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Abstract

Graph learning is naturally well suited for use in symbolic, object-centric planning
due to its ability to exploit relational structures exhibited in planning domains and
to take as input planning instances with arbitrary numbers of objects. Numeric
planning is an extension of symbolic planning in which states may now also exhibit
numeric variables. In this work, we propose data-efficient and interpretable ma-
chine learning models for learning to solve numeric planning tasks. This involves
constructing a new graph kernel for graphs with both continuous and categorical at-
tributes, as well as new optimisation methods for learning heuristic functions for nu-
meric planning. Experiments show that our graph kernels are vastly more efficient
and generalise better than graph neural networks for numeric planning, and also
yield competitive coverage performance compared to domain-independent numeric
planners. Code is available at https://github.com/DillonZChen/goose

1 Introduction
Planning requires long range reasoning over combinatorially large state spaces. Numeric planning
is an extension of classical planning in which states have numeric variables and the underlying
transition system is built from inequality conditions and assignments over arithmetic expressions of
such variables. It was formalised in PDDL 2.1 [FL03] and is undecidable in the general case [Hel02]
which makes it more difficult than classical planning which is PSPACE-complete [Byl94]. Numeric
planning is a well-established problem in the symbolic AI community and exhibits significant research
effort [CCFL13, IM17, SHTR20, KSP+22, KSB23, SKB23], but this expressivity result implies that
building a general, scalable numeric planner is a challenging problem.

Learning for Planning (L4P) is a research direction which focuses on learning to solve problems from
a specified domain in an automated supervised manner [TTTX20, STT20, FGT+22, KS21, SBG22,
SBG23, MLTK23, CTT24a, SDS+24, RTG+24, APK24]. Planning tasks in L4P are assumed to
exhibit a factored, symbolic representation, which allow us to generate training data in a matter of
seconds from easy to solve tasks with a domain-independent planner. We can then learn domain
knowledge in a supervised manner that scales planners to significantly larger planning tasks.

This is in contrast to Reinforcement Learning where agents do not require access to well-defined mod-
els but spend significant amounts of time exploring and learning from rewards [SB98]. Regardless,
several works have showed that encoding or learning symbolic models for sequential decision mak-
ing reasoning and embodied AI tasks [LCZ+21, ZYP+22, LSS+22, SCK+23, KVS+23, LPM23]
provided better performance and transparency over end-to-end reinforcement learning methods.
Furthermore, it was shown recently that classical ML methods are much better suited for L4P than
deep learning methods for symbolic planning [CTT24b] as they (1) can generalise well from small
training data, (2) are orders of magnitude more efficient to train and evaluate than deep learning
methods, which is important in time sensitive tasks such as planning, and (3) have interpretable
features to understand what is being learned.

In this paper we study whether this fact carries over to Learning for Numeric Planning (L4NP) [WT24]
which now requires reasoning over logic and arithmetic. It is reasonable to think that because neural
networks are function approximators, they may offer better reasoning capabilities over numbers than
38th Conference on Neural Information Processing Systems (NeurIPS 2024).
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Figure 1: The GOOSE framework for learning heuristic functions for numeric planning. Cyan colours
indicate components that are influenced by the training phase. (a) A numeric planning state and goal
condition is encoded into a graph G via the νILG representation defined in Defn. 3.1. (b) Graphs are
either embedded into vectors x in Euclidean space with the CCWL kernel from Sec. 3 or transformed
into a graph G′ with a real-valued matrix representing node features as inputs into GNNs described
in Sec. 4. (c) Features x are fed into a linear model, whereas transformed graphs G′ are fed into
GNNs. (d) Linear models are either trained by the ranking formulation in Eq. 1 or by Support Vector
Regression (SVR) with a linear kernel. GNN models are either trained by the ranking formulation in
Eq. 2 or by backpropagation minimising the mean squared error (MSE) loss.

just symbols alone. In this paper, we describe the GOOSE1 framework with classical ML and deep
learning configurations for learning heuristic or value functions for use with search in L4NP. Fig. 1
illustrates the GOOSE framework and we outline our contributions as follows.

• We introduce a new graph representation of numeric planning tasks for use with classical and
deep graph learning methods, namely graph kernels and graph neural networks, respectively.

• We extend the WL kernel [SSVL+11] to handle graphs with both continuous and categorical
attributes in a meaningful way which we call the CCWL kernel.

• We introduce new ranking formulations [GKL16, CEKP23, HTT+24] for learning heuristic
or value functions with linear programs.

The structure of the remainder of the paper is as follows. In Sec. 2, we provide the necessary
formalism and background for numeric planning, as well as relevant notation. In Sec. 3, we introduce
a new graph encoding νILG and CCWL kernel for generating features for numeric planning tasks. In
Sec. 4, we introduce a deep learning architecture for L4NP using graph neural networks. In Sec. 5, we
describe optimisation methods for L4NP, involving a new ranking formulation for learning heuristic
functions. In Sec. 6, we describe our experimental setup and results. Related work is discussed in
Sec. B in the appendix. We conclude the paper with final comments in Sec. 8.

2 Background
Numeric Planning Task. A numeric planning task can be viewed as a compact representation
of a deterministic, goal-conditioned Markov Decision Process with the use of predicate logic and
relational numeric variables. A majority of the remainder of this section formalises the necessary
components of a numeric planning task we use in the paper.

A numeric planning task [FL03] is given by a tuple Π = ⟨Xp, Xn, A, s0, G⟩ where Xp is a finite
set of propositional variables with domain {⊤,⊥} and Xn is a finite set of numeric variables with
domain R. Let X = Xp ∪Xn denote the set of state variables, where a state is a total assignment of
values the propositional and numeric variables. The variables implicitly induce a possibly infinite set
of states S, where s0 is the initial state.

A propositional condition is a positive (resp. negative) literal x = ⊤ (resp. ⊥) for some propositional
variable x ∈ Xp, and a numeric condition has the form ξ⊵ 0 where ξ is an arithmetic expression over
numeric variables and ⊵ ∈ {≥, >,=}. We write [x]s (resp. [ξ]s) for the value of a state variable x
(resp. expression ξ) in state s, and V (ξ) for the set of numeric state variables in ξ. A state s satisfies
a set of conditions (i.e. a set of propositional and numeric conditions) if each condition in the set
evaluates to true given the values of the state variables in s. The goal G is a set of conditions and we
write Gp (resp. Gn) for the subset of propositional (resp. numeric) goal conditions.
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The set A contains a finite number of actions, each consisting of preconditions and effects. Action
preconditions pre(a) are sets of conditions, and action effects assign Boolean values to propositional
variables and assign the value of an arithmetic expression to numeric variables. An action a is
applicable in a state s if s satisfies pre(a), in which case its successor a(s) is the state where the
effects eff(a) are applied to the state variables in s. If a is not applicable in s, we set a(s) = s⊥ ̸∈ S.
Each action a has a cost c(a) given by an arithmetic expression.

