣ = k̃′ = k̃ = ∣{j ∈ N ∶ 0 ≤ pj < k̃

q

N
}∣,

and then by FDP [BHq;p
′; ] ≠ FDP [BHq;p] , it follows that

∣{j ∈H0 ∶ 0 ≤ p
′
j < k̃

q

N
}∣ ≠ ∣{j ∈H0 ∶ 0 ≤ pj < k̃

q

N
}∣,

Since ∣∣p − p′∣∣0 ≤ 1, these two conclusions are at odds, presenting a contradiction.

Considering Lemma 7.1, the adversary’s p′ ∈ [0,1]N decision simplifies to deciding on an adjusted
rejection count k̃′ from among a constrained set of integers consistent with the constraint ∥p′−p∥0 ≤ 1.
An optimal k̃′ can indeed be larger or smaller than, or even equal to k̃. Hence, towards understanding
this new search space, it suffices to characterize the set of feasible k̃′ that are larger than k̃, and
smaller.

Increasing the Rejection Count (c = 1)

Towards understanding how to increase the rejection count, we first highlight the following fact that
follows immediately from (2).

Lemma 7.2. If i ∈ {k̃ + 1, . . . ,N}, then BN1∶i ≤ i − 1. In particular, BN
1∶k̃+1 = i − 1.

Proof. Suppose there exists i ∈ {k̃ + 1, . . . ,N} such that BN1∶i > i − 1. If BN1∶i = i, then i > k̃
presents a contradiction of (2). However, proceeding with BN1∶i ≥ i + 1, we see that there necessarily
exists j ∈ {i + 1, . . . ,N} for which BN1∶j = j, for if this were not the case, then BN1∶j ≥ j + 1 for
all j ∈ {i + 1, . . . ,N}, meaning BN1∶N ≥ N + 1, yet another contradiction since there are only N
p-values.

Consequently, for k̃′ > k̃, we require a perturbed collection p′ for which bin counts increase. This
necessitates a decrease of a p-value - see Lemma 7.5 for details. Hence, we define

L ∶= {i ∈ {k̃ + 1, . . . ,N} ∶ BN1∶i = i − 1} (8)

and note that these are precisely the positions i for which the addition of one (and only one) p-value
into B1∶i through the decrease of a p-value brings i into candidacy for the new rejection count - see
equation (2).

Proposition 7.3. L = {k̃′ ∶ k̃′ > k̃, ∥p − p′∣0 ≤ 1}
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Proof. To prove the first statement, we recall that by Lemma 7.2, if i > k̃, then BN1∶i ≤ i − 1. So, if
i ≥ k̃ + 1 with BN1∶i < i − 1, then no decrease of a single p-value could increase BN1∶i to i (Lemma 7.5),
precluding the possibility of k̃′ = i. In other words, no i ∉ L is achievable for the new rejection count
k̃′.

On the other hand, say we enumerate L with

iL > iL−1 > . . . > i1 = k̃ + 1.

For the case of iL, k̃′ = iL is achieved if and only if a p-value is decreased from any bin Bj with
j > iℓ to a bin Bj−s where iL ≥ j −s ≥ 1. For the case of iℓ, k̃′ = iℓ is achieved if and only if a p-value
is decreased from any bin Bj with iℓ+1 ≥ j > iℓ to a bin Bj−s where iℓ ≥ j − s ≥ 1. Finally, all these
movements of p-value just described are always possible for any given p = {pi}i∈N .

Decreasing the Rejection Count (c = 1)

Analogously, it follows that the increase of a p-value is necessary for the decrease of the rejection
count - see Lemma 7.6, and we define

R ∶= {i ∈ {i∗ + 1, . . . , k̃ − 1} ∶ BN1∶i = i} ∪ {i
∗
}, (9)

where i∗ ∶= 0 ∨max{i ∈ {1, . . . , k̃ − 1} ∶ BN1∶i = i + 1}. We note thatR is precisely the set of all the

achievable new (decreased) rejection counts k̃′ < k̃ we could induce with the perturbation of a single
p-value.