A plan for a numeric planning task is a sequence of actions π = a1, . . . , an such that si = ai(si−1) ̸=
s⊥ for all 1 ≤ i ≤ n and sn satisfies G; we call s0, s1, . . . , sn the plan trace of the plan. The plan
length |π| and the plan cost are the number of actions in the plan, and the sum of their cost, respectively.
A plan is optimal if it has the minimum cost among all plans. A numeric planning task is solvable if
there exists a plan for it, and is unsolvable otherwise. A state s is a deadend if the task with the initial
state replaced with s is unsolvable. Satisficing planning refers to the problem of finding a plan if it
exists, or proving that the problem is unsolvable. Optimal planning refers to the problem of finding
an optimal plan if it exists, or proving that the problem is unsolvable.

Lifted representation. Numeric planning tasks can be compactly encoded in a lifted representation
⟨O,Σp,Σf ,Σa,A, s0, G⟩ whereby state variables are derived from a set of predicates, functions, and
objects. Formally Σp and Σf are sets of predicate and function symbols, respectively. Each symbol
σ ∈ Σp ∪ Σf , has an arity nσ ∈ N ∪ {0} which depends on σ. Predicates and functions take the
form p(x1, . . . , xnp

) and f(x1, . . . , xnf
), respectively, where the xis are their arguments. Given the

set O of objects, the propositional and numeric variables are obtained by substituting objects for
the arguments of the predicates and functions, resulting in the grounded form p(o1, . . . , onp

) and
f(o1, . . . , onf

), respectively, where the ois are objects. Similarly, actions can be represented in a
lifted form via a set Σa of action symbols and a set A of action schemata mapping action symbols to
their lifted precondition and effect definitions in terms of predicates and functions. Grounding the
set of action schemata results in the set of actions A of the planning task. Details are not needed to
understand this paper. A domain is a set of numeric planning tasks sharing the same set of Σp, Σf ,
Σa, and A, and may have constant objects, objects which are shared across all tasks in the domain.

Example: Capacity Constrained Blocksworld. To help digest some of the definitions of numeric
planning, we provide an example with a planning domain we call Capacity Constrained Blocksworld
(ccBlocksworld). It is an extension of the original Blocksworld domain in which state consists of
towers of blocks and the objective is to stack and unstack blocks to achieve a goal configuration. It
is also a special case of the Hydraulic Blocksworld domain for planning with state constraints, in
which blocks are placed on top of pistons which rise or fall depending on the configurations of other
pistons [HIR+18].

In ccBlocksworld, we have a maximum number of tower locations, and each tower has a base limited
by the number of blocks it can hold. To model this domain in the lifted representation, we retain the
predicate on(x, y) from the original Blocksworld, which indicates block x is on another block or
base y. Next, we also introduce the function capacity(z) which denotes the remaining number of
blocks that are allowed to be placed on base z. The numeric variables instantiated from capacity
may increase or decrease depending on whether blocks are unstacked from the tower or stacked on
top of it. Action schemata preconditions constrain whether a block can be placed on a tower with
base that has reached its capacity limit or not. The leftmost figure in Fig. 2 illustrates an example
of a ccBlocksworld problem with an initial state and goal condition. We refer to the Sec. A of the
appendix for the complete state representation of the problem as well as its PDDL encoding.

Heuristics and Greedy Best First Search. State-of-the-art methods for both satisficing and optimal
numeric planning [SHTR20, KSP+22, CT24] employ some variant of heuristic search. A heuristic
function maps a state s to R ∪ {∞} representing an estimate of the cost to reach the goal from the
current state, where a value of∞ estimates that s is a deadend. The optimal heuristic h∗ maps a state
to the cost of an optimal plan if it exists, and∞ otherwise. The Greedy Best First Search (GBFS)
algorithm consists of a priority queue initialised with the initial state as the only element, and a main
loop which performs the following steps while the queue is non-empty: (1) pop a state s with the
lowest heuristic value and some tie-breaking criterion from the queue, (2) generate the successors of
s via all applicable actions, and (3) check if a successor s′ is a goal, in which case terminate with
the plan traced back from s′, and otherwise add s′ to the queue if it has not been seen before. The
algorithm determines a problem is unsolvable if the main loop completes, in which case the problem
has finitely many states of which all have been seen.
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Graph and other notations. Let G = ⟨V,E,Fcat,Fcon,L⟩ denote a graph with nodes V, undirected
edges E ⊆

(
V
2

)
, categorical node features Fcat : V→ ΣV where ΣV is a finite set, continuous node

features Fcon : V→ Rd with d ∈ N, and edge labels (categorical edge features) L : E→ ΣE where
ΣE is a finite set. The neighbourhood of a node u ∈ V in a graph with respect to an edge label ι
is defined by Nι(u) = {v | ∃e ∈ E, s.t. e = ⟨u, v⟩ = ⟨v, u⟩ ∧ L(e) = ι} . We use ∥ to denote the
concatenation operator for vectors, and [[N ]] to denote {1, . . . , N}.

3 Relational features for numeric planning
In this section, we describe an automatic method for generating embeddings for numeric planning
tasks that may be used for any downstream inference model. The method is an extension of the feature
generation method for classical planning [CTT24b] and consists of two main steps: (1) generating a
graph representation of a planning task, and (2) running a variant of the WL-algorithm for generating
features for the graph [SSVL+11]. Extending the first step of the method is simple as it is easy to
extend the graph encoding to capture numeric information of the task. This is done in Sec. 3.1 where
we introduce the Numeric Instance Learning Graph (νILG) representation for numeric planning tasks.
The second step is more difficult as we require constructing a WL-algorithm variant that can handle
both categorical and continuous nodes features in a meaningful way for numeric planning. This is
where we introduce the CCWL algorithm in Sec. 3.2 that handle such node features. Thus, we can
generate features for numeric planning tasks by first converting them into the νILG representation,
and then running the CCWL algorithm on them.

3.1 Graph encoding of numeric planning tasks

We begin by describing our graph encoding of a planning task, namely the Numeric Instance Learning
Graph (νILG). Similarly to the classical case, the graph representation does not encode the transition
model of the planning task nor requires grounding all possible variables in the planning task. Thus,
our encoding only requires a first-order representation of states, and therefore applies to problems
whose transition model is unknown such as in model-free reinforcement learning.

We begin with a descriptive definition of the graph with an example Fig. 2 illustrating a subgraph
of the νILG representation of the example ccBlocksworld problem. In the figure, the nodes in the
graph represent the objects (light blue), propositional variables true in the state (green), numeric
variables (red), propositional goals (yellow) and numeric goals (not present in the example) of the
problem. Blue (resp. orange) edges connect object nodes to goal and variable nodes where the object
is instantiated in the first (resp. second) argument of the corresponding node variable or condition.