Proposition 7.4. R = {k̃′ ∶ k̃ > k̃′, ∥p − p′∣0 ≤ 1}

Proof. We begin by proving the first statement that k̃′ < k̃ implies k̃′ ∈R. To do so, we proceed in
two steps. First we show that k̃ ≥ i∗, so that i∗ ≤ k̃′ ≤ k̃ − 1. Then we show that if k̃′ = i for some
i ∈ {i∗ + 1, . . . , k̃ − 1} in which BN1∶i ≠ i, we arrive at a contradiction.

To see that k̃′ ≥ i∗, if i∗ > k̃′, then BN1∶i∗ = i∗ + 1 becomes BN1∶i∗ ≤ i∗ − 1 by Lemma 7.2; in
other words, the change in magnitude of BN1∶i∗ is at least 2, which contradicts Lemma 7.6. Next, if
i ∈ {i∗ + 1, . . . , k̃ − 1}, then BN1∶i ≤ i by the definition of i∗. This means if BN1∶i ≠ i, then BN1∶i < i, so
that Lemma 7.6 indicates k̃′ could not be i.

As for the second statement, letR be enumerated

iR > iR−1 > . . . > i1 = i
∗.

For the case of iR, k̃′ = iR is achieved if and only if a p-value is moved from bin Bj with k̃ ≥ j > iR
to a bin Bj+s > k̃. For R − 1 ≥ r ≥ 2, by Lemma 7.6 it holds that k̃′ = ir is achieved if and only if a
p-value is moved from a bin Bj with ir+1 ≥ j > ir to a bin Bj+s with j + s > k̃. Finally, for the case
of i1, k̃′ = i1 = i∗ is achieved if and only if a p-value is moved from Bj with i∗ ≥ j to a Bj+s with
j + s > k̃. Finally, all these movements of p-values just described are always possible for any given
p = {pi}i∈N .

It follows that k̃′ ≠ k̃ if and only if k̃′ ∈ L ⊍ R, so an efficient, optimal search procedure be-
comes straightforward. Informally, we iterate over the bins in reverse order, beginning with N + 1
and terminating with i∗. At iteration (/bin number) i, if i ∈ L ⊍R, then the trivial subproblem
maxp′∶∣∣p−p′∣∣0≤1,k̃′=i FDP [BHq;p

′] is solved; otherwise, nothing is done. Upon termination, the
best FDP encountered is the answer. This is summarized in Theorem 7.7

Lemma 7.5 (Decreasing a p-value). Let p′ be such that ∣∣p − p′∣∣0 ≤ 1. If p′ is the decrease of a single
p-value in p from Bj to Bj−s, where j ∈ {2, . . . ,N + 1} and 1 ≤ s ≤ j − 1, then

• i ∈ {1, . . . , j − s − 1} Ô⇒ BN1∶i remains constant

• i ∈ {j − s, . . . , j − 1} Ô⇒ BN1∶i increases by 1
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• i ∈ {j, . . . ,N + 1} Ô⇒ BN1∶i remains constant.

Lemma 7.6 (Increasing a p-value). Let p′ be such that ∣∣p − p′∣∣0 ≤ 1. If p′ is the increase of a single
p-value in p from Bj to Bj+s, where j ∈ {1, . . . ,N} and 1 ≤ s ≤ N + 1 − j, then

• i ∈ {1, . . . , j − 1} Ô⇒ BN1∶i remains constant

• i ∈ {j, . . . , j + s − 1} Ô⇒ BN1∶i decreases by 1

• i ∈ {j + s, . . . ,N + 1} Ô⇒ BN1∶i remains constant.

Theorem 7.7 (MOVE-1). Let q ∈ (0,1), p-values {pi}i∈N and sets H0, H1 be given. For each
i ∈ L ∪R, let

FDPi ∶= max
p′∶∣∣p−p′∣∣0≤1,k̃′=i

FDP [BHq;p
′
].

Then

max
p′∶∣∣p−p′∣∣0≤1

FDP [BHq;p
′
] = ( max

i∈L∪R∪{k̃}
FDPi)

This result explains that with one pass of the p-values from the largest to the smallest in the collection,
we can ascertain the optimal perturbation p′. As the execution based on this result is straightforward,
we omit the pseudocode for the sake of brevity.

In Table 3, we compare the average performance of INCREASE-1 against that of the optimal
MOVE-1 over 104 simulations. The experiments followed the setup described in Remark 4.6, in
which N = 103 p-values are derived from independently generated z-scores, with N0(= 900) null
z-scores i.i.d. N(0,1) and N1(= 100) alternative z-scores i.i.d. N(µ1,1), for µ1 = 1,2. As Table 3
indicates, INCREASE-1 can provide nearly identical performance in adjustment to FDR; however,
the perturbation distance ∥z − z′∥ is on the average much greater than in MOVE-1.

MOVE-1(INCREASE-1)
EzFDP [BHq; z

′] Average ∣∣z − z′∣∣1
µ1 = 2 0.140 (0.139) 0.139 (1.563)
µ1 = 1 0.775 (0.751) 0.492 (2.297)
µ1 = 0 .992 (0.990) 0.551 (2.41)

Table 3: Sample Average (104-batch) estimates of EzFDP [BHq; z
′] under MOVE-1 and

INCREASE-1 (in parentheses) when µ1 = 0,1,2 and N = 103, q = 0.10, π0 = 0.90, and all σi = 1.
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7.3 Theoretical Analysis: Performance Guarantees and Insights into Adversarial Robustness

Theorem 4.1. If c ≥ 1, then

∆c ≤ P (B
1
1∶c = N1)E [

c

c +N1 +B0
1∶N1+c

∥B0
N+1 ≥ c] + 1 −P (B

1
1∶c = N1)

and

E [k̃+c∥B
0
N+1 ≥ c] ≥

(N1 + c) ⋅P (B
1
1∶c = N1)

1 −E [
B0

1∶N
N
∥B0

1∶N ≤ N0 − c]
. (6)

Proof. When B1
1∶c = N1, it easily follows that k̃+c ≥ c +N1 +B

0
1∶N1+c. This combined with Theorem

3.2 easily yields the first inequality.

As for the second inequality, let

k̃0+c ∶=max{i ∈ [0,N]Z ∶ B
0
1∶i = i − (N1 + c)} ≥ N1 + c > 0.

Then

E [
B0

1∶N
N

∥ B0
N+1 ≥ c] = E

⎡
⎢
⎢
⎢
⎢
⎣

B0
1∶k̃0
+c

k̃0+c
∥ B0

N+1 ≥ c

⎤
⎥
⎥
⎥
⎥
⎦

= E [
k̃0+c − (N1 + c)

k̃0+c
∥ B0

N+1 ≥ c] = 1 − (N1 + c)E [
1

k̃0+c
∥ B0

N+1 ≥ c]

implies that

1

E [k̃0+c ∥ B0
N+1 ≥ c]

≤ E [
1

k̃0+c
∥ B0

N+1 ≥ c] =
1

N1 + c
⋅ (1 −E [

B0
1∶N
N

∥ B0
N+1 ≥ c]) ,

so that

E [k̃+c ∥ B0
N+1 ≥ c,B

1
1∶c = N1] = E [k̃

0
+c ∥ B0

N+1 ≥ c] ≥
N1 + c

1 −E [
B0

1∶N
N
∥ B0

N+1 ≥ c]
,

since whenever B1
1∶c = N1, it follows that k̃+c = k̃0+c.

Consequently, we derive

N1 + c

1 −E [
B0

1∶N
N
∥ B0

N+1 ≥ c]
≤ E [k̃+c ∥ B0

N+1 ≥ c,B
1
1∶c = N1]

=
E [k̃+c;B

1
1∶c = N1,B

0
N+1 ≥ c]

P (B1
1∶c = N1)P (B0

N+1 ≥ c)

=
E [k̃+c;B

0
N+1 ≥ c] −E [k̃+c;B

1
1∶c < N1,B

0
N+1 ≥ c]

P (B1
1∶c = N1)P (B0

N+1 ≥ c)

= E [k̃+c ∣∣ B
0
N+1 ≥ c]

1

P (B1
1∶c = N1)

−E [k̃+c ∣∣ B
1
1∶c < N1,B

0
N+1 ≥ c]

P (B1
1∶c < N1)

P (B1
1∶c = N1)

,

yielding

P (B1
1∶c = N1)⋅

N1 + c

1 −E [
B0

1∶N
N
∥ B0

N+1 ≥ c]
+E [k̃+c ∣∣ B

1
1∶c < N1,B

0
N+1 ≥ c]⋅P (B

1
1∶c < N1) ≤ E [k̃+c ∣∣ B

0
N+1 ≥ c] .

Corollary 4.2. Let n ≥ 1, p ∈ [0,1], and x a non-negative integer such that 0 ≤ x ≤ n. If

B̃ = (B̃1, . . . , B̃n) ∼Multinomial(x, (p, . . . , p)), then PB̃ (∩
n
r=1 [∑

r
i=1 B̃i < r]) = 1 −

x
n
.