We provide the formal definition below. Let Xp(s) denote the set of propositional variables that are
true in s, Xn(s) the set of numeric variables, and X(s) = Xp(s) ∪Xn(s).
Definition 3.1 (Numeric Instance Learning Graph). The Numeric Instance Learning Graph (νILG)
of a numeric planning task in the lifted representation Π = ⟨O,Σp,Σf ,Σa,A, s0, G⟩ is a graph
G = ⟨V,E,Fcat,Fcon,L⟩ with

• nodes V = O ∪X(s0) ∪G, where we assume w.l.o.g. that V (g) ⊆ X(s0) for all g ∈ Gn,

• edges E =
⋃

p=σ(o1,...,onσ )∈X(s0)∪Gp
{⟨p, oi⟩ | i ∈ [[nσ]]} ∪

⋃
ξ⊵0∈Gn

{⟨ξ, v⟩ | v ∈ V (g)},

• categorical node features Fcat : V→ ΣV with Fcat(u) =OBJ(u) if u ∈ O
FUNC(u) if u ∈ Xn(s0)

(COMP(u), ACH(u)) if u ∈ Gn

(PRED(u), achieved_propositional_goal) if u ∈ Xp(s0) ∩Gp

(PRED(u), unachieved_propositional_goal) if u ∈ Gp \Xp(s0)

(PRED(u), achieved_propositional_nongoal) if u ∈ Xp(s0) \Gp

where OBJ(u) = u if u is a constant object and object otherwise, PRED(u)/FUNC(u) re-
turns the predicate/function symbol from which a proposition/fluent was instantiated from,
COMP(u) ∈ {≥,>,=} encodes the comparator type of the numeric goal condition u, and
ACH(u) ∈ {unachieved_numeric_goal, achieved_numeric_goal} encodes whether s0 satisfies u,

• continuous node features Fcon : V→ R where Fcon(u) = [u]
s0 for nodes u ∈ Xn(s0), Fcon(u) =

[ξ]
s0 for nodes u = ξ ⊵ 0 ∈ Gn with [ξ]

s0 ̸⊵0, and Fcon(u) = 0 otherwise, and

• edge labels L : E→ ΣE where for edges of the form e = ⟨p, oi⟩, we have L(e) = i, and otherwise
for edges e = ⟨ξ, v⟩, we have L(e) = 0.
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on(a, x) 0 1 0 . . . 0 0 0
on(a, b) 0 0 1 . . . 0 0 0

. . . . . .
capacity(i) 0 0 0 . . . 1 2 0
capacity(j) 0 0 0 . . . 1 0 0

. . . . . .
i 1 0 0 . . . 0 0 0
j 1 0 0 . . . 0 0 0

Figure 2: An example ccBlocksworld task where each base has capacity 3 (left), a subgraph of its
ILG representation (middle), and the matrix representation of the node features of the ILG (right).

In general, given a domain with predicate and function symbols Σp and Σn, we have that there are
|ΣV| = 5 + 3 |Σp|+ |Σn|+ |constant_objects| categorical node features representing the semantics
of a node. Continuous node features indicate the value of numeric variables and the error of the
expression in s0 of unachieved numeric goals, and are set to zero for any other node.

3.2 The CCWL algorithm for numeric planning

The WL algorithm [WL68] has been adapted to computing features for graphs with categorical
node attributes by [SSVL+11]. A variant of the WL algorithm for graphs with continuous node
attributes has been proposed by [TGL+19] for the purpose of computing kernels with the Wasserstein
distance between graph embeddings. However, the graph embeddings themselves are not invariant
to the order of graphs in the nodes. Furthermore, from [CTT24b], non-linear kernels result in
poorer generalisation compared to linear models in the context of L4P due to overfitting to the range
of training targets. Morris et al. [MKKM16] constructed kernels for continuous node attributes
by hashing Euclidean embeddings into categorical features but such a method loses the semantic
meaning of numbers. Thus, we propose a new variant of the WL algorithm for graphs with both
categorical and continuous node attributes for generating graph embeddings (CCWL algorithm). This
algorithm is summarised in Alg. 1 and also depicted in Fig. 3.

Algorithm 1: CCWL algorithm
Data: A graph G = ⟨V,E,Fcat,Fcon,L⟩ with continuous and

categorical attributes, a deterministic and injective HASH
function, allowed colours C = [[|C|]], a pooling function
POOL, and number of CCWL iterations L.

Result: Feature vector of size R(1+d)|C|.
1 κ0(v)← Fcat(v),∀v ∈ V
2 for j ∈ [[L]] do for v ∈ V do
3 κj(v)← HASH

(
κj−1(v),

⋃
ι∈ΣE
{(κj−1(u), ι) | u ∈ Nι(v)}

)
4 M←

⋃
j∈{0}∪[[L]]{{κj(v) | v ∈ V}}

5 v⃗cat ←
[

COUNT(M, c1), . . . , COUNT(M, c|C|)
]

6 Si =
{
v | v ∈ V s.t. ∃j ∈ {0} ∪ [[L]] , κj(v) = ci

}
,∀i ∈ C

7 v⃗con ← [con(1) ∥ . . . ∥ con(|C|)], con(i) = POOLv∈Si(Fcon(v))
8 return v⃗cat ∥ v⃗con

1 1 2

1

[0.2, 0.4] [0.3, 1.3] [0.5, 1.5]

[0.2, 0.4]iter 0

β

α

γ
β

3 4 5

3iter 1

HASH(1, {(1, α), (1, β)}) = 3
HASH(1, {(1, β), (2, γ)}) = 4
HASH(2, {(1, γ)}) = 5

con(1) = [0.7 2.1], con(2) = [0.5 1.5]
con(3) = [0.4 0.8], con(4) = [0.3 1.3]

[3 1 2 1︸ ︷︷ ︸
v⃗cat

0.7 2.1 0.5 1.5 0.4 0.8 0.3 1.3︸ ︷︷ ︸
v⃗con

]

Figure 3: CCWL with one itera-
tion, POOL =

∑
, and C = [4].

Lines 1–3 of Alg. 1 are the original steps of the WL algorithm for generating graph embeddings by
iteratively refining categorical node features, which we call colours, with two differences. Firstly, we
replaced the multi-set with a set in the input of the hashing function. This is because in planning,
unseen colours arise from graphs with increasing degrees which occur for out-of-distribution testing
problems of increasing size. This problem is limited by relaxing the hash input with a set, which
trades expressivity for generalisation. Secondly, we make use of edge labels in the hashing function.

Lines 4–5 collect the counts of allowed colours C seen during the main loop of the algorithm to
generate the categorical feature vector in the form of a histogram. We assume by relabelling colours
that C = [[|C|]]. Lines 6–7 generate features from pooling the continuous attributes from different
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groups of nodes. More specifically, for each colour c ∈ C, we find the set of nodes which have been
assigned the colour c some time during the refinement process and pool the continuous attributes of
these nodes. Thus, we have |C| pooled continuous feature vectors which we concatenate together.
We note that this pooling and concatenation process is invariant to the order of nodes in a graph
in contrast to the intermediate graph embeddings generated for Wasserstein WL graph kernels by
Togninalli et al. [TGL+19]. The algorithm returns the concatenation of the categorical and continuous
feature vectors as the final feature vector output for the graph in Line 8. We note that d = 1 when
running CCWL on the νILG representation of a numeric planning task.

We note that a drawback of the algorithm is that continuous attributes are not refined directly. This
could be done by introducing one or more aggregation functions as parameters to the algorithm and
refining continuous attributes by concatenating the aggregations of their neighbouring attributes.
However, this method introduces an increase in the size of the continuous feature vector exponential
in the number of layers, with base equal to the number of aggregation functions chosen. Moreover,
we noted from informal experiments that this method led to overfitting of models to a large number
of blended continuous features that do not have an obvious relation to the learning target.

Assuming a constant time hashing function, the complexity of the CCWL algorithm is O(nL(δ + d))
where n = |V | of the input graph, δ = maxu∈V

∑
ι∈L |Nι(u)| is the degree of the graph, d is the

dimension of the continuous node attributes, and L is the number of layers. The main computation
comes from Line 3 which is performed nL times and the hashing function takes an input of size δ.
Collecting the categorical feature vector takes the same time, while collecting the continuous feature
vector takes O(nLd) time. For reasonably sized d ≲ δ, as in the case of νILG where d = 1, this is
the same complexity as the original WL algorithm for generating graph features, which is O(nLδ).

4 Relational neural networks for numeric planning
Deep learning architectures such as graph neural networks (GNNs) [SGT+09, GSR+17] bene-
fit in generating latent representations automatically with backpropagation when trained end-to-
end [LBH15]. GNNs also benefit from being able to train and evaluate on arbitrary sized graphs.
However, it is generally understood that the expressive power of GNNs is limited by the WL-algorithm
and counting logics with two variables [XHLJ19, BKM+20]. This result translates to the impos-
sibility result of GNNs not being able to learn features that can work well for arbitrary planning
domains [SBG22, CTT24a]. Nevertheless, their application to numeric planning tasks, in which both
logical and numeric reasoning is required, is less well understood. Thus, we still propose GNNs as
an additional baseline for L4NP and empirically evaluate their performance for numeric planning in
Sec. 6.

For our GNN architecture, we perform a transformation on the node features of the νILG
from 3.1 as input for GNNs that can handle edge labels. More specifically, given a νILG
G = ⟨V,E,Fcat : V→ ΣV,Fcon → R,L⟩, we construct a new graph G′ with continuous node
attributes X : V → R|ΣV|+2 defined by X(u) = OH(Fcat(u)) ∥[r1, r2], where OH(Fcat(u)) ∈
{0, 1}|ΣV| ⊆ R|ΣV| denotes a one-hot encoding of the categorical node feature of u, and r1 denotes
the numerical value of numeric variable nodes defined by r1 = [u]

s0 if u ∈ Xn(s0) and r1 = 0
otherwise, and r2 denotes the goal error for numeric goal nodes defined by r2 = [u]

s0 if u ∈ Gn

and r2 = 0 otherwise. We denote the νILG for GNNs by ⟨V,E,X,L⟩ with notation for categorical
features removed. Thus, we can use this graph encoding of numeric planning tasks as input into any
downstream GNN that can handle edge labels or features.

Fig. 2 illustrates the node feature matrix representation of the νILG encoding of a ccBlocksworld
task for input to a GNN. Each row represents a node in the graph, with columns representing the
semantics of the node as well as the value of the numeric variables in the state and error of numeric
goal nodes. We note however, that the ccBlocksworld example does not have any numeric goals and
thus the last column is zero for all entries.

5 Optimisation formulations for learning heuristic functions
In this section, we describe two optimisation methods used for learning heuristic functions from
training data, namely by minimising cost-to-go estimate error and ranking estimate error. Fig. 4
illustrates examples of learned heuristic functions on states of a planning task when trained to zero
loss with both the cost-to-go and ranking formulations. We assume that training data for our models
consist of a set of numeric planning tasks Π1, . . . ,Πn with corresponding optimal plans π1, . . . , πn.
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can achieve 0 loss on the plan trace but may not generalise correctly to state successors. A ranking
heuristic does not need represent correct cost-to-go values and only need to satisfy ranking constraints.
GBFS will return a plan in linear time for the ranking heuristic here but not for the cost-to-go heuristic.

We note that a numeric planning task can offer more training data by generating additional tasks and
plans from different states in the state space of the task. Each plan is denoted πi = a

(i)
1 , . . . , a

(i)
|πi| with

plan trace s
(i)
0 , s

(i)
1 , . . . , s

(i)
|πi|. Each state s in a plan trace induces a new planning task by replacing

s0 with s of the original task, with which we can construct graph or vector representations from our
aforementioned models.

Heuristic functions from cost-to-go estimates. We can use planning tasks and corresponding
optimal plans as training data for learning a heuristic function representing the estimated cost-to-go
to the plan. Each task and corresponding plan πi contributes training data s

(i)
j with targets h∗(s

(i)
j )

for each state s
(i)
j in the plan trace of πi. Then given an estimatorH, we may try to find weights that

minimise the mean squared error (MSE) L(θ) = 1
N

∑n
i=1

∑|πi|
j=0

(
h∗(s

(i)
j )−Hθ(s

(i)
j )

)2
where N is

the normalisation constant andHθ denotes the estimator with weights θ.

Heuristic functions from ranking estimates. The MSE loss is a simple but naive method for training
a heuristic function. Various researchers have instead proposed to use the concept of ranking to learn
heuristic functions [GKL16, CEKP23, HTT+24]. However, a drawback of the formulation of the
ranking optimisation of previous works is that a state in a plan trace is marked as strictly better as its
siblings when it could be the case that the siblings may have the same h∗ value. Furthermore, the
formulation in [CEKP23] scales quadratically in the plan trace. We offer a novel ranking optimisation
criterion that (1) fixes the problem of siblings being misclassified and (2) also results in a sparse
model. We also offer a corresponding differentiable loss function for use with any end-to-end model.

Our first ranking formulation requires solving an LP as the optimisation problem, similarly to
[FCGP19] but only using states from the plan trace, whereas the latter work uses states from the
entire state space of the problem. It can also be viewed as an LP encoding of the formulation
by Garrett et al. [GKL16] but fixing the problem of misrepresented siblings and learning sparse
weights. Let SUCCS(s) denote the set of successors of the state s in a planning task by applying all
applicable actions at s. Hence the set of siblings of state s

(i)
j in Πi’s state space is SIBLINGS(s

(i)
j ) =

SUCCS(s
(i)
j−1) \ {s

(i)
j }. Let φ denote our feature generation function with φ(s) ∈ Rd for any state s.

Then we can define our optimisation problem as a linear program defined by

min
w,z

∑
i,j,k

zi,j,k + ∥w∥1 s.t. zi,j,k ≥ 0, ∀i, j, k (1)

w⊤(φ(s
(i)
j−1)− φ(s

(i)
j )) ≥ cost(a(i)

j )− zi,j,0 ∀i ∈ [[n]] , j ∈ [[|πi|]]

w⊤(φ(sα)− φ(s
(i)
j )) ≥ −zi,j,α ∀i ∈ [[n]] , j ∈ [[|πi|]] , sα ∈ SIBLINGS(s

(i)
j ).