Proof. We will appeal to the following result of [31]:
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Lemma 7.8 (Theorem 1 of [31]). Let there be n ≥ 1 non-negative integers z1, . . . , zn summing to x.
If π̃ denotes a permutation drawn uniformly at random, then

Pπ̃ (∩
n
r=1 [

r

∑
i=1

zπ̃(i) < r]) = [1 −
x

n
]
+
.

Let π̃ be a random permutation on {1, . . . , n} that is drawn uniformly at random, independently
of B̃. Since B̃ = (B̃1, . . . , B̃n) ∼ Multinomial(x, (p, . . . , p)), then B̃π̃ ∶= (B̃π̃(1), . . . , B̃π̃(n)) is

equivalent in distribution to B̃, or B̃π̃
D
= B̃. Therefore,

PB̃ (∩
n
r=1 [

r

∑
i=1

B̃i < r]) = EB̃ [Pπ̃ (∩
n
r=1 [

r

∑
i=1

B̃π̃(i) < r])]

= EB̃ [1 −
x

n
] = 1 −

x

n
.

Corollary 4.3. If P1
i = U(0,1) for all i ∈H1,

then P (k̃ = ℓ) = ( 1−q
1−q+ (N−ℓ)qN

) ⋅P (BN1∶ℓ = ℓ) for ℓ = 0, . . . ,N, where 00 = 1,

and P (BN1∶ℓ = ℓ) = (
N
ℓ
) (

qℓ
N
)
ℓ
(1 − qℓ

N
)N−ℓ.

If B0
N+1 ≥ c, then P (k̃+c = c ∣∣ B0

N+1) = (1 −
cq
N
)N1 ⋅ (1 − c

N
)N0−B0

N+1 (1 −
N0−B0

N+1
N−c −

N1q
N−cq).

Proof. The event [k̃ = ℓ] is equivalent to {∩Nj=ℓ+1 [B
N
ℓ+1∶j < j − ℓ]} ∩ [B

N
1∶ℓ = ℓ], an intersec-

tion of two events. Regarding the event [BN1∶ℓ = ℓ], because µ1 = 0, it is clear that P(BN1∶ℓ =

ℓ) = (N
ℓ
) (

qℓ
N
)
ℓ
(1 − qℓ

N
)N−ℓ. To complete the characterization of P (k̃ = ℓ) it suffices to find

P (∩Nj=ℓ+1 [B
N
ℓ+1∶j < j − ℓ] ∣∣ [B

N
1∶ℓ = ℓ]). Towards doing so, we note that conditioned on [BN1∶ℓ = ℓ],

we have

BNℓ+1∶N ∼ Binom
⎛

⎝
N − ℓ,

(N−ℓ)q
N

1 − q + (N−ℓ)q
N

⎞

⎠
,

and, upon further conditioning on BNℓ+1∶N ,

(BNℓ+1, . . . ,B
N
N ) ∼Multinom(BNℓ+1∶N ,(

1

N − ℓ
, . . . ,

1

N − ℓ
)) .

Hence, we derive

P (∩
N
j=ℓ+1 [B

N
ℓ+1∶j < j − ℓ] ∣∣ [B

N
1∶ℓ = ℓ],B

N
ℓ+1∶N) = 1 −

BNℓ+1∶N
N − ℓ

,

by Corollary 4.2. To conclude, we integrate out BNℓ+1∶N from this derivation; more precisely,

P (∩
N
j=ℓ+1 [B

N
ℓ+1∶j < j − ℓ] ∣∣ [B

N
1∶ℓ = ℓ])

= EBN
ℓ+1∶N
[P (∩

N
j=ℓ+1 [B

N
ℓ+1∶j < j − ℓ] ∣∣ [B

N
1∶ℓ = ℓ],B

N
ℓ+1∶N) ∣∣ [B

N
1∶ℓ = ℓ]]

= 1 −
E [BNℓ+1∶N ∣∣ [B

N
1∶ℓ = ℓ]]

N − ℓ
= 1 −

(N−ℓ)q
N

1 − q + (N−ℓ)q
N

=
1 − q

1 − q + (N−ℓ)q
N

.