The vector w represents the weights our linear model aims to learn, and the nonnegative slack
variables z model the soft inequality constraints representing the ranking of states. The optimisation
problem is to minimise the the slack variables corresponding to the error of the constraints, and the ℓ1
norm of the weights to encourage sparsity.

We next offer a differentiable loss function version of the previous model which we can use as a fair
comparison when combining it with our GNN architecture in Sec. 4 compared to combining (1) with
features generated in Sec. 3. The idea is to replace the slack variables with the max function:

L(θ) =
∑
i,j

(
max

(
0,Hθ(s

(i)
j )−Hθ(s

(i)
j−1) + c(a

(i)
j )

)
+

∑
sα∈SIBLINGS(s

(i)
j )

max
(
0,Hθ(s

(i)
j )−Hθ(sα)

))
. (2)
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Figure 5: Number of objects in training and testing problems (left) and distributions of training data
generation time with number of training problems (right) per domain. Note the log scales.

6 Experiments
6.1 Numeric planning benchmarks

We take 8 domains out of 10 domains from the International Planning Competition 2023 Learning
Track (IPC-LT) [SSA23] and either convert them to equivalent numeric formulations, or introduce
numeric variables to model extra features such as capacity constraints. The two domains from the
IPC-LT that we do not convert into numeric domains are Floortile and Sokoban which do not have
any benefit from compilation to a numeric representation nor exhibit any interesting features that can
be modelled with numeric variables. The domains we considered from the IPC-LT are summarised
in Fig. 5 alongside the sizes of training and testing tasks, and time to generate training data. Each
domain consists of 90 testing problems and at most 99 small training problems for which the median
time for generating an optimal training plan is less than a second and a few outliers taking more than
a minute. We refer to the appendix for further details on the domains.

6.2 Experimental setup

Training. As discussed in Sec. 5, we only consider optimal plans from small problems as training
data. We compute them with the Numeric Fast Downward planner [AN17] using A∗ search and the
admissible hLMCUT heuristic [KSP+22], with a 30 minute timeout and 8GB main memory.

We consider 4 model configurations. Firstly, we use CCWL features from Sec. 3 with Support
Vector Regression and the linear dot product kernel to learn a linear model for cost-to-go estimation
(hCCWLF

cost ). Next, we use CCWL features in optimisation problem in (1) with CPLEX version 22.11
and a timeout of 600 seconds for ranking estimation (hCCWLF

rank ). Both hCCWLF
cost and hCCWLF

rank models
have allowed colours C in Alg. 1 given by all the refined colours seen during training. We also
have cost-to-go (hGNN

cost ) and ranking (hGNN
rank ) estimation models using GNNs operating on νILG

representations of planning tasks and optimised with the MSE loss function and (2), respectively.
For the backbone GNN, we use a Relational Graph Convolution Network [SKB+18] but replacing
the mean aggregation function with the element-wise max operator in the message-passing update
step: h(l+1)

u = σ(W0h
(l)
u +

∑
ι∈ΣE

maxv∈Nι(u) W
(l)
ι h

(l)
v ), where l denotes the GNN layer, σ is

implemented with the leaky ReLU function, and W0 and W
(l)
ι are learnable weight matrices. Each

GNN has a hidden dimension of 64, and is trained with the Adam optimiser [KB15] with an initial
learning rate of 10−3 and batch size of 16. A scheduler reduces the training loss by a factor of 10 if
loss does not improve after 10 epochs. Training then terminates if the learning rate falls below 10−5.
Let L denote the iterations hyperparameter for CCWL models and number of layers for GNN models.

Evaluation. We consider several numeric planners as baselines for benchmarking the effectiveness
of learning. We first include hLMCUT as the only optimal planner baseline as it is also the training data
generator but solves a more difficult problem of optimal planning compared to satisficing planning.
We consider the Metric-FF planner (M-FF) [Hof03], and the hADD, hMRP, hMRP+hj and M(3h∥3n)
configurations in the ENHSP planner [SHTR20, SSSG20, CT24]. We have that hADD and hMRP are
planners that perform GBFS with a single heuristic only, while hMRP+hj and M(3h∥3n) use additional
techniques (macro actions, multiple queues, and novelty heuristics) to boost planning performance.
Our CCWL and GNN models are all used in single-queue GBFS with the learned heuristic function,
with Numeric Fast Downward as the backend search implementation. All baselines and models are
run on a single Intel Xeon Platinum 8268 (2.90 GHz) core with a 5 minute timeout for search and
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Table 1: Coverage of numeric domain-independent, the new learning planners (hGNN
cost , hGNN

rank , hCCWLF
cost ,

hCCWLF
rank ) with L = 1, and the best learner configuration score on each domain (Best Learner). Higher

values are better (↑), with the top three scores in each row except the rightmost entry indicated by the
cell colour intensity. All planner configurations except hLMCUT

opt are satisficing planners.
Planner Baselines Learners (new)

GBFS + heuristic

Domain h
L

M
C

U
T

op
t

h
M

R
P
+

hj

M
-F

F

M
(3
h
∥3

n
)

h
M

R
P

h
A

D
D

h
G

N
N

co
st

h
G

N
N

ra
nk

h
C

C
W

L
F

co
st

h
C

C
W

L
F

ra
nk

B
es

tL
ea

rn
er

Blocksworld 6 18 9 23 19 16 18 24 22 19 29
Childsnack 20 49 14 53 25 20 17 22 22 90 90
Ferry 33 60 60 57 60 57 60 60 70 71 73
Miconic 30 68 65 61 64 51 63 64 90 90 90
Rovers 10 34 17 30 18 15 18 14 22 23 30
Satellite 18 38 24 29 21 23 19 14 23 16 26
Spanner 30 6 35 76 42 42 90 90 90 90 90
Transport 12 55 49 40 32 40 34 38 40 46 48

Σ 159 328 273 369 281 264 319 326 379 445 476

8GB of main memory. Tab. 1 summarises the coverage results of all considered planners on the
benchmarks, with more details provided in the appendix.

How do learning approaches compare to domain-independent numeric planners? From Tab. 1,
we note that our best performing model with L = 1 is hCCWLF

rank and outperforms all domain-
independent planners for satisficing planning on 4 out of 8 domains. Increasing L to 2 brings
hCCWLF

rank to achieve the best coverage on Blocksworld. The domains which learners fall behind on are
Rovers, Satellite and Transport, even when taking the best hyperparameter configuration. The former
two are difficult as they require features more expressive than those generated by graph learning
approaches to capture the semantics of reasoning required to solve the problems [SBG22], while the
latter requires path finding which is not possible for learners with finite receptive fields [TTTX20].
These results hold for classical planning and thus also for our extension to numeric planning. Gen-
erally the best performing planner on a domain expands fewer nodes than the other planners. With
regards to plan length, hCCWLF

rank performs best for Blocksworld but is marginally worse than the best
of the domain-independent numeric planners for Rovers, Satellite and Spanner.