As for the second statement, in similar fashion to above, Corollary 4.2 yields

P (∩
N
j=c+1[B

N
c+1∶j < j − c] ∣∣ [B

N
1∶c = 0],B

0
N+1,B

1
c+1∶N) = 1 −

N0 −B
0
N+1 +B

1
c+1∶N

N − c
,

implying

P (∩
N
j=c+1[B

N
c+1∶j < j − c] ∣∣ [B

N
1∶c = 0],B

0
N+1) = 1 −

N0 −B
0
N+1 +E[B

1
c+1∶N ∣∣ B

1
1∶c = 0]

N − c
.
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Hence,

P (k̃+c = c ∣∣ B
0
N+1) = P (B

N
1∶c = 0 ∣∣ B

0
N+1)P (∩

N
j=c+1[B

N
c+1∶j < j − 1] ∣∣ B

N
1∶c = 0,B

0
N+1)

= (1 −
cq

N
)
N1 ⋅ (1 −

c

N
)
N0−B0

N+1 (1 −
N0 −B

0
N+1

N − c
−

N1q

N − cq
) .

Theorem 4.5. Suppose Assumption 4.4. Then

∆c ≥ Lc(q,N,N0,P
1
) ∶= (1 −

cq

N
− δ1∶c)

N1

[(1 −
c

N
)
N0

(1 − πc − Vc)Mc +Zc]

where πc(q,N,N0,P
1) ∶=

N0+E[B1
c+1∶N ∣∣B

1
1∶c=0]

N−c , E [B1
c+1∶N ∣∣B

1
1∶c = 0] = N1

(N−c)q+Nδc+1∶N
N−cq−Nδ1∶c

,

Vc(q,N,N0,P
1) ∶=

√
ln2
2
E [B1

c+1∶N ∣∣B
1
1∶c = 0]DKL(P

1, c),

Mc(q,N,N0) ∶=
N−cq
N−c −E [(1 −

c
N
)
−B0

N+1 ;B0
N+1 ≤ c − 1],

Zc(q,N,N0) ∶= P (B
0
N+1 ≥ c) (1 −

c
N
)
N0−E[B0

N+1∣∣B
0
N+1≥c] E[B0

N+1∣∣B
0
N+1≥c]

N−c
DKL(P

1, c) ∶= ∑j
1

N−c log (
q+δ−∑c

j=1(q/N+δj)
(N−c)(q/N+δj) )

Proof. Observe that ∆c = E [
c

k̃+c
;B0

N+1 ≥ c] ≥ P (k̃+c = c,B
0
N+1 ≥ c) .

By Theorem 4.3,

P (k̃+c = c,B
0
N+1 ≥ c) = E [P (k̃+c = c ∣∣ B

0
N+1) ;B

0
N+1 ≥ c]

= E

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

P (B1∶c = 0 ∣∣ B
0
N+1) ⋅P (∩

N
j=c+1[B

N
c+1∶j < j − c] ∣∣ [B

N
1∶c = 0],B

0
N+1)
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where we now proceed to lower bound (#). The following discussion outlines how we proceed in the
case of c = 1, but this is without loss of generality.