How do CCWL models compare to GNN models? From Tab. 1, we see that the CCWL models
always have similar or better performance than the corresponding GNN models, when comparing
cost-to-go and ranking estimates. The performance of a planners which use GBFS and a heuristic
depend on the heuristic evaluation speed, in which more search can be done in the time limit, or the
quality of the heuristic, in which search can be more informed. Fig. 8 in the appendix shows that
GNN are generally at least an order of magnitude slower than CCWL models for heuristic evaluation
due to performing intensive matrix operations. We note that GNN models are evaluated on CPUs
and could be sped up with access GPUs. Fig. 6a illustrates the number of node expansions of GNN
and CCWL models and we note that there is no clear winner between the two approaches across all
domains, with the exception of hCCWLF

rank generalising perfectly on Childsnack where other models
could not. Thus, we can conclude with respect to planning efficiency that CCWL models generally
outperform their GNN counterparts due to faster heuristic evaluation speeds, while generally both
models have similar generalisation performance.

How do ranking models compare to cost-to-go models? From Tab. 1, ranking models outperform
cost-to-go models in total coverage. However, their performance is incomparable across domains
even when looking at Fig. 6b with the exception of CCWL being able to achieve perfect performance
on Childsnack. Nevertheless, on 8 domain-model pairs for L = 1, ranking models achieve strictly
better coverage, while the converse is only true for 4 domain-model pairs. This suggests a bias
favouring ranking models which can be explained by their advantages covered in Sec. 5, namely that
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Figure 6: Plot comparisons of expanded nodes and plan length of selected pairs of models with L = 1.
A point (x, y) represents the metric of the models indicated on the x and y axis on the domain. Points
on the top left (resp. bottom right) triangle favour the model on the x-axis (resp. y-axis).

they implicitly use more training data by considering successor states of plan trace states, and have a
larger solution space as they are not restricted to predicting an exact value.

What is the effect of number of iterations for CCWL models and layers for GNNs? The
hyperparameter L, which denotes the number of iterations (resp. layers) for CCWL (resp. GNN)
models, generally plays an important role in planning performance. This is because increasing L
improves model expressivity and reasoning capabilities, but comes at the cost of heuristic evaluation
time and increased possibility of overfitting to the training data. From Tab. 2 in the appendix, we note
that surprisingly for most domains and models L = 0 or L = 1 provides the best coverage, while
increasing L rarely improves coverage. This suggests that heuristic evaluation time plays an important
role in planning performance for domains that cannot be solved with the learner’s expressivity.

7 Limitations
The setup of our work is limited to the assumption that the problems being solved can be explicitly
represented in a symbolic language such as PDDL. The assumption of the existence of PDDL
encodings of planning problems allows us to generate training data quickly with domain-independent
numeric planners for supervised training. Furthermore, experiments and theoretical insights also
show that our proposed techniques have room for improvement as there are still classes of numeric
planning tasks with which our models cannot learn and generalise well in.

8 Conclusion
We have proposed a new graph embedding algorithm, the CCWL algorithm, and optimisation criterion
for learning heuristic functions for numeric planning. Planning tasks are encoded as Numeric
Instance Learning Graphs (νILG) on which we run our CCWL algorithm for generating features.
Our numeric planning features are interpretable and efficient to generate. Experimental results show
the effectiveness of our approach by achieving competitive performance over both deep learning
architectures and domain-independent numeric planners. Furthermore, we have identified future
work by improving the expressivity of our algorithms for capturing more complex numeric domains.
Lastly, one can learn forms of domain knowledge different from heuristic functions with our new
numeric planning features and graph representations such as policies [WT24], portfolios [MFH+20]
and detecting relevant objects [SCC+21].
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Figure 7: Left: initial state of a ccBlocksworld problem, where base i, j, and k each have a load
limit of 3 blocks. Right: the goal condition where A is on top of B which is on top of i.

A More Details for the ccBlocksworld Example
We repeat the running ccBlocksworld example in Fig. 7. Listings 2 and 1 provide the explicit PDDL
domain and problem encodings for the running ccBlocksworld example. An optimal plan for the
problem is given as follows on the left, and an optimal plan without capacity constraints on the right.

1. (unstack f d j)
2. (stack f a i)
3. (unstack d b j)
4. (stack d f i)
5. (pickup b j)
6. (stack b e k)
7. (unstack d f i)
8. (putdown d j)
9. (unstack f a i)

10. (stack f d j)
11. (pickup a i)
12. (stack a f j)
13. (unstack b e k)
14. (putdown b i)
15. (unstack a f j)
16. (stack a b i)

1. (unstack f d j)
2. (stack f e k)
3. (unstack d b j)
4. (stack d f k)
5. (pickup a i)
6. (stack a d k)
7. (pickup b j)
8. (putdown b i)
9. (unstack a d k)

10. (stack a b i)

Listing 1: PDDL encoding for the ccBlocksworld problem in Fig. 7.
( d e f i n e ( problem runn ing−example )

( : domain c c b l o c k s w o r l d )
( : o b j e c t s

a b c d e f − b l o c k
i j k − base

)
( : i n i t

( arm_empty )
(= ( c a p a c i t y i ) 2 )
(= ( c a p a c i t y j ) 0 )
(= ( c a p a c i t y k ) 1 )
( c l e a r a )
( on a i )
( above a i )
( c l e a r f )
( on f d )
( on d b )
( on b j )
( above f j )
( above d j )
( above b j )
( c l e a r e )
( on e c )
( on c k )
( above e k )
( above c k )

)
( : g o a l ( and

( c l e a r a )
( on a b )
( on b i )

) )
)

Listing 2: PDDL encoding for the ccBlocksworld domain.
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( d e f i n e ( domain c c b l o c k s w o r l d )
( : r e q u i r e m e n t s : s t r i p s : t y p i n g : n u m e r i c − f l u e n t s )
( : t y p e s

b l o c k base − o b j e c t
)
( : p r e d i c a t e s

( on ? x − b l o c k ? y − o b j e c t )
( above ? x − b l o c k ? y − base )
( c l e a r ? x − o b j e c t )
( h o l d i n g ? x − b l o c k )
( arm_empty )

)
( : f u n c t i o n s

( c a p a c i t y ? x − base )
)
( : a c t i o n p i ck up

: p a r a m e t e r s ( ? b l o c k − b l o c k ? base − base )
: p r e c o n d i t i o n ( and

( on ? b l o c k ? base )
( above ? b l o c k ? base )
( c l e a r ? b l o c k )
( arm_empty ) )

: e f f e c t ( and
( not ( on ? b l o c k ? base ) )
( not ( above ? b l o c k ? base ) )
( not ( c l e a r ? b l o c k ) )
( c l e a r ? base )
( h o l d i n g ? b l o c k )
( not ( arm_empty ) )
( i n c r e a s e ( c a p a c i t y ? base ) 1 ) )