Let B0
N+1 and B1

2∶N be given, along with the event [BN1 = 0]. Then there are N0 − B
0
N+1 many

null p-values and B1
2∶N many alternative p-values each of whose assignment to one of bin number

2, . . . ,N remains stochastic. Let there be an arbitrary enumeration of these null p-values, upon which

we let the collection of their bin-assignment random variables be denoted (α0
i )

N0−B0
N+1

i=1 . Let there
also be an arbitrary enumeration of these alternative p-values, upon which we let the collection of their
bin-assignment random variables be denoted (α1

i )
B1

2∶N
i=1 . More precisely, α0

i ∼ Unif({2, . . . ,N}),
and α1

i = j with probability q/N+δj
q+δ−(q/N+δ1) , for j = 2, . . . ,N . Finally, we will write Pbins

1 for the joint

distribution derived from the independent coupling of all the random variables (α0
i )

N0−B0
N+1

i=1 and

(α1
i )

B1
2∶N

i=1 . For contrast, let α̃1
i ∼ Unif({2, . . . ,N}), which expresses the random bin assignment

of any alternative p-value to one of B2, . . . ,BN given that BN1 = 0, were P1 = U(0,1). Then

P
bins
0 , the joint derived from the independent coupling of (α0

i )
N0−B0

N+1
i=1 and (α̃1

i )
B1

2∶N
i=1 , offers a useful

counterpoint to Pbins
1 . By the chain rule for KL-divergence, we find

DKL (P
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i=1
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0
i ∣∣α

0
i ) +

B1
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1
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1
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j

1

N − 1
log
⎛
⎜
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1
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⎠
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and by Pinsker’s Inequality, for any event E,

P
bins
1 (E) ≥ Pbins

0 (E) −

√
ln2

2
DKL (P

bins
0 ∣∣Pbins

1 ).

Let a0i (respectively a1i ) denote the realization of the i-th null (respectively alternative) p-value’s bin

assignment. Then if we set E to be the collection of realizations (a0i )
N0−B0

N+1
i=1 and (a1i )

B1
2∶N

i=1 that are
consistent with ∩Nj=2[B2∶j < j − 1], we find

P (∩
N
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N
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0
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1,1). (Corollary 4.2)

Hence, for the case of general c,
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0
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1
c+1∶N) ∣∣ [B

N
1∶c = 0],B

0
N+1]

≥ E

⎡
⎢
⎢
⎢
⎢
⎣

(1 −
N0 −B

0
N+1 +B

1
c+1∶N

N − c
) −

√
ln2

2
B1

c+1∶NDKL(P
1, c) ∣∣ [BN1∶c = 0],B

0
N+1

⎤
⎥
⎥
⎥
⎥
⎦

(Pinsker’s Inequality)
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To conclude,
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Figure 4: 103 simulations of FDP by BHq

with and without application of INCREASE-5
on marginal conformal p-values [5] derived from
an SVM one-class classifier on a test set with out-
liers drawn with a = 1.5.

c ∣ a 1 1.5 2 2.5 3
1 1 .559 .096 .096 .098
5 1 .368 .142 .135 .133
10 .997 .435 .190 .174 .170
50 .992 .657 .429 .389 .383

Table 4: Sample Average (103-batch) estimates
of EFDP [BHq;p+c] on marginal conformal p-
values for outlier detection [5], in terms of signal
strength a and budget c.

7.4 Simulations and Data Experiments

7.4.1 INCREASE-c Simulations on PRDS p-values

In Table 4 we illustrate the effectiveness of INCREASE-c in disrupting the nonparametric outlier
detection method of [5] that is based on the application of BH on conformal p-values, and in doing
so, demonstrate effectiveness of INCREASE-c on PRDS p-values. We follow the simulation setting
of Section 5.2 in [5], using their publicly available source code to generate the conformal p-values. In
short, a data set is generated inR50, along with 103 training observations used to fit a one-class SVM
classifier, as well as 103 observations forming a calibration set to be used with a test set to derive
(marginal) conformal p-values. In each of 103 independent replications, INCREASE-c was applied to
a new test set consisting of 103 conformal p-values, designed to discern inliers (signals drawn from
a mixture of multivariate gaussians with identity covariance matrices) from outliers (signals drawn
from a mixture of multivariate gaussians with identity covariance matrices scaled by a strength

√
a).

This was performed for a ∈ {1,1.5,2,2.5,3}; a signal strength a = 1 corresponds to identical null
and alternative distributions, while larger values of a make it easier to detect outliers. We set the
fraction of outliers in each test set to π1 = .1, so that a fraction π0 = .90 of the observations are inliers
in each data set.
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Answer: [Yes]
Justification: Training of an isolation forest was done in Section 5.2. Training of a one-class
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