)
( : a c t i o n putdown

: p a r a m e t e r s ( ? b l o c k − b l o c k ? base − base )
: p r e c o n d i t i o n ( and

( h o l d i n g ? b l o c k )
( c l e a r ? base )
( <= 1 ( c a p a c i t y ? base ) ) )

: e f f e c t ( and
( not ( h o l d i n g ? b l o c k ) )
( not ( c l e a r ? base ) )
( on ? b l o c k ? base )
( above ? b l o c k ? base )
( c l e a r ? b l o c k )
( arm_empty )
( d e c r e a s e ( c a p a c i t y ? base ) 1 ) )

)
( : a c t i o n u n s t a c k

: p a r a m e t e r s ( ? b l o c k _ a − b l o c k ? b lock_b − b l o c k ? base − base )
: p r e c o n d i t i o n ( and

( on ? b l o c k _ a ? b lock_b )
( above ? b l o c k _ a ? base )
( c l e a r ? b l o c k _ a )
( arm_empty ) )

: e f f e c t ( and
( not ( on ? b l o c k _ a ? b lock_b ) )
( not ( above ? b l o c k _ a ? base ) )
( not ( c l e a r ? b l o c k _ a ) )
( c l e a r ? b lock_b )
( h o l d i n g ? b l o c k _ a )
( not ( arm_empty ) )
( i n c r e a s e ( c a p a c i t y ? base ) 1 ) )

)
( : a c t i o n s t a c k

: p a r a m e t e r s ( ? b l o c k _ a − b l o c k ? b lock_b − b l o c k ? base − base )
: p r e c o n d i t i o n ( and

( h o l d i n g ? b l o c k _ a )
( c l e a r ? b lock_b )
( above ? b lock_b ? base )
( <= 1 ( c a p a c i t y ? base ) ) )

: e f f e c t ( and
( not ( h o l d i n g ? b l o c k _ a ) )
( not ( c l e a r ? b lock_b ) )
( on ? b l o c k _ a ? b lock_b )
( above ? b l o c k _ a ? base )
( c l e a r ? b l o c k _ a )
( arm_empty )
( d e c r e a s e ( c a p a c i t y ? base ) 1 ) )

)
)
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B Related Work
Two related fields to Learning For Planning (L4P) and Learning For Numeric Planning (L4NP) are
Generalised Planning (GP) and Reinforcement Learning (RL). In the following subsections, we
outline the main difference between L4P with the respective related fields as well as corresponding
related work.

B.1 Generalised planning

GP consists of automatically characterising the solution of a (possibly infinite) set of planning
tasks [Sri10, SIZ08]. The most common characterisations are action policies, but other character-
isations also include finite state controllers [BPG09, BPG10, HG11, HG13, AJJ18], and programs
with branching and looping [AJJ21, ACSJ22]. Logic programming approaches involving decision
lists [Kha99, GT04] and Datalog programs [GRH24, CHŠ24] have also been used to characterise
solutions for planning domains. We refer to articles [CAJ19] and [Sri23] for more detailed surveys of
GP. The difference L4P and GP can be subtle given that there is a non-empty intersection between the
two fields, and works in both fields generally aim to compute structures that solve problems from a
given domain. The way we differentiate the two fields is that L4P follows generally follows traditional
supervised learning approaches, whereas GP can be likened to performing program synthesis.

With regards to numeric planning, Srivastava et al. [SZIG11] introduced Qualitative Numeric Planning
(QNP) which is a subset of numeric planning where numeric variables exhibit non-negative domains,
and actions increase or decrease the value of numeric variables by indeterminate amounts. A solution
for a QNP is a policy which can be used to represent solutions for sets of planning tasks. QNP has
been shown to be equivalent to fully observable non-deterministic (FOND) planning [BG20] arising
from the non-determinism of action effects, and the connection between FOND and GP has often
shown itself when used to synthesise generalised policies [BG18, IM19]. Lin et al. [LCF+22] studies
GP for a more expressive class of numeric planning, by allowing for integer numeric variables and
employing linear expressions in conditions and action effects. Their approach involves synthesising
programs that allow for branching and looping. Lastly, νASNets [WT24] extends ASNets [TTTX20]
in order to learn policies with a neural network architecture for planning.

B.2 Reinforcement Learning

RL is a learning paradigm for decision making that does not have access to a model and instead
learns from rewards [SB98]. RL has achieved promising results in games when combined with deep
learning [MKS+15, SHM+16]. A major difference between RL and L4P is that the former requires
reasoning over dense reward functions, whereas the latter requires reasoning over logic [Gef18].
Nevertheless, there has been some preliminary work looking at the intersection of RL and planning.
Reward machines [IKVM22] are a logical language used for specifying reward functions for RL
problems, inspired by the declarative nature of the planning as modelling paradigm. RL has also been
applied directly into planning tasks, as done by [MV21] for temporal planning. Rewards are mostly
sparse, with 1 being reward for achieved goals, minor 10−5 rewards for achieved goal propositions,
and no reward otherwise. Gehring et al. [GAC+22] explored introducing denser reward functions
to planning through domain-independent heuristics to allow for RL approaches. Supervised RL
has also been used for learning planning policies [SBG23]. Nevertheless, the use cases for RL and
planning are generally different, with RL being more suited for control tasks in continuous or dynamic
environments such as in robotics, and planning being more suited for combinatorial tasks in discrete
or abstract environments such as in logistics.

C Description of Benchmark Domains
C.1 Numeric (Capcity Constrained) Blocksworld

This domain was described in Sec. 2. A task from the domain consists of n blocks stacked on top
of one another to form towers on top of b bases. Each base has a capacity of how many blocks it
can support. The goal is to stack and unstack blocks to achieve a target tower configuration. The
numeric component of this domain arises from modelling the capacity of bases. Training problems
have n ∈ [2, 11] blocks while testing problems have n ∈ [5, 488] blocks.

C.2 Numeric Childsnack

A task from the domain consists of feeding c children with sandwiches in l locations, of which
some are allergic to gluten. There are a finite amount of gluten-free (GF) and non-GF ingredients.
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GF sandwiches can only be made from GF ingredients, whereas non-GF sandwiches can be made
with any ingredients. Children allergic to gluten are only allowed to eat GF sandwiches while the
remaining children can eat any type of sandwich. Thus, the problem has deadends because resources
are finite and can be wasted. The goal is to make sandwiches and feed all the children satisfying the
aforementioned rules. The numeric component of the domain arises from modelling the ingredient
and sandwich resources. Training problems have c ∈ [1, 8] children while testing problems have
c ∈ [4, 292] children.

C.3 Numeric Ferry

A task from the domain consists of c cars spread across l locations. A ferry is able to transport up
to a fixed amount of cars around to different locations. The goal of the domain is to transport the
cars with the ferry to various target locations. The numeric component of the domain arises from
modelling the capacity of the ferry. Training problems have c ∈ [1, 20] cars while testing problems
have c ∈ [4, 974] cars.

C.4 Numeric Miconic

A task from the domain consists of p passengers with different weights spread across f floors. There is
a single elevator with a fixed load capacity that can transport passengers between floors. Furthermore,
if the load of the elevator exceeds a secondary threshold, it takes twice as long to move between floors.
The goal of the domain is to move the passengers to their target floors. The numeric component of
the domain arises from modelling the weight of the passengers and load capacity of the elevator.
Training problems have p ∈ [1, 10] passengers while testing problems have p ∈ [1, 485] passengers.

C.5 Numeric Rovers

A task from the domain consists of r rovers some of which can sample rock and soil data, while
others have cameras that can take images of objectives. The goal of each problem is to sample rock
and soil data as well as take images of objectives and communicate all g data to the lander. The rovers
can move around a map with w waypoints and the rover is only able to communicate data to the
lander from a subset of waypoints. Furthermore, rovers have a limited energy supply that is consumed
with any action, but they can recharge with solar panels at certain waypoints. Thus, the problem has
deadends because rovers have limited energy and could exhaust them in waypoints where they cannot
recharge. The numeric component of the domain arises from modelling the energy supply of the
rovers. Training problems have g ∈ [1, 10] goals while testing problems have [2, 728] goals problems

C.6 Numeric Satellite

A task from the domain consists of s satellites, each carrying a subset of i instruments that can take
pictures of space using a subset of m modes. Satellites can rotate to take pictures of d locations in
space. Each satellite has a fixed amount of fuel that is consumed when rotating, and a fixed amount
of data capacity that is consumed when taking pictures. Thus, the problem has deadends because
resources are finite and can be wasted. The goal of a Satellite problem is to take pictures of a set of
locations in space with specified modes while adhering to the fuel and data capacity constraints. The
numeric component of the domain arises from modelling the fuel and data capacity features. Training
problems have s ∈ 2, 10 satellites and testing problems have s ∈ [4, 98] satellites.

C.7 Numeric Spanner

A task from the domain consists of s spanners scattered along a one-way hallway with l locations, and
n nuts at the end of the hallway that have to be fixed. Each spanner can only be used to fix a single
nut before it breaks. The goal of the domain is to fix all the nuts. The problem has deadends if not
enough spanners are picked up before reaching the end of the hallway. The numeric component of the
domain arises from modelling the number of spanners and nuts. Training problems have s ∈ [1, 10]
spanners while testing problems have s ∈ [1487] spanners.

C.8 Numeric Transport

A task from the domain consists of p packages spread across l locations, with t number of trucks
that can transport pick up and transport packages on a map. Each truck has a limited capacity of
packages it can carry. The goal of the problem is to transport all the packages to their target locations.
The numeric component of the domain arises from modelling the capacity of the trucks. Training
problems have p ∈ [1, 7] packages while testing problems have p ∈ [1, 194] packages.

19



Bl
oc

ks
wo

rld

Ch
ild

sn
ac

k

Fe
rry

M
ico

ni
c

Ro
ve

rs

Sa
te

llit
e

Sp
an

ne
r

Tr
an

sp
or

t

Domain

10 5

10 4

10 3

10 2

Ti
m

e 
(s

)

Figure 8: Distributions of heuristic evaluation time for GNN and CCWL models with L = 1 on
problems where both were able to solve in the given timeout. Blue box plots correspond to GNN
models and red box plots correspond to CCWL models.

D GNN and CCWL heuristic evaluation times
We refer to Fig. 8 for distributions of heuristic evaluation time for GNN and CCWL models with
L = 1. Times are computed by taking the total search time for each problem and dividing by the
number of heuristic evaluations made by the planner. We assume that the heuristic evaluation is the
bottleneck of the search which is confirmed with informal profiling experiments.

E Effect of number of iterations and layers
We refer to Tab. 2 for the coverage of models with different L values.
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Table 2: Coverage and median of expansions of solved problems for each CCWL and GNN model
with varying number of iterations and layers. Higher values are better for coverage, and lower values
are better for expansions. The best value per domain and metric coloured. OOM denotes that the
training process exceeded the memory limit.

(a) hGNN
cost

Domain Coverage
0 1 2 3 4

Blocksworld 22 18 24 19 21
Childsnack 18 17 15 14 13
Ferry 60 60 60 60 60
Miconic 67 63 62 60 58
Rovers 21 18 11 13 13
Satellite 22 19 11 13 14
Spanner 90 90 90 90 77
Transport 36 34 31 31 30

Σ 336 319 304 300 286

(b) hGNN
rank

Domain Coverage
0 1 2 3 4

Blocksworld 20 24 22 24 22
Childsnack 18 22 26 29 37
Ferry 60 60 60 60 60
Miconic 70 64 62 62 59
Rovers 22 14 13 12 11
Satellite 22 14 14 17 14
Spanner 90 90 90 90 90
Transport 36 38 33 27 28

Σ 338 326 320 321 321

(c) hCCWLF
cost

Domain Coverage
0 1 2 3 4

Blocksworld 28 22 19 21 22
Childsnack 22 22 20 20 20
Ferry 73 70 65 62 58
Miconic 90 90 88 87 85
Rovers 30 22 19 15 15
Satellite 26 23 5 7 5
Spanner 90 90 89 88 86
Transport 48 40 37 30 27

Σ 407 379 342 330 318

(d) hCCWLF
rank

Domain Coverage
0 1 2 3 4

Blocksworld 25 19 29 23 22
Childsnack 22 90 20 23 23
Ferry 73 71 70 68 68
Miconic 90 90 89 87 85
Rovers 21 23 15 22 21
Satellite 17 16 7 OOM OOM
Spanner 90 90 89 89 89
Transport 48 46 46 29 35

Σ 386 445 365 341 343
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NeurIPS Paper Checklist
1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: the abstract and introduction provide a summary of the problem we are solving
and also the main content of the paper.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: we discuss limitations in the corresponding Limitations section.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [NA]
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Justification: we do not formalise any theoretical results in this paper, but refer to previous
work for theoretical results.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: we have done our best in the given space limits to describe in detail the
experimental setup and algorithms used. We have also provided descriptions of the new
datasets used.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: we aim to provide open access to our code and new datasets.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: details of training and test details are given in the corresponding experimental
section of the paper.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [No]

Justification: evaluation of planning tasks is also expensive to run and thus are only ran once.
Informal experiments also show that training with different seeds offer minor variance in
performance.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.
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• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: we provide hardware information as well as time and memory limits
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: the authors have read the NeurIPS Code of Ethics and believe that the research
conforms with it.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [NA]
Justification: our research is mainly foundational and not tied to particular applications. It is
mainly focused on improving the efficiency and effectiveness of underlying algorithms.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
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• If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

• Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: there is no obvious method for our data (PDDL files) or models (planners) that
may have a high risk of misuse.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: original owners of datasets from which we create new benchmarks are properly
cited and their licenses respected.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
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• For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

• If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: we will provide detailed documentation of our new datasets and planners when
we release them.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: we do not do crowdsourcing experiments nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: same justification as previous question.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.
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• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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